STHoles: A Multidimensional Workload-Aware Histogram

Nicolas Bruno Surajit Chaudhuri Luis Gravano
Columbia University Microsoft Research Columbia University
nicolas@cs.columbia.edu surajitc@microsoft.com gravano@cs.columbia.edu

Technical Report
MSR-TR-2001-36

Attributes of a relation are not typically independent. Multidimensional histograms can be an
effective tool for accurate multiattribute query selectivity estimation. In this paper, we intro-
duceSTHoles a “workload-aware” histogram that allows bucket nesting to capture data regions
with reasonably uniform tuple densit®THoleshistograms are built without examining the data

sets, but rather by just analyzing query results. Buckets are allocated where needed the most as
indicated by the workload, which leads to accurate query selectivity estimations. Our extensive
experiments demonstrate ti&fHoleshistograms consistently produce good selectivity estimates
across synthetic and real-world data sets and across query workloads, and, in many cases, outper-
form the best multidimensional histogram techniques that require access to and processing of the
full data sets during histogram construction.

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
http://www.research.microsoft.com

1A shorter version of this paper appears in the Proceedings of the 2001 ACM International Conference on Manage-
ment of Data (SIGMOD’01)

1 Introduction

A variety of problems require succinct summary representations of large data sets. Histograms are an im-
portant example of such summary representation structures. In the database field, they are mainly used for
selectivity estimation during query optimization [11, 4] and also for approximate query processing [13, 25] to
give rough and fast responses to expensive queries. Query optimization in relational database systems has tre
ditionally relied on single-attribute histograms to compute the selectivity of queries. For queries that involve
multiple attributes, most database systems make the attribute value independence assumption, i.e., assume th
p(Al=vl, A2=v2) = p(Al=vl) - p(A2=0v2), which may of course lead to significant inaccuracy in selectivity
estimation (e.g., see [26]).

An alternative to assuming attribute value independence is to use histograms over multiple attributes,
which are generally referred to asultidimensional histogrand.9, 26]. Ideally, multidimensional histograms
should consist obucketghat enclose regions of the data domain with close-to-uniform tuple density, so they
can accurately estimate the selectivity of range queries. Atthe same time, multidimensional histograms should
be sufficiently compact and efficiently computable. Unfortunately, existing multidimensional histogram con-
struction techniques fail to satisfy these requirements robustly across data distributions, as we show in this
paper through a thorough experimental evaluation over synthetic and real-life data sets. A fundamental prob-
lem with many of these techniques is that they make bucket generation decisions basedirmensional
information, as we will discuss.

A key observation that we exploit in this paper is that we can build good quality histograms by exploiting
workload information and query feedback. Typically, histogram construction strategies only inspect the data
sets that they characterize, without considering how the histograms will be used. In particular, if the histograms
are to help in query processing, the implicit assumption is that all queries are equally likely. This assumption
is rarely true in practice, and certain data regions might be much more heavily queried than others. Intuitively,
we will exploit query workload to zoom in and spend more resources in heavily accessed areas, thus allowing
some inaccuracy in the rest. We will also exploit query feedback as truly multidimensional information to
identify promising areas to enclose in histogram buckets. As a result, we will obtain a customized histogram
that is more accurate for the expected workload than traditional workload-independent ones would be.

In this paper we preser@THoles a novel workload-aware histogram technique. This histogram identi-
fies a novel partitioning strategy that is especially well suited to exploit workload information. We present
algorithms that show how to exploit results of queries in the workload and gather associated statistics to pro-
gressively build and refine &iTHoleshistogram (Figure 1). Thus, our technique uses information about both
the workload (range selection queries) and the data distribution itself (through statistics collected from query
result streams). An important consequence of this refinement procedure is that our histograms can gracefully
adapt to changes in the data distribution they approximate, without the need to periodically rebuild them. Our
experiments strongly suggest that our approach results in a customized histogram that is robust across differ-
ent data sets and workloads and in many cases results in more accurate estimations for the expected workloa
than those for the best workload-independent histogram construction techniques. Of course, it is inevitable
that histograms built using only query feedback are susceptible to errors for queries that target unseen date
regions. As we will see, these errors can be reduced by starting even with a coarse initial histogram. We also
studied the overhead of the refinement procedure over Microsoft SQL Server 2000, and found that it slows
down query execution by less than 10%, which is acceptable and can be regarded as an amortized cost we pa
for the online construction dTHoleshistograms.

The rest of the paper is structured as follows. Section 2 reviews related work. Section 3 describes existing
multidimensional histogram techniques and motivates the introduction dbTh#leshistograms that we
then present in Section 4. Section 5 discusses some implementation details for building and $dfitirtes

Plan Enumerator . Pl Execution
o Query Plan Engine
A
A4
Result Stream

Selectivity Estimator

Query Optimizer

Histogram
Build/Refine Module

Figure 1: Workload-driven histogram construction.

histograms. Finally, Sections 6 and 7 report an extensive experimental evaluation of the new histograms using
both real and synthetic data sets and a variety of query workloads.

2 Related Work

Several techniques exist in the literature to compute selectivity estimators of multidimensional data sets. These
techniques include wavelets (e.g., [17]) and discrete cosine transformations (e.g., [15]), sampling (e.g., [22]),
and multidimensional histograms. The focus of this paper is on multidimensional histograms, which have been
the topic of much theoretical and experimental work in the last few years. A conceptually interesting class
of histograms is th&-optimal(f,f)family [27], which groups contiguous sets foéquenciesnto buckets and
minimizes the variance of the overall frequency approximation. These histograms are optimal for estimating
the result size of equality join and selection queries under a definition of optimality that captures the average
error over all possible queries and databases [12]. However, these histograms need teveryalidtinct
attribute value inside each bucket, which is clearly impractical and makes these techniques be only of theoret-
ical interest. Moreover, the construction algorithm involves an exhaustive and exponential enumeration of all
possible histograms. A more practical approach is to restrict the attentisGloptimal(v,fhistograms, which

group contiguous sets galuesinto buckets, minimizing the variance of the overall frequency approximation.

A dynamic programming algorithm is presented in [14] for buildimidimensional V-optimal(v,fistograms

in O(N2b) time, whereN is the number of tuples in the data set arnisithe number of buckets. Unfortunately,

it can be shown [20] that even for two-dimensional data sets, building-thgimal(v,f)histogram using arbi-

trary rectangular buckets is NP-Hard. Therefore, practical static multidimensional histogram techniques use
heuristics to partition the data space into buckets, as discussed below.

A multidimensional version of th&quiDepthhistogram [24] presented in [19] recursively partitions the
data domainpne dimension at a timento buckets enclosing the same number of tuples. Reference [26]
introducedMHist based on underlyiniylaxDiff(v,a) histograms [27]. The main idea is to iteratively partition
the data domain using a greedy procedure. At each BtagDiff(v,a) analyzesunidimensionaprojections of
the data set and identifies the bucket in most need of partitioning. Such a bucket will have the largest “area
gap” [27] between two consecutive values along one dimension. Using this informistidist iteratively
splits buckets until it reaches the desired number of buckets. Recently, reference [9] intr@lkradibt
histograms, which allow unrestricted overlap among buckets. If more than two buckets overlap, the density
of tuples in their intersection is approximated as the sum of the data densities of the overlapping buckets. For

the technique to work, a tuple that lies in the intersection of many buckets is counted in only one of them
(chosen probabilistically). The main idea is to construct progressively coarser grids over the data set, convert
the densest cells into buckets of the histogram, and remove a certain percentage of tuples in those cells to mak
the resulting distribution smoother. In contrast, our histograms allow only a restricted kind of bucket overlap
that is less expensive to manage, which will be crucial to exploit workload refinement.

All the histogram techniques above aatic in the sense that, after histograms are built, their buckets
and frequencies remain fixed regardless of any changes in the data distribution. Histograms are typically
rebuilt or reorganized if the number of data set updates or a certain inaccuracy threshold is exceeded. Ref-
erences [6] and [8] are examples of reorganization strategies for unidimensional histograms. As we will see
in Section 3, partitioning multidimensional spaces is challenging, and there are no obvious generalizations of
these techniques for more than one dimension.

The idea of using feedback from the query execution engine is introduced in [5]. Their approach is to
represent the data distribution as a linear combination of model functions. The weighting coefficients of this
linear combination are adjusted using feedback information and a least squares technique. The main problern
with this approach is that it depends on the choice of the “model” functions, and moreover, it assumes that the
data follows some smooth and known distribution, which is not the case for arbitrary data sets.

Reference [1] presents the first multidimensional histogram that uses query feedback to refine buckets,
and shares some ideas with our work. We refer to this techniq&3 @sid histograms in this paper. (“ST”
stands for “self tuning.”) ArSTGrid histogram greedily partitions the data domain into disjoint buckets that
form a grid, and refines their frequencies using query feedback. After a predetermined number of queries, the
histogram is restructured by merging and splittiogys of buckets at a time (to preserve the grid structure).
Efficiency in histogram tuning is the main goal of this technique, at the expense of accuracyS$ard
histograms need to maintain the grid structure at all times, and due to the greedy nature of the technique, some
locally beneficial splits and merges have the side effect of modifying distant and unrelated regions, hence
decreasing the overall accuracy. For that reason, the resulting histograms are generally less accurate tha
their static counterparts and are not robust across different data distributions. In contrast, our new technique
introduces a new histogram structure with bucket nesting that results in better accuracy than standard “flat”
histograms, at the expense of slightly higher execution overhead.

Multidimensional histogram construction shares some intriguing features with multidimensional access
method construction. Multidimensional access methods [7] support efficient search operations in spatial
databases. They partition the data domain into buckets, and assign to each bucket some information abou
the tuples it covers (usually the setrds). There is a connection between access methods and histogram
techniques regarding the different ways in which they partition the data domain. For instance, the partitioning
strategy used i TGrid histograms is similar to that of the Grid File technique [2#Hist histograms share
the hierarchical or recursive partitioning of K-D-B Trees [28]. Our propd&s€Holegechnique uses a similar
partitioning scheme to hB-Tree’s holey bricks [16]. FinalBenHisthistograms use overlapping buckets, just
as R-Trees [10] do. A natural question arises then. Why not use the “sbélihe existing access meth-
ods directly to model density distributions of data sets? This idea is explored for example in the CONTROL
project [2], which uses the shell of R-Trees to provide online visualization of large data sets, by traversing
the R-tree breadth-first and approximating the underlying data distribution with the aggregated information
at each level. In spite of these connections between histograms and access methods, we believe that ther
are fundamental differences between the two. The main goal of multidimensional access methods is to allow
efficient access to each “bucket” using only a few disk accesses, so the main objective is to distribute tuples

That is, we discard tuple-level information and some internal nodes so we do not exceed the available storage for the “histogram,”
and replace these new “leaves” with aggregate information.

(a) Grid (b) Recursive (c) Arbitrary
Figure 2: Partitioning schemes for building multidimensional histograms.

evenly among buckets and maintain a high fraction of bucket utilization to prevent long searches. On the other
hand, histogram techniques need to form buckets enclosing areas of uniform tuple density whenever possible.
Furthermore, since histograms store aggregated information at the bucket level, the number of tuples coverec
by each bucket need not be uniform across buckets.

3 Analysis of Existing Multidimensional Histograms

Good histograms partition data sets into “smooth” buckets with close-to-uniform internal tuple density. In
other words, the frequency variance of the tuples enclosed by such buckets is minimized, leading to accurate
selectivity estimations for range queries. Unfortunately, current multidimensional histogram techniques do
not always manage to produce close-to-uniform partitions of the data sets, as we discuss next. Later, Section 7
reports a thorough experimental evaluation of these techniques that complements the discussion in this section
A partition of a multidimensional data domain results in a set of disjoint rectangular buckets that cover all
the points in the domain and assigns to each bucket some aggregated information, usually the number of tuple:
enclosed. The choice afctangularbuckets is justified by two main reasons: First, rectangular buckets make it
easy and efficient to intersect each bucket and a given range query to estimate selectivities. Second, rectangulz
buckets can be represented concisely, which allows a large number of buckets to be stored using the giver
budget constraints. Reference [20] presents a taxonomy of partitioning schemes for building multidimensional
histograms, which we illustrate in Figure 2. In tipgd partitioning scheme (Figure 2(a)), each dimensipis
divided intop; disjoint intervals, which induce a grid ¢f, p; buckets. Arecursivepartition (Figure 2(b)) starts
with one bucket covering the whole domain, and repeatedly divides some existing bucket in two along some
dimension. Finally, tharbitrary partition scheme (Figure 2(c)) imposes no restrictions on the arrangement
of buckets. In principle, all the schemes are equivalent in the sense that we can simulate any partition that
follows one scheme with the others (possibly using more buckets). We say that each partitioning scheme in
Figure 2 ismore flexiblethan those to its left, since we can simulate any partition following the more flexible
scheme with a partition that follows the others using at most the same number of buckets, but not vice-versa.
Consider Figures 3 and 4, which show different histograms built for a multigaussian data distribution and a
two-dimensional projection of US Bureau Census data [3], respecfivélly histograms use the same amount
of memory (250 bytes), which in turn results in different numbers of buckets allocated to each histogram, since
the amount of information needed to describe each bucket is different across histograms. As we can see in
Figures 3(b) and 4(bE.quiDepthhistograms correctly identify the core of the densest tuple clusters in the two
data sets. However, the partitioning of the rest of the domain is problematic. For example, the histogram in
Figure 4(b) contains long buckets that touch the boundaries of the main tuple cluster and stretch all the way to
regions having almost no tuples. As a result, the tuple density inside each of these buckets is far from uniform.

2See Section 6 for more details on the data distributions.

(b) EquiDepth (c) MHist

il " [l
Y TT@‘ g [E i
NI

1 g sl I
n !

(d) GenHist (e) STGrid (f) STHoles

Figure 3:Gaussdata set and histograms.

Figure 3(b) shows a similar phenomenon. The reason these poor buckets are generated is that the partitior
strategy forEquiDepthhistograms is guided by the wrong principle, that is, instead of capturing buckets
with almost uniform tuple densityEquiDepthbuckets have all the same number of tuples. Consequently,
EquiDepthbuckets mix regions with very different tuple densities and therefore exhibit inadequate buckets
around cluster boundaries.

MHist histograms try to solve some of the problems viiuiDepthhistograms for cases when the data
distribution is highly skewed. Figures 3(c) and 4(c) show Midist histograms for our two data sets using
MaxDiff(v,a) as the underlying unidimensional partitioning strategy [27]. As we can see in Figure 3(c), the
MHist histogram devotes too many buckets to the densest tuple clusters, and almost none to the rest of the
data domain, which degrades the overall histogram accuracy. This problem arises from the way in which
MHist recursively partitions the data set. At each stdplist assigns scores to each bucket-dimension pair by
analyzingunidimensionaprojections of the original data set, and chooses the pair in most need of partitioning
as the one with the highest score. Unfortunately, the scores for each bucket-dimension pair are absolute
numbers that depend only on the underlying unidimensional histofffarDiff(v,a) When deciding where
to partition in each step, it is crucial to include some information about the total number of tuples, the total
volume of the bucket, or even the shape of the bucket. Otherwise, as the example illustrates, some bad
initial partitioning choices are amplified in later steps. In particular, almost all partitions are done along the
same dimension, leading to “thin” non-uniform buckets. Midist histogram in Figure 4(c) presents a new
anomaly. The underlyiniylaxDiff(v,a) histogram dictates to partition along the position that lies between the
pair of values with the largest difference in area (defined as frequency multiplied by spread [27]). This data
set has different ranges of values along different dimensions. For instandgeh#ribute has values in the
[15...95] range, and thtncomeattribute has values in the-15,000. .. 330, 000] range. Therefore, although
the lower half of the data distribution is virtually empty, the difference between consecutive values along the
Incomeattribute is high enough to cause several bucket boundaries to lie in that region. This problem cannot
be easily solved by simply normalizing the values along all dimensions once, because after a few splits the
resulting buckets will start to exhibit this behavior (i.e., non “normalized” ranges) again.

GenHisthistograms are introduced in [9] to address some of the problems outlined above. They find
buckets of variable size and allow unrestricted overlap among buckets. Successively coarser grids are built ovel
the data set and the densest cells are converted to buckets. Figures 3(d) and 4(d) SeviHisthistograms
for the data set in Figure 3(a). A drawback of this technique is the difficulty of choosing the right values for a

(a) Census2D (b) EquiDepth (c) MHist
I \! \D|E |

1 jﬁg_ m=oll

(d) GenHist (e) STGrid (f) STHoles
Figure 4:Census2data set and histograms.

crucial number of parameters. Specifically, the initial grid size and the number of buckets created per iteration

are given values in [9] that are independent of the data set. As we will see in Section 7, this technique generally
results in better accuracy than the techniques discussed above that make bucket generation decisions base
only on unidimensional information. However, this uniform parameter setting produces degraded performance

in some cases. Another drawback of this technique is that it requires multiple passes (at least 5 to 10) over the
whole data set [9].

Another promising direction to capture multidimensional areas with close-to-uniform tuple density and
address the problems explained above is to incorpavatiload informationand feedback from query ex-
ecutionto progressively refine the histogram buckets. In this way, we could detect buckets that do not have
uniform density and “split” them into smaller and more accurate buckets, or realize that some adjacent buckets
are too similar and “merge” them, thus recuperating space for more critical re@ai@rid histograms use
guery workloads to refine a grid-based histogram structure. Figures 3(e) and 4(e) slsdvGttghistograms
for our data set when the query workload used for refinement consists of range queries that follow the data
distribution. Although using workload information helps make the histogram more accurate, the figures show
that workload alone is not powerful enough to get good results, since the grid partitioning strategy is still too
rigid. Data distributions generally contain clusters or sub-regions with similar density, which we would like to
capture using as few buckets as possible. HoweveSTi@ridpartitioning scheme results generally in many
not-so-useful buckets. In particular, the split (merge) of each bucket entails the splitting (merging) of several
other buckets that could be far away from and unrelated to the original one, just to restore the grid partition-
ing constraint. Besides, &T Gridhistograms are also based axDiff(v,a) unidimensional histograms, the
problems discussed fdiHist histograms also apply in this case.

To avoid the poor bucket layout problems $TGrid histograms and still use query workloads to refine
histograms, we introduce a new partitioning scheme for building multidimensional histograms that allows
buckets to overlap. Specifically, we will allow inclusion relationships, i.e., some buckets aanmetely
included inside others. This way, we implicitly relax the requirement of rectangular regions while keeping
rectangular bucket structures. By allowing bucket nesting, the resulting histograms do not suffer from the
problems outlined above and can model complex shapes (not restricted to rectangles anymore); by restrict-
ing the way in which buckets may overlap, the resulting histograms can be efficiently created and updated
incrementally by using workload information. In contrast to multidimensional histogram techniques that use
unidimensional projections of the data set for bucket creat®¥tlolesexploits query feedback in a truly

multidimensional way to improve the quality of the resulting histograms. Figures 3(f) and 4(f)Shbwles
histograms in which nested buckets capture naturally regions that exhibit varying tuple density.

4 STHoles Histograms

We now describe the general structureSdfHoleshistograms (Section 4.1). Then, we introduce the various
algorithms needed for constructing the new histograms (Section 4.2).

4.1 Histogram Definition

As explained in the previous section, the inclusion relationship among buckets provides an extra degree of
flexibility compared to partitioning schemes that use disjoint buckets. Each buitkeh STHoleshistogram
is composed of a rectangular bounding box, denbtedb), and a real valued frequency, deno&d), which
indicates the number of tuples enclosed by budékeln a traditional histogram (see Section 2), a budket
would be “solid,” with no “holes,” and hence the region thatovers would be regarded as having uniform
tuple density. In contrast, @THoleshistogram identifies sub-regions bfwith different tuple density and
“pulls” them out fromb. Hence a bucket can havenoles which are themselves first-class histogram buckets.
These holes are buckeés children and their bounding boxes are disjoint and completely encloséd in
bounding box’. Therefore, arSTHoleshistogram can be conceptually seen as a tree structure, where each
node represents a bucket.

The volume of buckeb is defined as)(b) = VBOXb) — Yy chitdren(r) VBOXY'), WherevBox(b) is the
volume ofbox(b). Given a histogranf/ over a data seb, and a range query, the estimated number @)
tuples that lie inside, est(H, q), is:

cst(t.q) = Y £ "0
beH

wherev(gNb) denotes the volume of the intersectioma@indb (notbox(b)). In the next sections we introduce
the algorithms used to build and refi8@Holeshistograms.

Example 1: Figure 5 shows a histogram with four buckets. The root of the tree is btckeiith frequency

100. It has two children, namely bucketsand b3, with frequencies 500 and 1,000, respectively. Finally,
bucketbs has one childp,, with frequency 200. The region associated with a particular bucket excludes that
of its descendants, which can be thought of as “holes” in the parent space. Note that the region modeled by
bucketh; (shaded in Figure 5) is not rectangular, even though we only use rectangular buckets for partitioning
the space. A query that covers the lower half of bugketill be estimated to return nearly 1,000 tuples, even
when it covers half df;’s bounding box, because the other half is not considered as past dore precisely,

there is another buckeb/) that covers that regiorll

4.2 Histogram Construction

A key idea for buildingSTHoleshistograms is to intercept the result of queries in the workload and efficiently
gather some simple statistics over them to progressively refine the layout and frequency of the existing buck-
ets. This way, the regions that are more heavily queried will benefit from having more buckets with finer

3Note that an alternative design could add the frequency of a bucket’s descendants to the frequency of the bucket proper. Itis easy
to see that this alternative design conveys exactly the same information 8% ldateshistograms do.

b4(200,8)

Figure 5: A four-buckeSTHoleshistogram.

granularity. To build ars THoleshistogram, we start with an empty histogram that contains no buckets. Alter-
natively, if we have more information about the data distribution, e.g., the total number of tuples in the data set
and the maximum and minimum value for each attrift@e can start with a single-bucket histogram. More
generally, we can use an existing histogram and start with a more accurate model of the data set (see Section
for more details). For our experiments, we assume we know nothing about the data set and therefore we star
with an empty histogram. (However, for completeness we ran all experiments in Section 7 using the simple
variations above and obtained similar results.)

After we set up the initial histogram, for each queryn the workload we intercept the result stream
and count how many tuples lie inside each bucket of the current histogram. If the curreniycpends
beyond the boundaries of the root bucket (or when considering the first query) we expand the bounding box
of the root bucket so that it covegs Then we determine which regions in the data domain can benefit from
using this new information (Section 4.2.1), and refine the histogram by “drilling holes,” or zooming into the
buckets that cover the query region (Section 4.2.2). Finally, we consolidate the resulting histogram by merging
similar buckets so that we do not exceed our fixed storage budget (Section 4.2.3). These high level steps are
summarized below:

BuildAndRefine (H: STHoles, D: Data Set, W: Workload)
Initialize H with no buckets (empty histogram).
/Il Or use an existing histogram if available.
for each query g €W do
Gather statistics from gnNb; vV buckets b;in H.
Identify candidate holes in H (Section 4.2.1).
Drill candidate holes as new buckets in H (Section 4.2.2).
Merge superfluous buckets in H (Section 4.2.3).

4.2.1 Identifying Candidate Holes

In this section we show how we can use the results of a guerydentify holes in the buckets of &THoles
histogram. Such holes correspond to bucket’s sub-regions with distinctive tuple frequency, which we exploit
to refine and make th8THoleshistogram more accurate.

In general, a query intersects some buckets only partially. For each such bugkete know the exact
number of tuples iy N b; by inspecting the results fa Intuitively, if ¢ N b; has adisproportionatelylarge or
small fraction of the tuples ih;, theng N b; is a candidate to become a hole of budketHence, each partial
intersection of; and a histogram bucket could in principle be used to improve the quality of our histogram, as
illustrated in the example below.

4Although the approximate total number of tuples in the data set can be efficiently retrieved from system catalogs, the maximum
and minimum values for each attribute could be expensive to maintain in the absence of indexes.

Example 2: Figure 6 shows a buckeétwith frequencyf(b) = 100. Suppose that from the result stream for
a queryq we count thatl;, = 90 tuples lie in the part of buckeét that is touched by query, ¢ N'b. Using

this information, we can deduce that buckés significantly skewed, since 90% of its tuples are located in a
small fraction of its volume. We can improve the accuracy of the histogram if we create a newihuoket
“drilling” a hole in b that corresponds to the regiapn b and adjustb and b,,'s frequencies accordingly as
illustrated in Figure 6.1

: bn :
1 Th=90 : f(bn)=90 :
ke Drill Hole (b) L Ll B

Query q

b, f(b)=100 b, f(b)=10

bp

bp

Figure 6: Drilling a hole in bucket to improve the histogram quality.

If the intersection of a query and a buckeb is rectangular, as in Figure 6, we can always consjdeb
as a candidate hole and proceed as in the previous example. However, in general it is not always possible tc
create a hole in a buckéto form a new bucke N b. The problem is that some children iomight be taking
some ofb’s space, and therefore the bounding box of b might not be rectangular anymore, thus violating
the partitioning constraint we impose on the histogram. For instance, in Figure 6 the intersection ketween
andb’s parentb,, has anL shape, due precisely to bucketWe could simply ignore those intersections in our
analysis, but that would result in low quality histograms, since a significant fraction of the intersections are
not rectangular. We have chosen a middle ground to approximate the shapé wfen it is not rectangular.
Essentially weshrinkg Nb to a large rectangular sub-region that doespastially intersect with the bounding
box of any other bucket. We then estimate the number of tuples in this sub-region assuming uniformity. That
is, if Ty, is the number of tuples in N b andc is the result of shrinking N b, we estimatéel,., the number of

tuples inc, asT, = Tbvz’q(g)b).

Example 3: Figure 7 shows a four-bucket histogram and the progressive shrinking of the initial candidate
holec = ¢Nb. Atthe beginning, the buckets that partially intersect wijtballed participants in the algorithm
below, areb; and b, (b3 is completely included in). We first shrink: along the “vertical” dimension so that

the resulting candidate hol€ does not intersect withy anymore. Then, we shrink along the “horizontal”
dimension so that the resulting candidate hdl@oes not intersect with,. At this point there is no bucket that
partially intersects with:”. The resulting candidate hol¢ is rectangular and covers a significant portion of
the original ¢ N b region.l

c=gNb exclude ¢ exclude c"
bl b1 b1 b2 b1
b b2 b b2 b b2

Figure 7: Shrinking a candidate hate= ¢ N b.

More generally, the procedure for shrinking the intersection of a bucket a query; is:

Shrink (b:bucket, g:query, Th: # of tuples in b)

c= ¢gnbdb
participants = {b; € children(b): c Nb; =D A b; Zc}
while (participants # 0)
Select bucket b; € participants and dimension j
such that shrinking ¢ along j by excluding b;
results in the smallest reduction of c

Shrink ¢ along j

Update participants
end while
Tc = Tb * v(c) / v(¢nb) //adjust frequency
Return candidate hole c¢ with frequency Tc

In summary, for each query of our workload we identify the candidate new holes to refine a given
histogram. Specifically, these new candidate buckets are the result of inv&ikiimk(b;, ¢, 7;,) for all
bucketsh; such thaty N b; # (), whereT}, is the number of tuples in the result @that lie inside buckeb;.

4.2.2 Dirilling Candidate Holes as New Histogram Buckets

In the previous section we saw how we identify candidate new holes to refi6& ldnleshistogram. Each
candidate hole with frequencyT, that results from shrinking from N b; is completely included i; and

does not intersect partially with any child bf (As illustrated in Figure 7, some 6f's children could bdully
enclosed inc.) We now show how to effectively “drill” such candidates as new histogram buckets. For this,
we identify three possible scenarios:

1. Bucketb; and candidate hole reference exactly the same region in the data domain,bbe(c) =
box(b;). In this case, the candidate helearries updated information about the number of tupléds,in
T, but we do not drillc in b;, since they represent essentially the same region. We handle this situation
by simply replacing;’s frequency withT..

2. Candidate hole covers allb;’s remaining space. This is a relatively rare special case, but we need to
handle it properly to avoid wasting space. Consider the histogram in Figure 8, with four bugckets
b2, b, andb,, and suppose that we want to drilin bucketb. Althoughc # boxz(b), ¢ covers all ofb's
remaining space (the rest is covered by bucke@ndb,). If we simply added a new chilbl, to bucket
b with box(b,) = ¢, then buckeb proper would carry no information, becauseould be completely
covered by its children;, b, andb,,. Hence adding,, as a new child ob would result in wasted space.

To avoid this situation, we eliminate bucketrom the histogram and transf&s children tob’s parent
b,. More specifically, we first merge with its parentb,,, and then we drilc again but this time irb,
instead of inb, thus saving one bucket's worth of space

3. The default situation. We can directly apply the ideas from the beginning of Section 4.2. That is, we
create a new child of;, denotedb,,, with boxz(b,,) = ¢ and f(b,) = T.. We then migrate all 0b;'s
children whose bounding boxes are completely includedtsimthey become children of the new bucket
b,. Finally, we adjust the frequency 6f to restore, whenever possible, the previous frequency counts.
That s, if we had enough tuplesiap i.e., f(b;) > T., we subtract’,. from f(b;). Otherwise, we simply
setf(b;) to zero.

®As an alternative, we could avoid mergibgndb, and then drilling,, by simply changing the frequency bf However, our
preferred choice results in less overlap among buckets, which is in general desirable.

10

b

b2 / Drill Hole (b, ¢, Tc b2

b1l c bl bn
""" bp bp

Figure 8: Drillingb,, in bucketb would makeb carry no useful information.

The complete procedure is described below:

DrillHole (b: bucket, c: candidate hole, Tc: ¢'s frequency)
/I ¢ is included in b and does not partially intersect

/I with any child of b.

if box(b)=box(c) Il (Scenario 1)

f(b)=Tc
else if v(b) = volume(c Nb) then // (Scenario 2)
merge b with its parent by

DrillHole(by, ¢, Tc)
else [/ default case (Scenario 3)
add a new child of b, b,, to the histogram
box(b,)=c ; f(b,)=Tc
migrate all children of b that are enclosed by c
so they become children of by,
f(b) = MAX{0, f(b) - Tc}

4.2.3 Merging Buckets

The previous section showed how we can refin&&hloleshistogram by adding buckets as holes to existing
buckets. In doing so, we might temporarily exceed our target number of histogram buckets. Hence, after
adding buckets, we need to reduce the number of histogram buckets by nangilagones, more specifically

those buckets with the closest tuple density.

Example 4. Consider the three-bucket histograthin Figure 9, and suppose that we have a two-bucket bud-
get. Two choices we have to eliminate one bucket are: merging bugkatsl b5, which results in histogram
H,, and merging buckets andbs, which results in histogranif,. Although buckets; andbs have the same
frequency inH (100 tuples each), histograrfl; is more similar to the original, three-bucket histograih
than Hs is. In fact, bothH and H; result in the same selectivity estimation for arbitrary range queries, since
b1 andby’s densitiesin H are the same. In contrast, histografh, returns lower selectivity estimations than
H for range queries that only cover the lower half of the new bukesince the tuple density of bucketis
lower than the tuple density of bucketin histogramH. Il

More generally, to decide which buckets to merge, we ugeraalty function that returns the cost in
histogram accuracy of merging a pair of buckets.

Calculating Penalties

Suppose we want to merge two bucketsandb, in a given histogranii. Let H' be the resulting histogram
after the merge. We define tipenaltyof merging bucket$; andb, in H as follows:

11

b1 b2
f(b1)=100 f(b2)=50

b3 Histogram H
f(b3)=100
2 g
Ae‘&% %
X ,
bn b2
f(bn)=150 f(b2)=50
bn
b3 Histogram H1 f(bn)=200 Histogram H2
f(b3)=100

Figure 9: Merging similar buckets.

penalty(H,bibo) = [fest(H,p) — est(H',p)| dp
pedom(D)

wheredom (D) is the domain of the data sét. In other words, the penalty for merging two buckets measures

the difference in approximation accuracy between the old, more expressive histogram where both buckets are
separate, and the new, smaller histogram where the two (and perhaps additional buckets) have been collapse
A merge with a small penalty will result in little difference in approximation for range queries and therefore
will be preferred over another merge with higher penalty. Since the estimated density of tuples inside a bucket
is constant by definition, we can calculate penalty functions efficiently. We can identify all regionghe

data domain with uniform density of tuplé®th before and after the merge, and just add a finite number of
terms of the formest(H, r;) — est(H',r;)| 8. This procedure will become clearer in the rest of this section
when we instantiate it to concrete situations.

We identified two main families of merges f&THoleshistograms, which correspond to merging “ad-
jacent” buckets in the tree representation ofSaFHoleshistogram: parent-childmerges, where a bucket is
merged with its parent, arglbling-sibling merges, where two buckets with the same parent are merged pos-
sibly taking some of the parent space (since we need to enclose both siblings in a rectangular bounding box).
The motivation behind these two classes of merges is as follows: Parent-child merges are useful to eliminate
buckets that become too similar to their parents, e.g., when their own children cover all interesting regions
and therefore carry all useful information. On the other hand, sibling-sibling merges are useful to extrapolate
frequency distributions to yet unseen regions in the data domain, and also to consolidate buckets with similar
density that cover close regions. Below we define these two merge variants in detalil.

Parent-Child Merges

Suppose we want to merge buckétsandb,, whereb, is b.'s parent. After the merge (Figure 10) a new
bucketb,, replacesh,, and buckeb. disappears. The new buckigt hasbox(b,) = box(b,) and f(b,) =

f(be) + f(by). The children of both buckets. andb, become children of the new bucket. Therefore, we
have thaw(b,,) = v(b.) +v(b,). The only regions in the original histogram that change the estimated number
of tuples after the merge abg andb... In conclusion, we have that:

oty b
ZEa |10 - e 255

lest(H,bp)—est(H’,bp)| lest(H,bc)—est(H',be)|

penalty(H, by, b.) = |f(by) — f(bn)

®We can think of this procedure as taking all poipts dom.(D), “group themby est(H,p),est(H’,p),” and processing each
group individually.

12

bl bl
Merge(bp,bc)

bc, f(bc)=50
bp, f(bp)=100 b2 bn, f(bn)=150 b2

Figure 10:Parent-Childmerge.

b1(f=10)

b3 Merge(b1,b2) b3
—_—

3 MI :
. e bn(f=35)
b5 b5

bp(f=100) bp(=85)

Figure 11:Sibling-Siblingmerge.

whereH’ is the histogram that results from mergibgandb. in H. The remaining pointg in the histogram
domain are such thatt(H, p) = est(H', p), so they do not contribute to the merge penalty.

Sibling-Sibling Merges

Consider the merge of bucketsandb,, with common parert, (Figure 11). We first determine the bounding
box of the resulting bucket,. We definebox(b,,) as the smallest box that encloses bittandb, and does
not intersect partially with any other child f, (that is, we start with a bounding box that tightly encloses
by andb, and progressively expand it until it does not intersect partially with any other chilg)ofin the
extreme situation thaioxz(b,) is equal tob,, we transform the sibling-sibling merge df and b, into two
parent-child merges, namely andb,, andb, andb,. Otherwise, we define the sebf “participant” buckets
as the set ob,’s children (excluding); andb,) that are included ihoz(b,,). After the merge, the new bucket
b, replaces buckets; andb,. In generalb,, will also contain a part of the olé,. The volume of that part
iS vo1q = VBOXby,) — (VBOX(b1) + VBOXb2) + >, VBOXb;)). Therefore, the frequency of the new bucket
is f(by) = f(b1) + f(b2) + f(bp)ﬁ;)%. Also, the modified frequency df, in the new histogram becomes
fop)(1 — U”(%l;)). To complete the merge, the bucketsiirand the children of the old; and b, become
children of the new,,. Therefore, we have thatb,) = v,q4 +v(b1) + v(b2). The only regions in the original
histogram that change the estimated number of tuples after the merge are the ones correspbndinagital
the portion ofb, enclosed byoz(b,). Hence:

o Vold Vold v(b1) ‘ v(b2)
p— _ J— P
lest(H,ro1q)—est(H',ro1q)| lest(H,b1)—est(H',b1)| lest(H,ba)—est(H',ba)|

whereH’ is the histogram that results from mergibngandbs in H, andr,,, is the portion of the old bucket
b, covered by the new buckeé},. The remaining pointg in the histogram domain are such that(H,p) =
est(H', p), so they do not contribute to the merge penalty.

Putting all pieces together, we are now ready to refinéSthidolesconstruction algorithm from the begin-
ning of this section as follows:

13

BuildAndRefine (H: STHoles, D:Data Set, W: Workload)
Initialize H with no buckets (empty histogram)
/[Or use an existing histogram if available
for each query ge W do
Expand H’s root bucket (if needed) so that it contains q.
Count, for all buckets b;, the number of tuples in q N by, Ty,
for each bucket b; such that ¢nb; # 0 do
/I approximate shape if necessary
(ci,Ty;) = Shrink (b;,q,T5,)
if (est(H, ¢i) #1¢,) then
DrillHole(bi, ci, T¢,;)
end for
while H has too many buckets,
merge the pair of buckets in H with the lowest penalty
end for

5 Implementation Issues

While we are tuning ai’sTHoleshistogram for a specific query workload, we need to incur certain overhead
for each query that is used for histogram refinement. In this section, we discuss the overhead involved in
two important aspects of the histogram construction technique of Section 4.2. More specifically, Section 5.1
explains how to compute the merge penalty function of Section 4.2.3 efficiently. Then, Section 5.2 analyzes
the impact of gathering statistics “on the fly” to refi8@ Holesbuckets in a real commercial DBMS.

5.1 Approximating Penalties

In Section 4.2.3 we discussed how to merge pairs of histogram buckets with low asspeiaadtgt To imple-

ment ourpenaltyfunction efficiently, we could maintain a two-dimensional ariayn memory, whereP|i, j]

is the penalty of merging buckets andb;. This array would need to be updated as we refine the histogram.
Unfortunately, the size of this array is quadratic in the number of buckets. Although the array is needed only
during the tuning of th&&THoleshistogram, we can use instead an approximation of this array that requires
only linear space in the number of buckets and that results in virtually no significant degradation in histogram
accuracy. Specifically, we proposevteakerthe definition of “best penalty” by allowing some times to merge

a pair of buckets with a relatively low, but not lowest, penalty. Intuitively, we use the fact that after merging
two buckets or drilling a hole to an existing bucket, most of the penalties remain unchanged, or change only
slightly. Therefore, in some cases we do not recalculate the penalty function for some combination of buckets,
which results in an approximate, but more efficient technique. In Section 7.2 we show experimentally that this
approximation, which requires less space, is more efficient and results in only slightly worse accuracy than
the original, more expensive, technique. The implementation details of such approximation are explained in
Appendix A.

5.2 Performance of the Counting Procedure

To refine anSTHoleshistogram, we need to intercept queries that participate in the tuning and analyze their
results at run time. It becomes crucial, then, to quantify the overhead that this analysis is adding to regular

14

——50% —m—25% —&—10% —>=1%

O<Data, V[1%]> B <Uniform, V[1%]> 6%

N
o

<
B3

N w
o =]

, \
Now s
g ¥ ¥

[N
o
L

Overhead against table scan
s
8

!

Average range comparisons
o
.

0 10 20 30 40 50
Gauss Array Census2D Average Range Comparisons

(a) Average number of range comparisons (b) Overhead of the counting procedure
for four different data sets and workloads. for different query selectivities.

Figure 12: Performance evaluation bticrosoft SQL Server 2000.

guery execution on a real DBMS. In this section we study this overhead and report experimental results over
a commercial DBMS, namelylicrosoft SQL Server 2000

As explained in Section 4.2, given a workload querywe need to calculate the number of tuples in the
answer ofq that lie inside each bucket of the current histogram. We can efficiently identify the buckets
bi,...,by that intersect withy before its execution. LetL},...,L¢) and(U},...,UZ) be the lowest and
highestd-dimensional points corresponding to the boundaryoaf(b;), i = 1,..., k. We can then interleave
a new operator right after the filter operatorgia query execution plan that maintains one counter per bucket
and updates them accordingly after analyzing each tuple that is pipelined to the next operator in the execution
plan. Using the fact that &; is a child ofb; thenbox(b;) C box(b;), and assuming that buckets are kept in
order! the counting operator can be written as follows:

if (L1 <t' < H}and .. and L{ <t?< HY{)then counter[1]++
else if (L3 <t'< H)and .. and L4 <t < HY)then counter[2]++

else if (L} ,<t'<H! ,and .. and L¢ <t?< H{))then counter[k-1]++
else counter[k]++

wheret = (¢!, ..., t%) is the current streamed tuple coming from the filter operator.

We conducted some experiments to determine the average number of range comparisons that are neede
for different data sets and workloads. Figure 12(a) shows the results for two-dimensional data sets when we
allocate 200 buckets for the histograms. The average number of range comparisons per query in the work-
load required bySTHoless less than 10 fotData, V'[1%]) workloads, and around 35 fdtniform, V [1%])
workloads (see Section 6.3 for a discussion of workload notation).

We studied the overhead of this new operator in the cod#liofosoft SQL Server 200@nd tested it
for different numbers of range comparisons and query selectivities. Figure 12(b) shows the overhead of the
counting procedure for range queries with different selectivities. When the number of range comparisons is
zero, we are back to the case when no counting is done at all, and a traditional table scan is executed (we dic
not use indexes in our experiments). We can see that the overhead imposed by considering about 35 rang
comparisons is about 2%. In fact, the overhead by considering 60 range comparisons (many more than the
numbers reported in Figure 12(a)), is still below 10%. This overhead is acceptable and can be regarded as
an amortized cost we pay for the online constructio®®Holeshistograms. Moreover, this overhead can be
drastically reduced if we sample the workload and refine the histogram using only a subset of the queries.

"That is, ifb; is a descendant df; in the tree, therb; appears beforé;. This order can be achieved by traversing the tree in
postorder, and keeping only the buckets that intersectgvith

15

6 Experimental Setting

This section defines the data sets, histograms, and workloads used for the experiments of Section 7.

6.1 Data Sets

We use bottsyntheticandreal data sets for the experiments. The real data sets we consider [§lersus2D
andCensus3Otwo- and three-dimensional projections of a fragment of US Census Bureau data) consisting
of 210,138 tuples, an@over4D (four-dimensional projection of the CovType database, used for predicting
forest cover types from cartographic variables), consisting of 545,424 tuples. We also generated synthetic data
sets for our experiments following different data distributions, as described below.

Gauss The Gausssynthetic distributions [29] consist of a predetermined number of overlapping multidi-
mensional gaussian bells. The parameters for these data sets are: the number of gausgiahdstndard
deviation of each peak, and a zipfian parameterthat regulates the total number of tuples contained in each
gaussian bell.

Array: These data sets were used in [1]. Each dimension lilistinct values, and the value sets of each
dimension are generated independently. Frequencies are generated according to a zipfian distribution anc
assigned to randomly chosen cells in the joint frequency distribution matrix. The parameters for this data set
are the number of distinct attributes by dimensigrand the zipfian value for the frequencies When all

the data points are equidistant, this data set can be seen as an instanc@aifshdata set withr = 0 and

p =

The default values for the synthetic data set parameters are summarized in Table 1.

| Data Set| Attribute | Value |

d: Dimensionality 2

All N: Cardinality 500,000
R: Data domain [0...1000)%
z: Skew 1

Gauss | p: Number of peaks 100
o: Peaks’ standard deviation25

Array v: Distinct attribute values | 100

Table 1: Default values for the synthetic data sets.

6.2 Histograms

We compare ouSTHoleshistograms against the following multidimensional histografliist based on
MaxDiff(v,a) [26], EquiDepth[18], STGrid[1] and GenHist[9], using the values of parameters that the re-
spective authors considered the best. (See Section 2 for a summary of these techniques.) All experiments
allocate the same amount of memory for all histograms techniques, which however translates to different
numbers of buckets for each. Consider the space requirementsdaimensional buckets. BotiquiDepth

and MHist histograms require - d - B values for the bucket boundaries plBsfrequency valuesSTGrid
histograms need® values for frequencies plus arouddB values for the unidimensional rulers [XhenHist
histograms requirg - B values for bucket positions plus frequency values. FinallgTHoleshistograms use

2 - d - B values for bucket boundarie® values for frequencies, ard- B pointers for maintaining the tree

16

structure, since each bucket needs to point to its “first” child plus a siBliBy default, the available memory
for a histogram is fixed to 1,000 bytes.

6.3 Workloads

We use a slightly modified version of the framework given in [23] to generate probabilistic models for range
queries. Given a data set, a range query model is defined as{&p&ir|), whereC is the distribution of the
query centersR is a function that constrains the query boundaries,aisca constant value faR. To obtain
a workload given a query model, we first generate the query centers@sind then expand their boundaries
so they followR][v].

For our experiments, we consider the following center distributions, which are considered representative
of user behavior [23]:

- Data: The query centers follow the data distribution.
- Uniform: The query centers are uniformly distributed in the data domain.
- Gauss: The query centers follow @aussdistribution independent of the data distribution.

The range constraints we used for our experiments are:

- Vicy]: The range queries are hyper-rectangles included in a hypercub®ushec,, and model the
cases in which the user specifies the query values in terms of a window area.

- T[c¢]: The range queries are hyper-rectangles that cover a regiorithles and model the situations
in which the user has knowledge about the data distribution and issues queries with the intention of
retrieving a given number of tuples.

Parameters:, and ¢; are specified as a percentage of the total volume and number of tuples of the data
distribution, respectively.

By combining these parameters we obtain six different probabilistic models for query workloads. By
default, we usé % for both¢, andc,. As an example, the query mod@®ata, 7'[1%)]) results in queries with
centers that follow the data distribution and contaf of the tuples in the data set. Similarly, the query
model(Gauss V' [1%]) corresponds to queries with centers that follow a multi-gaussian distribution and have
an average volume of around 1% of the data domain. Figure 13 shows two sample workloads of 50 queries
each for theCensus2iata set.

By

(]

;-E%SEE z%q—"

(a) Census2Dlata set (b) (Data, T'[1%|workload) (c) (GaussV [1%]workload)

Figure 13: Two workloads for thEensus2ata set.

8Note that this analysis does not account for the temporary space needed for merge-penalty bookkeeping (see Appendix A), which
is only kept during histogram refinement.

17

6.4 Metrics

To compare our new technigue against existing ones, we first consttiahiag workload that consists of

1,000 queries and use it to tune Bi€HolesandSTGridhistograms. Then, we generateaidationworkload

from the same distribution as the training workload that also consists of 1,000 queries, and calculate the
average absolute error for all the histograms. Given a dat® sathistogramH, and a validation workload

W, theaverage absolute erroE' (D, H, W) is calculated as follows:

E(D,H,W) = ﬁ Z lest(H, q) — act(D, q)|
qgeW
whereest(H, q) is the estimate of the number of tuples in the resudt,afsing histogran# for the estimation,
andact(D, q) is the actual number adb tuples in the result of.

We choose average absolute errors as the accuracy metric, since relative errors tend to be less robust whe
the actual number of tuples for some queries is zero or near zero. In general, however, absolute errors greatly
vary across data sets, making it difficult to report results for different data sets. Therefore, for each experi-
ment, wenormalizethe average absolute error by dividing it BY,,; ;(D, W) = IWl\ > gew lestunip(D,q) —
act(D, q)|, whereest,,;¢(D, q) is the result size estimate obtained by assuming uniformity, i.e., in the case
where no histograms are available. We refer to the resulting metNoasalized Absolute Error

7 Experimental Evaluation

In Section 7.1 we evaluate the performances@Holeshistograms against that of existing techniques. Sec-
tion 7.2 shows some additional experiments that explore specific asp&it#oleshistograms.

7.1 Comparison of STHoles and Other Histogram Techniques

Accuracy of Histograms: Figure 14 shows normalized absolute errors for different histograms, data sets
and workloads. We can see from the figures that the techniques that are based on truly multidimensional
analysis of the data, i.é5THolesandGenHist result in better accuracy than the others. In partic@ailoles
histograms give better results th&guiDepth MHist and STGrid in virtually all cases. On the other hand,
STHolesand GenHistare comparable in accuracy, and altho®FHoleshistograms do not directly inspect

the data distributions, in many cases they outperf@emHisthistograms. The only dataset in whiGenHist

results in significantly better accuracy th&mHoless CoverdD(see Figure 14). For this high-dimensional
data set, the ability to capture interesting data patterns based only on workload information is diminished.
However, it is important to note that, even for high dimensi@®&;1oleshistograms still produce better results

than doMHist, EquiDepth andSTGridhistograms.GenHisthas a high error rate of 75% for tiheray data

set with the(Data, 7'[1%]) workload. This may be due to the choice of histogram construction parameter
values in [9], which is independent of the underlying data set. In general, not8Thitles GenHistand, to

a limited extentEquiDepthhistograms are “robust” across different data sets and workloads, in the sense that
they consistently produce reasonable results. In con®dsgridandMHist become too inaccurate for some
combinations of data sets and workloads.

To validate the robustness of our new approach, we varied some parameters in the synthetic data sef
generation as well as some parameters in the query models.

18

OSTHoles MGenHist MSTGrid DEqui-Depth OMHist OSTHoles MGenHist BSTGrid OEqui-Depth OIMHist OSTHoles MGenHist BSTGrid DEqui-Depth CIMHist
100% 00%

=
S
3
=

@
3
B

@
3
B

Normalized Absolute Error
Normalized Absolute Error -

Normalized Absolute Error

40% e | 40% 1
. 14l m fffffffffffffffff |
0% T 0% T
Array Gauss Census2D Census3D CoverdD Array Gauss Census2D Census3D CoverdD Array Gauss Census2D Census3D CoverdD
(a) (Data, V[1%)]). (b) (Uniform, V[1%]). (c) (GaussV[1%]).
OSTHoles MGenkist WSTGrid DEqui-Depth OMHist BSTHoles MGenkist BSTGrid DEqui-Depth OMHist 1003 2 oTHoles MGenkist MSTGrid DIEqui-Depth CIMHist
o

.
1)
S
ES
.
5
3
8

®
3
K
@
]
X

@
]
EY
@
3
kS

N
5
2

N
153
E3

Normalized Absolute Error

Normalized Absolute Error
]

Normalized Absolute Error

Array Gauss Census2D Census3D Cover4D Array Gauss Census2D Census3D Cover4dD Array Gauss Census2D Census3D CoverdD

(d) (Data, T[1%)]). (e) (Uniform, T[1%)]). (f) (GaussT'[1%]).
Figure 14: Normalized absolute error for different histograms, data sets and validation workloads.

2
=

Robustness across Workloads: Figure 15(a-f) shows the normalized absolute error for different data sets
and for varying selectivitys for workloads(Data, V'[s]) and (Data, T'[s]), respectively. We can see that in
almost all caseSTHoleshistograms outperform traditional technigques. Even in the few caseSThébles
histograms are not the most accurate, they are a close second, with only one exception. Our technique is
not too accurate in Figure 15(d) for tuple selectivity= 0.1% (and neither aréIHist and STGrid). This

is mainly because in th&aussdata set the&Data, 7'0.1%)]) workload consists of many small and disjoint
gueries. This workload is particularly bad for any histogram refinement techniqugTikeleghat bases all
decisions on query feedback, without examining the actual data sets at any time. To deal with such workloads,
we can slightly modify the construction algorithm 8T Holeshistograms (Section 4.2) to start with a more
informed representation of the data set. In particular, we can use an existing histogramdeQepth as

the starting point for our technique in the algorithm of Section 4.2. We implemented and tested the accuracy
of the histograms that result from starting with BquiDepthhistogram and turning it into aB8THoleshis-

togram through workload refinement. The resultstaghly accurate for a variety of data sets and workloads.

In particular, for theGaussdata set andData, 7'[0.1%]) workload in Figure 15(d), this alternative version

of STHolesresults in42% of normalized absolute error, i.e., comparable wbnHist the most accurate
histogram for that particular configuration.

Robustness for Varying Data Set Skew: In Figure 16 we show the results when the skewsed to generate

data sets changes from 0.5 to 2. (The experiments we reported so far usdd) STHoleshas the lowest

error rates for all skews but for therray data set and € {0.5,1} where is a close second aftéenHist

MHist behaves poorly for th&aussdata set, only slightly better than assuming uniformity and independence.
However, it becomes more accurate for highly skevedy distributions, but only marginally better than the

other techniques. In particular, when= 2, STHolesand MHist result in the same highest accuracy. It is
worth noting thatArray with z = 2 is a highly skewed data set with jusb, 000 distinct values. The most
popular tuple is repeated 295,054 times, and hence accounts for 59% of the data set. The five most frequent
tuples account for 87% of the data set. On the other hand, 95% of the distinct values have frequency one. This
data set is then almost a uniform data set with a few prominent peaks. Incidentally, an extreme data set like

19

—e—STHoles —%—GenHist —B—STGrid —6— Equi-Depth —&— MHist ——STHoles —¥—GenHist —l—STGrid —6— Equi-Depth —A— MHist

—e—STHoles —%—GenHist —B—STGrid —6—Equi-Depth —&—MHist
25% 50%

80%
. . 5 |
w 60% w
©
E \‘ % 150 J 2 30%
£ £ P — 2
% % 10% 5 2%
g
: — H . E \‘\
T 20% g o g 10% G\M
5 % 5 s ’\’\.
b4 z
o% : : 0% 0% i i
0.10% 1% 10% 0.10% 1% 10% 0.10% 1% 10%
Spatial selectivity cv Spatial selectivity cv Spatial selectivity cv
(a) Gaussdata set. (b) Array data set. (c) Census2Dlata set.
——STHoles —%— GenHist ——STGrid —6—Equi-Depth —&—MHist ——STHoles —%—GenHist —-STGd —6—Equi-Depth —A—MHist 100% o7 STHoles - Genrist M- STOId 6~ EqurDepih —A— Wit
100% 100%
5 — 5 — 5
i 80% N \ W 75% 7%
2 2 2
3 Ef 3
z o \-\ e 2 sow 2 o /.
< a0 M g \ i %
: = : :
o i — . o
< < 25% T 25%
£ o ‘N; E P — £
2 . 2 N | 2
0.10% 1% 10% o ‘ %
- 0.10% 1% 10% 0.10% 1% 10%
Tuple selectivity ct Tuple selectivity ct Tuple selectivity ct
(d) Gaussdata set. (e) Array data set. (f) Census2Ddata set.

Figure 15: Normalized absolute error usi{iata, 7'[c;]) for varying spatial ¢,) and tuple ;) selectivity.

—&—STHoles —%—GenHist —l— STGrid —6—Equi-Depth —&— MHist —e—STHoles —%— GenHist —B—STGrid —6— Equi-Depth —&— MHist

100% 100.00%

10.00% -

10% 1.00% -

0.10% -

Normalized Absolute Error
Normalized Absolute Error

1% T T T 0.01%
0.5 1 15 2 0.5 1 15 2
Skew Z skew Z

(a) Gaussdata set. (b) Array data set.

Figure 16: Normalized absolute error for varying data skew.

this one would probably be best modelled using an end-biased histogram [27].

Robustness for Varying Data Set Dimensionality: Finally, Figure 17 shows the error for varying the di-
mensionalityd of the synthetic data sets. (The experiments we reported so fardused@.) STHolesand
GenHistachieve the highest accuracy for all data set dimensionalities,GétiHistbeing more accurate for
higher number of dimensions, as discussed above. Allilist behaves the worst for tHeaussdata set, and
performs better for thArray data set. Foil = 4, the correspondingrray data set is especially well suited for

the MHist technique, since it has only 20 different values per dimension (which adds up to 160,000 different
values), and the difference in frequency greatly varies among them. Thendidigt, is able to capture these

high frequency values accurately.

In conclusion, although for some particular configurati®&TdHoleshistograms are slightly outperformed
by others (notably in one data point of Figure 15(d)), in gen8fidHioless a stable technique across different
workloads and data sets, and typically results in significantly lower estimation errors than multidimensional
histograms that inspect the data sets.

20

—e—STHoles —— GenHist —B— STGrid —6— Equi-Depth —A— MHist #—STHoles —%—GenHist —#—STGrid —6—Equi-Depth —A—MHist

®
8
g

60%

IS
)
B3

N
S
X

Normalized Absolute Error

Normalized Absolute Error

Q
B3

2 ‘ 3 ‘ 4 2 ‘ 3 ‘ 4
Dimensions Dimensions
(a) Gausgdata set. (b) Array data set.
Figure 17: Normalized absolute error for varying data dimensionality.

ESTHoles M GenHist B STGrid OEqui-Depth O MHist @ STHoles B GenHist B STGrid OEqui-Depth O MHist
%

100%

80%

60%

40%

Normalized Absolute Error
Normalized Absolute Error

20% -

0% -
Array Array Gauss Gauss Census2D Census2D Array Array Gauss Gauss Census2D Census2D
(do) (d1) (do) (d1) (do) (d1) (do) (d1) (do) (d1) (do) (d1)

(a) (Data, V[1%)]) workload. (b) (Uniform, V[1%]) workload.

Figure 18: Normalized absolute error for workload projections.

Estimating Selectivities for Queries With Fewer Attributes: In a real system, the attributes mentioned in
some range queries might not match exactly the set of attributes covered by the existing histograms. If the set
of attributes in a query is a subset of the attributes used in a histogi#dnwe can usdd directly to answer

q by projectingH over the relevant attributes. This section explores the accuradydimhensionalSTHoles
histograms over projections of workloads odte- 1 dimensions.

Figure 18 shows the normalized absolute error for different data sets, workloads, and projected dimen-
sions. We can see that fdData, V' [1%]) and(Uniform, V' [1%]) workloads (Figures 18(a)-(b)), the results are
consistent with those of Figures 14(a) and 14(b)$dHoles GenHist andEquiDepthhistograms. On the
other handMHist andSTGridhistograms present significant differences in accuracy depending on the partic-
ular projection. For instancé/Hist is the best histogram for tHeaussdata set when we focus on dimension
d = 0. However,MHist is too inaccurate for the same data set when we focus on dimetisiot: For the
Gaussdata setMHist splits buckets almost exclusively along dimensibs: 0 (see also Figure 3(e)). There-
fore, the workload queries projected over dimensioa 0 represent a best case scenario for this histogram.
However, when we project the queries over dimensiena 1, the results are significantly worse.

Effect of Varying the Available Storage: Figure 19 shows the normalized absolute error forGkasus2D

Gauss andArray databases for varying histogram size. The errors are presented for histograms using from
500 to 2,000 bytes of memorgTHoleshistograms scale comparably to traditional histograms for the whole
range of available memory.

7.2 Experiments Specific to Histogram Refinement

Effect of Using an Approximate Penalty Function: Section 5.1 and Appendix A described how to approx-
imate the computation of the penalty function by maintaining a vector of merge candidates that are close to the

21

—4—STHoles —%— GenHist —#—STGrid —6—Equi-Depth —&— MHist ——STHoles —*—GenHist —#—STGrid —6—Equi-Depth —&— MHist ——STHoles —%—GenHist —B—STGrid —6— Equi-Depth —&— MHist
0%

©
3
B3
w

5 5 5 —_— .,
E 60% ‘\‘\’\‘ & \ 5%
% %20% éS’O“/
g Fi— oo — g —_ . D
E 20% —= i‘; g %’h’ Elﬂ% \e\e\e
2 A S 2 2 —

500 ‘ 1000 Byl‘es 1500 ‘ 2000 . 500 ‘ 1000 Byl‘es 1500 ‘ 2000 500 1000 Bytes 1500 2000

(a) Gausgsdata set. (b) Array data set. (c) Census2Diata set.

Figure 19: Normalized absolute error for varying histogram sizes.

@ STHoles(Array) B STHoles 80%

40%

60% -

40% -

% of Time

20% -

Normalized Absolute Error

0% -
Array Gauss Census2D Census3D CoverdD Array Gauss Census2D Census3D Cover4D

(a) Accuracy (b) Fraction of time ofSTHolegelative
to STHolegarray).

Figure 20: Comparison @THolesandSTHolegarray) techniques for 1,00@ata, V' [1%]) queries.

optimal ones. All the experiments that we reported so far use this (inexpensive) approximation. We now study
whether using the (more expensive) version with the full array of penalties (de@dtadlegArray)) results

in significant improvements in performance. Figure 20(a) shows the normalized absolute &fbtadsand
STHolegarray) techniques for different data sets &beta, V'[1%]) workloads. The results are slightly better

(as expected) foBTHolegarray). Figure 20(b) reports the percentage of time 8W&tolestakes to process

1,000 queries relative to that &THolegarray). We can see that both the space requirements (Section 5.1)
and execution time needed to process 1,000 queries (Figure 20(b)Snkkdesgarray) unattractive given the
meager improvement in accuracy over the more efficient approximation of Section 5.1.

Convergence: Our techniques for buildingTHoleshistograms keep adjusting the histograms as queries
are evaluated. We now study how the quality of 81EHoleshistograms varies with the number of observed
gueries. To do so, we train tl&THoleshistogram 50 queries at a time, and after each step we calculate the
normalized absolute error using the complete validation workload. Figure 21 shows the results for different
data sets and workloads. We can see 8¥dtloleshistograms converge fairly quickly, and generally need only
around 150-200 queries to get stable results.

Effect of Updates: Data sets are rarely static, and the data distribution might change over time. We now
evaluate how well our new techniques adapts to changing data distributions. For this, we start Witlayhe
andGaussdata sets, and progressively “morph” one into the other using random tuple swaps. Each column
of four points in Figure 22 represents a different experiment where we vary the percentage of tuples that
are swapped between the two data sets. For instance, in Figure 22(a) we start withathdata set. We

build the staticGenHist MHist and EquiDepthhistograms using this data set, and train 8iEHolesand

STGrid histograms using thérst half of a (Data, V' [1%]) workload. Then, we randomly select a percentage

22

—%—Gauss —A—Array —— Census: 2D ——Census: 3D —©— Cover4D —*—Gauss —&— Array —#— Census: 2D ——Census 3D —6—CoverdD
- 150%

)
=]
=

Normalized Absolute Error
8
ES

Normalized Absolute Errol
o
g
g

0 25 50 75 100 125 150 175 200 225 250 0 25 50 75 100 125 150 175 200 225 250
of queries # of queries

(a) (Data, V' [1%)]) workload. (b) (Uniform, V[1%]) workload.
Figure 21: Normalized absolute error at different points of the online training.

—&— STHoles —%— GenHist —#— STGrid —©— Equi-Depth —#&— MHist o— STHoles —¥—GenHist ——STGrid —6— Equi-Depth MHist
120%

90% +---- - - - - %)///r//gx\\j

N sl
/o

T T T T T
10% 25% 50% 75% 100% 10% 25% 50% 75% 100%
Percentage of swaps Percentage of swaps

i
)
Q
X

©
Q
53

60% +----

@
=}
53

30%

@
2
8

Normalized Absolute Error
Normalized Absolute Error

o e e

0%

Q
B

(a) Array— Gauss (b) Gauss— Array.
Figure 22: Normalized absolute error after updates.

of tuples from the originafrray data set and interchange them with randomly selected tuples fro@eaihes
data set. After that, we finish the training of tB&Holesand STGrid histograms using theemaining half
of the workload. Finally, we test all histograms using a validatibata, V' [1%]) workload. Analogously,
Figure 22(b) shows the results when starting withaussdata set and changing it to amray data set.

Not surprisingly, we can see that the static histograms become really inaccurate when the underlying
data distribution changes. In some cases the results are even worse than when assuming uniformity anc
independence, which highlights that periodically rebuilding such multidimensional histograms is essential
(we include in the plots these static histograms just to quantify this behavior). In contras§TGtid and
STHolesadapt gracefully to changes in the data distribution. FbHoleshistograms we observe almost no
degradation even when changing the data set completely. That is not the c&3eGhad histograms. For
instance, in Figure 22(b) we can see tBatHoleskeeps the error rate below 17% at all times, wiSEGrid
results in ove7% of normalized absolute error for 100% tuple interchanges.

8 Conclusions and Future Work

In this paper, we presented a new histogram construction techri@diglesthat exploits query workload and

does not require examining the data s&$Holeshistograms allow buckets to be nested, and are tuned to the
specific query workload received by the database system. Hence, buckets are allocated where needed the mo
as indicated by the workload, which leads to accurate query selectivity estimations. We established the robust-
ness of the new histograms through extensive experimentation using a variety of synthetic and real-world data
sets, as well as a variety of query workloads. We also experimentally compairedleshistograms against
existing multidimensional histogram techniques. We showed that, in many &Bds]esresults in more
accurate selectivity estimations for the expected workload than thogedioHisthistograms, a technique

that requires at least 5 to 10 scans over the whole data set during histogram construction and that generally
dominates the other existing multidimensional histograms in accuracy. Finally, we established that the over-

23

head of our technique is acceptable through an implementation over Microsoft SQL Server 2000. As future
work, we plan to extend the estimation techniques to complex queries involving joins in addition to selection
conditions. For such queries, these estimations might involve s&Ekableshistograms. This extension will
enable seamless integration®TfHoleshistograms into commercial database management systems.

References

[1] A. Aboulnagaand S. Chaudhuri. Self-tuning histograms: Building histograms without looking at dRracied-
ings of the 1999 ACM International Conference on Management of Data (SIGMQD'999.

[2] R. Avnur, J. M. Hellerstein, B. Lo, C. Olston, B. Raman, V. Raman, T. Roth, and K. Wylie. Control: Contin-
uous output and navigation technology with refinement on-linePrbteedings of the 1998 ACM International
Conference on Management of Data (SIGMOD;98)98.

[3] C. Blake and C. Merz. UCI repository of machine learning databases, 1998.

[4] S. Chaudhuri. An overview of query optimization in relational systemsPrioceedings of the Seventeenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 1-3, 1998, Seattle, Washington
1998.

[5] C.-M. Chen and N. Roussopoulos. Adaptive selectivity estimation using query feedbaBkockedings of the
1994 ACM SIGMOD International Conference on Management of Di884.

[6] D. Donjerkovic, Y. loannidis, and R. Ramakrishnan. Dynamic histograms: Capturing evolving data sets. In
Proceedings of the 16th International Conference on Data Engineg2id@p.

[7] V. Gaede and O. Grither. Multidimensional access metho@amputing Survey80(2), 1998.

[8] P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental maintenance of approximate histoghNbixB’'Bi7,
Proceedings of 23rd International Conference on Very Large Data B4995 .

[9] D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi. Approximating multi-dimensional aggregate range
gueries over real attributes. Rroceedings of the 2000 ACM International Conference on Management of Data
(SIGMOD’00) 2000.

[10] A. Guttman. R-trees: A dynamic index structure for spatial searchin@rdoeedings of the 1984 ACM Interna-
tional Conference on Management of Data (SIGMOD;3434.

[11] Y. loannidis. Query optimization. Ihlandbook for Computer Sciend8RC Press, 1997.

[12] Y. E. loannidis and V. Poosala. Balancing histogram optimality and practicality for query result size estimation. In
Proceedings of the 1995 ACM International Conference on Management of Data (SIGMQI®95)

[13] Y. E. loannidis and V. Poosala. Histogram-based approximation of set-valued query-answérfB99, Pro-
ceedings of 25th International Conference on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scotland,
UK, 1999.

[14] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik, and T. Suel. Optimal histograms with qual-
ity guarantees. IRroceedings of the Twenty-fourth International Conference on Very Large Databases (VLDB'98)
1998.

[15] J.-H. Lee, D.-H. Kim, and C.-W. Chung. Multi-dimensional selectivity estimation using compressed histogram
information. InProceedings of the 1999 ACM International Conference on Management of Data (SIGMQD’99)
1999.

[16] D. B. Lomet and B. Salzberg. The hB-Tree: A multiattribute indexing method with good guaranteed performance.
ACM Transactions on Database Systems (TQDRS}), 1990.

[17] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based histograms for selectivity estimatiéhhodaedings of the
1998 ACM International Conference on Management of Data (SIGMOD8)8.

24

[18] M. Muralikrishna and D. J. DeWitt. Equi-depth histograms for estimating selectivity factors for multi-dimensional
gueries. InProceedings of the 1988 ACM International Conference on Management of Data (SIGMQT®88)

[19] M. Muralikrishna and D. J. DeWitt. Equi-depth histograms for estimating selectivity factors for multidimensional
queries. InProceedings of the 1988 ACM International Conference on Management of Data (SIGMQOI®88)

[20] S. Muthukrishnan, V. Poosala, and T. Suel. On rectangular partitionings in two dimensions: Algorithms, complex-
ity, and applications. IDatabase Theory - ICDT '99, 7th International Conferent@99.

[21] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: An adaptable, symmetric multikey file structure.
ACM Transactions on Database Systef(4), 1984.

[22] F. Olken and D. Rotem. Random sampling from database files: A surveStatistical and Scientific Database
Management, 5th International Conference SSDBS90.

[23] B.-U. Pagel, H.-W. Six, H. Toben, and P. Widmayer. Towards an analysis of range query performance in spatial data
structures. IProceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systemsl993.

[24] G. Piatetsky-Shapiro and C. Connell. Accurate estimation of the number of tuples satisfying a condition. In
Proceedings of the 1984 ACM International Conference on Management of Data (SIGMQI®84)

[25] V. Poosala and V. Ganti. Fast approximate answers to aggregate queries on a data dh.Irternational
Conference on Scientific and Statistical Database Management, Proceedings, Cleveland, Ohio, USA, 28-30 July,
1999 1999.

[26] V. Poosala and Y. E. loannidis. Selectivity estimation without the attribute value independence assumption. In
Proceedings of the Twenty-third International Conference on Very Large Databases (VLDE997)

[27] V. Poosala, Y. E. loannidis, P. J. Haas, and E. J. Shekita. Improved histograms for selectivity estimation of range
predicates. IProceedings of the 1996 ACM International Conference on Management of Data (SIGMQD’96)
June 1996.

[28] J. T. Robinson. The K-D-B-Tree: A search structure for large multidimensional dynamic index@sckedings
of the 1981 ACM International Conference on Management of Data (SIGMODIS8]L.

[29] S. A. William, H. Press, B. P. Flannery, and W. T. VetterliNumerical recipes in C: The art of scientific comput-
ing. Cambridge University Press, 1993.

A Approximating Penalties

To implement thgenaltyfunction of Section 4.2.3 efficiently, we can in principle maintain a two-dimensional
array P in memory, whereP|i, j] is the penalty of merging buckets andb;. In this appendix we show how

we can use an approximation of this array that requires only linear space in the number of buckets. In principle,
instead of using the two-dimensional arrByfor “caching” penalties, we could maintain a pair of unidimen-
sional vectorsbest B andbestP. The value obestB|b;] is the buckeb;, amongp;’s siblings and parent, for

which penalty(b;, b;) is minimal. The vectobest P stores such penaltyest P[b;] = penalty(b;, bestB[b;)).

We propose to “weaken” the definition ddst B, allowing sometimes to return a bucket with a relatively low,

but not lowest, penalty. To do so, insteadre$etting® at each step all the buckets that are involved in drills
and merges, we slightly modify these algorithms in the following way:

*“Resetting” a bucketh means invalidating the value dkstB[b] and the value obestB[b;] for all bucketsb; such that
bestB[b;] = b, so those values will have to be calculated again before the next merge.

25

Parent-Child Merge Consider the merge of buckels andb,, whereb, is b.’s parent, and leb, be the
resulting bucket. Wenly reset buckeb., and we sebestB[b,| equal to the oldbestB[b,]. Also,
all bucketsb; such thatbest B[b;] = b, get theirbest B value updated so thaestB[b;] = b,. The
motivation for this approximation is that generablyandb,, are similar buckets, so the penalty function
should also be similar when evaluating it withinstead of,,.

Sibling-Sibling Merge Consider the merge of buckelis and b2, with common parent,. Suppose the re-
sulting bucket ig,,. We reset buckets; andb,. Also, we reset only,,’s children whoséestB value
is some child ob,, (those buckets were siblings before the merge and became separated). Similarly, we
reset onlyb,,’s children whoseest B value is some child of, (or b, itself). In other words, we do not
reset a bucket; if best B[b;] is still a sibling (or the parent) df;. Consider Figure 23, where an arrow
from bucketb; to bucketb; means thabest B[b;] = b;. After mergingb; andb, to obtainb,,, we only
reseths, since after the mergg andbs are not siblings anymore. On the other hand, we do not bgset
or bsy.

Drill Hole Consider a buckétthat is drilled using bucket,. After drilling b,,, we only invalidatey’s children
whosebest B value is some child ob,, (those buckets were siblings before the drill). Similarly, we
invalidate onlyb,,’s children whoséest B value is some child o (or b itself).

\ b3 \ Merge(b1,b2) b3
i — [1
b2 b4 bn b4
l b5

b5

bp bp

Figure 23: Resetting buckets after a Sibling-Sibling merge.

26

