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1 Introduction

A variety of problems require succinct summary representations of large data sets. Histograms are an im-
portant example of such summary representation structures. In the database field, they are mainly used for
selectivity estimation during query optimization [11, 4] and also for approximate query processing [13, 25] to
give rough and fast responses to expensive queries. Query optimization in relational database systems has tra-
ditionally relied on single-attribute histograms to compute the selectivity of queries. For queries that involve
multiple attributes, most database systems make the attribute value independence assumption, i.e., assume that
p(A1=v1, A2=v2) = p(A1=v1) · p(A2=v2), which may of course lead to significant inaccuracy in selectivity
estimation (e.g., see [26]).

An alternative to assuming attribute value independence is to use histograms over multiple attributes,
which are generally referred to asmultidimensional histograms[19, 26]. Ideally, multidimensional histograms
should consist ofbucketsthat enclose regions of the data domain with close-to-uniform tuple density, so they
can accurately estimate the selectivity of range queries. At the same time, multidimensional histograms should
be sufficiently compact and efficiently computable. Unfortunately, existing multidimensional histogram con-
struction techniques fail to satisfy these requirements robustly across data distributions, as we show in this
paper through a thorough experimental evaluation over synthetic and real-life data sets. A fundamental prob-
lem with many of these techniques is that they make bucket generation decisions based onunidimensional
information, as we will discuss.

A key observation that we exploit in this paper is that we can build good quality histograms by exploiting
workload information and query feedback. Typically, histogram construction strategies only inspect the data
sets that they characterize, without considering how the histograms will be used. In particular, if the histograms
are to help in query processing, the implicit assumption is that all queries are equally likely. This assumption
is rarely true in practice, and certain data regions might be much more heavily queried than others. Intuitively,
we will exploit query workload to zoom in and spend more resources in heavily accessed areas, thus allowing
some inaccuracy in the rest. We will also exploit query feedback as truly multidimensional information to
identify promising areas to enclose in histogram buckets. As a result, we will obtain a customized histogram
that is more accurate for the expected workload than traditional workload-independent ones would be.

In this paper we presentSTHoles, a novel workload-aware histogram technique. This histogram identi-
fies a novel partitioning strategy that is especially well suited to exploit workload information. We present
algorithms that show how to exploit results of queries in the workload and gather associated statistics to pro-
gressively build and refine anSTHoleshistogram (Figure 1). Thus, our technique uses information about both
the workload (range selection queries) and the data distribution itself (through statistics collected from query
result streams). An important consequence of this refinement procedure is that our histograms can gracefully
adapt to changes in the data distribution they approximate, without the need to periodically rebuild them. Our
experiments strongly suggest that our approach results in a customized histogram that is robust across differ-
ent data sets and workloads and in many cases results in more accurate estimations for the expected workload
than those for the best workload-independent histogram construction techniques. Of course, it is inevitable
that histograms built using only query feedback are susceptible to errors for queries that target unseen data
regions. As we will see, these errors can be reduced by starting even with a coarse initial histogram. We also
studied the overhead of the refinement procedure over Microsoft SQL Server 2000, and found that it slows
down query execution by less than 10%, which is acceptable and can be regarded as an amortized cost we pay
for the online construction ofSTHoleshistograms.

The rest of the paper is structured as follows. Section 2 reviews related work. Section 3 describes existing
multidimensional histogram techniques and motivates the introduction of theSTHoleshistograms that we
then present in Section 4. Section 5 discusses some implementation details for building and refiningSTHoles
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Figure 1: Workload-driven histogram construction.

histograms. Finally, Sections 6 and 7 report an extensive experimental evaluation of the new histograms using
both real and synthetic data sets and a variety of query workloads.

2 Related Work

Several techniques exist in the literature to compute selectivity estimators of multidimensional data sets. These
techniques include wavelets (e.g., [17]) and discrete cosine transformations (e.g., [15]), sampling (e.g., [22]),
and multidimensional histograms. The focus of this paper is on multidimensional histograms, which have been
the topic of much theoretical and experimental work in the last few years. A conceptually interesting class
of histograms is theV-optimal(f,f)family [27], which groups contiguous sets offrequenciesinto buckets and
minimizes the variance of the overall frequency approximation. These histograms are optimal for estimating
the result size of equality join and selection queries under a definition of optimality that captures the average
error over all possible queries and databases [12]. However, these histograms need to recordeverydistinct
attribute value inside each bucket, which is clearly impractical and makes these techniques be only of theoret-
ical interest. Moreover, the construction algorithm involves an exhaustive and exponential enumeration of all
possible histograms. A more practical approach is to restrict the attention toV-optimal(v,f)histograms, which
group contiguous sets ofvaluesinto buckets, minimizing the variance of the overall frequency approximation.
A dynamic programming algorithm is presented in [14] for buildingunidimensional V-optimal(v,f)histograms
in O(N2b) time, whereN is the number of tuples in the data set andb is the number of buckets. Unfortunately,
it can be shown [20] that even for two-dimensional data sets, building theV-optimal(v,f)histogram using arbi-
trary rectangular buckets is NP-Hard. Therefore, practical static multidimensional histogram techniques use
heuristics to partition the data space into buckets, as discussed below.

A multidimensional version of theEquiDepthhistogram [24] presented in [19] recursively partitions the
data domain,one dimension at a time, into buckets enclosing the same number of tuples. Reference [26]
introducedMHist based on underlyingMaxDiff(v,a)histograms [27]. The main idea is to iteratively partition
the data domain using a greedy procedure. At each step,MaxDiff(v,a)analyzesunidimensionalprojections of
the data set and identifies the bucket in most need of partitioning. Such a bucket will have the largest “area
gap” [27] between two consecutive values along one dimension. Using this information,MHist iteratively
splits buckets until it reaches the desired number of buckets. Recently, reference [9] introducedGenHist
histograms, which allow unrestricted overlap among buckets. If more than two buckets overlap, the density
of tuples in their intersection is approximated as the sum of the data densities of the overlapping buckets. For
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the technique to work, a tuple that lies in the intersection of many buckets is counted in only one of them
(chosen probabilistically). The main idea is to construct progressively coarser grids over the data set, convert
the densest cells into buckets of the histogram, and remove a certain percentage of tuples in those cells to make
the resulting distribution smoother. In contrast, our histograms allow only a restricted kind of bucket overlap
that is less expensive to manage, which will be crucial to exploit workload refinement.

All the histogram techniques above arestatic in the sense that, after histograms are built, their buckets
and frequencies remain fixed regardless of any changes in the data distribution. Histograms are typically
rebuilt or reorganized if the number of data set updates or a certain inaccuracy threshold is exceeded. Ref-
erences [6] and [8] are examples of reorganization strategies for unidimensional histograms. As we will see
in Section 3, partitioning multidimensional spaces is challenging, and there are no obvious generalizations of
these techniques for more than one dimension.

The idea of using feedback from the query execution engine is introduced in [5]. Their approach is to
represent the data distribution as a linear combination of model functions. The weighting coefficients of this
linear combination are adjusted using feedback information and a least squares technique. The main problem
with this approach is that it depends on the choice of the “model” functions, and moreover, it assumes that the
data follows some smooth and known distribution, which is not the case for arbitrary data sets.

Reference [1] presents the first multidimensional histogram that uses query feedback to refine buckets,
and shares some ideas with our work. We refer to this technique asSTGridhistograms in this paper. (“ST”
stands for “self tuning.”) AnSTGridhistogram greedily partitions the data domain into disjoint buckets that
form a grid, and refines their frequencies using query feedback. After a predetermined number of queries, the
histogram is restructured by merging and splittingrowsof buckets at a time (to preserve the grid structure).
Efficiency in histogram tuning is the main goal of this technique, at the expense of accuracy. SinceSTGrid
histograms need to maintain the grid structure at all times, and due to the greedy nature of the technique, some
locally beneficial splits and merges have the side effect of modifying distant and unrelated regions, hence
decreasing the overall accuracy. For that reason, the resulting histograms are generally less accurate than
their static counterparts and are not robust across different data distributions. In contrast, our new technique
introduces a new histogram structure with bucket nesting that results in better accuracy than standard “flat”
histograms, at the expense of slightly higher execution overhead.

Multidimensional histogram construction shares some intriguing features with multidimensional access
method construction. Multidimensional access methods [7] support efficient search operations in spatial
databases. They partition the data domain into buckets, and assign to each bucket some information about
the tuples it covers (usually the set ofrids). There is a connection between access methods and histogram
techniques regarding the different ways in which they partition the data domain. For instance, the partitioning
strategy used inSTGridhistograms is similar to that of the Grid File technique [21].MHist histograms share
the hierarchical or recursive partitioning of K-D-B Trees [28]. Our proposedSTHolestechnique uses a similar
partitioning scheme to hB-Tree’s holey bricks [16]. Finally,GenHisthistograms use overlapping buckets, just
as R-Trees [10] do. A natural question arises then. Why not use the “shell”1 of the existing access meth-
ods directly to model density distributions of data sets? This idea is explored for example in the CONTROL
project [2], which uses the shell of R-Trees to provide online visualization of large data sets, by traversing
the R-tree breadth-first and approximating the underlying data distribution with the aggregated information
at each level. In spite of these connections between histograms and access methods, we believe that there
are fundamental differences between the two. The main goal of multidimensional access methods is to allow
efficient access to each “bucket” using only a few disk accesses, so the main objective is to distribute tuples

1That is, we discard tuple-level information and some internal nodes so we do not exceed the available storage for the “histogram,”
and replace these new “leaves” with aggregate information.
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(a) Grid (b) Recursive (c) Arbitrary

Figure 2: Partitioning schemes for building multidimensional histograms.

evenly among buckets and maintain a high fraction of bucket utilization to prevent long searches. On the other
hand, histogram techniques need to form buckets enclosing areas of uniform tuple density whenever possible.
Furthermore, since histograms store aggregated information at the bucket level, the number of tuples covered
by each bucket need not be uniform across buckets.

3 Analysis of Existing Multidimensional Histograms

Good histograms partition data sets into “smooth” buckets with close-to-uniform internal tuple density. In
other words, the frequency variance of the tuples enclosed by such buckets is minimized, leading to accurate
selectivity estimations for range queries. Unfortunately, current multidimensional histogram techniques do
not always manage to produce close-to-uniform partitions of the data sets, as we discuss next. Later, Section 7
reports a thorough experimental evaluation of these techniques that complements the discussion in this section.

A partition of a multidimensional data domain results in a set of disjoint rectangular buckets that cover all
the points in the domain and assigns to each bucket some aggregated information, usually the number of tuples
enclosed. The choice ofrectangularbuckets is justified by two main reasons: First, rectangular buckets make it
easy and efficient to intersect each bucket and a given range query to estimate selectivities. Second, rectangular
buckets can be represented concisely, which allows a large number of buckets to be stored using the given
budget constraints. Reference [20] presents a taxonomy of partitioning schemes for building multidimensional
histograms, which we illustrate in Figure 2. In thegrid partitioning scheme (Figure 2(a)), each dimensiondi is
divided intopi disjoint intervals, which induce a grid of

∏
i pi buckets. Arecursivepartition (Figure 2(b)) starts

with one bucket covering the whole domain, and repeatedly divides some existing bucket in two along some
dimension. Finally, thearbitrary partition scheme (Figure 2(c)) imposes no restrictions on the arrangement
of buckets. In principle, all the schemes are equivalent in the sense that we can simulate any partition that
follows one scheme with the others (possibly using more buckets). We say that each partitioning scheme in
Figure 2 ismore flexiblethan those to its left, since we can simulate any partition following the more flexible
scheme with a partition that follows the others using at most the same number of buckets, but not vice-versa.

Consider Figures 3 and 4, which show different histograms built for a multigaussian data distribution and a
two-dimensional projection of US Bureau Census data [3], respectively2. All histograms use the same amount
of memory (250 bytes), which in turn results in different numbers of buckets allocated to each histogram, since
the amount of information needed to describe each bucket is different across histograms. As we can see in
Figures 3(b) and 4(b),EquiDepthhistograms correctly identify the core of the densest tuple clusters in the two
data sets. However, the partitioning of the rest of the domain is problematic. For example, the histogram in
Figure 4(b) contains long buckets that touch the boundaries of the main tuple cluster and stretch all the way to
regions having almost no tuples. As a result, the tuple density inside each of these buckets is far from uniform.

2See Section 6 for more details on the data distributions.
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Figure 3:Gaussdata set and histograms.

Figure 3(b) shows a similar phenomenon. The reason these poor buckets are generated is that the partition
strategy forEquiDepthhistograms is guided by the wrong principle, that is, instead of capturing buckets
with almost uniform tuple density,EquiDepthbuckets have all the same number of tuples. Consequently,
EquiDepthbuckets mix regions with very different tuple densities and therefore exhibit inadequate buckets
around cluster boundaries.

MHist histograms try to solve some of the problems withEquiDepthhistograms for cases when the data
distribution is highly skewed. Figures 3(c) and 4(c) show theMHist histograms for our two data sets using
MaxDiff(v,a) as the underlying unidimensional partitioning strategy [27]. As we can see in Figure 3(c), the
MHist histogram devotes too many buckets to the densest tuple clusters, and almost none to the rest of the
data domain, which degrades the overall histogram accuracy. This problem arises from the way in which
MHist recursively partitions the data set. At each step,MHist assigns scores to each bucket-dimension pair by
analyzingunidimensionalprojections of the original data set, and chooses the pair in most need of partitioning
as the one with the highest score. Unfortunately, the scores for each bucket-dimension pair are absolute
numbers that depend only on the underlying unidimensional histogramMaxDiff(v,a). When deciding where
to partition in each step, it is crucial to include some information about the total number of tuples, the total
volume of the bucket, or even the shape of the bucket. Otherwise, as the example illustrates, some bad
initial partitioning choices are amplified in later steps. In particular, almost all partitions are done along the
same dimension, leading to “thin” non-uniform buckets. TheMHist histogram in Figure 4(c) presents a new
anomaly. The underlyingMaxDiff(v,a)histogram dictates to partition along the position that lies between the
pair of values with the largest difference in area (defined as frequency multiplied by spread [27]). This data
set has different ranges of values along different dimensions. For instance, theAgeattribute has values in the
[15 . . . 95] range, and theIncomeattribute has values in the[−15, 000 . . . 330, 000] range. Therefore, although
the lower half of the data distribution is virtually empty, the difference between consecutive values along the
Incomeattribute is high enough to cause several bucket boundaries to lie in that region. This problem cannot
be easily solved by simply normalizing the values along all dimensions once, because after a few splits the
resulting buckets will start to exhibit this behavior (i.e., non “normalized” ranges) again.

GenHisthistograms are introduced in [9] to address some of the problems outlined above. They find
buckets of variable size and allow unrestricted overlap among buckets. Successively coarser grids are built over
the data set and the densest cells are converted to buckets. Figures 3(d) and 4(d) show theGenHisthistograms
for the data set in Figure 3(a). A drawback of this technique is the difficulty of choosing the right values for a
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Figure 4:Census2Ddata set and histograms.

crucial number of parameters. Specifically, the initial grid size and the number of buckets created per iteration
are given values in [9] that are independent of the data set. As we will see in Section 7, this technique generally
results in better accuracy than the techniques discussed above that make bucket generation decisions based
only on unidimensional information. However, this uniform parameter setting produces degraded performance
in some cases. Another drawback of this technique is that it requires multiple passes (at least 5 to 10) over the
whole data set [9].

Another promising direction to capture multidimensional areas with close-to-uniform tuple density and
address the problems explained above is to incorporateworkload informationand feedback from query ex-
ecutionto progressively refine the histogram buckets. In this way, we could detect buckets that do not have
uniform density and “split” them into smaller and more accurate buckets, or realize that some adjacent buckets
are too similar and “merge” them, thus recuperating space for more critical regions.STGridhistograms use
query workloads to refine a grid-based histogram structure. Figures 3(e) and 4(e) show theSTGridhistograms
for our data set when the query workload used for refinement consists of range queries that follow the data
distribution. Although using workload information helps make the histogram more accurate, the figures show
that workload alone is not powerful enough to get good results, since the grid partitioning strategy is still too
rigid. Data distributions generally contain clusters or sub-regions with similar density, which we would like to
capture using as few buckets as possible. However, theSTGridpartitioning scheme results generally in many
not-so-useful buckets. In particular, the split (merge) of each bucket entails the splitting (merging) of several
other buckets that could be far away from and unrelated to the original one, just to restore the grid partition-
ing constraint. Besides, asSTGridhistograms are also based onMaxDiff(v,a)unidimensional histograms, the
problems discussed forMHist histograms also apply in this case.

To avoid the poor bucket layout problems ofSTGridhistograms and still use query workloads to refine
histograms, we introduce a new partitioning scheme for building multidimensional histograms that allows
buckets to overlap. Specifically, we will allow inclusion relationships, i.e., some buckets can becompletely
included inside others. This way, we implicitly relax the requirement of rectangular regions while keeping
rectangular bucket structures. By allowing bucket nesting, the resulting histograms do not suffer from the
problems outlined above and can model complex shapes (not restricted to rectangles anymore); by restrict-
ing the way in which buckets may overlap, the resulting histograms can be efficiently created and updated
incrementally by using workload information. In contrast to multidimensional histogram techniques that use
unidimensional projections of the data set for bucket creation,STHolesexploits query feedback in a truly
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multidimensional way to improve the quality of the resulting histograms. Figures 3(f) and 4(f) showSTHoles
histograms in which nested buckets capture naturally regions that exhibit varying tuple density.

4 STHoles Histograms

We now describe the general structure ofSTHoleshistograms (Section 4.1). Then, we introduce the various
algorithms needed for constructing the new histograms (Section 4.2).

4.1 Histogram Definition

As explained in the previous section, the inclusion relationship among buckets provides an extra degree of
flexibility compared to partitioning schemes that use disjoint buckets. Each bucketb in anSTHoleshistogram
is composed of a rectangular bounding box, denotedbox(b), and a real valued frequency, denotedf(b), which
indicates the number of tuples enclosed by bucketb. In a traditional histogram (see Section 2), a bucketb

would be “solid,” with no “holes,” and hence the region thatb covers would be regarded as having uniform
tuple density. In contrast, anSTHoleshistogram identifies sub-regions ofb with different tuple density and
“pulls” them out fromb. Hence a bucketb can haveholes, which are themselves first-class histogram buckets.
These holes are bucketb’s children, and their bounding boxes are disjoint and completely enclosed inb’s
bounding box3. Therefore, anSTHoleshistogram can be conceptually seen as a tree structure, where each
node represents a bucket.

The volume of bucketb is defined asv(b) = vBox(b) − ∑
b′∈ children(b) vBox(b′), wherevBox(b) is the

volume ofbox(b). Given a histogramH over a data setD, and a range queryq, the estimated number ofD
tuples that lie insideq, est(H, q), is:

est(H, q) =
∑
b∈H

f(b)
v(q ∩ b)

v(b)

wherev(q∩b) denotes the volume of the intersection ofq andb (notbox(b)). In the next sections we introduce
the algorithms used to build and refineSTHoleshistograms.

Example 1: Figure 5 shows a histogram with four buckets. The root of the tree is bucketb1, with frequency
100. It has two children, namely bucketsb2 and b3, with frequencies 500 and 1,000, respectively. Finally,
bucketb3 has one child,b4, with frequency 200. The region associated with a particular bucket excludes that
of its descendants, which can be thought of as “holes” in the parent space. Note that the region modeled by
bucketb1 (shaded in Figure 5) is not rectangular, even though we only use rectangular buckets for partitioning
the space. A query that covers the lower half of bucketb3 will be estimated to return nearly 1,000 tuples, even
when it covers half ofb3’s bounding box, because the other half is not considered as part ofb3. More precisely,
there is another bucket (b4) that covers that region.

4.2 Histogram Construction

A key idea for buildingSTHoleshistograms is to intercept the result of queries in the workload and efficiently
gather some simple statistics over them to progressively refine the layout and frequency of the existing buck-
ets. This way, the regions that are more heavily queried will benefit from having more buckets with finer

3Note that an alternative design could add the frequency of a bucket’s descendants to the frequency of the bucket proper. It is easy
to see that this alternative design conveys exactly the same information as ourSTHoleshistograms do.
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Figure 5: A four-bucketSTHoleshistogram.

granularity. To build anSTHoleshistogram, we start with an empty histogram that contains no buckets. Alter-
natively, if we have more information about the data distribution, e.g., the total number of tuples in the data set
and the maximum and minimum value for each attribute4, we can start with a single-bucket histogram. More
generally, we can use an existing histogram and start with a more accurate model of the data set (see Section 7
for more details). For our experiments, we assume we know nothing about the data set and therefore we start
with an empty histogram. (However, for completeness we ran all experiments in Section 7 using the simple
variations above and obtained similar results.)

After we set up the initial histogram, for each queryq in the workload we intercept the result stream
and count how many tuples lie inside each bucket of the current histogram. If the current queryq extends
beyond the boundaries of the root bucket (or when considering the first query) we expand the bounding box
of the root bucket so that it coversq. Then we determine which regions in the data domain can benefit from
using this new information (Section 4.2.1), and refine the histogram by “drilling holes,” or zooming into the
buckets that cover the query region (Section 4.2.2). Finally, we consolidate the resulting histogram by merging
similar buckets so that we do not exceed our fixed storage budget (Section 4.2.3). These high level steps are
summarized below:

BuildAndRefine (H: STHoles, D: Data Set, W: Workload)
Initialize H with no buckets (empty histogram).
// Or use an existing histogram if available.
for each query q ∈ W do

Gather statistics from q ∩ bi ∀ buckets bi in H.
Identify candidate holes in H (Section 4.2.1).
Drill candidate holes as new buckets in H (Section 4.2.2).
Merge superfluous buckets in H (Section 4.2.3).

4.2.1 Identifying Candidate Holes

In this section we show how we can use the results of a queryq to identify holes in the buckets of anSTHoles
histogram. Such holes correspond to bucket’s sub-regions with distinctive tuple frequency, which we exploit
to refine and make theSTHoleshistogram more accurate.

In general, a queryq intersects some buckets only partially. For each such bucketbi, we know the exact
number of tuples inq ∩ bi by inspecting the results forq. Intuitively, if q ∩ bi has adisproportionatelylarge or
small fraction of the tuples inbi, thenq ∩ bi is a candidate to become a hole of bucketbi. Hence, each partial
intersection ofq and a histogram bucket could in principle be used to improve the quality of our histogram, as
illustrated in the example below.

4Although the approximate total number of tuples in the data set can be efficiently retrieved from system catalogs, the maximum
and minimum values for each attribute could be expensive to maintain in the absence of indexes.
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Example 2: Figure 6 shows a bucketb with frequencyf(b) = 100. Suppose that from the result stream for
a queryq we count thatTb = 90 tuples lie in the part of bucketb that is touched by queryq, q ∩ b. Using
this information, we can deduce that bucketb is significantly skewed, since 90% of its tuples are located in a
small fraction of its volume. We can improve the accuracy of the histogram if we create a new bucketbn by
“drilling” a hole in b that corresponds to the regionq ∩ b and adjustb and bn’s frequencies accordingly as
illustrated in Figure 6.

b, f(b)=10

bn
f(bn)=90

b, f(b)=100

Tb=90
Drill Hole (b)

Query q

bp bp

Figure 6: Drilling a hole in bucketb to improve the histogram quality.

If the intersection of a queryq and a bucketb is rectangular, as in Figure 6, we can always considerq ∩ b

as a candidate hole and proceed as in the previous example. However, in general it is not always possible to
create a hole in a bucketb to form a new bucketq ∩ b. The problem is that some children ofb might be taking
some ofb’s space, and therefore the bounding box ofq ∩ b might not be rectangular anymore, thus violating
the partitioning constraint we impose on the histogram. For instance, in Figure 6 the intersection betweenq

andb’s parentbp has anL shape, due precisely to bucketb. We could simply ignore those intersections in our
analysis, but that would result in low quality histograms, since a significant fraction of the intersections are
not rectangular. We have chosen a middle ground to approximate the shape ofq ∩ b when it is not rectangular.
Essentially weshrinkq∩ b to a large rectangular sub-region that does notpartially intersect with the bounding
box of any other bucket. We then estimate the number of tuples in this sub-region assuming uniformity. That
is, if Tb is the number of tuples inq ∩ b andc is the result of shrinkingq ∩ b, we estimateTc, the number of
tuples inc, asTc = Tb

v(c)
v(q∩b) .

Example 3: Figure 7 shows a four-bucket histogram and the progressive shrinking of the initial candidate
holec = q∩b. At the beginning, the buckets that partially intersect withc, called participants in the algorithm
below, areb1 andb2 (b3 is completely included inc). We first shrinkc along the “vertical” dimension so that
the resulting candidate holec′ does not intersect withb1 anymore. Then, we shrinkc′ along the “horizontal”
dimension so that the resulting candidate holec′′ does not intersect withb2. At this point there is no bucket that
partially intersects withc′′. The resulting candidate holec′′ is rectangular and covers a significant portion of
the originalq ∩ b region.

b

c=q b
b1

b2 b

c'
b1

b2 b

c''

b1

b2

exclude

b1

exclude

b2

b3 b3 b3

Figure 7: Shrinking a candidate holec = q ∩ b.

More generally, the procedure for shrinking the intersection of a bucketb and a queryq is:
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Shrink (b:bucket, q:query, Tb: # of tuples in b)
c = q ∩ b

participants = {bi ∈ children(b): c ∩bi 6= ∅ ∧ bi 6⊆c}
while (participants 6= ∅)

Select bucket bi ∈ participants and dimension j

such that shrinking c along j by excluding bi

results in the smallest reduction of c

Shrink c along j

Update participants
end while
Tc = Tb * v(c) / v( q ∩ b ) // adjust frequency
Return candidate hole c with frequency Tc

In summary, for each queryq of our workload we identify the candidate new holes to refine a given
histogram. Specifically, these new candidate buckets are the result of invokingshrink( bi, q, Tbi

) for all
bucketsbi such thatq ∩ bi 6= ∅, whereTbi

is the number of tuples in the result ofq that lie inside bucketbi.

4.2.2 Drilling Candidate Holes as New Histogram Buckets

In the previous section we saw how we identify candidate new holes to refine anSTHoleshistogram. Each
candidate holec with frequencyTc that results from shrinking fromq ∩ bi is completely included inbi and
does not intersect partially with any child ofbi. (As illustrated in Figure 7, some ofbi’s children could befully
enclosed inc.) We now show how to effectively “drill” such candidates as new histogram buckets. For this,
we identify three possible scenarios:

1. Bucketbi and candidate holec reference exactly the same region in the data domain, i.e.,box(c) =
box(bi). In this case, the candidate holec carries updated information about the number of tuples inbi,
Tc, but we do not drillc in bi, since they represent essentially the same region. We handle this situation
by simply replacingbi’s frequency withTc.

2. Candidate holec covers allbi’s remaining space. This is a relatively rare special case, but we need to
handle it properly to avoid wasting space. Consider the histogram in Figure 8, with four bucketsb1,
b2, b, andbp, and suppose that we want to drillc in bucketb. Althoughc 6= box(b), c covers all ofb’s
remaining space (the rest is covered by bucketsb1 andb2). If we simply added a new childbn to bucket
b with box(bn) = c, then bucketb proper would carry no information, becauseb would be completely
covered by its childrenb1, b2, andbn. Hence addingbn as a new child ofb would result in wasted space.
To avoid this situation, we eliminate bucketb from the histogram and transferb’s children tob’s parent
bp. More specifically, we first mergeb with its parentbp, and then we drillc again but this time inbp

instead of inb, thus saving one bucket’s worth of space5.

3. The default situation. We can directly apply the ideas from the beginning of Section 4.2. That is, we
create a new child ofbi, denotedbn, with box(bn) = c andf(bn) = Tc. We then migrate all ofbi’s
children whose bounding boxes are completely included inc so they become children of the new bucket
bn. Finally, we adjust the frequency ofbi to restore, whenever possible, the previous frequency counts.
That is, if we had enough tuples inbi, i.e.,f(bi) ≥ Tc, we subtractTc from f(bi). Otherwise, we simply
setf(bi) to zero.

5As an alternative, we could avoid mergingb andbp and then drillingbn by simply changing the frequency ofb. However, our
preferred choice results in less overlap among buckets, which is in general desirable.
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Figure 8: Drillingbn in bucketb would makeb carry no useful information.

The complete procedure is described below:

DrillHole (b: bucket, c: candidate hole, Tc: c’s frequency)
// c is included in b and does not partially intersect
// with any child of b.
if box(b)=box(c) // (Scenario 1)

f(b)=Tc
else if v(b) = volume(c ∩b) then // (Scenario 2)

merge b with its parent bp

DrillHole( bp, c, Tc)
else // default case (Scenario 3)

add a new child of b, bn, to the histogram
box( bn)=c ; f( bn)=Tc
migrate all children of b that are enclosed by c

so they become children of bn

f(b) = MAX{0, f(b) - Tc}

4.2.3 Merging Buckets

The previous section showed how we can refine anSTHoleshistogram by adding buckets as holes to existing
buckets. In doing so, we might temporarily exceed our target number of histogram buckets. Hence, after
adding buckets, we need to reduce the number of histogram buckets by mergingsimilar ones, more specifically
those buckets with the closest tuple density.

Example 4: Consider the three-bucket histogramH in Figure 9, and suppose that we have a two-bucket bud-
get. Two choices we have to eliminate one bucket are: merging bucketsb1 andb2, which results in histogram
H1, and merging bucketsb1 andb3, which results in histogramH2. Although bucketsb1 andb3 have the same
frequency inH (100 tuples each), histogramH1 is more similar to the original, three-bucket histogramH
thanH2 is. In fact, bothH andH1 result in the same selectivity estimation for arbitrary range queries, since
b1 andb2’s densitiesin H are the same. In contrast, histogramH2 returns lower selectivity estimations than
H for range queries that only cover the lower half of the new bucketbn, since the tuple density of bucketb3 is
lower than the tuple density of bucketb1 in histogramH.

More generally, to decide which buckets to merge, we use apenalty function that returns the cost in
histogram accuracy of merging a pair of buckets.

Calculating Penalties

Suppose we want to merge two bucketsb1 andb2 in a given histogramH. Let H ′ be the resulting histogram
after the merge. We define thepenaltyof merging bucketsb1 andb2 in H as follows:
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Figure 9: Merging similar buckets.

penalty(H, b1, b2) =
∫

p∈dom(D)
|est(H, p) − est(H ′, p)| dp

wheredom(D) is the domain of the data setD. In other words, the penalty for merging two buckets measures
the difference in approximation accuracy between the old, more expressive histogram where both buckets are
separate, and the new, smaller histogram where the two (and perhaps additional buckets) have been collapsed.
A merge with a small penalty will result in little difference in approximation for range queries and therefore
will be preferred over another merge with higher penalty. Since the estimated density of tuples inside a bucket
is constant by definition, we can calculate penalty functions efficiently. We can identify all regionsri in the
data domain with uniform density of tuplesbothbefore and after the merge, and just add a finite number of
terms of the form|est(H, ri) − est(H ′, ri)| 6. This procedure will become clearer in the rest of this section
when we instantiate it to concrete situations.

We identified two main families of merges forSTHoleshistograms, which correspond to merging “ad-
jacent” buckets in the tree representation of anSTHoleshistogram:parent-childmerges, where a bucket is
merged with its parent, andsibling-siblingmerges, where two buckets with the same parent are merged pos-
sibly taking some of the parent space (since we need to enclose both siblings in a rectangular bounding box).
The motivation behind these two classes of merges is as follows: Parent-child merges are useful to eliminate
buckets that become too similar to their parents, e.g., when their own children cover all interesting regions
and therefore carry all useful information. On the other hand, sibling-sibling merges are useful to extrapolate
frequency distributions to yet unseen regions in the data domain, and also to consolidate buckets with similar
density that cover close regions. Below we define these two merge variants in detail.

Parent-Child Merges

Suppose we want to merge bucketsbc and bp, wherebp is bc’s parent. After the merge (Figure 10) a new
bucketbn replacesbp, and bucketbc disappears. The new bucketbn hasbox(bn) = box(bp) andf(bn) =
f(bc) + f(bp). The children of both bucketsbc andbp become children of the new bucketbn. Therefore, we
have thatv(bn) = v(bc)+ v(bp). The only regions in the original histogram that change the estimated number
of tuples after the merge arebp andbc. In conclusion, we have that:

penalty(H, bp, bc) =
∣∣∣∣f(bp) − f(bn)

v(bp)
v(bn)

∣∣∣∣︸ ︷︷ ︸
|est(H,bp)−est(H′,bp)|

+
∣∣∣∣f(bc) − f(bn)

v(bc)
v(bn)

∣∣∣∣︸ ︷︷ ︸
|est(H,bc)−est(H′,bc)|

6We can think of this procedure as taking all pointsp ∈ dom(D), “group themby est(H,p), est(H ′, p),” and processing each
group individually.
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whereH ′ is the histogram that results from mergingbp andbc in H. The remaining pointsp in the histogram
domain are such thatest(H, p) = est(H ′, p), so they do not contribute to the merge penalty.

Sibling-Sibling Merges

Consider the merge of bucketsb1 andb2, with common parentbp (Figure 11). We first determine the bounding
box of the resulting bucketbn. We definebox(bn) as the smallest box that encloses bothb1 andb2 and does
not intersect partially with any other child ofbp (that is, we start with a bounding box that tightly encloses
b1 andb2 and progressively expand it until it does not intersect partially with any other child ofbp). In the
extreme situation thatbox(bn) is equal tobp, we transform the sibling-sibling merge ofb1 andb2 into two
parent-child merges, namelyb1 andbp, andb2 andbp. Otherwise, we define the setI of “participant” buckets
as the set ofbp’s children (excludingb1 andb2) that are included inbox(bn). After the merge, the new bucket
bn replaces bucketsb1 andb2. In general,bn will also contain a part of the oldbp. The volume of that part
is vold = vBox(bn) − (vBox(b1) + vBox(b2) +

∑
bi∈I vBox(bi)). Therefore, the frequency of the new bucket

is f(bn) = f(b1) + f(b2) + f(bp) vold
v(bp) . Also, the modified frequency ofbp in the new histogram becomes

f(bp)(1 − vold
v(bp)). To complete the merge, the buckets inI and the children of the oldb1 and b2 become

children of the newbn. Therefore, we have thatv(bp) = vold + v(b1)+ v(b2). The only regions in the original
histogram that change the estimated number of tuples after the merge are the ones corresponding tob1, b2, and
the portion ofbp enclosed bybox(bn). Hence:

penalty(H, b1, b2) =
∣∣∣∣f(bn)

vold

v(bn)
− f(bp)

vold

v(bp)

∣∣∣∣︸ ︷︷ ︸
|est(H,rold)−est(H′,rold)|

+
∣∣∣∣f(b1) − f(bn)

v(b1)
v(bn)

∣∣∣∣︸ ︷︷ ︸
|est(H,b1)−est(H′,b1)|

+
∣∣∣∣f(b2) − f(bn)

v(b2)
v(bn)

∣∣∣∣︸ ︷︷ ︸
|est(H,b2)−est(H′,b2)|

whereH ′ is the histogram that results from mergingb1 andb2 in H, androld is the portion of the old bucket
bp covered by the new bucketbn. The remaining pointsp in the histogram domain are such thatest(H, p) =
est(H ′, p), so they do not contribute to the merge penalty.

Putting all pieces together, we are now ready to refine theSTHolesconstruction algorithm from the begin-
ning of this section as follows:
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BuildAndRefine (H: STHoles, D:Data Set, W: Workload)
Initialize H with no buckets (empty histogram)
// Or use an existing histogram if available
for each query q ∈ W do

Expand H’s root bucket (if needed) so that it contains q.
Count, for all buckets bi, the number of tuples in q ∩ bi, Tbi

for each bucket bi such that q ∩ bi 6= ∅ do
// approximate shape if necessary
(ci, Tci) = Shrink ( bi, q, Tbi

)
if (est(H, ci ) 6= Tci) then

DrillHole( bi, ci, Tci)
end for
while H has too many buckets,

merge the pair of buckets in H with the lowest penalty
end for

5 Implementation Issues

While we are tuning anSTHoleshistogram for a specific query workload, we need to incur certain overhead
for each query that is used for histogram refinement. In this section, we discuss the overhead involved in
two important aspects of the histogram construction technique of Section 4.2. More specifically, Section 5.1
explains how to compute the merge penalty function of Section 4.2.3 efficiently. Then, Section 5.2 analyzes
the impact of gathering statistics “on the fly” to refineSTHolesbuckets in a real commercial DBMS.

5.1 Approximating Penalties

In Section 4.2.3 we discussed how to merge pairs of histogram buckets with low associatedpenalty. To imple-
ment ourpenaltyfunction efficiently, we could maintain a two-dimensional arrayP in memory, whereP [i, j]
is the penalty of merging bucketsbi andbj. This array would need to be updated as we refine the histogram.
Unfortunately, the size of this array is quadratic in the number of buckets. Although the array is needed only
during the tuning of theSTHoleshistogram, we can use instead an approximation of this array that requires
only linear space in the number of buckets and that results in virtually no significant degradation in histogram
accuracy. Specifically, we propose toweakenthe definition of “best penalty” by allowing some times to merge
a pair of buckets with a relatively low, but not lowest, penalty. Intuitively, we use the fact that after merging
two buckets or drilling a hole to an existing bucket, most of the penalties remain unchanged, or change only
slightly. Therefore, in some cases we do not recalculate the penalty function for some combination of buckets,
which results in an approximate, but more efficient technique. In Section 7.2 we show experimentally that this
approximation, which requires less space, is more efficient and results in only slightly worse accuracy than
the original, more expensive, technique. The implementation details of such approximation are explained in
Appendix A.

5.2 Performance of the Counting Procedure

To refine anSTHoleshistogram, we need to intercept queries that participate in the tuning and analyze their
results at run time. It becomes crucial, then, to quantify the overhead that this analysis is adding to regular
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Figure 12: Performance evaluation onMicrosoft SQL Server 2000.

query execution on a real DBMS. In this section we study this overhead and report experimental results over
a commercial DBMS, namelyMicrosoft SQL Server 2000.

As explained in Section 4.2, given a workload queryq we need to calculate the number of tuples in the
answer ofq that lie inside each bucket of the current histogram. We can efficiently identify the buckets
b1, . . . , bk that intersect withq before its execution. Let(L1

i , . . . , L
d
i ) and (U1

i , . . . , Ud
i ) be the lowest and

highestd-dimensional points corresponding to the boundary ofbox(bi), i = 1, . . . , k. We can then interleave
a new operator right after the filter operator inq’s query execution plan that maintains one counter per bucket
and updates them accordingly after analyzing each tuple that is pipelined to the next operator in the execution
plan. Using the fact that ifbi is a child ofbj thenbox(bi) ⊂ box(bj), and assuming that buckets are kept in
order,7 the counting operator can be written as follows:

if (L1
1 ≤ t1 < H1

1 and ... and Ld
1 ≤ td < Hd

1 ) then counter[1]++
else if (L1

2 ≤ t1 < H1
2 and ... and Ld

2 ≤ td < Hd
2 ) then counter[2]++

. . .
else if (L1

k−1 ≤ t1 < H1
k−1 and ... and Ld

k−1 ≤ td < Hd
k−1) then counter[k-1]++

else counter[k]++

wheret = (t1, . . . , td) is the current streamed tuple coming from the filter operator.
We conducted some experiments to determine the average number of range comparisons that are needed

for different data sets and workloads. Figure 12(a) shows the results for two-dimensional data sets when we
allocate 200 buckets for the histograms. The average number of range comparisons per query in the work-
load required bySTHolesis less than 10 for〈Data, V [1%]〉 workloads, and around 35 for〈Uniform, V [1%]〉
workloads (see Section 6.3 for a discussion of workload notation).

We studied the overhead of this new operator in the code ofMicrosoft SQL Server 2000, and tested it
for different numbers of range comparisons and query selectivities. Figure 12(b) shows the overhead of the
counting procedure for range queries with different selectivities. When the number of range comparisons is
zero, we are back to the case when no counting is done at all, and a traditional table scan is executed (we did
not use indexes in our experiments). We can see that the overhead imposed by considering about 35 range
comparisons is about 2%. In fact, the overhead by considering 60 range comparisons (many more than the
numbers reported in Figure 12(a)), is still below 10%. This overhead is acceptable and can be regarded as
an amortized cost we pay for the online construction ofSTHoleshistograms. Moreover, this overhead can be
drastically reduced if we sample the workload and refine the histogram using only a subset of the queries.

7That is, if bi is a descendant ofbj in the tree, thenbi appears beforebj . This order can be achieved by traversing the tree in
postorder, and keeping only the buckets that intersect withq.
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6 Experimental Setting

This section defines the data sets, histograms, and workloads used for the experiments of Section 7.

6.1 Data Sets

We use bothsyntheticandreal data sets for the experiments. The real data sets we consider [3] are:Census2D
andCensus3D(two- and three-dimensional projections of a fragment of US Census Bureau data) consisting
of 210,138 tuples, andCover4D(four-dimensional projection of the CovType database, used for predicting
forest cover types from cartographic variables), consisting of 545,424 tuples. We also generated synthetic data
sets for our experiments following different data distributions, as described below.

Gauss: TheGausssynthetic distributions [29] consist of a predetermined number of overlapping multidi-
mensional gaussian bells. The parameters for these data sets are: the number of gaussian bellsp, the standard
deviation of each peakσ, and a zipfian parameterz that regulates the total number of tuples contained in each
gaussian bell.

Array: These data sets were used in [1]. Each dimension hasv distinct values, and the value sets of each
dimension are generated independently. Frequencies are generated according to a zipfian distribution and
assigned to randomly chosen cells in the joint frequency distribution matrix. The parameters for this data set
are the number of distinct attributes by dimensionv, and the zipfian value for the frequenciesz. When all
the data points are equidistant, this data set can be seen as an instance of theGaussdata set withσ = 0 and
p = vd.

The default values for the synthetic data set parameters are summarized in Table 1.

Data Set Attribute Value

d: Dimensionality 2
All N : Cardinality 500,000

R: Data domain [0 . . . 1000)d

z: Skew 1
Gauss p: Number of peaks 100

σ: Peaks’ standard deviation25
Array v: Distinct attribute values 100

Table 1: Default values for the synthetic data sets.

6.2 Histograms

We compare ourSTHoleshistograms against the following multidimensional histograms:MHist based on
MaxDiff(v,a) [26], EquiDepth[18], STGrid [1] and GenHist[9], using the values of parameters that the re-
spective authors considered the best. (See Section 2 for a summary of these techniques.) All experiments
allocate the same amount of memory for all histograms techniques, which however translates to different
numbers of buckets for each. Consider the space requirements forB d-dimensional buckets. BothEquiDepth
andMHist histograms require2 · d · B values for the bucket boundaries plusB frequency values.STGrid
histograms needB values for frequencies plus aroundd

√
B values for the unidimensional rulers [1].GenHist

histograms require2 ·B values for bucket positions plusB frequency values. Finally,STHoleshistograms use
2 · d · B values for bucket boundaries,B values for frequencies, and2 · B pointers for maintaining the tree
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structure, since each bucket needs to point to its “first” child plus a sibling8. By default, the available memory
for a histogram is fixed to 1,000 bytes.

6.3 Workloads

We use a slightly modified version of the framework given in [23] to generate probabilistic models for range
queries. Given a data set, a range query model is defined as a pair〈C, R[v]〉, whereC is the distribution of the
query centers,R is a function that constrains the query boundaries, andv is a constant value forR. To obtain
a workload given a query model, we first generate the query centers usingC and then expand their boundaries
so they followR[v].

For our experiments, we consider the following center distributions, which are considered representative
of user behavior [23]:

- Data: The query centers follow the data distribution.

- Uniform: The query centers are uniformly distributed in the data domain.

- Gauss: The query centers follow aGaussdistribution independent of the data distribution.

The range constraints we used for our experiments are:

- V[cv]: The range queries are hyper-rectangles included in a hypercube ofvolumecv, and model the
cases in which the user specifies the query values in terms of a window area.

- T[ct]: The range queries are hyper-rectangles that cover a region withct tuples, and model the situations
in which the user has knowledge about the data distribution and issues queries with the intention of
retrieving a given number of tuples.

Parameterscv and ct are specified as a percentage of the total volume and number of tuples of the data
distribution, respectively.

By combining these parameters we obtain six different probabilistic models for query workloads. By
default, we use1% for bothcv andct. As an example, the query model〈Data, T [1%]〉 results in queries with
centers that follow the data distribution and contain1% of the tuples in the data set. Similarly, the query
model〈Gauss, V [1%]〉 corresponds to queries with centers that follow a multi-gaussian distribution and have
an average volume of around 1% of the data domain. Figure 13 shows two sample workloads of 50 queries
each for theCensus2Ddata set.

(a) Census2Ddata set (b) 〈Data, T [1%]workload〉 (c) 〈Gauss, V [1%]workload〉

Figure 13: Two workloads for theCensus2Ddata set.

8Note that this analysis does not account for the temporary space needed for merge-penalty bookkeeping (see Appendix A), which
is only kept during histogram refinement.
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6.4 Metrics

To compare our new technique against existing ones, we first construct atraining workload that consists of
1,000 queries and use it to tune theSTHolesandSTGridhistograms. Then, we generate avalidationworkload
from the same distribution as the training workload that also consists of 1,000 queries, and calculate the
average absolute error for all the histograms. Given a data setD, a histogramH, and a validation workload
W , theaverage absolute errorE(D,H,W ) is calculated as follows:

E(D,H,W ) =
1

|W |
∑
q∈W

|est(H, q) − act(D, q)|

whereest(H, q) is the estimate of the number of tuples in the result ofq, using histogramH for the estimation,
andact(D, q) is the actual number ofD tuples in the result ofq.

We choose average absolute errors as the accuracy metric, since relative errors tend to be less robust when
the actual number of tuples for some queries is zero or near zero. In general, however, absolute errors greatly
vary across data sets, making it difficult to report results for different data sets. Therefore, for each experi-
ment, wenormalizethe average absolute error by dividing it byEunif (D,W ) = 1

|W |
∑

q∈W |estunif(D, q)−
act(D, q)|, whereestunif (D, q) is the result size estimate obtained by assuming uniformity, i.e., in the case
where no histograms are available. We refer to the resulting metric asNormalized Absolute Error.

7 Experimental Evaluation

In Section 7.1 we evaluate the performance ofSTHoleshistograms against that of existing techniques. Sec-
tion 7.2 shows some additional experiments that explore specific aspects ofSTHoleshistograms.

7.1 Comparison of STHoles and Other Histogram Techniques

Accuracy of Histograms: Figure 14 shows normalized absolute errors for different histograms, data sets
and workloads. We can see from the figures that the techniques that are based on truly multidimensional
analysis of the data, i.e.,STHolesandGenHist, result in better accuracy than the others. In particular,STHoles
histograms give better results thanEquiDepth, MHist andSTGrid in virtually all cases. On the other hand,
STHolesandGenHistare comparable in accuracy, and althoughSTHoleshistograms do not directly inspect
the data distributions, in many cases they outperformGenHisthistograms. The only dataset in whichGenHist
results in significantly better accuracy thanSTHolesis Cover4D(see Figure 14). For this high-dimensional
data set, the ability to capture interesting data patterns based only on workload information is diminished.
However, it is important to note that, even for high dimensions,STHoleshistograms still produce better results
than doMHist, EquiDepth, andSTGridhistograms.GenHisthas a high error rate of 75% for theArray data
set with the〈Data, T [1%]〉 workload. This may be due to the choice of histogram construction parameter
values in [9], which is independent of the underlying data set. In general, note thatSTHoles, GenHistand, to
a limited extent,EquiDepthhistograms are “robust” across different data sets and workloads, in the sense that
they consistently produce reasonable results. In contrast,STGridandMHist become too inaccurate for some
combinations of data sets and workloads.

To validate the robustness of our new approach, we varied some parameters in the synthetic data set
generation as well as some parameters in the query models.
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(a) 〈Data, V [1%]〉. (b) 〈Uniform, V [1%]〉. (c) 〈Gauss, V [1%]〉.
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(d) 〈Data, T [1%]〉. (e) 〈Uniform, T [1%]〉. (f) 〈Gauss, T [1%]〉.
Figure 14: Normalized absolute error for different histograms, data sets and validation workloads.

Robustness across Workloads: Figure 15(a-f) shows the normalized absolute error for different data sets
and for varying selectivitys for workloads〈Data, V [s]〉 and 〈Data, T [s]〉, respectively. We can see that in
almost all casesSTHoleshistograms outperform traditional techniques. Even in the few cases thatSTHoles
histograms are not the most accurate, they are a close second, with only one exception. Our technique is
not too accurate in Figure 15(d) for tuple selectivityct = 0.1% (and neither areMHist andSTGrid). This
is mainly because in theGaussdata set the〈Data, T [0.1%]〉 workload consists of many small and disjoint
queries. This workload is particularly bad for any histogram refinement technique likeSTHolesthat bases all
decisions on query feedback, without examining the actual data sets at any time. To deal with such workloads,
we can slightly modify the construction algorithm forSTHoleshistograms (Section 4.2) to start with a more
informed representation of the data set. In particular, we can use an existing histogram (e.g.,EquiDepth) as
the starting point for our technique in the algorithm of Section 4.2. We implemented and tested the accuracy
of the histograms that result from starting with anEquiDepthhistogram and turning it into anSTHoleshis-
togram through workload refinement. The results arehighly accurate for a variety of data sets and workloads.
In particular, for theGaussdata set and〈Data, T [0.1%]〉 workload in Figure 15(d), this alternative version
of STHolesresults in42% of normalized absolute error, i.e., comparable withGenHist, the most accurate
histogram for that particular configuration.

Robustness for Varying Data Set Skew: In Figure 16 we show the results when the skewz used to generate
data sets changes from 0.5 to 2. (The experiments we reported so far usedz = 1.) STHoleshas the lowest
error rates for all skews but for theArray data set andz ∈ {0.5, 1} where is a close second afterGenHist.
MHist behaves poorly for theGaussdata set, only slightly better than assuming uniformity and independence.
However, it becomes more accurate for highly skewedArray distributions, but only marginally better than the
other techniques. In particular, whenz = 2, STHolesandMHist result in the same highest accuracy. It is
worth noting thatArray with z = 2 is a highly skewed data set with just10, 000 distinct values. The most
popular tuple is repeated 295,054 times, and hence accounts for 59% of the data set. The five most frequent
tuples account for 87% of the data set. On the other hand, 95% of the distinct values have frequency one. This
data set is then almost a uniform data set with a few prominent peaks. Incidentally, an extreme data set like
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(a) Gaussdata set. (b) Array data set. (c) Census2Ddata set.
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(d) Gaussdata set. (e) Array data set. (f) Census2Ddata set.

Figure 15: Normalized absolute error using〈Data, T [ct]〉 for varying spatial (cv) and tuple (ct) selectivity.
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(a) Gaussdata set. (b) Array data set.

Figure 16: Normalized absolute error for varying data skew.

this one would probably be best modelled using an end-biased histogram [27].

Robustness for Varying Data Set Dimensionality: Finally, Figure 17 shows the error for varying the di-
mensionalityd of the synthetic data sets. (The experiments we reported so far usedd = 2.) STHolesand
GenHistachieve the highest accuracy for all data set dimensionalities, withGenHistbeing more accurate for
higher number of dimensions, as discussed above. Again,MHist behaves the worst for theGaussdata set, and
performs better for theArray data set. Ford = 4, the correspondingArray data set is especially well suited for
theMHist technique, since it has only 20 different values per dimension (which adds up to 160,000 different
values), and the difference in frequency greatly varies among them. Therefore,MHist is able to capture these
high frequency values accurately.

In conclusion, although for some particular configurationsSTHoleshistograms are slightly outperformed
by others (notably in one data point of Figure 15(d)), in generalSTHolesis a stable technique across different
workloads and data sets, and typically results in significantly lower estimation errors than multidimensional
histograms that inspect the data sets.
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(a) Gaussdata set. (b) Array data set.

Figure 17: Normalized absolute error for varying data dimensionality.
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(a) 〈Data, V [1%]〉 workload. (b) 〈Uniform, V [1%]〉 workload.

Figure 18: Normalized absolute error for workload projections.

Estimating Selectivities for Queries With Fewer Attributes: In a real system, the attributes mentioned in
some range queries might not match exactly the set of attributes covered by the existing histograms. If the set
of attributes in a queryq is a subset of the attributes used in a histogramH, we can useH directly to answer
q by projectingH over the relevant attributes. This section explores the accuracy ofd-dimensionalSTHoles
histograms over projections of workloads ontod − 1 dimensions.

Figure 18 shows the normalized absolute error for different data sets, workloads, and projected dimen-
sions. We can see that for〈Data, V [1%]〉 and〈Uniform, V [1%]〉 workloads (Figures 18(a)-(b)), the results are
consistent with those of Figures 14(a) and 14(b) forSTHoles, GenHist, andEquiDepthhistograms. On the
other hand,MHist andSTGridhistograms present significant differences in accuracy depending on the partic-
ular projection. For instance,MHist is the best histogram for theGaussdata set when we focus on dimension
d = 0. However,MHist is too inaccurate for the same data set when we focus on dimensiond = 1: For the
Gaussdata set,MHist splits buckets almost exclusively along dimensiond = 0 (see also Figure 3(e)). There-
fore, the workload queries projected over dimensiond = 0 represent a best case scenario for this histogram.
However, when we project the queries over dimensiond = 1, the results are significantly worse.

Effect of Varying the Available Storage: Figure 19 shows the normalized absolute error for theCensus2D,
Gauss, andArray databases for varying histogram size. The errors are presented for histograms using from
500 to 2,000 bytes of memory.STHoleshistograms scale comparably to traditional histograms for the whole
range of available memory.

7.2 Experiments Specific to Histogram Refinement

Effect of Using an Approximate Penalty Function: Section 5.1 and Appendix A described how to approx-
imate the computation of the penalty function by maintaining a vector of merge candidates that are close to the
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(a) Gaussdata set. (b) Array data set. (c) Census2Ddata set.

Figure 19: Normalized absolute error for varying histogram sizes.
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Figure 20: Comparison ofSTHolesandSTHoles(array) techniques for 1,000〈Data, V [1%]〉 queries.

optimal ones. All the experiments that we reported so far use this (inexpensive) approximation. We now study
whether using the (more expensive) version with the full array of penalties (denotedSTHoles(Array)) results
in significant improvements in performance. Figure 20(a) shows the normalized absolute error ofSTHolesand
STHoles(array) techniques for different data sets and〈Data, V [1%]〉 workloads. The results are slightly better
(as expected) forSTHoles(array). Figure 20(b) reports the percentage of time thatSTHolestakes to process
1,000 queries relative to that ofSTHoles(array). We can see that both the space requirements (Section 5.1)
and execution time needed to process 1,000 queries (Figure 20(b)) makeSTHoles(array) unattractive given the
meager improvement in accuracy over the more efficient approximation of Section 5.1.

Convergence: Our techniques for buildingSTHoleshistograms keep adjusting the histograms as queries
are evaluated. We now study how the quality of theSTHoleshistograms varies with the number of observed
queries. To do so, we train theSTHoleshistogram 50 queries at a time, and after each step we calculate the
normalized absolute error using the complete validation workload. Figure 21 shows the results for different
data sets and workloads. We can see thatSTHoleshistograms converge fairly quickly, and generally need only
around 150-200 queries to get stable results.

Effect of Updates: Data sets are rarely static, and the data distribution might change over time. We now
evaluate how well our new techniques adapts to changing data distributions. For this, we start with theArray
andGaussdata sets, and progressively “morph” one into the other using random tuple swaps. Each column
of four points in Figure 22 represents a different experiment where we vary the percentage of tuples that
are swapped between the two data sets. For instance, in Figure 22(a) we start with theArray data set. We
build the staticGenHist, MHist and EquiDepthhistograms using this data set, and train theSTHolesand
STGridhistograms using thefirst half of a 〈Data, V [1%]〉 workload. Then, we randomly select a percentage
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Figure 21: Normalized absolute error at different points of the online training.
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(a) Array→ Gauss. (b) Gauss→ Array.

Figure 22: Normalized absolute error after updates.

of tuples from the originalArray data set and interchange them with randomly selected tuples from theGauss
data set. After that, we finish the training of theSTHolesandSTGridhistograms using theremaining half
of the workload. Finally, we test all histograms using a validation〈Data, V [1%]〉 workload. Analogously,
Figure 22(b) shows the results when starting with aGaussdata set and changing it to anArray data set.

Not surprisingly, we can see that the static histograms become really inaccurate when the underlying
data distribution changes. In some cases the results are even worse than when assuming uniformity and
independence, which highlights that periodically rebuilding such multidimensional histograms is essential
(we include in the plots these static histograms just to quantify this behavior). In contrast, bothSTGridand
STHolesadapt gracefully to changes in the data distribution. ForSTHoleshistograms we observe almost no
degradation even when changing the data set completely. That is not the case forSTGrid histograms. For
instance, in Figure 22(b) we can see thatSTHoleskeeps the error rate below 17% at all times, whileSTGrid
results in over67% of normalized absolute error for 100% tuple interchanges.

8 Conclusions and Future Work
In this paper, we presented a new histogram construction technique,STHoles, that exploits query workload and
does not require examining the data sets.STHoleshistograms allow buckets to be nested, and are tuned to the
specific query workload received by the database system. Hence, buckets are allocated where needed the most
as indicated by the workload, which leads to accurate query selectivity estimations. We established the robust-
ness of the new histograms through extensive experimentation using a variety of synthetic and real-world data
sets, as well as a variety of query workloads. We also experimentally comparedSTHoleshistograms against
existing multidimensional histogram techniques. We showed that, in many cases,STHolesresults in more
accurate selectivity estimations for the expected workload than those forGenHisthistograms, a technique
that requires at least 5 to 10 scans over the whole data set during histogram construction and that generally
dominates the other existing multidimensional histograms in accuracy. Finally, we established that the over-
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head of our technique is acceptable through an implementation over Microsoft SQL Server 2000. As future
work, we plan to extend the estimation techniques to complex queries involving joins in addition to selection
conditions. For such queries, these estimations might involve severalSTHoleshistograms. This extension will
enable seamless integration ofSTHoleshistograms into commercial database management systems.
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A Approximating Penalties

To implement thepenaltyfunction of Section 4.2.3 efficiently, we can in principle maintain a two-dimensional
arrayP in memory, whereP [i, j] is the penalty of merging bucketsbi andbj. In this appendix we show how
we can use an approximation of this array that requires only linear space in the number of buckets. In principle,
instead of using the two-dimensional arrayP for “caching” penalties, we could maintain a pair of unidimen-
sional vectors:bestB andbestP . The value ofbestB[bi] is the bucketbj, amongbi’s siblings and parent, for
whichpenalty(bi, bj) is minimal. The vectorbestP stores such penalty:bestP [bi] = penalty(bi, bestB[bi]).
We propose to “weaken” the definition ofbestB, allowing sometimes to return a bucket with a relatively low,
but not lowest, penalty. To do so, instead ofresetting9 at each step all the buckets that are involved in drills
and merges, we slightly modify these algorithms in the following way:

9“Resetting” a bucketb means invalidating the value ofbestB[b] and the value ofbestB[bj] for all bucketsbj such that
bestB[bj ] = b, so those values will have to be calculated again before the next merge.
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Parent-Child Merge Consider the merge of bucketsbc and bp, wherebp is bc’s parent, and letbn be the
resulting bucket. Weonly reset bucketbc, and we setbestB[bn] equal to the oldbestB[bp]. Also,
all bucketsbi such thatbestB[bi] = bp get theirbestB value updated so thatbestB[bi] = bn. The
motivation for this approximation is that generallybp andbn are similar buckets, so the penalty function
should also be similar when evaluating it withbn instead ofbp.

Sibling-Sibling Merge Consider the merge of bucketsb1 andb2, with common parentbp. Suppose the re-
sulting bucket isbn. We reset bucketsb1 andb2. Also, we reset onlybp’s children whosebestB value
is some child ofbn (those buckets were siblings before the merge and became separated). Similarly, we
reset onlybn’s children whosebestB value is some child ofbp (or bp itself). In other words, we do not
reset a bucketbi if bestB[bi] is still a sibling (or the parent) ofbi. Consider Figure 23, where an arrow
from bucketbi to bucketbj means thatbestB[bi] = bj. After mergingb1 andb2 to obtainbn, we only
resetb3, since after the mergeb3 andb5 are not siblings anymore. On the other hand, we do not resetb5

or b2.

Drill Hole Consider a bucketb that is drilled using bucketbn. After drilling bn, we only invalidateb’s children
whosebestB value is some child ofbn (those buckets were siblings before the drill). Similarly, we
invalidate onlybn’s children whosebestB value is some child ofb (or b itself).

bp

bn

bp

Merge(b1,b2)

b1

b2

b3

b5

b3

b4 b4

b5

Figure 23: Resetting buckets after a Sibling-Sibling merge.
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