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While its classical model is relatively simple, friction actually depends on both the interface
properties of interacting surfaces and on the dynamics of the system containing them. At a
microscopic level, the true contact area changes as the surfaces move relative to each other. Thus at
a macroscopic level, total friction and normal forces are time-dependent phenomena. This paper
introduces a more detailed friction model, one that explicitly considers deformation of and adhesion
between surface asperities. Using probabilistic surface models for two nominally flat surfaces, the
stick–slip model sums adhesive and deformative forces over all asperities. Two features distinguish
this approach from more traditional analyses:~i! Roughness distributions of the two interacting
surfaces are considered to be independent,~ii ! Intersurface contacts occur at both asperity peaks, as
in previous models, and on their slopes. Slope contacts, in particular, are important because these
oblique interactions produce motion normal to the plane of sliding. Building the model begins by
analyzing local friction forces as composites of resistance to elastic deformation and shear resistance
arising from adhesion between asperity surfaces. By extending the expressions obtained for normal
and tangential friction forces over the macroscopic surfaces, the model then describes the stick–slip
behavior frequently observed in dynamic systems and permits simulating a rigid body on a moving
platform. Numerical results for several surface and system parameters illustrate both time-dependent
and time-averaged frictional forces. These analyses also show that, although total averaged friction
remains constant with respect to sliding velocity for the cases considered, the relatively small
deformation component exhibits resonancelike behavior at certain speeds. Stick–slip occurs only
within a narrow range around these critical speeds of a system. External damping can prevent
stick–slip motion, and both deformative and adhesive frictional forces must be present for it to
occur at all. © 1999 Acoustical Society of America.@S0001-4966~99!03701-7#

PACS numbers: 43.40.Ga, 43.40.Dx@CBB#
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INTRODUCTION

In modeling friction-induced vibration and noise pro
lems, friction force is often treated phenomenologically, a
function of relative velocity between surfaces. These fu
tional relationships mostly originate from measured values
coefficient of friction on test devices. Friction values o
tained from such measurements are normally averaged
time and surface areas on which they are measured.

Traditionally, functional relationships between frictio
force and velocity are confined only to the direction of sl
ing, neglecting any contribution of normal components
contact forces during sliding. In reality, sliding betwee
even nominally flat, surfaces also develops a time-depen
normal force component and, therefore, a response in a
rection normal to sliding. The forces developed in the norm
direction, combined with the continuous change of true c
tact area during sliding, make friction force to depend a
on system dynamics. Such interaction between friction
the response of the system within which it exists can not
modeled through the traditional use of coefficient of frictio

Friction and normal forces develop at the true cont
areas between surfaces. Between two nominally flat surfa
true contact takes place among the asperities. Each asp
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adheres and deforms as it slides over another. The direc
and magnitude of the deformation and adhesion forces
each contact change during sliding. Thus the topograph
the surfaces and the dynamic response of the system tog
determine the distribution of the contact positions and dir
tion of the forces at each contact. Modeling of friction with
a dynamic system thus involves solving coupled equati
that describe the system dynamic response and the dist
tion of contact forces during sliding. Such a combinati
relates microscopic-scale contact processes to
macroscopic-scale system response.

Many physical and chemical processes contribute
friction. They take place primarily at or near the true conta
areas on the sliding surfaces. The vector sum of resis
forces at the contact areas constitutes the friction force.
though a detailed description of all the processes that c
tribute to friction is beyond the scope of this paper and
current state of the art, it is possible to describe some c
ponents of friction and relate them to dynamic behavior
the system in which they exist. We present a model t
includes two such dynamic processes that contribute to f
tion: elastic deformation of asperities and adhesion betw
them.

Many of the previous models of contact between nom
1945(1)/194/12/$15.00 © 1999 Acoustical Society of America
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nally flat surfaces utilize the assumption that contact betw
two rough surfaces can be described by contact betwe
rough surface and a smooth one.1–6 This assumption dictate
that contacts may occur only at surface peaks with con
areas parallel to the mean plane of the surface. In rea
however, contacts between rough surfaces also occur
liquely. In particular, for surfaces with uncorrelated surfa
asperity distributions, the probability for contacts to occur
asperity peaks is very small.

Oblique contacts couple sliding motion to normal m
tion. The slope at an oblique contact partitions the con
forces to their components in the direction of sliding a
normal to it. As the contact position between two asperit
moves, its slope also changes, altering the direction of
contact forces and their projections onto friction and norm
forces. Thus as a result of oblique contacts between as
ties, sliding motion between two surfaces can also gene
oscillations in the normal direction.

The kinematic relationship between friction,F t , and
normal,F n , forces and the contact area projections result
from oblique contacts was previously developed by the
thors for generalized contact forces in two dimensions,7

F t~ t !5Ft1Rt5
At

An
F n1S 11

At
2

An
2DRt , ~1!

F n~ t !5Fn1Rn . ~2!

Sums of the tangential components of all local deform
tion forces,Ft , and adhesion forces,Rt , over the interface
constitute the total friction force. Similarly, the correspon
ing normal components,Fn and Rn , make up the norma
contact force at the interface. The sign convention regard
their directions is shown in Fig. 1.

The model in this paper, based on Eq.~1!, relates the
time-dependent contact area projections,An(t), At(t), to the
motion of the dynamic system through a set of differen
equations~Sec. I!. The model also expresses contact forc
in Eq. ~1!, F due to deformation andR due to adhesion, in
terms of contact area projections~Sec. II!. Simultaneous so-

FIG. 1. Cross section of two rough surfaces in contact.F andR represent
sums of the local deformation and adhesion forces, respectively. Subs
n,t denote normal and tangential components. Local contact forcesf and r
are decomposed with respect to local coordinates.
195 J. Acoust. Soc. Am., Vol. 105, No. 1, January 1999
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lution of differential equations for the contact areas and
the motion of the bodies then yield both frictionF t and
normal F n forces as well as the response of the system
friction ~Sec. III!.

I. DYNAMICS OF CONTACT AREAS

True contact areas change as a result of both rela
motion of surfaces and deformation of asperities during t
motion. For example, time-rate of deformation,ḋ, of mate-
rial point and area,a, at each contact depend on the relati
motion of two surfaces through a kinematic relationship,7

2ḣan
i 1 ṡat

i5 ḋ t
iat

i1 ḋn
i an

i , i 51,...,k,
~3!

2ḣan
j 2 ṡat

j5 ḋ t
jat

j1 ḋn
j an

j , j 51,...,l ,

where indicesi andj indicate resisting and assisting contac
respectively, and subscriptst and n refer to components in
tangential and normal directions to the mean plane.~The
forces that result from elastic deformation of asperities eit
assist or resist the relative tangential motion, depending
the slope of the contact area relative to the direction of m
tion. Resisting contactshave a tangential component that o
poses relative motion.Assisting contactspossess tangentia
components in the same direction as the relative motio7!
The relative velocity of the surfaces has componentsḣ in
normal direction andṡ in tangential direction, as indicated i
Fig. 2. Normal contactand tangential contact areas, an and
at , refer to local contact area projections that are parallel
perpendicular to the mean planes of the surfaces, res
tively, as illustrated in Fig. 1.

The total numbers of resisting and assisting contactk
and l, in Eqs.~3!, can be approximated using the results
the Greenwood and Williamson~1967! model for random
surfaces,

k5gAn
r , l 5gAn

a , ~4!

whereg is a constant and superscripts~r,a! denote resisting
and assisting asperities.

Deformation velocitiesḋn and ḋ t in Eq. ~3! can also be
expressed in terms of contact areas through contact defo

pts

FIG. 2. Cross section of a typical asperity contact with projections of
formation and contact areas. Solid lines represent deformed surfaces
dotted lines represent undeformed surfaces.
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tion models. In elastic contact problems involving rough s
faces, Hertz contact theory is used commonly with the
sumption that asperities are spherical and contact is elas9

the contact area,a, between two spherical objects of radiu
r1 andr2 , is expressed as

a5prd, ~5!

where 1/r51/r111/r2 and d is the maximum value of de
formation.

Differentiating Eq.~5! with respect to time and subst
tuting its normal and tangential components into Eqs.~3!
yields a direct relationship between local contact areas
relative velocities. Summing the resulting equations over
total numbers~k andl! of resisting and assisting local conta
areas, respectively, leads to expressions describing the
namic relationship between the total contact areas and
normal and sliding velocities,

2ḣAn
r 1 ṡAt

r>
1

kpr
~At

rȦt
r1An

r Ȧn
r !,

~6!

2ḣAn
a2 ṡAt

a>
1

lpr
~At

aȦt
a1An

aȦn
a!,

whereA is the total contact area summed over all asperi
on one of the surfacesS1 . ~The combined radiusr now
represents the combination of the average asperity radi
surfaceS1 :r15@1/(k1 l )#( i 51

k1 l r1
i .!

Further simplification of Eq.~6! may be made by ex
pressingAt in terms ofAn through space-averaged~but time-
dependent! slope of contact areas. Such a relationship
tween the sums of the normal and tangential projections
contact areas may be obtained by approximating deforma
velocity ḋ at each contact by a uniform velocity distributio
This approximation, also used in the development of Eq.~3!,
implies that the local contact areas are plane surfaces an
contact slopeZi85]Z/]x1

i (i5 i , j ) is constant throughout a
given ~local! contact surface. With these assumptions
tangential components of the contact areas can be expre
in terms of the normal components,

at
i5Zi8an

i , at
j52Zj8an

j , ~7!

where the slopes of contact areas are with respect to
direction of motion.

Summing expressions in Eq.~7! over the interface gives
the following relationships between summations of tang
tial and normal contact areas:

At
r5(

i 51

k

at
i>S 1

k (
i 51

k

Z1i8 D S (
i 51

k

an
i D 5^Z18 &An

r ,

~8!

At
a5(

j 51

l

at
j>2S 1

l (
j 51

l

Z1 j8 D S (
j 51

l

an
j D 52^Z28 &An

a .

The average resisting and assisting contact slopes,^Z18 & and
^Z28 &, in Eqs.~8! are the expected values of the positive a
negative contact slopes and they can be calculated for g
probability densities of the asperity slopes.

Finally, substituting the approximate relationships giv
by Eqs. ~4! into Eqs. ~6! yields two ordinary differential
196 J. Acoust. Soc. Am., Vol. 105, No. 1, January 1999
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equations for the total resisting and assisting normal con
areas in terms of relative velocities between the surfaces

a~^Z8&211!Ȧn
r 52~a^Z8&^Ż8&1ḣ2^Z8&ṡ!An

r ,
~9!

a~^Z8&211!Ȧn
a52~a^Z8&^Ż8&1ḣ1^Z8&ṡ!An

a ,

where a51/gpr and ^Z8&5^Z18 &52^Z28 & for a random
distribution of surface roughness.

The solutions of Eq.~9! for resisting and assisting con
tacts are combined to give the projections of total cont
area required for the friction force in Eq.~1!,7

An5An
r 1An

a5(
i 51

k

an
i 1(

j 51

l

an
j . ~10!

The tangential component of the total contact area,At , on
the other hand, is defined as the difference between resis
and assisting contacts.~Considering only the resisting con
tacts overestimates the friction force because the presen
assisting contacts offsets some of the resistance.!

At
r2At

a5(
i 51

k

at
i2(

j 51

l

at
j . ~11!

Equations~8! and ~11! lead to an expression that relates t
tangential componentAt to the normal component obtaine
from Eqs.~9!,

At5^Z8&~An
r 2An

a!. ~12!

Although the expression in this section are derived
surfaceS1 , similar ones can be written forS2 .

In addition toAt from Eq.~12! andAn from the solution
of Eqs. ~9!, calculation of friction force in Eq.~1! requires
expressions for the contact force componentsFn , Rn , and
Rt . In the next section expressions are developed for de
mation and adhesion forces at each contact and related t
sum of true contact areasA.

II. CONTACT AND FRICTION FORCES

Because of the cause-and-effect relationship betw
elastic deformation forces and contact areas, deforma
force at each asperity contact can be expressed in term
the resulting contact area. Similarly, because adhesion fo
depend independently on both the normal pressure, or
deformation force, and the contact area, they also can
expressed in terms of contact areas.

A. Deformation forces

In cases such as metals, where the local tangential a
sive force r is typically smaller than the normal force f by
order of magnitude or more,8 its contribution to elastic de-
formation of an asperity may be neglected to simplify t
calculations. Thus only the local normal contact forces
cause elastic deformation and they are obtained using H
contact theory with the assumption that asperity tips
spherical.1,3,9

The physics of the contact problem treated here a
requires consideration of energy dissipation from the con
area during deformation. Because use of complex elasti
modulus in nonlinear transient problems leads to physic
196M. T. Bengisu and A. Akay: Stick–slip oscillations
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unrealizable results,10 energy dissipation during elastic de
formation is modeled here as proportional to the deforma
rate of an asperity. Such a consideration is equivalent to
loss of deformation energy by means of propagation of e
tic waves into the bulk of the contacting bodies, i.e., rad
tion loss away from contact areas. Hence, the sum of
Hertz contact force and a dissipation force that depends
the rate of deformation constitutes the elastic deforma
force

f5K a3/21hė. ~13!

The constantK is defined as

K 5
4E

3rp3/2,

whereh is the loss factor of the material andr is composite
asperity radius as defined before.E is the composite modulu
of elasticity related to the moduli of the two materials a
their Poisson’s ratiosn1 andn2 ,

1

E
5

12n1
2

E1
1

12n2
2

E2
. ~14!

Recalling that the contact surfaces are assumed to be pl
such thata25at

21an
2 and at /an5Z8, the rate of deforma-

tion of a material at a contact surface can be expressed

ė5
1

2pr

d

dt
~at

21an
2!5

1

pr
ȧan~11Z82!1/2 ~15!

and

a3/25aan
1/2~11Z82!1/4. ~16!

After substituting Eqs.~15! and ~16! into Eq. ~13!, the sum
of the normal components of the deformation contact for
at the interface can be expressed as

Fn5
K

g1/2 AnS 11
1

4
^Z82&1¯ D

1
h

pr
ȦnS 11

1

2
^Z82&1¯ D , ~17!

where

^Z82&5
1

k (
i

k

Zi8
25

1

l (
j

l

Zj8
2

is the mean-square value of either the positive or the ne
tive contact slopes. For asperity profiles such thatat /an

,1(Z82!1), the series of even moments in Eq.~17! can be
truncated after the first term.

B. Adhesive contact forces

The local adhesive forces are considered here to be s
lar to the rheological shear resistance of the third phase
forms between the contact surfaces of two materials. Foll
ing Kragelskyet al.,8 the local adhesive contact force, r,
expressed with a binomial expression, as a combination
two shear terms

r5ta1bf, ~18!
197 J. Acoust. Soc. Am., Vol. 105, No. 1, January 1999
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where the constantst andb are determined empirically.~The
signs oft andb depend on the relative velocity at the inte
face and are negative for positive relative velocity.! The ad-
hesion forcer in Eq. ~18! is in the tangential direction to the
local contact surface. Its first part is independent of norm
contact force, whereas the second part is proportional to
contact pressure and contact area: f5*qda.

By separating Eq.~18! into its normal and tangentia
components with respect to the mean planes and summ
over all resisting and assisting contact areas, the normal
tangential components of the total adhesive contact force
be expressed in terms of sums of contact area projection

Rn52tAt2bFt , Rt5tAn1bFn . ~19!

Rn andRt are uncoupled because of the orthogonality of
local elastic deformation and adhesion forces. In ca
where, for example, the influence of adhesive forces on e
tic deformation is not negligible,Rn andRt will be coupled.
The negative signs in the first of Eqs.~19! are a consequenc
of the convention of directions shown in Fig. 1.

C. Friction and normal force

Friction force, defined here as the force that resists s
ing motion, is obtained by summing the tangential forces
the interface. Similarly, the normal force is the sum of all t
forces in a direction normal to the interface. Expressions
friction force and normal force are obtained by substituti
Eqs. ~19! into Eqs.~1! and ~2!. The results explicitly show
the relationships of the friction and normal forces to def
mation and adhesive forces and to the normal and tange
projections of the contact areas,

F t~ t !5S At

An
1b DFn1tAn ,

~20!

F n~ t !5S 12b
At

An
DFn2tAt ,

where,Fn , sum of the normal components of deformatio
forces, is given by Eq.~17!. Thus Eqs.~20!, together with
Eq. ~17!, define the friction force, and the resulting norm
force, in terms of contact areas and even-movements of
contact slope distribution.

Fn , An , andAt are based on statistical distributions
the slopes of asperities as described, earlier;t and b are
experimentally determined constants. BothF t(t) andF n(t)
are time dependent because of the changes inFn , An , and
At due to relative motion. Thus true friction force is obtain
in conjunction with the dynamic response of the syst
within which it exists, as shown in the next section.

III. FRICTION FORCE AND SYSTEM RESPONSE

An example of the interaction of friction force with sys
tem dynamics is demonstrated with a simple, idealized
namic system: a rigid block~with deformable surface asper
ties! connected to a linear spring and a viscous damp
element, is subject to frictional force at its interface with
flat platform that moves at a constant speed, as depicte
Fig. 3. The rigid block is free to move both in normal an
197M. T. Bengisu and A. Akay: Stick–slip oscillations
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tangential directions with respect to the platform but witho
rotation. Both the block and the platform are assumed
have nominally flat surfaces, each with a random aspe
height distribution statistically independent of the other.

The equations of motion of the dynamic system are w
ten in terms of the coordinatesx andy which also describe its
displacements in tangential and normal directions with
spect to the moving platform,

Mẍ1Cẋ1Kx52F t ,
~21!

Mÿ52Mg1F n .

ParametersM, C, andK describe the mass, viscous dampin
and the stiffness, respectively. The differential Eqs.~9! for
the contact areas are rewritten by substituting forḣ5 ẏ and
ṡ5 ẋ2v, where,v is the speed of the platform,

a~^Z8&211!Ȧn
r 52$a^Z8&^Ż8&1 ẏ2^Z8&~ ẋ2v !%An

r ,
~22!

a~^Z8&211!Ȧn
a52$a^Z8&^Ż8&1 ẏ1^Z8&~ ẋ2v !%An

a .

Numerical solutions of Eqs.~21! and~22! are obtained using
expressions for friction and normal forces in Eq.~20! and for
the contact areas in Eqs.~10! and ~12!. The mean value of
the contact slopes,̂Z8&, and its relation to separation,h,
between the surfaces are obtained from the descriptio
surface roughnesses for the rigid body and the platform
shown in the next section.

A. Surface model

Calculating contact areas in Eq.~22!, and normal contac
force Fn in Eq. ~17!, requires mean value of contact slop
and their even moments for each surface. Randomly vary
uncorrelated continuous functionsZ18 and Z28 , each with a
Gaussian distribution, represent the slopes of asperities
each surface as a function of their separation,h. Because the
subset of slopes at the contact areas is also Gaussian
mean value of the positive contact slopes can be found u
Z18 andZ28 . Then, for slopes ranging between zero and so
maximum contact slope,Zmax8 ,

^Z8&5
1

sA2p
E

0

Zmax8
Z8e2Z82/2s2

dZ8, ~23!

wheres is the standard deviation. The even moments of
slopes are

^Z8m&5
1

sA2p
E

0

Zmax8
Z8me2Z82/2s2

dZ8 m52,4,...,

~24!

FIG. 3. Block on a moving platform. Block is free to move inx and y
directions.
198 J. Acoust. Soc. Am., Vol. 105, No. 1, January 1999
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where the value of the upper limitZmax8 changes with inter-
ference between the surfaces. These expressions are the
for both surfaces, but with different values ofZmax8 for each.
The integral in Eq.~23! can be evaluated in closed form t
give

^Z8&5
s

A2p
~12e2Zmax82 /2s2

!. ~25!

The second and higher moments about origin have neglig
effects on the normal force.

The mean value of contact slopes,^Z8&, relates to sepa-
ration h through the maximum contact slopeZmax8 in expres-
sion ~25! which varies with separation during sliding. Whe
separation is large, contacts occur closer to asperity tips
the maximum value of separation, contact area is paralle
the mean plane. For smaller values of separation, cont
are oblique and contact slopes are larger. Accordingly,
mean value of the contact slopes is also a function of se
ration between the surfaces.

In cases where the relationship between the maxim
contact slope and separation can be expressed explicitly,
for spherically shaped asperities, it is possible to evalu
^Z8& in Eq. ~25!. For spherical asperities, the maximum co
tact slope occurs on the tallest asperities of the surfaces.
asperities located farthest from the mean planes on each
face define the maximum value of the separation,hmax ~or
the minimum value of geometric approach! between the two
surfaces. With these considerations, a relationship can be
fined for separationh in terms of average asperity size o
each surface. Using the geometric relationship for suc
contact condition as illustrated in Fig. 4, separation betw
surfaces is expressed as

h5Z1 max2r11~r11r2!cosf1Z2 max2r2 , ~26!

wherer1 andr2 represent the average asperity radii for s
facesS1 andS2 , respectively,Z1 maxandZ2 maxare the maxi-
mum values of the functions describing the surface profi
andf is the contact slope as defined in Fig. 4. At the ma
mum value ofh, by definition, the corresponding maximum
contact slope is zero,f50.

Substituting cosf>12f2 /2 in Eq. ~26! yields f2

5Dh/%, where the value of%5(r11r2)/2 is the average of
the mean asperity radius for each surface. The differe
between the maximum and instantaneous values of sep
tion is

FIG. 4. Schematic representation of the highest asperities in contact an
relationship of the maximum contact slope to separation.
198M. T. Bengisu and A. Akay: Stick–slip oscillations
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Dh~ t !5Z1 max1Z2 max2h5hmax2h~ t !.

For small values off,f>tanf5Zmax8 . Thus the maximum
contact slope can be expressed in terms of separation,

Zmax8 >ADh

%
. ~27!

By replacingZmax8 in Eq. ~25! with Eq. ~27!, the expected
value ^Z8& of contact slopes can be expressed in terms
separation of the surfaces.

The model is now complete and can be solved num
cally to investigate the interaction of friction and the d
namic response of the system that contains it.

B. Computations

Dynamic response of the system and the friction fo
that excites it mutually depend on each other through con
area changes as shown in Eqs.~21! and~22!. In the following
sections, equations describing the system response an
corresponding friction and normal forces are solved for
cases listed in Table I. The values given in Table I are
steel–copper pairs for which empirical values of the para
eterst and b are available.8 Surface properties used in th
examples reported below come from published surface da1

asperity tip radii have a Gaussian distribution with a me
radius of 60mm and the maximum asperity heights rea
3–4 mm, typical for ground mild steel.1 Maximum value of
average slope is determined by settingZmax8 in Eq. ~27! to 3s.

By numerically integrating the expressions in~21! and
~22!, first, the time-averaged friction force is examined a
function of platform speed. Then, the time-dependent frict
force is analyzed along with the corresponding respons
the dynamic system. In both cases, friction force is norm
ized with respect to normal contact force.

Because of the asymptotic nature of^Z8& in Eq. ~25!, to
circumvent computational difficulties, in all the comput
tions reported here contact slope is taken to be zero w
relative approach reduces to less than 0.001mm.

TABLE I. Numerical values of the parameters used in calculations.
tangential damping value ofC52 kg/s is used during dynamic simulation
whereasC5200 kg/s is used for averages. The friction pair chosen for
cases is a steel–copper pair having a composite elasticity modulus of 77
MPa.

Case
s

~rad!
~1/2p! AK/M

~Hz!
t

~MPa! b

1 0.3 10 0 0
2 0.2 10 0 0
3 0.1 10 0 0
4 0.1 31.6 0 0
5 0.1 100 0 0
6 0.1 10 9.8 0.075
7 0.1 31.9 9.8 0.075
8 0.1 100 9.8 0.075

M
~kg!

C
~kg/s!

R
~mm!

h
~kg/m2 s!

10 2–200 0.06 200
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C. Averaged normalized friction force

Time averaging the ratio of the instantaneous values
friction and normal forces givesm̄, the time-averaged nor
malized friction force,

m̄5 lim
T→`

1

T E
0

T F t

F n
dt.

Because adhesion depends on the deformation force,m̄ is a
complex combination of the similarly time-averaged norm
ized deformation (m̄D) and adhesion (m̄A) components.m̄
reduces tom̄D when constantst andb are zero.~Use of the
term coefficient of friction is avoided because of its diver
connotations and different definitions in the literature.!

An examination of the averaged normalized frictio
force,m̄, in Fig. 5 shows that, for cases 3 and 6 in Table I
negligibly small part ofm̄ results from elastic deformation
leaving adhesion as the dominant source of friction. This
not an unexpected result since the effects of resisting
assisting contacts largely offset each other.

Numerical results show thatm̄ with respect to platform
speed is nearly constant, whereasm̄D shows significant
variation as a function of platform speed. In particular,
some platform speeds, the deformation componentm̄D shows
resonancelike peaks. The platform speeds, at which reso
celike peaks occur, increase with tangential natural f
quency, f 0 , of the dynamic system. This dependence is
lustrated in Fig. 6 with plots ofm̄D corresponding tof 0

510, 3.16, and 100 Hz of the system~cases 3, 4, and 5 in
Table I!; the speeds corresponding to the peak values ofm̄D

are tabulated in Table II.
Asperity slope distributions also influence the velociti

at which the peak values ofm̄D occur. For example, for
smoother surfaces which have higher standard deviation
indicated by Eq.~25!, peak values ofm̄D occur at higher

e

ll
00

FIG. 5. Change ofm̄ and m̄D with platform velocity.
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platform velocities; Fig. 7. The parameters used in Fig. 7 a
the results tabulated in Table III correspond to cases 1–
Table I.

The composite modulus of elasticity of the materia
does not have a detectable influence on the variation ofm̄D

or on the resonancelike peaks at lower platform spee
However, it has some influence at higher platform speed

D. Instantaneous friction and stick–slip oscillations

Stick–slip oscillations of the system occur at platfor
speeds within a narrow band of the peak values ofm̄D shown
in Fig. 6. Oscillations at platform speeds corresponding
different peaks have significantly different spectra. Osci
tions at platform speeds outside of these bands are susta
but without stick–slip.

Phase planes and spectra of the motion of the block
the corresponding instantaneous friction force, given in F
8–14, help explain stick–slip oscillations and their relatio
ship with the resonancelike peaks ofm̄D . The instantaneous
normalized friction force, plotted in Figs. 8–14, is defined
m(t)5F t(t)/F n(t).

Figure 8 demonstrates an example~case 6;s50.1! for
which the platform speed~2.7 mm/s! is away from the speed
bands that lead to peaks. By comparison with the co
sponding case given in Fig. 9, Fig. 8 shows a smaller am

FIG. 6. Variation ofm̄D with platform velocity for various tangential natura
frequencies of the dynamical system.

TABLE II. Some platform speeds where averaged normalized deforma
friction forces reach their peak values for the surface withs50.1.

f 0

~Hz!
v1

~mm/s!
v2

~mm/s!
v3

~mm/s!
v4

~mm/s!
v5

~mm/s!
v6

~mm/s!

10 3.6 1.8 1.2 ¯ ¯ ¯

31.6 12.0 6.0 4.0 3.0 2.4 2.0
100 38.75 19.15 12.8 9.6 7.6 6.4
200 J. Acoust. Soc. Am., Vol. 105, No. 1, January 1999
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tude of oscillations that are not repetitive~transient parts of
the solutions are excluded in all the results!. Also, the tan-
gential velocity in its phase plane never reaches the velo
of the platform and, thus, does not achieve ‘‘stick’’ cond
tion; the relative velocity is always larger than zero. In t
same figure, friction force varies through many cycles
oscillations of the dynamic system and exhibits multiple v
ues for a given relative tangential velocity. The spectru
corresponding to the response velocity of the block exhib
several harmonics and side bands, indicative of nonline
ties.

At platform speeds, 3.6, 1.8, and 1.2 mm/s, correspo
ing to the peak values ofm̄D shown in Fig. 6, response of th
same system as in Fig. 8~case 6;s50.1! exhibits higher
amplitudes that are periodic. At these speeds both the fric
force and response of the mass show that the oscill
reaches the platform speed, achieving the condition
‘‘stick;’’ Figs. 9–11. In terms of phase-plane diagrams, sy
tem response shows a doubling and tripling of its period
the platform speed is decreased from 3.6 mm/s to the lo
speeds 1.8 and 1.2 mm/s, respectively. The correspon
changes also manifest themselves in the spectrum for e
case as additional harmonics and one-half subharmonic
all cases, friction-relative velocity trajectory follows a diffe

n

FIG. 7. Variation ofm̄D with platform velocity for different standard devia
tion of surface roughness.

TABLE III. Platform speeds where averaged normalized deformation for
reach their peak values for the dynamic system with 10 Hz tangential na
frequency.

s
v1

~mm/s!
v2

~mm/s!
v3

~mm/s!
v4

~mm/s!

0.1 3.6 1.8 1.2 ¯

0.2 7.3 3.65 2.43 1.83
0.3 11.0 5.5 3.66 2.75
200M. T. Bengisu and A. Akay: Stick–slip oscillations
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ent path when it moves in the direction of the platform th
against it.

A similar, but not easily observed, result relates to
total period of oscillation of the block as shown in the pha
plane plots~and the corresponding frequency spectra!. For
example, in Fig. 9~top! the phase plane appears to have
single path where, in reality, it consists of two paths that
very close to each other. Evidence of this is seen in
middle figure where friction force follows two separa
paths. This slight variation every other cycle is seen in
tangential velocity spectrum of the mass as a half-freque
subharmonic of the fundamental frequency correspondin
the single loop observed in the phase plot in Fig. 9.

The apparent self-intersection of the trajectories in
phase planes in Figs. 9 through 14 results from the projec
of the multidimensional phase-space trajectory onto the
gential velocity-displacement plane of the block; the act
six-dimensional phase-space trajectory of the system d
not self-intersect.

The stick–slip behavior of the dynamic system p
sented here is very much reminiscent of the response
friction-excited system even when the friction force-veloc
relationship is predefined.11,12

FIG. 8. Response of the dynamic system with a tangential natural frequ
of f 0510 Hz displays sustained oscillations at a platform speed of
mm/s.
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IV. STICK–SLIP OSCILLATIONS: DISCUSSION

A. Periodicity and nonlinearity

The assumption that the spatial distribution of cont
slopes at a given time is a stationary random function imp
that the average contact slope,^Z8&, is independent of the
tangential position of the mass with respect to the platfo
On the other hand, the average contact slope,^Z8&, depends
on the the separation between the mean planes, as desc
in Eqs.~25! and~27!. As a result, the average contact slop
^Z8&, remains independent with respect to tangential posit
of the mass but changes periodically with its normal motio
Thus the influence of asperities on the motion of the sys
is nearly periodic, albeit nonlinear.

The periodic nature of the average contact slope^Z8&
leads to nearly periodic solutions of the differential Eq.~9!
for An

r and An
a . Hence, in accordance with Eqs.~10!, ~12!,

and ~20!, the resulting net normal and tangential forces a
also nearly periodic, causing nearly periodic motion of t
block both in normal and tangential directions. Both the n
mal and tangential components of the contact force exh
the same fundamental frequency even though they may h
different overall spectra.

cy
7
FIG. 9. Response of the dynamic system with a tangential natural frequ
of f 0510 Hz displays stick–slip oscillations at a platform speed of 3
mm/s.
201M. T. Bengisu and A. Akay: Stick–slip oscillations
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In cases of nonstationary contact slope distributio
however, average contact slope changes from one cyc
the next as the block and the platform slide against e
other.

B. Critical speeds and fundamental frequency

Stick–slip oscillations, and the corresponding peak v
ues ofm̄D , occur when the tangential natural frequency,f 0 ,
of the system coincides with the fundamental frequency,f f ,
of the friction force or one of its harmonics. The fundamen
frequency of the friction force approximately relates to t
platform speed as

f f>~v/l!, ~28!

wherel is the wavelength corresponding to the relative ta
gential displacement of the block during a cycle of its co
bined normal and tangential oscillation. The platform spe
at which integer multiples off f equal f 0 , i.e., n f f5 f 0 , are
referred to as the critical speeds,v5vcn

.
The fundamental critical speed, vc1

, is the highest plat-
form speed at which stick–slip occurs and the fundame
frequency of the friction force equals the natural frequen

FIG. 10. Response of the dynamic system with a tangential natural
quency off 0510 Hz displays stick–slip oscillations at a platform speed
1.8 mm/s.
202 J. Acoust. Soc. Am., Vol. 105, No. 1, January 1999
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f f5 f 0 . At a lower critical speed, roughly described
vc1

/n, the harmonic multiple off f becomes equal to the
natural frequency;n f f5 f 0 ; Figs. 9–14.

The wavelengthl represents the average distance b
tween resisting and assisting contacts. Its value can be
tained using the average slope of contacts,^Z8&, and the
normal displacement, or approachDh, during the oscilla-
tions,

l52E
0

Dhmax dh

^Z8&
, ~29!

where^Z8& is given by Eqs.~25! and ~27! andDhmax is the
maximum relative approach during the motion of the bloc
Both Dhmax and^Z8& depend on surface roughness as well
system response through the solutions to differential eq
tions Eqs.~21! and ~22!.

Values ofl, plotted in Fig. 15 as a function of maximum
relative approach, can be used to predictvcn

. For example,
for s50.1, a relative approach of 0.3mm ~the maximum
relative approach considered in this paper!, indicates a wave-
length of l/250.175 mm. For a system with a natural ta

e-
f

FIG. 11. Response of the dynamic system with a tangential natural
quency off 0510 Hz displays stick–slip oscillations at a platform speed
1.2 mm/s.
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gential frequency of 10 Hz, Eq.~28! indicates the fundamen
tal critical speed to be 3.5 mm/s. The corresponding re
from numerical simulations is 3.6 mm/s.

At v5vc1
, oscillations exhibit a single loop. At th

lower values ofvcn
, integer multiples of the fundamenta

period of oscillations appear, as described by the increa
number of loops in the phase planes and corresponding
harmonics in the spectra. For example, the period is dou
at vc2

, tripled at vc3
, and so on. Although only a limited

number of such platform speeds are revealed in these re
~Tables II and III!, there may be an infinite number of the
for each combination of surface roughness and tange
natural frequency.

In accordance with Eq.~28!, critical speeds at which
stick–slip occurs~and m̄D reaches its peak values! shift to
higher values with increasing tangential natural frequency
the dynamic system. However, their values decrease with
increase in surface roughness, i.e., increased expected
of slopes. Further, values of the critical speeds are not
fected by the changes in the tangential damping of the
namic system or by the adhesive forces at the interface.

External damping inhibits stick–slip response of the s
tem. Suppression of stick–slip by a small amount of dam

FIG. 12. Response of the dynamic system with a tangential natural
quency off 0531.6 Hz displays stick–slip oscillations at a platform speed
12 mm/s.
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ing is more acute for systems with higher tangential natu
frequency or lower mean values of contact slopes.

Development of stick–slip also requires presence
both the deformation and adhesion forces. Without adhes
direction of the deformation component of time-depend
friction force fluctuates, crossing zero-velocity state witho
reaching the condition of stick. Adhesion assures existe
of the sticking condition when the relative velocity reach
zero, for at that moment the adhesive force changes direc
and maintains, even for a short moment, zero relative ve
ity. In the absence of adhesion, deformation force can sw
direction without sticking. On the other hand, adhesio
without the deformation forces, causes only static displa
ment of the block, without oscillations.

C. Stick–Slip bands

Numerical results indicate that around each critic
speed there is a band of platform speeds within which stic
slip motion occurs, provided the external damping is su
ciently small. Outside of thesestick–slip bands, stick–slip
motion may not develop, regardless of the amount of dam
ing. The widths of the bands differ at each critical spee
they appear to be the narrowest at the highest critical spe

e-
f
FIG. 13. Response of the dynamic system with a tangential natural
quency off 0531.6 Hz displays stick–slip oscillations at a platform speed
6 mm/s.
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and become wider at lower speeds. At very low speeds, h
ever, the bandwidths increase again. The apparent de
dence of stick–slip bandwidth on the critical speed could
be generalized with the limited number of results obtain
here.

In some cases, stick–slip band is so narrow that exte
damping must be nearly zero for stick–slip motion to ex
In such cases, stick–slip response may not be sustained
develops intermittently. Such stick–slip conditions are co

FIG. 14. Response of the dynamic system with a tangential natural
quency off 0531.6 Hz displays stick–slip oscillations at a platform speed
4 mm/s.

FIG. 15. Variation ofl/2 as a function of relative approach for differe
values of standard deviations of contact slope distribution.
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sidered here to be ‘‘unstable,’’ unlike the ‘‘stable’’ cond
tions that lead to sustained stick–slip motion.

When stick–slip oscillations are stable, system respo
settles to one stable limit cycle following an initial transie
state. In cases of unstable stick–slip conditions, system
sponse moves between two concentric, unstable limit cyc
Stick–slip takes place when the phase-plane trajectory
lows the outer limit cycle. Following several stick–slip per
ods on or near the outer limit cycle, system response slo
diminishes and the phase-plane trajectory moves to the in
limit cycle. The inner limit cycle is also unstable; syste
response starts to grow until it reaches the outer limit cy
and stick–slip begins again. Figure 12 illustrates an unsta
stick–slip response where the poor resolution of the velo
spectra results from the very short duration of stick and s
at the outer limit cycle.

D. Effects of surface roughness

Numerical results show that some critical speeds do
coincide with exact integer divisors of the fundamental cr
cal speed. This is an indication of the existence of a mod
nonperiodicity in the motion. Such behavior becomes m
obvious when the distribution of contact slopes is nonstati
ary.

In cases of nonstationary contact slope distribution,
average contact slope,^Z8&, becomes nonperiodic. The e
fect of nonstationarity of contact slopes on friction and s
tem response is investigated numerically by randomly cha
ing the variance of contact slope during oscillations. Res
for which variance of slope distribution changes within 5
and 25% of its nominal value are plotted in Fig. 16. Wh
compared with the corresponding stationary case, 5% v
ance in^Z8& has only minor effects on the value of critica
speeds, while more significant changes develop with a 2
variance; Fig. 16. Further, the stick-slip oscillations cou
still be observed when the change in random variance
confined to within 5%, while it was not possible to obta
any stick–slip with variance changes within 25% as the s
face roughness becomes less stationary.

In the numerical cases treated in this paper, resona
like peaks ofm̄D occur at and below the fundamental critic

e-
f

FIG. 16. Variation ofm̄D with platform speed for an unstable system cha
acterized by a continuously changing variance. The dynamic system h
tangential natural frequency off 0531.6 Hz. Solid line indicates results fo
contact slope distribution with a constant variation. The dashed and do
lines show unstable stick–slip resulting from changes of variance within
and 25% of the nominal.
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velocity vc1
. As illustrated in Fig. 6, beyondvc1

, m̄D does
not depend on the tangential natural frequency of the sys
and smoothly wanes with increasing platform speed. At s
high speeds compared withvc1

, separation between surface
remains large and approaches its maximum value, for th
is not sufficient time for the surfaces to completely approa
each other and fully undergo the effects of surface rou
ness. Near the speeds wherem̄D vanishes, computations be
come unstable and the current model is no longer applica
For example, in the case ofs50.1 in Fig. 7, them̄D vanishes
around a platform speed of 285 mm/s, whereas, fors50.2
and s50.3, it vanishes at platform speeds 550 and 8
mm/s, respectively. The numerical instability beyond t
limiting platform speeds is ascribed to contact loss at
interface.

V. SUMMARY AND CONCLUDING REMARKS

The model developed in this paper demonstrates
friction depends on both the interface properties of the s
faces and on the dynamic response of the system that
bodies them. The model relates macro-scale friction forc
micro-scale forces developed at the true contact areas
tween surfaces. Expressing the contact forces in term
contact areas and summing them statistically establishes
relationship. This study also considers contacts at the slo
of asperities, producing normal forces resulting from tang
tial relative motion of surfaces that sets this model ap
from the previous ones.

A simplified mathematical model of a dynamic system
used to demonstrate the frequently observed stick–slip
havior in dynamic systems. An important result found in t
cases considered above points to the significance of the
formation component of the friction force even if it is dom
nated by the adhesive component. Although the average
tion force is essentially constant with respect to the m
sliding velocity of a friction platform, the deformation com
ponent of friction force shows a resonancelike behav
reaching peak values at certain critical speeds. Numer
results show that stick–slip occurs only at and within a n
row band of each critical speed of the platform, defined h
as the stick–slip bandsof the critical speeds. The widths o
the stick–slip bands are observed to depend on the cri
speed. It is notable that at thefundamental critical speedof
the platform, the system response is periodic, and at the
gressively lower values of critical speeds, system respo
exhibits multiplicity of periods, such as doubling at the ne
lower speed, tripling at the following, and so on.

Stick–slip vibrations occur only in the presence of bo
deformation and adhesion components of frictional forc
205 J. Acoust. Soc. Am., Vol. 105, No. 1, January 1999
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An increase in surface roughness increases the streng
stick–slip motion, making it possible to develop even in t
presence of large damping. On the other hand, changes in
magnitude of adhesive forces do not affect developmen
stick–slip as long as adhesive force magnitudes are abo
certain threshold. This threshold roughly corresponds to
magnitude of the deformation forces.

The existence of stick–slip is also related to the stati
arity of the contact slope distribution. For a stationary co
tact slope distribution, the average contact slope is a perio
function of separation, and stick–slip can be generated
certain sliding velocities. On the other hand, nonstation
contact slope distributions lead to nonperiodic average c
tact slopes, which do not produce stick–slip vibrations unl
the nonstationarity of the distribution, or the deviation fro
the nominal, is small. The implication here is that surfac
that have a stationary distribution of asperity slopes~rough-
ness!, as may be the case for machined surfaces, hav
higher propensity to exhibit stick–slip than surfaces th
have nonstationary roughnesses.

The friction force expression developed in this pap
may be expanded to include other processes that contri
to friction to the extent that they can also be expressed
terms of contact areas.
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