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ABSTRACT

The inference of the underlying state of the plasma in the solar chromosphere remains extremely challenging because of the nonlocal
character of the observed radiation and plasma conditions in this layer. Inversion methods allow us to derive a model atmosphere that
can reproduce the observed spectra by undertaking several physical assumptions. The most advanced approaches involve a depth-
stratified model atmosphere described by temperature, line-of-sight velocity, turbulent velocity, the three components of the magntic
field vector, and gas and electron pressure. The parameters of the radiative transfer equation are computed from a solid ground of
physical principles. In order to apply these techniques to spectral lines that sample the chromosphere, nonlocal thermodynamical
equilibrium effects must be included in the calculations. We developed a new inversion code STiC (STockholm inversion Code) to
study spectral lines that sample the upper chromosphere. The code is based on the RH forward synthesis code, which we modified
to make the inversions faster and more stable. For the first time, STiC facilitates the processing of lines from multiple atoms in
non-LTE, also including partial redistribution effects (PRD) in angle and frequency of scattered photons. Furthermore, we include
a regularization strategy that allows for model atmospheres with a complex depth stratification, without introducing artifacts in the
reconstructed physical parameters, which are usually manifested in the form of oscillatory behavior. This approach takes steps toward a
node-less inversion, in which the value of the physical parameters at each grid point can be considered a free parameter. In this paper
we discuss the implementation of the aforementioned techniques, the description of the model atmosphere, and the optimizations
that we applied to the code. We carry out some numerical experiments to show the performance of the code and the regularization
techniques that we implemented. We made STiC publicly available to the community.
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1. Introduction

The new generation of 4 m telescopes (DKIST, EST) aims at
studying the chromosphere and its coupling to the underlying
photosphere with unprecedented spatial resolution and signal-
to-noise ratio. In the photosphere the local thermodynamical
equilibrium approximation (LTE) can be adopted to model the
observations in most spectral lines, but in the chromosphere col-
lisional rates are in comparison very low, making this assump-
tion generally not valid. Therefore the translation of the observed
intensities to the underlying physical parameters of the plasma
remains very challenging and the nonlocal character of the prob-
lem must be taken into account. From an observational perspec-
tive one of the most successful approaches to do so has been
spectropolarimetric inversions (hereafter inversions; see reviews
by del Toro Iniesta & Ruiz Cobo 2016 and de la Cruz Rodríguez
& van Noort 2017).

Inversion codes allow the reconstruction of physical parame-
ters from spectropolarimetric observations by assuming a model.
Traditionally, the assumed model can be described by param-
eters of the radiative transfer equation directly (e.g., Milne–
Eddington or constant slab model), or with thermodynamical
variables from which the parameters of the radiative trans-
fer equation can be calculated. The former does not allow
the inclusion of a depth-varying line-of-sight velocity of mag-
netic field vector. Depth-varying LTE inversions were intro-

duced by Ruiz Cobo & del Toro Iniesta (1992) under the
assumption of LTE in the Stokes Inversion based on Reponse
functions code (SIR). Under these conditions the atom pop-
ulations are strictly set by the local conditions of the atmo-
spheric plasma and the computation of the emerging intensity
can be computed by calculating a formal solution of the polar-
ized radiative transfer equation. These ideas were also used
in the Stokes-Profiles-INversion-ORoutines (SPINOR; Frutiger
et al. 2000). Perhaps the most popular photospheric lines used in
Milne–Eddington (ME) and LTE inversions are Fe i lines such as
the 525 nm dublet, 617 nm, 630 nm dublet, and 1565 nm dublet
(some examples of recent studies are Scharmer et al. 2013;
Jafarzadeh et al. 2014; Buehler et al. 2015; Martínez González
et al. 2016; Esteban Pozuelo et al. 2016; Danilovic et al. 2016,
2017; Centeno et al. 2017; Borrero et al. 2017; Pastor Yabar et al.
2018).

The first attempts to perform such calculations under non-
LTE conditions, where the rate equations are not dominated
by collisional terms, were carried out by Socas-Navarro et al.
(2000) in the Ca ii infrared triplet lines (λ8498, λ8542, λ8662).
Currently, the Non-LTE Inversion Code based on the Lorien
Engine (NICOLE) allows us to perform such inversions assum-
ing Zeeman-induced polarization (Socas-Navarro et al. 2015).
Only recently a new non-LTE inversion code has been devel-
oped that includes for the first time non-LTE analytical response
functions (Milić & van Noort 2018).

Article published by EDP Sciences A74, page 1 of 14

https://doi.org/10.1051/0004-6361/201834464
https://www.aanda.org
http://www.edpsciences.org


A&A 623, A74 (2019)

Fig. 1. Vertical slice from a Bifrost radiation-MHD simulation, indicating the approximate formation height of different diagnostics. The solid
lines indicate the τ = 1 layer at the core of the Mg ii k line (purple), Ca ii K line (navy) and Hα line (orange). The black solid line indicates the
location where T = 20 kK and the dashed black line the plasma β = 1 layer. The gray shades illustrate the He i 10830 line opacity. We indicated
the entire formation range of the Fe i 6301 line in green and the Ca ii 8542 line in red.

The Ca ii infrared triplet lines sample the lower chromo-
sphere (see Fig. 1) and they can be modeled assuming a complete
redistribution of scattered photons (Uitenbroek 1989) and statis-
tical equilibrium (Wedemeyer-Böhm & Carlsson 2011). Com-
paratively, the Na i D lines and Mg i 517 nm line have larger
sensitivity to magnetic fields in the upper photosphere/lower
chromosphere, but they form deeper than the Ca ii IR triplet lines
(Leenaarts et al. 2010; Rutten et al. 2011; Quintero Noda et al.
2018).

Unfortunately, the selection of lines that are sensitive to
the upper chromosphere is not large; these are Mg ii h& k,
Ca ii H&K, the Lyman alpha line, and the He i D3 and 10830
lines. With the exception of the He i lines, all the aforementioned
diagnostics are strong resonance lines that are affected by partial
redistribution effects of scattered photons, and these effects must
be included in forward synthesis calculations. However, there are
good reasons to attempt to include some of these lines simulta-
neously in one inversion, which has not been possible until now.
These reasons are as follows:
1. By including information of the upper chromosphere, we can

attempt to discriminate between physical processes that do
not leave a clear imprint in the lower chromosphere (e.g.,
Kerr et al. 2016), or attempt to constrain opacity effects
induced by the combined action of gas flows and tempera-
ture fluctuations (Scharmer 1984; de la Cruz Rodríguez et al.
2015; Henriques et al. 2017).

2. These upper chromosphere lines are also sensitive to the
middle and lower chromosphere, providing valuable redun-
dant information to constrain physical parameters in those
layers (see Fig. 1).

3. If spectral lines from different atomic species can be pro-
cessed simultaneously, some of the degeneracies that can
arise between temperature (opacity broadening) and micro-
turbulence (e.g., Shine & Linsky 1974; Carlsson et al. 2015)
can be ameliorated because the thermal term present in the
Doppler broadening of the line is divided by a different
mass, whereas the turbulent velocity term is the same in all
cases.

In this paper we present the STockholm inversion COde (STiC),
which allows, for the first time, the processing of spectral lines
from multiple atoms simultaneously, including partial redistribu-
tion effects (PRD) of scattered photons in angle and frequency.

In the present paper, we discuss how the code operates and
we present a new regularizing Levenberg–Marquardt algorithm
(LM), which improves the convergence of the inversion process
and allows for more degrees of freedom without loosing fidelity
and unicity of the solution. Early versions of STiC have already
been used in previous studies (de la Cruz Rodríguez et al. 2016;
Leenaarts et al. 2018; Gošić et al. 2018; da Silva Santos et al.
2018).

2. Spectral synthesis module

The STiC code started as a modular LTE inversion code. In order
to add non-LTE radiative transfer capabilities, we modified the
2014 version of RH (Uitenbroek 2001) to create a synthesis mod-
ule that can be called efficiently from the main inversion code.
The RH code can solve the non-LTE problem in multiple atoms
at the same time, and it includes PRD effects in strong resonance
lines.

The code STiC operates on a column-by-column basis,
assuming plane-parallel geometry to solve the statistical equilib-
rium equations, usually referred to as the 1.5D approximation.
Once the atom population densities are known for all atoms, a
final formal solution is computed at the heliocentric angle of the
observations. Unfortunately, horizontal radiative transfer cannot
be included in these kinds of calculations as the computation of
the derivatives of the intensity vector with respect to each physi-
cal parameter would be prohibitive, among other challenges such
as radiative coupling that would be present among the different
pixels.

Scattering is expected to be more dominant when colli-
sional rates are low, and the latter are particularly low in the
upper chromosphere. A number of recent studies have empha-
sized the importance of 3D radiative transfer when modeling
strong scattering lines (e.g., Leenaarts et al. 2009; Sukhorukov &
Leenaarts 2017; Bjørgen et al. 2018), especially for simulating
observations toward the solar limb. However, those studies have
made use of radiation 3D magnetohydrodynamics (MHD) sim-
ulations representative of quiet-Sun situations. In fact, the chro-
mospheric gas density in those MHD simuilations seems to be
lower than what observations indicate, even in the quiet-Sun (see
details in Carlsson et al. 2016). The main target for our inver-
sions are active regions, where the magnetic field is stronger and
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the ionization degree is higher than in the quiet-Sun. Further-
more, in active regions the transition region is usually pushed
to higher mass densities and the local temperature is larger than
in the quiet-Sun (Carlsson et al. 2015). All these effects would
arguably lead to larger collisional rates in the chromosphere than
the situation represented in those MHD simulations. For all these
reasons we are compelled to speculate that the aforementioned
studies that analyze 3D effects are representative of a worse
case scenario when active regions are the main observational
target.

2.1. Changes and optimizations to RH

This version of RH includes the fast PRD angle approximation
proposed by Leenaarts et al. (2012), but we optimized the origi-
nal algorithm with the following changes:

– The algorithm originally implemented in RH by
Leenaarts et al. (2012) computed the mean intensity in
the comoving frame of the grid cell for all wavelengths,
but that quantity is only used in calculations related to
PRD or cross-redistribution lines (XRD). We changed the
structure of the algorithm to ensure that these operations
are only performed and stored for frequencies associated
with PRD/XRD lines, rather than for the entire emerging
spectrum.

– We rearranged and restricted the extent of the loops where
the interpolation coefficients are computed, saving between
a factor two and three in the execution time of these calcula-
tions.

With this new implementation of the algorithm, the amount of
time spent in the precomputation of interpolation coefficients is
negligible in most applications.

RH can compute the van der Waals damping parameter (from
collisions with neutral hydrogen) using the recent formalism of
Barklem et al. (2000). Inside RH, this is done by interpolat-
ing the corresponding coefficients for the line under consider-
ation from a table that is only valid for neutral species. For lines
from ionized species these tables cannot be used. However, these
coefficients have been computed for strong chromospheric lines
like Ca ii H&K, the Ca ii IR triplet lines, and Mg ii H&K (e.g.,
Barklem & O’Mara 1998) and they allow for a more accurate
estimate of the damping wings. Therefore, we slightly modified
the input atom format to allow for the feeding of those coeffi-
cients manually if needed.

Finally, since we need to compute response functions by
finite differences during the inversion, we allow the code to store
departure coefficients from LTE that can be used to initialize the
atom populations during the inversions, a trick that was already
introduced in the NICOLE code. This simple change allows the
response functions at each node to be computed with very few
iterations.

2.2. Formal solution of the radiative transfer equation

We included cubic DELO-Bezier formal solvers for polarized
and unpolarized radiation (de la Cruz Rodríguez & Piskunov
2013), which allow us to accurately solve the radiative transfer
equation in coarse depth grids. Given our choices in the defini-
tion of the Bezier interpolant control points used in the formal
solver, the latter is exactly equivalent to a Hermite method (Auer
2003; Ibgui et al. 2013). The accuracy of these methods has been
recently analyzed in great detail for the polarized case by Janett
et al. (2017) and Janett & Paganini (2018).

The monochromatic unpolarized cubic Bezier integration
scheme is given by

Ic = Iue−τuc + S uα + S cβ +Cuγ +Ccϕ, (1)

where the subindex u indicates quantities located in the upwind
point, where both the intensity (Iu), the source function (S u) and
the control point (Cu = S u + S ′uτuc/3) are known. The subindex
c indicates quantities located in the central point, where only the
source function S c and the control point (Cc = S c − S ′cτuc/3) are
known, but not the intensity (Ic) that we want to compute. The
interpolation coefficients are

α = −
e−τuc (6 + 6τuc + 3τ2

uc + τ
3
uc) − 6

τ3
uc

,

β =
−6 + τuc(6 + τuc(τuc − 3)) + 6e−τuc

τ3
uc

,

γ = 3 · 2τuc − 6 + e−τuc (6 + τuc(τuc + 4))

τ3
uc

,

ϕ = 3 ·
−2e−τuc (τuc + 3) + 6 + τuc(τuc − 4)

τ3
uc

· (2)

In their analysis, Janett et al. (2017) also considered another
Hermitian method, originally introduced by Bellot Rubio et al.
(1998) (LBR hereafter), which seems to perform extremely well
in their tests. We were encouraged by those results to try to
implement polarized and unpolarized version of these solvers.
The latter does not make use of the analytical formal solution of
the transfer equation which, for unpolarized light, is

Ic = Iue−δτν +
∫ τuc

0
S (t)e−(τuc−t) dt, (3)

where Ic is the intensity at the central point, Iu is the already com-
puted upwind intensity, S is the source function, and δτuc is the
optical thickness of the medium between the upwind and central
points. Normally, the integral of the source function in Eq. (3) is
solved analytically by approximating the source function with a
given depth-dependence: linear, parabolic, Bezier, Hermite. So
these interpolants are only used to describe the source function.

In LBR’s method, the intensity vector at the central point of
the interval is computed with a polynomial expansion around the
upwind point. After some algebra, and using the transfer equa-
tion to provide the first and second derivatives of the intensity,
they obtained a solution with Hermitian form.

A priori this method is very fast to compute and it does
not require the computation of exponentials and vanishing small
quantities. The latter may be a great asset when computing the
mean intensities that are used to solve the non-LTE problem. But
it does so by loosing some of the insights provided by the analyt-
ical form of the transfer equation in Eq. (3). The reason is that in
this case, the polynomial expansion of the intensity must account
for the exponential term in the optically thin regime, but it must
also properly describe the behavior of the local contributions in
optically thick cases.

If we apply the principles described in Bellot Rubio et al.
(1998) to the unpolarized case, we recover the usual integration
scheme that depends on the ensuing intensity, the source func-
tion values, and its derivatives as follows:

Ic = IuA + ᾱS u + β̄S c + γ̄(S ′u − S ′c), (4)

where the integration coefficients are similarly defined in terms
of τuc. Defining k0 = τuc/2 and k1 = (τuc)2/12 we can express
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Fig. 2. Comparison of the integration coefficient A from LBR’s method
(red) with an exponential (black). A is a good approximation to the
exponential for small optical thickness, but it greatly deviates close to
the optically thick regime.

those coefficient as

A =
1 − k0 + k1

1 + k0 + k1
,

ᾱ =
k0 − k1

1 + k0 + k1
,

β̄ =
k0 + k1

1 + k0 + k1
,

γ̄ =
k1

1 + k0 + k1
·

Comparing Eq. (4) to Eq. (3), we would expect the coefficient A
to behave like e−τuc . Figure 2 shows the comparison of these two
quantities as a function of τuc. In fact, coefficient A coincides
with a second order Padé approximant (Padé 1892) of the expo-
nential function around τuc ≈ 0, which is usually considered to
be a more accurate and somewhat better behaved approximant
than the Taylor expansion (see Fig. 2), but it is still a polynomial
approximation. For small optical thickness, coefficient A accu-
rately follows the exponential, but from τuc > 0.1 the error is
numerically noticeable and it starts to deviate from the exponen-
tial behavior and to even increase from τuc ' 3.4, giving unre-
alistically high weight to the incoming radiation even when the
medium is optically thick (where that part should be attenuated
by the exponential).

If the scheme presented in Eq. (4) is used to solve the
non-LTE problem with strong scattering lines, the latter does
not converge because the scheme is not accurate in the region
of interest for these lines (τuc / 10). A similar conclusion
may be applied to the polarized case, because it is also based
on a polynomial expansion of the intensity vector around the
upwind point, and that approximation is only supposed to work
for small excursions from the point where the intensity is
approximated.

Padé approximants can be more precise than a Taylor expan-
sion of the same order for larger excursions from the origin
point, as suggested by Fig. 2. In Appendix A we provide Padé
polynomial approximations of the cubic Bezier interpolation
coefficients, which are valid for small optical tickness regimes,
where high-order schemes usually suffer from numerical
errors.

3. Inversion engine

3.1. Equation of state

The STiC code works with depth-stratified atmospheres includ-
ing the stratification of temperature, gas pressure, electron
density, line-of-sight velocity, microturbulence, and the three
components of the magnetic field vector as functions of col-
umn mass, optical depth or height. The magnetic field vector
is decomposed in the longitudinal component (B‖), strength of
the transverse component (|B⊥|) and azimuth of the transverse
component (Bχ).

The inversion engine parameterizes the stratification of phys-
ical quantities as a function of optical depth or column mass. If
the gas pressure and electron densities are not known, they can
be derived assuming a gas pressure value at the upper bound-
ary of the atmosphere and integrating the hydrostatic equilibrium
equation. During the inversion, the gas pressure stratification and
electron densities are derived assuming hydrostatic equilibrium,
but in pure synthesis mode they can be provided externally. Sim-
ilar to other inversion codes (e.g., SIR, NICOLE), we solve the
equation of hydrostatic equilibrium to derive the gas pressure
scale for any guessed model atmosphere (Mihalas 1970) as fol-
lows:

∂p

∂τλ
= −

g

κλ + σλ
, (5)

where p is gas pressure, τν is the optical depth, g is the value
of gravity, κν is the mass absorption, and σλ is the scattering
coefficient for continuum opacity. The subindex ν refers to a ref-
erence wavelength, typically 500 nm. The parameters κλ and σλ
are computed assuming a LTE equation of state and background
continuum opacity. This equation of state was adopted from the
SME: evolution code (Piskunov & Valenti 2017). Equation (5)
can be integrated numerically assuming linear dependence of
βλ = κλ + σλ between consecutive grid cells. To simplify the
notation we assume a discrete grid of k = 1, . . . , ndep values,
where index 1 represents the upper boundary of the atmosphere
and λ = 500 nm. Since βk depends on the value of pk, a few iter-
ations are needed to get the values of βk and pk to be consistent.
In that case, the solution is written as

pk = pk−1 +















g(τk−τk−1)
βk−1

iter = 1
g(τk−τk−1)
βk−βk−1

log
(

βk

βk−1

)

iter > 1
. (6)

If, on the contrary we decide to perform the inversion using col-
umn mass (ξ) as a depth variable, the hydrostatic equilibrium
equations simplify greatly, no opacity calculations are involved,
and no iterations are needed (see, e.g., Hubeny & Mihalas 2014),
i.e.,

pk = gξ. (7)

Working in any of these depth scales is somewhat equivalent
to using a Lagrangian frame as the physical quantities fol-
low density (not strictly in the case of optical depth, but very
closely related). Working in column mass naturally sets the
boundary condition at the top of the atmosphere pk=0 = gξ.
The main difference between working in column mass or opti-
cal depth is that the former stretches the chromosphere a bit
more and greatly compresses the transition region, whereas the
latter comparatively allows us to better resolve the transition
region and photosphere (see Fig. 3). This figure gives some
insight about how spicules would be squeezed in an optical
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Fig. 3. Vertical slice of a temperature snapshot from a publicly avail-
able 2.5D rMHD simulation (Martínez-Sykora et al. 2017). We adopted
the original geometrical depth scale (top panel), an optical-depth scale
(middle panel), and a column mass depth scale (bottom panel) to repre-
sent the same temperature slice.

depth or in a column-mass scale. They would appear as a local-
ized bump in temperature because these scales are not sensi-
tive to the coronal plasma that surrounds these cold material
protrusions.

The electron pressure is tightly related to the local gas
pressure and temperature. Once the gas pressure is known, we
initialize the electron pressure under the assumption of LTE.
Hydrogen is the main electron donor in the chromosphere. In
principle, if hydrogen is included as an active non-LTE species in
RH, the electron density can be iterated internally in RH to make
it consistent with the non-LTE hydrogen ionization (in statistical
equilibrium). We modified RH to allow us to solve the statisti-
cal equilibrium equations along with charge conservation (e.g.,
Leenaarts et al. 2007) for the hydrogen atom. With the modified
equations, Newton–Raphson iterations are needed within each
multi-level accelerated lambda iteration (MALI) to make the

electron density and hydrogen ionization consistent with each
other.

The penalty of including hydrogen as an active species is
large. In that case, the whole process becomes up to three times
slower compared to the LTE case. We only encourage the use of
this setup for selected pixels, and we always recommend starting
from a relatively converged atmosphere from an inversion with
hydrogen in LTE.

3.2. Atmospheric parameterization

Ruiz Cobo & del Toro Iniesta (1992) introduced depth-stratified
inversions based on nodes. These nodes represent the free
parameters of our model. The inversion modifies the values of
the nodes and generates a new fully stratified atmosphere that
can be used to solve the (polarized) radiative transfer equation.

Radiative transfer calculations require a relatively dense grid
of depth points to solve accurately the radiative transfer equation
numerically. Ruiz Cobo & del Toro Iniesta (1992) showed that
the inversion cannot be performed in such a fine grid because the
observables would not constrain all these degrees of freedom.
Therefore, they introduced a coarser grid (the nodes) for each
physical parameter. They used piece-wise segments or splines to
connect the nodes in the finer grid.

However, there is a fundamental difference in our imple-
mentation compared with the node approach introduced by Ruiz
Cobo & del Toro Iniesta (1992). In the latter case, the nodes were
used to describe corrections that are interpolated into the fine
grid and added to an input model atmosphere. In our case, the
nodes represent the actual value of the model atmosphere, that
is directly interpolated into the fine depth grid. The Ruiz Cobo
& del Toro Iniesta (1992) approach allows inversions to be per-
formed with a relatively low number of nodes if the structuring
of the input atmosphere is close to that of the final result. How-
ever, if the input model has a complex structure that does not
correspond to the profiles that we are inverting, this approach
struggles to remove such structuring, even with many nodes.
Our approach is somewhat safer because the depth complexity
is directly set by the number of nodes. We implemented both
approaches in STiC, however we recommend using the scheme
in which the nodes represent the actual value of the atmospheric
parameter. The SPINOR2D, SPARSE and SNAPI codes also
make use of this node scheme (van Noort 2012; Asensio Ramos
& de la Cruz Rodríguez 2015; Milić & van Noort 2018), which
also simplifies the implementation of spatial coupling and reg-
ularization that operate directly on the model parameters (see
Sect. 3.4).

We allow the use of the following four types of nonover-
shooting interpolants:
1. Straight segments
2. Cuadratic Bezier splines
3. Cubic Bezier splines
4. Discontinuous grid-centered interpolation with linear slope

delimiter
The exact implementation of these interpolants were described
in detail in de la Cruz Rodríguez & Piskunov (2013) and in
Steiner et al. (2016). Figure 4 illustrates an example showing
fictitious node values and the interpolated curve using all these
interpolants.

We allow the use of node parameterization in temperature,
line-of-sight velocity, microturbulence, and the magnetic field
vector (B‖, |B⊥|, Bχ).

We also noticed that when integrating Eq. (5), most inver-
sion codes leave the boundary condition constant over the entire
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Fig. 4. Example of node interpolation using quadratic Bezier (solid
gray), cubic Bezier (solid orange), straight segments (blue), and discon-
tinous with slope delimiter (green dots). The node values are indicated
with black crosses.

inversion. However, Shine & Linsky (1974) and Carlsson et al.
(2015) used observations in the Ca II H&K lines and Mg ii h&k
lines, respectively, to derive ad hoc models that could produce
similar spectra as in the observations. In both cases, they needed
between one and two orders of magnitude higher gas pressure
in the upper chromosphere and transition region than that in
the FALC quiet-Sun model (Fontenla et al. 1993). We investi-
gated the response of the aforementioned lines to changes in the
boundary condition for the hydrostatic equilibrium equation.

Figure 5 illustrates the response of Ca ii H&K,
Ca ii 854.2 nm, Fe i 630.2 nm, and Mg ii k to perturbations
in the gas pressure upper boundary. We used a plage model
atmosphere that is very similar to that derived by Carlsson
et al. (2015). For this model, increasing the gas pressure at the
boundary increases the line core intensity of all chromospheric
lines but photospheric lines remain unaffected. Figure 5 also
illustrates the differences in opacity among these lines. Mg ii k
has more opacity than Ca ii H&K and all of these lines have
more opacity than the Ca ii 854.2 nm line.

Figure 6 illustrates the results of several inversions of
a plage (IRIS) Mg ii h&k profile, using different values
of the upper boundary gas pressure. For quiet-Sun values
(Ptop = 0.3 dyn cm−2, in red) the inversion cannot reproduce
the enhanced line-core intensity of the observation. But when
the boundary condition is increased to higher values (Ptop ∼
1.0 dyn cm−1), the line core intensity can be reproduced. By
allowing the code to increase the gas pressure, the transition
region can be moved to lower optical depth, where there is now
more mass.

Figure 6 also illustrates that despite the degeneracy between
the value of Ptop and the temperature gradient in the transition
region, the inversion needs to have, at least, values that are one
order of magnitude higher than in the quiet-Sun to reproduce
the profile. We implemented the possibility of also adjusting the
value of the upper boundary condition during the inversion as
as free parameter. We found it more stable to implement it as a
multiplicative factor to the upper boundary gas pressure. A good
strategy to invert datasets that include quiet-Sun, sunspots and
plage in the same field-of-view is to set the gas pressure to a
value of approximately Ptop = 1.0 dyn cm−2 and let the code
adjust the value to lower values if needed for the quiet-Sun areas.
We discuss further how to do this and how this free parameter is
regularized in Sect. 3.4.2.

3.3. Parallelization scheme and I/O

A C++ MPI-parallel code, STiC that follows a master-workers
scheme. The parallelization is performed over pixels, assigning
one worker to each vertical 1D model atmosphere. The master
process performs I/O operations and distributes the workload
among worker processes that are only used to process data. This
scheme works particularly well when the time needed to process
each package is not the same in all cases, allowing balancing of
the load of each worker on the fly. A similar scheme was used in
NICOLE (Socas-Navarro et al. 2015). We use the HDF5 library
for data storage. This library is convenient because it allows stor-
age of multiple named variables and metadata in one single file
and it is supported by Python and IDL.

3.4. Regularizing Levenberg–Marquardt algorithm

The LM algorithm (Levenberg 1944; Marquardt 1963) facilitates
a nonlinear least-squares fit of a model to observational data.
The LM iteratively applies corrections to the parameters of a
guessed model to minimize the difference between out synthetic
and the measured data. This algorithm has been extensively used
in solar inversion codes because it converges efficiently and it is
particularly well suited for problems where the computation of
derivatives is expensive.

In depth-stratified inversions finding the correct number of
minimum number of free-parameters that allow the fitting of
observations has been critical to avoid oscillatory behavior in the
retrieved parameters. In this section we describe a regularizing
LM algorithm that partly overcomes this issue.

We begin by defining the commonly used merit function χ2

that is minimized, but in this case including a generic regulariza-
tion term,

χ2(p, x) =
1

Ndat

Ndat
∑

k=1

[

ok − sk(p, xk)
σk

]2

+ αr(p)2, (8)

where p is a vector containing the Npar parameters of the model,
sk is the kth prediction of our model (computed at the abscissa
points x), ok is the kth measured data point and σk is the error
(or noise) of the kth measurement, α is a weight for the regu-
larization term, and r(p) is a function that (in general) regular-
izes the problem by encouraging certain family of solutions that
our algorithm prefers. In the following we work with normalized
parameters, as these are numerically more stable.

In our application we assume that we defined a number of
individual penalty functions that can depend on different combi-
nations of parameters contained in p. That way the total penalty
term is given by the sum of all (Npen) individual penalties rn(p)
as

χ2(p, x) =
1

Ndat

Ndat
∑

k=1

[

ok − sk(p, xk)
σk

]2

+

Npen
∑

n=1

αnrn(p)2. (9)

The problem of Eq. (9) is that now our figure to estimate the
quality of the fits to the data also includes a term that depends
on the model parameters themselves, while the standard defini-
tion of χ2 is normalized by the noise. Therefore it is particularly
important to work with normalized model parameters within
the LM part, which can be done by assuming a typical norm
that scales the stratification of each physical parameter to val-
ues relatively close to unity (e.g., T = 5000 K, vl.o.s. = 6 km s−1,
vturb = 6 km s−1, B‖ = 1000 G, B⊥ = 1000 G, Bχ = π rad). The
idea behind the LM algorithm is that, in each iteration i, we can
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Fig. 6. Inversions of one IRIS plage observation performed with various
gas pressure values at the upper boundary of the model atmosphere. Top
panel: fitted spectra (orange, green, navy and blue) and observed spec-
trum (black). Bottom panel: reconstructed stratification of temperature
and turbulent velocity for each inversion, represented using the same
color coding as in the upper panel.

find corrections (∆pi = p− pi) to a set of model parameters (p)
that decrease our merit function χ2, so that χ2(pi) > χ2(pi+∆pi).

At this point, one way to proceed would be linearizing
Eq. (9), but that would assume that all dependences with the
model parameter are linear (see Appendix B). Instead, it is more
appropriate to consider a second order Taylor expansion of the
merit function around the current estimate of the parameters
(e.g., Press et al. 1992), i.e.,

χ(p, x)2 = χ(pi, x)2 + ∆pi∇
[

χ(pi, x)2
]

+
1
2
∆piD∆pi, (10)

where D is the Hessian matrix of dimension Npar × Npar. At the
minimum, the derivative of Eq. (10) must be zero, i.e.,

∇
[

χ(p, x)2
]

= ∇
[

χ(pi, x)2
]

+ D∆pi = 0. (11)

The correction to our parameters at iteration i is therefore given
by the solution to the linear system of equations,

D∆pi = −∇
[

χ(pi, x)2
]

, (12)

and the new estimate of the model parameters is therefore given
by

pi+1 = pi + ∆pi.

If we now expand Eq. (12) using Eq. (9), we only need to derive
a formula for the Hessian and gradient of our merit function.
Strictly speaking, the elements of the Hessian are given by

D jz =
∂2χ2

∂pz∂p j

= 2
Ndat
∑

k

1

σ2
k

[

∂sk

∂pz

∂sk

∂p j

− (ok − sk)
∂2sk

∂pz∂p j

]

+ 2
Npen
∑

n

αn

∂2(r2
n)

∂p j∂pz

,

(13)

but in the LM method it is customary to assume that the differ-
ences between the observed and synthetic data points (ok − sk)
are very small close to the minimum, and therefore to approxi-
mate that part of the Hessian with a linearized version that only
depends on the first derivatives,

D jz ≈ 2
Ndat
∑

k

1

σ2
k

∂sk

∂pz

∂sk

∂p j

+ 2
Npen
∑

n

αn

∂2(r2
n)

∂p j∂pz

= A jz, (14)

where we now denote the approximation to the Hessian matrix
with A, as is usually done in the literature. In general we should
not assume a similar linearization of the penalty term. However,
when the regularizing function rn has a linear dependence with
the parameters, then such linearization is exact and we can com-
pute that contribution to the Hessian using only the product of its
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Jacobian matrix terms (which we show in Appendix B). The lat-
ter is the reason why this algorithm can also be derived assuming
a linear model of χ2 under this assumption. Since all the penalty
functions that we consider in this paper fulfill this requirement,
we continue using the linearized case.

The gradient of the merit function (the right hand term in
Eq. (12)) is trivially given by

−
∂χ2

∂p j

= 2
Ndat
∑

k

1

σ2
k

[

(ok − sk)
∂sk

∂p j

]

− 2
Npen
∑

n

αnrn

∂rn

∂p j

· (15)

Equation (12) can be written in matrix form as

A∆p = JT (o− s) − LT r, (16)

where A is the Hessian matrix, J is the Jacobian of the synthetic
spectra, and L is the Jacobian of the regularization functions. We
included the division by σk in J and (o− s) and the a factor

√
αn

in the corresponding L and r. The linearized approximate Hes-
sian matrix, assuming a linear dependence of the penalty func-
tions with the parameters, can be written as

A = JT J + LT L. (17)

In some situations, the linear system in Eq. (16) can lead to
unstable solutions. Following Marquardt’s insights, the diagonal
of the Hessian matrix can be modified to stabilize the solution as

Āi j =

{

(1 + λ)Aii i = j,

Ai j i , j.
(18)

The λ parameter is a Lagrange multiplier that allows for switch-
ing between a steepest descent (when λ is large) and a conjugate
gradient method (when λ is small). In our implementation we
selected the value of λ by doing a simple line search that brack-
ets the optimal value of λ and then we refined the optimal value
with a parabola fit, which seems to work particularly well when
regularization is included.

So the final (linearized) equation that we need to solve is
written as

Ā∆p = JT (o− s) − LT r. (19)

Comparing Eq. (19) with a traditional LM implementation, there
is a new term that modifies the Hessian matrix and an additional
residual on the right-hand side. We are effectively changing the
way the Hessian maps a given solution into the right-hand term.
The extra residual term in the right-hand term balances the equal-
ity and provides insight into how the parameter corrections must
be driven to minimize the penalty term as well.

This kind of ℓ−2 regularization has been extensively used to
solve ill-posed problems in stellar applications (e.g., Piskunov
& Kochukhov 2002). Other types of regularization have been
included in the past in other inversion codes, and perhaps the
closest implementation to our method can be found in NICOLE.
However there are significant differences. Perhaps the main dif-
ference is that the penalty term in NICOLE is not squared in
the definition of χ2, which changes completely the algebra of
the problem from the beginning of the derivation, as the deriva-
tive of the penalty term respect to ∆p is different from ours
after using the parabolic approximation to solve the problem in
Eq. (10). NICOLE must be applying ℓ−1 regularization whereas
our approach operates with ℓ−2 norms. The regularization func-
tions that we use are also rather different in nature than those in
NICOLE (see Sect. 3.4.2).

To solve the linear system of equations in Eq. (19), we use
singular value decomposition (SVD). The latter is used in most
inversion codes that are currently available to get the correction
to the model parameters. In situations where A is rank deficient,
SVD provides a least-squares fit to the solution of that system
of equations. Additionally, very small singular values can be
avoided. This way of solving the linear system is also a regular-
ization method but, unlike using the penalty function, it operates
on the projected total Hessian matrix, not on individual physical
parameters. Therefore it is harder to understand how it affects
individual physical parameters.

Ruiz Cobo & del Toro Iniesta (1992) suggested checking the
contribution of each singular value to the response of each phys-
ical parameter of the model and making sure that these contribu-
tions are filtered individually for each physical parameter. In our
tests, the latter seems to mostly help with parameters that induce
very small response in χ2 like the magnetic field azimuth, but
proper weighting of the Stokes parameters can have a similar
effect. Using SVD alone (without the other regularization terms)
has the disadvantage that it does not particularly select any fam-
ily of solutions, but instead filters the Hessian matrix in a way
that removes unstable values in the system. In our experience
both methods have slightly different effects and the combination
of both methods greatly improves convergence. Our calculations
of SVD decomposition are performed using the excellent C++
Eigen-3 library (Guennebaud & Jacob 2010).

3.4.1. Selection of the regularization weight αn

The real challenge in this approach is how to chose the reg-
ularization weights αn correctly. Too much weight affects the
quality of the fits, as the problem is dominated by the penalty
term. Too little regularization does not remove potential degen-
eracies in the solution. We surveyed the literature and there is
a vast selection of different theoretical approaches to select the
regularization weights, regardless of the fitting algorithm that is
being employed (see, e.g., Kaltenbacher et al. 2008; Doicu et al.
2010).

Perhaps one of the best (practical) insights into how to
choose the regularization weight is provided by Kochukhov
(2017), based on the so-called L-curvature approach
(Hansen & O’leary 1993). The idea is to assess how the
value of the square of the residual ||o − s||22 compares to the
values of the penalty term ||r||22 for different values of α in a
log− log plot. Normally, for too small values of α, the quality
of the fits remains rather constant. Once the order of magnitude
of the penalty term approaches the same order of magnitude as
||o − s||22, then the quality of the fits usually begins to degrade
rapidly. The idea is to choose a value of α very close to that
turnover point.

If we work with model parameters that are normalized to
values around unity, for example by scaling the parameters by
a norm, and if our estimate of the noise is adequate, then we
should be able to choose α so that the penalty term remains
slightly below unity. Now this is not exactly as straightforward
as it sounds. The temperature and magnetic field strength, for
example, have quite a large dynamic range compared to the
other parameters. This is especially the case if our observations
include lines that form under very different physical conditions
because in that case, the model must accommodate all these
regimes and the consequent gradients that connect them.

Kochukhov (2017) also indicates that some uncertainty in the
choice of α cannot be avoided because we do not know the best
fit a priori. However, we can perform test inversions on selected

A74, page 8 of 14



J. de la Cruz Rodríguez et al.: STiC

pixels to calibrate a good value. Normally we would need to be
off by a factor ×10 in order to see significant errors.

3.4.2. Regularization functions

If the inversion is performed with many degrees of freedom, the
solution can become unstable, introducing oscillatory behavior
in the derived parameters as a function of depth. Regularization
techniques provide a natural way to discourage certain families
of solutions by adding a penalty term to the definition of χ2, as
generally expressed in Eq. (8) with r(p).

We implemented Tikhonov’s regularization on the first
derivative (Tikhonov & Arsenin 1977). Hereafter, the label phyc
indicates that a given vector or constant is related to one phys-
ical parameter (e.g., temperature). In this case for each inter-
val between two consecutive nodes in one physical parameter
(k = 1, . . . ,Nphyc, e.g., temperature) we define a regularization
function (we note that the penalty function is not squared here,
unlike in the definition of χ2) using the first derivative of the
actual values of the physical parameter that we are considering
(pphyc),

fk(pphyc) = (p j − p j−1). (20)

In this case, the derivatives of the regularization term relative to
all parameters contained in p can be written as

∂

∂pi

fk(pphyc) =























1 i = j,

−1 i = j − 1,
0 otherwise,

(21)

where p j are the values of the nodes for a given physical param-
eter. In this case, the block in H corresponding to this physical
variable only has nonzero terms in the diagonal and the band
just below it. Alternatively, we could choose to penalize changes
in the gradient of a variable, which is by definition what hap-
pens when we introduce wiggles in a curve. The latter can be
attained by penalizing large values in the second derivative. For
nonregular grids (nonequidistant node placement) we can define
the penalty function as

fk = (pphyc) = (A · p j+1 + B · p j +C · p j−1), (22)

where

A =
2

∆x j+1(∆x j + ∆x j+1)
,

B = −
2

∆x j(∆x j · ∆x j+1)
,

C =
2

∆x j(∆x j + ∆x j+1)
,

are expressed in terms of the node separation ∆x j+1 = x j+1 −
x j and ∆x j = x j − x j−1. The derivative of this penalty function
becomes trivially

∂

∂pi

fk(pphyc) =



































A i = j + 1,
B i = j,

C i = j − 1,
0 otherwise.

(23)

Another useful form of regularization is to penalize deviations
of the stratification of a parameter from a constant value v,

fk(pphyc) = (p j − v), (24)

where v is a constant expected value. The derivative, which in
this case is trivial, is written as

∂

∂pi

fk(pphyc) = p j

{

1 i = j,

0 i , j.
(25)

If v is taken to be mean of all elements in pphyc (denoted as p̄ =
∑Nphyc

j=1 p j), then the derivative must also account for the fact that
changing one value p j also changes the value of p̄, by including
the derivative of p̄ written as

∂

∂pi

fk(pphyc) =















1 − 1
Nphyc

i = j,

− 1
Nphyc

i , j.
(26)

Equation (23) obviously yields a diagonal block, whereas in
Eq. (26) all block elements are nonzero because all nodes con-
tribute to the mean value. We note that Eqs. (21), (23), (25), and
(26) do not contain the constant factor α that multiplies each of
the penalty functions.

Equations (21) and (22) are both capable of removing spuri-
ous oscillatory behavior and wiggles from the stratification of a
parameter, but they operate in different ways. The former prefers
to have small gradients in the solution whereas the latter only
penalizes changes in the gradient itself. Similarly, the main dif-
ference between Eqs. (20) and (24) is that the former encourages
smoothly varying solutions as a function of depth, whereas the
latter does not necessarily encourage smoothness but discour-
ages large deviations from the selected constant value. Equa-
tion (22) allows for a larger dynamic range in the stratification
of a variable than Eq. (21) and it is particularly well suited for
variables such as temperature, where we may have to include the
transition region.

If the user decides to allow for adjustments in the gas pres-
sure at the upper boundary (Ptop,) we allow for regularizing the
multiplicative factor of Ptop with penalties to deviations from a
value of 1. That way, if the input model assumes an upper chro-
mosphere value of Ptop 1.0 dyn cm−2, the code only increases or
decrease this value when it actually improves the value of χ2, but
the algorithm will try to adjust the temperature gradient if pos-
sible. We are basically selecting to fit as much as we can with
changes to the temperature stratification.

3.4.3. Numerical experiment

We performed a numerical test with a vertical slice extracted
from snapshot 385 from a public 3D rMHD simulation
(Carlsson et al. 2016). Snapshots from this simulation have been
used extensively in recent years (Leenaarts et al. 2013, 2014;
Pereira et al. 2013; de la Cruz Rodríguez et al. 2013; Štěpán
et al. 2015; Rathore et al. 2015) as it was made publicly avail-
able as part of the NASA IRIS mission (De Pontieu et al. 2014).
This simulation includes the solar photosphere, chromosphere,
and corona, allowing us to prepare a meaningful test case for the
code. In order to speed up our calculations, we selected a ver-
tical cut of the snapshot, indicated in Fig. 7 with a black line
over the field of view. This line connects two patches of oppo-
site polarity and it is aligned with fibril-like structures that are
visible in the magnetic field and line-of-sight velocity panels. In
pixel coordinates, the slit extends from (x0, y0) = (69, 298) to
(x1, y1) = (431, 165).

We synthesized spectra in the Mg ii h&k, Ca ii H&K, the
Ca ii 8542 Å line and Fe i 6301 & 6302 Å lines. This setup is
representative of a co-observation between IRIS and the CRISP
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Fig. 7. Physical parameters from a snapshot of a 3D rMHD BIFROST simulation (Carlsson et al. 2016). From left to right, temperature, line-of-
sight velocity and the vertical component of the magnetic field. The upper row shows a horizontal cut in the chromosphere at z = 1.3 Mm and the
lower row in the photosphere at z = 0 Mm. The black line illustrates the region that we extracted to perform our inversion tests.

Table 1. Synthetic observations from a 3D rMHD simulation.

Line λ0 δλ (mÅ) ∆λ (Å from λ0)

Mg ii k 2795.528 50.0 (−1.5,+2.86)
Mg ii h 2802.705 50.0 ±0.93
Ca ii K 3933.664 39.5 ±1.4
Ca ii H 3968.469 39.5 ±1.4
Fe i λ6301 6301.501 25.0 ±0.27
Fe i λ6302 6302.493 25.0 ±0.27
Ca ii λ8542 8542.091 50.0 ±1.8

Notes. The profiles have been convolved with a Gaussian PSF of
FWHM of twice the sampling (FWHM = 2 × δλ). We note that the
actual synthesis is performed using a finer wavelength grid in order to
have accurate convolutions with the instrumental profile, but the extra
points do not contribute to the inversion.

and CHROMIS instruments at the Swedish 1-m Solar Telescope
(Scharmer 2006; Scharmer et al. 2008), which have been rather
common since the launch of IRIS in 2014. Table 1 summarizes

the wavelength coverage of each line and the assumed spectral
resolution.

In this test we want to show the usefulness of regularization,
especially to dig more detail out of the model atmosphere. In this
case the magnetic field information is retrieved only from the
λ8542, λ6301, and λ6302 lines. In inversion runs, the depth res-
olution is set by the number of nodes that are being employed in
a given physical parameter. The question however is how many
nodes can we actually constrain during the inversion. Part of the
answer is provided by the exact number of spectral lines that we
observed, their sensitivities to different parts of the atmosphere
and the spectral resolution of the observations. When the num-
ber of nodes is overestimated, the solution of the inversion shows
oscillatory behavior and in extreme cases, the problem fails to
converge at all. That is the reason why we normally must find a
setup that allows for reproducing the observed spectra with the
lowest number of degrees of freedom (de la Cruz Rodríguez &
van Noort 2017).

An example of this effect is shown in Fig. 8, where we illus-
trated a number of inversions experiments that are summarized
in Table 2. These results correspond to a single cycle inversion
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Fig. 8. Inversion of a vertical slice from a 3D rMHD simulation. The panels illustrate from left to right the stratification in optical depth of
temperature, line-of-sight velocity, and the vertical component of the magnetic field. Row a: original physical quantities from the MHD simulation.
Row b: inversion computed without regularization and a small number of nodes. Row c: inversion computed without regularization and a very large
number of nodes. Row d: inversion computed with understimated regularization and a very large number of nodes. Row e: inversion computed
with a very large number of nodes and properly scaled regularization. The exact number of nodes of each experiment is indicated in Table 2.

Table 2. Number of nodes used in our inversion setups.

Experiment T vl.o.s. vturb B‖ |B⊥| Bχ α

(b) 7 4 0 3 2 1 0
(c) 22 22 0 5 3 2 0
(d) 22 22 0 5 3 2 0.1
(e) 22 22 0 5 3 2 100

Notes. The results are shown in Fig. 8.

initialized with the same model atmosphere in all columns. Rows
b and c represent an inversion with a very limited number of
nodes (upper-middle) and a case where the code failed com-
pletely to converge when we used an unrealistically large num-
ber of nodes (row c). In the former case we used 7 nodes in
temperature and 4 nodes in line-of-sight velocity, whereas in the
latter case we used 22 nodes in temperature and line-of-sight
velocity.

Adding regularization helps the convergence rate signif-
icantly and it removes the oscillations significantly. Row d

illustrates what happens when we add regularization but the reg-
ularization term is heavily understimated. The code manages to
converge to a solution that resembles the original model, but
wiggles are present all over the three physical quantities. When
the right amount of regularization is added (see Sect. 3.4.1),
the problem converges to a solution that resembles the origi-
nal model, as shown in row e. In this case we applied penalty
terms to the second derivative of the stratification of tempera-
ture as well as to the first derivative of the line-of-sight veloc-
ity and magnetic field. In principle there is not much difference
among these two types, except that when we applied the latter to
the temperature stratification, the temperature of the transition
region was lower because it did not have a sufficiently relevant
impact in χ2 but it lowered the penalty term in that case. If we
had included transition region lines, we think this effect would
probably not be there, although we are not probing this point
here.

Figure 9 shows the fits at x = 7.9, where the line profiles have
similar shapes to those observed. The fits are good in most lines
and in all cases, except in Stokes V where Mg ii k and Ca ii K
were not included in full-Stokes mode in the inversion. All fits
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Fig. 9. Example fit of the different inversions (row (e), x = 7.9). We only fitted Stokes Q, U, and V in the λ8542, λ6301, and 6302 lines. The fits
for the Ca ii H, Fe i λ6301, and Mg ii h lines are not shown because they are virtually identical to those in their partnering lines. At the considered
noise level, all Q and U signals are below the noise level in all chromospheric lines.

capture the global shape of the line, but the details are better
fitted in the regularized cases. The differences between the blue
and red curves and are harder to judge by looking at individual
pixels, but the values of χ2 are statistically very similar.

The case that we tested in this work has perhaps way too
many degrees of freedom for being a realistic case, but it serves
to show the power of regularization. It also illustrates that the
method does not always converge entirely. For example, in the
photosphere at x ≈ 3.5 Mm the model has an artifact. At that
location the Fe i lines are split due to the Zeeman effect and in
this case the algorithm gets stuck in a local minimum where the
magnetic field is small in the photosphere and the line is broad-
ened by having wiggles in velocity. In our experience, these kind
of artifacts usually appear when the initial guessed model is quite
far from the real solution and there are a very large number of
nodes. A good strategy to avoid these artifacts is to perform a
first cycle with less nodes and then restart the inversion from the
solution of the latter, but with more degrees of freedom. The lat-
ter approach was already introduced by Ruiz Cobo & del Toro
Iniesta (1992) and it speeds up the whole inversion process con-
siderably as the response functions of that first cycle are faster
to compute because the inversion is re-initialized from a closer
solution to the minimum.

4. Conclusions

We have developed a new inversion code that builds upon the
ideas used in the SIR and NICOLE inversions codes. For the
first time STiC allows us to consider lines from different atomic
species while including PRD effects. The latter development
allows the inclusion of lines that sample the upper chromosphere
and that also set stronger physical constraints in the mid and
lower chromosphere.

We implemented ℓ − 2 regularization in our LM algorithm.
The latter is introduced in the approximation to the Hessian
matrix directly, whereas other regularization techniques can be
applied directly by projecting the parameters with a regular-
ization operator (e.g., Asensio Ramos & de la Cruz Rodríguez
2015; Asensio Ramos et al. 2016). In this paper we show that
regularization helps to dig more detail out of the inversion by
allowing the inclusion of more degrees of freedom, while getting

rid of erratic oscillatory behavior. It also improves the conver-
gence rate of the algorithm, even when the regularization amount
is underestimated. The gain is particularly large in problems with
particularly large number of nodes and atoms.

A word of caution seems appropriate though, as inversions
codes always provide a result. It is up to the user not to over
interpret those results and to check the robustness of the inver-
sions. A good way to do so is to have a clear idea of what aspect
of our problem we want to solve with inversions.

In our opinion, future developments should focus on the
elegant solutions shown by Milić & van Noort (2017), where
the response functions are computed analytically instead of by
finite differences, although at the moment their formalism is not
mature enough to include PRD lines.

STiC is publicly available to the community1.
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Appendix A: Approximation of the cubic Bezier

interpolation coefficients with Padé interpolants

Most high order integration schemes can suffer from numerical
precision issues for very small optical-depth values, even when
the computations are performed in double precision. Therefore,
most implementations switch to a third order Taylor expansion
of the integration coefficients and of the exponential when τuc <
0.05 (e.g., Ibgui et al. 2013).

We tested a similar approach with Padé approximants and
the resulting curve preserves five-digit accuracy up to τuc = 0.8
in all integration coefficients and in the exponential. The third
order Taylor expansion can only keep the same accuracy in all
parameters up to τuc = 0.046 in our tests. The latter could be
used to restrict even more the range in which the (expensive)
exponential term needs to be computed. For τuc < 0.8, the Padé
approximation of the cubic Bezier coefficients are written as

e−τuc =
1 − 0.5τuc + 0.1τ2

uc − 8.33333 × 10−3τ3
uc

1 + 0.5τuc + 0.1τ2
uc + 8.33333 × 10−3τ3

uc
,

α =

1
4τuc − 1873

27030τ
2
uc +

9667
1441600τ

3
uc

1 + 7066
13515τuc +

1611
14416τ

2
uc +

2353
227052τ

3
uc

,

β =

1
4τuc +

1
30τ

2
uc +

1
480τ

3
uc

1 + 1
3τuc +

1
24τ

2
uc +

1
504τ

3
uc
,

γ =

1
4τuc − 89

2360τ
2
uc +

619
226560τ

3
uc

1 + 53
118τuc +

911
11328τ

2
uc +

479
79296τ

3
uc

,

ϕ =

1
4τuc − 1

310τ
2
uc +

11
14880τ

3
uc

1 + 12
31τuc +

43
744τ

2
uc +

3
868τ

3
uc
·

It is not always clear that these equations are faster to compute
than the actual interpolation, but at least the approximation of
the exponential can be combined with the real coefficients for
larger values of τuc.

Appendix B: An alternative derivation of the

regularizing LM algorithm

An alternative way to derive the regularizing LM algorithm is to
linearize the dependence of Eq. (9) respect to the model param-
eters. In order to find corrections (∆p) to a set of model param-
eters (p) that decrease our merit function χ2, so that χ2(p) >
χ2(p + ∆p), we perform a linear Taylor expansion of the merit
function around the current value of the parameters. Given that
we are assuming a nonlinear case and therefore we need to iter-
ate the solution of our set of parameters, we can linearize the
expression for χ2(p+∆p), assuming that ∆p is sufficiently small
in each iteration, i.e.,

si(p+ ∆p) = si(p) + jTi ∆p, (B.1)

r j(p+ ∆p) = r j(p) + hT
j ∆p, (B.2)

where ji is the Jacobian (vector of Npar elements) of the synthetic
spectrum si(p, xi) and h j is the Jacobian (vector of Npar elements)
of a single r j(p). In principle, we can replace Eqs. (B.1) and (B.2)
into Eq. (9) as follows:

χ2(p+∆p, x) =
1

Ndat

Ndat
∑

i=1

[

oi − si(p, xi) − jT
i ∆p

σi

]2

+

Npen
∑

j=1

α j

[

r j(p)+hT
∆p

]2

.

(B.3)

We can rewrite Eq. (B.3) in matrix form, which simplifies enor-
mously the algebraic manipulations and the notation. In that
case, we define J as the full Jacobian matrix for all data points
with dimensions (Npar,Ndat) and H is a matrix with dimensions
(Npar,Npen). Each column of H contains the derivatives of one
individual penalty function relative to all parameters in p. The
penalty functions are contained in the components of vector
r = (r1, r2, . . . , rNpen );

χ2 =

[

o− s−JT
∆p

]2
+

[

r+HT
∆p

]2
=

[

o− s−JT
∆p

]T [

o− s−JT
∆p

]

+

[

r+HT
∆p

]T [

r+HT
∆p

]

.

(B.4)

We implicitly hid the division by the noise in all rele-
vant matrices, and we included the α factors in the vec-
tor r. If we equal to zero the derivative of Eq. (B.4) with
respect to ∆p and after performing some basic matrix alge-
bra, we can find the corrections ∆p that minimize our merit
function.

Defining the modified approximate Hessian matrix,

A = J · JT +H ·HT , (B.5)

then the corrections to our current estimate of the parameter are
given by the following linear system of equations; these correc-
tions include the effect of our regularizing functions r(p) and
their derivatives as follows:

A · ∆p = J · (o− s) −
[

H · r
]

. (B.6)

Equation (B.6) is very similar to the linear system usually
considered in a standard LM algorithm. We simply mod-
ified the Hessian matrix and added an extra term to the
residue on the right-hand side to account for the regu-
larization terms. By definition, the linear approximation of
the Hessian is automatically recovered, and the only limita-
tion compared to the full algorithm in Sect. 3.4 is that the
penalty terms must have a linear dependence with the model
parameters.
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