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Abstract. In the present paper a simple and efficient alternate friction model is presented to simulate stick-slip
vibrations. The alternate friction model consists of a set of ordinary non-stiff differential equations and has the
advantage that the system can be integrated with any standard ODE-solver. Comparison with a smoothing method
reveals that the alternate friction model is more efficient from a computational point of view. A shooting method
for calculating limit cycles, based on the alternate friction model, is presented. Time-dependent static friction is
studied as well as application in a system with 2-DOF.
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1. Introduction

The presence of friction-induced self-sustained vibrations can be highly detrimental to the
performance of mechanical systems. Two general forms of friction-induced vibration may
be identified, namely, stick-slip and quasi-harmonic oscillation [6, 10]. Stick-slip vibration
is characterized by a sawtooth displacement-time evolution which has clearly defined stick
and slip phases in which the two surfaces in contact stick respectively slip over each other.
The motion is governed by a static friction force in the stick phase and a velocity dependent
kinetic friction force in the slip phase. On the other hand, quasi-harmonic friction-induced
vibration has a nearly sinusoidal displacement-time evolution and the motion is initiated and
maintained in the slip phase. Quasi-harmonic friction-induced vibration is caused by a hump
in the friction-velocity profile [6].

The first step to reduce or avoid these vibrations is to create a representative numerical
model that can be used to evaluate all possible phenomena and can be incorporated in a
control system. The study of stick-slip vibrations is faced with difficulties, as during the
stick-slip motion two different mechanisms take place. The modeling of the static friction
mechanism and that of the kinetic friction mechanism yield a set of differential equations
with discontinuous right-hand side.

A standard method to solve discontinuous differential equations consists of applying a
smoothing method (also called normalization method). The smoothing method [13, 18, 19,
23] replaces the discontinuous system by a smooth adjoint system. The smoothing method
yields a system of ordinary but stiff differential equations and consequently leads to large
computational times.
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The problems of the smoothing method led to the development of models which switch
between different sets of equations, the so-called ‘alternate friction models’ or ‘switch mod-
els’. Many researchers studied stick-slip vibrations with switch models similar to the switch
model of Pfeiffer [14, 18, 21]. The switch model of [17] starts from an initial state with a set
of differential equations. After each timestep the state vector is inspected on a possible event
within this timestep (e.g. slip to stick transition). If an event happened, the integration process
is halted and an iteration procedure is started to find the switching point (within a certain range
of accuracy). Having thus evaluated the switching point, a new integration process is started
with a modified set of differential equations and initial conditions identical to the state at the
switching point.

The need to halt the integration process, determine the discontinuity with an iteration
process and restart the integration again is undesirable from a numerical point of view. Stan-
dard integration methods integrate a set of differential equations over a specified time interval.
So, if the integration needs to be halted at the discontinuity, standard integration methods
cannot be applied.

In the present paper a simple and efficient switch model is presented to simulate stick-slip
vibrations. The specific switch model presented here consists of a set of ordinary non-stiff
differential equations. This has the advantage that the system can be integrated with any stan-
dard ODE-solver available in mathematical packages (MATLAB, MATHEMATICA , MAPLE)
or ODE-solvers of existing software libraries (NAG). The system is thus integrated without
the need to halt which minimizes start-up costs.

The shooting method as a periodic solution finder in combination with a smoothing
method, was applied in [23] to find periodic stick-slip solutions. Shooting methods as periodic
solution solvers in combination with switch models have not been addressed in the past. The
current paper presents a method to combine shooting with the proposed switch model. A brief
introduction on the standard shooting method will be given first.

2. Shooting Method

A number of algorithms are available for finding periodic solutions. The shooting method is
probably the most popular one [4, 16, 22], and will be discussed in this section.

Consider annth-order, autonomous, nonlinear dynamic system represented by the state
equation

ẋ˜ = f˜(x˜), (1)

whereẋ˜ ≡ dx˜/dt , x˜ is a column with then state variables of the system,t is time andf˜ is
a column of nonlinear functions of the components ofx˜. Sincef˜ does not depend ont , the
system is called autonomous, as opposed to non-autonomous systems, wheref˜ is a function
of bothx˜ andt . In the following, only autonomous systems are dealt with.

In an initial-value problem, the initial condition is usually given att = t0. Becausef˜ is
independent oft , solutions based at timet0 6= 0, can always be translated tot0 = 0. Hence,
the initial condition reads

x˜(t = 0) = x˜ 0. (2)

The solution to Equation (1), satisfying (2) is often written asφ˜t (x˜ 0), to explicitly show the
dependence on the initial condition in (2).
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The shooting method finds periodic solutions of the system by solving a two-point bound-
ary-value problem, in which solutions are sought of

H˜ (x˜ 0, T ) ≡ φ˜T (x˜0)− x˜0 = 0˜, (3)

whereT is the period time of the periodic solution andx˜ 0 is a state on the limit cycle. Since
Equation (3) is a system ofn equations inn+1 unknowns (then components ofx˜ 0 and period
T ), it cannot be solved directly. Instead,y˜ ≡ H˜ (x˜ 0, T ) is linearized, to obtain

1y˜ ≈
∂H˜
∂x˜ 0

1x˜ 0+
∂H˜
∂T

1T = (8T (x˜ 0)− I)1x˜ 0+ f˜(φ˜T (x˜))1T, (4)

where the matrix8T (x˜0) results from the variational equation (see Appendix A). To achieve
H˜ ≈ 0˜, 1x˜ 0 and1T will be chosen in such a way that1y˜ = −H˜ . This value of1y˜ is
inserted into Equation (4), giving

−H˜ = (8T (x˜0)− I)1x˜ 0+ f˜(φ˜T (x˜ 0))1T . (5)

To make this system solvable, a constraint is added, which restricts the state correction term
1x˜0 to be orthogonal tof˜, given by

f˜(x˜0)
T1x˜ 0 = 0. (6)

From Equations (5) and (6), the following iterative scheme is assembled, with which zeros
of H˜ can be found, using initial guessesx˜(0)0 andT (0)[

8T (i)(x˜(i)0 )− I f˜(φ˜T (i) (x˜(i)0 ))

f˜(x˜(i)0 )
T 0

][
1x˜(i)0

1T (i)

]
=
[
x˜(i)0 − φ˜T (i) (x˜(i)0 )

0

]
, (7)

[
x˜(i+1)

0

T (i+1)

]
=
[
x˜(i)0

T (i)

]
+
[
1x˜(i)0

1T (i)

]
. (8)

The superscripts have been added to indicate the iteration count. This scheme is reiterated,
until some convergence criterion is met. There is a clear similarity to the Newton–Raphson al-
gorithm, so the same convergence properties apply. When the shooting method returns values
x˜0 andT , it should be tested, whetherT is the minimum period of the solution, since it could
be a multiple of the actual period. Only single shooting is considered in this paper for reasons
of simplicity.

3. Single-Degree-of-Freedom Model

A single-degree-of-freedom model will be used to introduce and evaluate the numerical
methods described in this paper. The same model treated in [7, 23] is used to facilitate the
comparison of results. Consider a massm attached to inertial space by a springk, where
m = 1 [kg] andk = 1 [N/m]. The mass is riding on a driving belt, that is moving at constant
velocity vdr = 0.2 [m/s] (Figure 1).

Between mass and belt, dry friction occurs, with a friction forceF . The state equation,
describing this model, reads

ẋ˜ = f˜(x˜) =
 ẋ

− k
m
x + F

m

 , (9)
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m

k

x

F

vdr

Figure 1. 1-DOF model with dry friction.
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Figure 2. Friction as a function of relative velocity.

where a dot (̇) denotes differentiation with respect to timet andx˜ = [ x ẋ ]T . The relative
velocity of the massm with respect to the belt is denoted byvrel = ẋ − vdr. The friction force
F is in the slip phase a function of the relative velocityvrel and in the stick phase a function of
the externally applied force. The externally applied force on the mass is in this case the force
in the spring and is thus only dependent on the displacement:

Fex(x) = kx. (10)

The friction model reads

F(vrel, x) =

F(x) = min(|Fex(x)|, Fs) sgnFex(x), vrel = 0 stick,

F(vrel) = −Fs sgnvrel

1+ δ|vrel| , vrel 6= 0 slip.
(11)

The friction force in the stick phase is limited by the maximum static friction force, i.e.
|F(x)| ≤ Fs, andFs is chosen equal to 1[N]. The friction curve is drawn in Figure 2. The
constantδ is taken to be 3[s/m].

4. Smoothing Method

For the classical application of the shooting method it is necessary that the fundamental
solution matrix is a continuous function in time. This implies that the state equation func-
tion f˜ must be continuous. However, the system (9) together with the friction model (11) is
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Figure 3. Results obtained with the approximated friction curve (ε = 106).

discontinuous. The friction curve is therefore often approximated by a smooth function. One
possible approximation forF is [23]

F̃ (vrel) = −
Fs

2
π

arctanεvrel

1+ δ|vrel| . (12)

Clearly, increasing the steepness parameterε improves the approximation, especially for
vrel close to 0. The friction curve will almost be the same as in Figure 2 for large values of
the steepness parameter (ε = 106). However, a steep slope iñF arises atvrel = 0, given by
−(2/π)εFs. This causes a stiff differential equation, which is numerically costly to integrate.

The evolution in time of the displacementx and the velocityẋ is shown in Figure 3a
for ε = 106. More interesting is the evolution of the elements of the fundamental solution
matrix (Figure 3b). Near the transition from the slip phase to the stick phase the fundamental
solution varies extremely fast. The time derivatives of these functions become unbounded
as ε approaches infinity. The fundamental solution matrix elements associated with the
unapproximated friction curve exhibit a jump at this point.

Where the solutionx˜ is still continuous, the fundamental solution matrix clearly is not,
which makes it difficult to integrate for large values ofε. The approximated friction curve
can be seen as a singular perturbation [4]. If we letε approach infinity, the order of the
system reduces and the perturbation becomes singular. The class of boundary-value problems
involving singular perturbations has been a source of difficulty up to now.

5. The Switch Model

Another method of integrating the system of equations is by using the Karnopp friction model
[3, 8, 11]. The classical Karnopp model has the advantage of generating ordinary differential
equations but suffers from some numerical instabilities in the stick phase [20]. The switch
model as proposed in this paper, does not possess this disadvantage and can be considered to
be an improved version of the Karnopp model. It treats the system as three different sets of
ordinary differential equations: one for the slip phase, a second for the stick phase and a third
for the transition from stick to slip. At each timestep the state vector is inspected to determine
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whether the system is in the slip mode, in the stick mode or in the transition mode. The
corresponding time derivative of the state vector is then chosen. The conditions for changing
to the stick mode or the slip mode operate as switches between the systems. A region of small
velocity is defined as|vrel| < η, whereη � vdr. The system is considered to be in the slip
mode if the relative velocity lies outside this narrow stick band. The finite region is necessary
for digital computation since an exact value of zero will rarely be computed. If the relative
velocity lies within the stick band and if the static friction force, needed to make equilibrium
with the applied forces on the mass, exceeds the breakaway friction forceFs, the system is
considered to be in transition from stick to slip. The switch model can be elucidated in pseudo
code:

if |vrel| > η then

ẋ˜ = f˜(x˜) =
 ẋ

− k
m
x + F(vrel)

m

 slip

elseif |kx| > Fs

ẋ˜ = f˜(x˜) =
 ẋ

− k
m
x + Fs

m
sgnkx

 stick to slip transition

else

ẋ˜ = f˜(x˜) =
[

vdr

−vrel

√
k
m

]
stick

end;

The collocation points of the Runge–Kutta integration method during the stick mode
should all be situated within the stick band to avoid numerical instability problems of the
Karnopp model. This can be achieved by centering the relative velocity in the stick band
and taking a Runge–Kutta tolerance smaller thanη. The acceleration of the mass during the
stick mode is set to−vrel

√
k/m to force the relative velocity to zero. The relative velocity,

which is directly dependent on the state of the system, cannot simply be set to zero in the
stick phase as the state vector has to be continuous for ordinary differential equations. The
proposed algorithm maintains the continuity of the state vector and yields a set of ordinary
differential equations without numerical instabilities.

The fundamental solution matrix is not Lipschitz continuous as it jumps at the transition
from stick to slip. The monodromy matrix for the switch model cannot be obtained in the same
way as in the previous section. Instead, the monodromy matrix is determined by applying a
sensitivity analysis to the solution using the relation

δx˜(t) = 8t(x˜ 0)δx˜ 0. (13)

We perturb one component (say componentj ) of the initial state vector with a small
perturbation and leave the other components unaltered

x̃˜j0 = x˜ 0+ δx˜j0, (14)

with

δx˜j0 =
[

1
0 · · · 0

j

ξ 0 · · · n

0

]T
, (15)
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Figure 4. Phase portraits obtained with the smoothing method (ε = 106) (a) and with the switch model (b).

whereξ � x0j . In the above,x0j denotes thej -th element ofx˜0 while a superscriptj indicates
which element in the initial state vector is perturbed. The system can be integrated over the
period timeT with x̃˜j0 as initial state vector yielding̃x˜jT . The perturbation of the initial state
vector causes a perturbation of the final state vector

δx˜jT = x̃˜jT − x˜T . (16)

The elements of the monodromy matrix can then be expressed as

8Tij =
δx

j

Ti

ξ
. (17)

The shooting method can now be applied to the switch model using the monodromy matrix
obtained by the above sensitivity analysis giving an altered (single) shooting method.

A phase portrait obtained with the switch model for the single-DOF system of Section 3
is depicted in Figure 4b. The computation took 110232 floating-point-operations to obtain a
shooting accuracy of 10−5 with a Runge–Kutta–Fehlberg tolerance of 10−8. Small timesteps
are taken only near the transitions between slip and stick phase, resulting in 123 integration
points in the final limit cycle. In fact, the adaptive timestep control of the integration algorithm
determines the switching point with the desired accuracy. The constantη was taken to be
10−6. The initial guess for the state vector wasx˜0 = [1.1,0]T , whereas for the period time
it wasT0 = 12. In Figure 4a the results obtained with the smoothing method are plotted for
ε = 106. A Backward Differentiation Formula (BDF) proved to be the best integration method
for the extremely stiff differential equation. This computation took 3493510 floating-point-
operations to obtain the same accuracy as in the previous case starting from the same initial
guess. Small timesteps are not only necessary near the transitions but during the whole stick
phase, resulting in 1217 integration points. The smoothing method needed 31.7 times more
floating point operations and about 10 times more data storage. Consequently, the smoothing
method is clearly more expensive than the switch model.

While using the smoothing method, the friction force should be a continuous function of
velocity. If an isolated static friction point was added to the discontinuous friction curve, a



48 R. I. Leine et al.

vrel

Fs Fs

Fstick

Fstick∞

tstick

|F |

Figure 5. Time-dependent static friction model.

second steep slope would be added to the smooth approximation yielding an even more stiff
differential equation. The switch model can easily be extended with an isolated static friction
point. The small timesteps just after stick to slip transition in Figure 4a are due to a continuous
transition from a static to a dynamic friction force. The addition of an isolated static friction
point would limit this region of refinement and speed up the integration process.

6. Time-Dependent Static Friction

An important advantage of the switch model is the possibility of incorporating tribological
enhancements of the classical friction model treated in the previous section. One of the main
phenomena not captured by the classical friction model is time-dependent static friction [2,
3, 9]. Although time-dependent static friction may not be significant in ‘stiff’ constructions
it can play a roll in low-frequency dynamical systems with a pronounced stick time. During
sticking, the friction force rises until a maximum is reached: the static friction force (also
known as breakaway friction force). The time-dependent static friction model considers the
static friction force to be dependent on the stick time. The static friction force is depicted in
Figure 5 and can be expressed as [12]

Fstick= Fs(1+ (β − 1)(1− e−atstick)), (18)

whereβ = Fstick∞/Fs. The dependence of the dynamic friction force on the relative velocity
is drawn in the left part of Figure 5 and is considered to be symmetrical.

If we try to incorporate the time-dependent static friction force in the switch model, we are
faced with a difficulty inherent to the physical problem. The stick time has to be known during
sticking. The most straightforward solution is to consider the stick time as an extra state of
the system, thus preserving the set of differential equations to be ordinary. The state vector is
extended with the stick time statex˜ = [ x ẋ tstick ]T . The stick time state has to be zero at
the beginning of the stick phase. Consequently, the stick time state has to decrease during the
slip phase to zero. It does not matter how it decreases, as long as the final value of the stick
time state is approximately zero. However, stiff differential equations will arise if the slope is
taken very large. The decrease will be modeled with an exponentially decaying functione−bt .
The extended pseudo code for the time-dependent static friction model is:
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Figure 6. Periodic solution of the time-dependent static friction model.

if |vrel| > η then

ẋ˜ = f˜(x˜) =


ẋ

− k
m
x + F(vrel)

m−btstick

 slip

elseif |kx| > Fstick

ẋ˜ = f˜(x˜) =
 ẋ

− k
m
x + Fstick

m
sgnkx

−btstick

 stick to slip transition

else

ẋ˜ = f˜(x˜) =
 vdr

−vrel

√
k
m

1

 stick

end;

A periodic solution of the time-dependent static friction model obtained with the shooting
method is drawn in Figure 6 (a = 0.1 [1/s], b = 10 [1/s],β = 2). The phase portrait is not
only shifted to the right, due to a higher static friction force, but also shows a non-smooth
transition from stick to slip phase due to a difference between static and dynamic friction
force.

7. Example: A Violin String

The switch model can also be used for systems with greater complexities. Consider a single
violin string with radiusr and a bow that is moving at a constant velocityvdr over the string
(Figure 7). The friction force between bow and string will induce the lateral displacementx
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k

kt

r
m, J

x

ϕ

vdr

Figure 7. Simple model of a violin string.

and rotationϕ (2-DOF). With the state vectorx˜ = [ x ẋ ϕr ϕ̇r ]T the equations of motion
in the slip phase yield:

ẋ˜ =


ẋ

− k
m
x + F(vrel,x,ϕ)

m

ϕ̇r

− kt
J
ϕr + F(vrel,x,ϕ)r

2

J

 . (19)

The friction force is defined by Equations (11) and (10) is replaced by the externally applied
force on the interface,

Fex(x, ϕ) = kx + kt
m
J
ϕr

1+ r2m
J

. (20)

The relative velocity is dependent on the lateral vibration as well as on the torsional vibration,

vrel = ẋ + ϕ̇r − vdr. (21)

Figure 8a displays the phase portrait for the lateral vibration. The starting solution for the
shooting method is created by a simple time integration process. More or less representative
parameter values can be found in Appendix B. In the stick phase, the string rolls over the bow
with an angular velocity oḟϕ = (ẋ − vdr)/r. The lateral velocity is therefore not constant in
the stick phase. The periodic solution of the corresponding 1-DOF (block-on-belt) model is
drawn with a dashed line in the same plot. It approximates the 2-DOF violin string model very
well.

If the diameter of the string is reduced tod = 0.25 mm, the qualitative behaviour changes
drastically (Figures 8b and 9b). Again, the 1-DOF solution is plotted with a dashed line (Fig-
ure 8b). It differs significantly from the 2-DOF solution. No periodic solution was found for
this case. The obtained solution is possibly chaotic or quasi-periodic. As shown in Figure 10,
the frequency spectrum for the second case is quite different form the periodic solution of the
first case. It has a broad-band nature.

The frequency ratio of the torsional vibrations relative to the lateral vibrations is propor-
tional to the diameter.

ωt

ωl
=
√
kt/J√
k/m

=
√
GA

ft
= d

2

√
πG

ft
.
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Figure 8. Phase portraits of the violin string model.
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ẋ

f [Hz]

(a)d = 1 mm (b)d = 0.25 mm

Figure 10. Power spectral density plots.



52 R. I. Leine et al.

The torsional vibrations did not have significant influence ford = 1 mm because the torsional
frequency was much higher than the lateral frequency (ωt/ωl = 35.3). Decreasing the diame-
ter of the string tod = 0.25 mm reduced the frequency ratio (ωt/ωl = 8.8) and increased the
effect of the torsional mode.

8. Conclusions

Finding periodic solutions of stick-slip vibrations using the smoothing method is very expen-
sive, even for a simple 1-DOF problem. In the present paper a simple and efficient switch
model was presented to simulate stick-slip vibrations. The switch model consists of a set of
ordinary non-stiff differential equations and has the advantage that the system can be inte-
grated with any standard ODE-solver. The system is thus integrated without the need to halt,
which minimizes start-up costs. It is shown that a smooth friction curve is not essential for the
application of the shooting method as periodic solution finder. A method to combine shooting
with the proposed switch model was presented. If the friction curve described by Equation (11)
is the best representation of reality, then the switch model yields the best results. On the other
hand, one could argue whether the real friction curve would look more like the approximated
friction curve where the slip during the stick phase can be regarded as micro-slip. In this
case, the switch model is still a good and efficient approach due to the fact that the steepness
parameterε is extremely large in practice. The approximated friction curve can only model
the plastic part of the micro-slip and not the elastic part. A full description of micro-slip would
again point to the direction of a switch model. It has been shown that the switch model can
be extended with tribological enhancements to the classical friction model. The application of
the switch model in a 2-DOF system has been presented.

9. Further Research

The application of the switch model to systems with many degrees-of-freedom as well as the
use in control systems will be studied in future research.

In [1, 5, 15] the method of Aizerman and Gantmakher is described to determine the fun-
damental solution matrix of discontinuous systems in order to calculate Lyapunov exponents.
The theory of Aizerman and Gantmakher could also be used in a shooting method and this
will also be an aim in further research.
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Appendix A: The Variational Equation

An nth-order, autonomous, nonlinear system is represented by the state equation with initial
condition1

ẋ˜ = f˜(x˜), x˜(t = 0) = x˜0. (22)

1 The derivation, presented in this appendix, is taken from [16].
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The solution to this equation is written asφ˜t (x˜ 0), so

φ̇˜t (x˜ 0) = f˜(φ˜t (x˜0)), φ˜ 0
(x˜ 0) = x˜0. (23)

Differentiating with respect tox˜ 0 gives

∂φ̇˜t (x˜ 0)

∂x˜0
= ∂f˜
∂x˜

∂φ˜t (x˜ 0)

∂x˜0
,

∂φ˜ 0
(x˜0)

∂x˜ 0
= I . (24)

Defining8t(x˜0) ≡ ∂φ˜t (x˜ 0)/∂x˜0, Equation (24) becomes

8̇ t (x˜0) =
∂f˜
∂x˜ 8t(x˜ 0), 80(x˜0) = I , (25)

which is thevariational equation. The fundamental solution matrix after a period timeT is
called the monodromy matrix8T .

Appendix B: Parameter Values

l = 0.32 m d = 1 mm

ft = 50 N G = 79.6.109 N/m2

ρ = 7850 kg/m3 A = 1

4
πd2

Ip = π

32
d4 m = 1

3
ρAl

k = 4
ft

l
kt = 4

GIp

l

J = 1

3
ρIpl δ = 0.5 s/m

Fs = 1 N vdr = 1 m/s
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