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Sticky collisions of ultracold RbCs molecules
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Jeremy M. Hutson 2 & Simon L. Cornish 1

Understanding and controlling collisions is crucial to the burgeoning field of ultracold

molecules. All experiments so far have observed fast loss of molecules from the trap.

However, the dominant mechanism for collisional loss is not well understood when there are

no allowed 2-body loss processes. Here we experimentally investigate collisional losses of

nonreactive ultracold 87Rb133Cs molecules, and compare our findings with the sticky collision

hypothesis that pairs of molecules form long-lived collision complexes. We demonstrate that

loss of molecules occupying their rotational and hyperfine ground state is best described by

second-order rate equations, consistent with the expectation for complex-mediated colli-

sions, but that the rate is lower than the limit of universal loss. The loss is insensitive to

magnetic field but increases for excited rotational states. We demonstrate that dipolar effects

lead to significantly faster loss for an incoherent mixture of rotational states.
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A growing number of experiments now produce ground-
state polar molecules at ultracold temperatures, either by
associating pairs of atoms1–8 or by direct laser-cooling of

molecules9,10. These experiments offer an exciting new platform
for the study of ultracold dipolar gases11–15 and quantum-state-
controlled chemistry16–19. For molecules produced by associa-
tion, the sample densities are sufficiently high that molecular
collisions are important and measurable. Yet a proper under-
standing of ultracold molecular collisions remains elusive.

For ultracold atomic systems, a detailed understanding of
collisions has been developed through decades of research com-
paring theory and experiment20,21. In particular, the control of
interactions through intra-species magnetic Feshbach reso-
nances21–24, with quantitative calculations of the scattering
length, has proved crucial. For example, it has allowed study of
the BEC-BCS crossover in Fermi gases25–31 and of Efimov phy-
sics32–42. A detailed understanding of collisions will be equally
crucial in future experiments with ultracold molecular gases.

There has been relatively little comparison of experiment and
theory for molecular collisions. Many alkali dimers can undergo
exoergic two-body exchange reactions of one or more of the types

2XY ! X2 þ Y2;

2XY ! X2Yþ Y;

2XY ! Xþ XY2:

ð1Þ

Ultracold collisions between such molecules have been studied
experimentally in KRb15,43,44, NaLi7 and triplet Rb245. Collisional
loss was found to occur with high probability for molecular pairs
that reach short range, and was attributed to the reactions (1).
However, there are other alkali dimers, such as NaRb and RbCs in
their vibronic ground states, for which all the reactions (1) are
energetically forbidden46. Surprisingly, these also show high
collisional loss rates. For example, Ye et al.47 compared the loss
rate for NaRb molecules in the ground and first-excited vibra-
tional states, and found high loss and heating rates regardless of
the energetics of the reactions.

One possible mechanism for fast losses of chemically stable
species has been proposed by Mayle et al.48,49. They argue that
the large number of rovibrational states available supports a dense
manifold of Feshbach resonances. Resonant collisions may form
long-lived two-molecule collision complexes. A further collision
between a complex and a molecule can then lead to loss of all
three molecules from the trap. Complexes may also be lost by
other mechanisms. Complex formation may produce second-
order kinetics even if the loss is three-body in nature. Never-
theless, the three-body loss is effectively enhanced by the long
lifetime of the complexes. We refer to this as the sticky collision
hypothesis.

The lifetime τ of a collision complex is related to the resonance
width Γ by τ ¼ �h=Γ. The model of Mayle et al. assumes that the
mean width is 〈Γ〉=No/2πρ, where ρ is the density of states and
No is the number of open channels for the free molecular pair.
This is based on Rice–Ramsperger–Kassel–Marcus (RRKM)
theory50 and effectively assumes that the motion is ergodic, i.e.,
that energy is fully randomised in the complex. For collisions of
RbCs in the rovibrational ground state, No= 1 and the predicted
density of states is ρ/kB= 942 μK−1 (ρ/μmag= 368 G−1)49; this
gives a sticking lifetime of 45 ms.

In the following, we test the model of Mayle et al. by measuring
loss from an optically trapped sample of ground-state RbCs
molecules. These molecules are chemically stable against all avail-
able two-body atom-exchange reactions46, yet fast losses are still
observed. We demonstrate that the loss is best described by a rate
equation that is second-order in the density. We investigate the
temperature dependence of the loss in the rotational and hyperfine

ground state, and compare our results to a single-channel model
that uses an absorbing boundary condition to take account of short-
range loss51,52. We find a significant difference between the mea-
sured loss rates and those expected in the universal limit, in which
all two-body collisions that reach short range lead to loss. We then
increase the internal energy of the molecule, both by varying the
magnetic field and by preparing the molecules in excited rotational
and/or hyperfine states, and observe similar loss rates. Finally, we
prepare the molecules in an incoherent mixture of ground and first-
excited rotational states. In this mixture we observe a much faster
loss than for molecules in a single state. Taken together, our mea-
surements support the sticky collision hypothesis, but with a rate
lower than predicted by the full model of Mayle et al. This may arise
from a breakdown of ergodicity, manifested as an average width
smaller than predicted by RRKM theory and perhaps due to a
geometrical restriction on complex formation.

Results
Measuring loss due to molecule–molecule collisions. Our
experiments are performed with a gas of X1∑+ RbCs molecules,
initially occupying the rovibrational and spin-stretched hyperfine
ground state jN ¼ 0;MN ¼ 0;mRb

i ¼ 3=2; mCs
i ¼ 7=2i at a

magnetic field of 181.5 G. Here, N is the rotational quantum
number with projection MN along the quantisation axis, and mRb

i
and mCs

i are the atomic nuclear spin projections. The molecules
are confined to an optical dipole trap (ODT) with typical initial
temperature 1.5(1) μK and peak density of 1.9(2) × 1011 cm−3.
We observe loss of molecules as a function of hold time in the
ODT as shown in Fig. 1. A molecule is considered ‘lost’ either if it
is ejected from the trap or if it is in a state other than that in
which it was prepared (including a complex).

To characterise the dominant loss mechanism, we model
the rate of change of density n as _nðr; tÞ ¼ �kγnðr; tÞγ, where
the power of the density γ= 1, 2 or 3 corresponds to losses
where the rate-determining step is a one-, two- or three-body
process, respectively. We numerically solve the coupled rate
equations

_NmolðtÞ ¼ �kγC
ðγ�1Þ NmolðtÞγ

γ3=2TðtÞð3=2Þðγ�1Þ

� �
;

_TðtÞ ¼ kγC
ðγ�1Þ γ�1

2γ

� �
NmolðtÞγ�1

γ3=2TðtÞð3γ�5Þ=2

� �
;

ð2Þ

and fit the variation in number with γ and kγ as free parameters.
Here, Nmol(t) is the number of molecules remaining in the initial
state, T(t) is the temperature of the remaining distribution, and
C ¼ ðm�ω2=2πkBÞ3=2, where m is the mass of the molecule and kB
is the Boltzmann constant. In deriving Eq. (2), it is assumed that
the molecules remain in thermal equilibrium and that kγ is
independent of temperature (see Supplementary Note 1). The
vacuum-limited lifetime, as measured for 87Rb atoms, is ≳100 s;
we therefore exclude this from our model and assume that a
single process (with corresponding γ) dominates over the time
scale of the measurement. We fix the initial temperature, and
hence the initial density, in the fitting. An example result is shown
in Fig. 1. We find an optimal value of γ= 2.07(7) (reduced chi
squared χ2red ¼ 0:998), shown by the solid black line, suggesting
that the loss is governed by a two-body process. Fits with γ fixed
at 1, 2 and 3 have χ2red ¼ 22:9; 1:27 and 10.4, respectively; in all
future fitting we therefore constrain the fits such that γ= 2. The
results shown yield a two-body inelastic loss rate coefficient k2=
4.8(6) × 10−11 cm3 s−1.

To confirm the second-order behaviour, we explore the initial
loss rate as a function of the starting density, by varying the
number of molecules with the temperature and trap frequencies
fixed. To extract the loss rate, we fit the first 0.2 s of molecule loss
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with a linear function to extract the gradient. The variation of the
initial loss rate as a function of initial density is shown inset in
Fig. 1 on a log–log scale. A linear fit to Fig. 1 yields a gradient of
0.9(3), again indicating a second-order process.

Single-channel model and universal limit. For a complex system
such as RbCs+ RbCs, it is not feasible to solve the many-
dimensional Schrödinger equation directly using coupled-channel
methods to extract rates for elastic and inelastic collisions. In this
case, considerable success has been achieved with single-channel
models based on quantum defect theory (QDT)51,52. These
models take account of the fact that, at low-collision energy,
much of the particle flux is reflected by the long-range attractive
potential and never reaches short range. The probability of loss
for particles that do reach short range is characterised by the
parameter y, which is 1 when there is complete loss and 0 when
there is no loss. Any resonant effects in the incoming channel are
characterised by the short-range phase shift δs, which in the
absence of loss is related to the scattering length a by
a=�a ¼ 1þ cot δs � π

8

� �
. In the limit y→ 1, known as the universal

limit, the loss is independent of δs51. The universal rate coefficient
at zero temperature is kuniv2 ð0Þ ¼ 8h�a=m for identical bosons,

where �a ¼ 0:477988 � � � ´ ðmC6=�h
2Þ1=4 is the mean scattering

length of Gribakin and Flambaum53.
The long-range interactions are represented by their leading

term −C6R−6, which is caused by the dispersion interaction. For
RbCs in its rovibrational ground state, C6 ¼ 141000Eha

6
0, which

gives �a ¼ 233 a0 and kuniv2 ð0Þ ¼ 1:79´ 10�10 cm3 s−1 at zero
temperature. Our model52 carries out QDT using Gao’s analytic
wavefunctions for a pure R−6 potential54,55, which account for

reflection from the long-range potential. It allows variation of the
loss parameter y and includes multiple partial waves, so gives
the complete energy dependence of the loss rates, rather than just
the leading term as in ref. 51. We calculate the thermally averaged

rate coefficient, k2ðTÞ ¼
R1
0
ð2= ffiffiffi

π
p Þk2ðEÞx1=2expð�xÞ dx, where x

= E/kBT.
Figure 2 shows a contour plot of the thermally averaged loss

rate coefficient k2(T) for ground-state RbCs+ RbCs at 1.5 μK.
Finite-temperature effects are important: In the universal limit,
y= 1, the rate coefficient approaches 9.93 × 10−11 cm3 s−1, which
is nearly a factor of two lower than the zero-temperature value.
When y < 1, the loss may be either lower or higher than the
universal limit, depending on δs. Around δs= π/8, resonant s-
wave scattering enhances the magnitude of the wavefunction at
short range and causes a broad enhancement in the loss. Only
even partial waves contribute for identical bosons. Around δs=
5π/8 there is a narrower band of enhanced rates due to a d-wave
shape resonance. Shape resonances for higher partial waves exist
in k2(E)52, but are washed out by thermal averaging in k2(T).

Contours corresponding to the measured k2 at 1.5 μK and its
1σ confidence limits are shown in Fig. 2. There is a band of
parameter space that gives loss rates in agreement with
experiment. The largest part of this band is in the region 0.2 <
y < 0.4, but lower values of y are possible in the region of large
scattering length around δs= π/8. Nevertheless, the region of
agreement with the experiment is entirely y < 0.4, showing that
this system is significantly removed from the universal limit (y=
1).

Temperature dependence. The temperature dependence of the
loss rate contains important additional information. Figure 3
shows the calculated thermally averaged rate coefficients, as a
function of temperature, for different values of the short-range
phase δs; for each phase, the loss parameter y is chosen to match
the experimental rate coefficient at T= 1.5 μK. It may be seen
that the form (and even the sign) of the temperature dependence
varies substantially with δs.

We measure loss with a range of starting temperatures from
0.85(5) to 3.3(3) μK. Including temperature dependence allows us
to fit the short-range phase as well as the loss parameter y. The
best-fit parameters are y= 0.26(3) and δs ¼ 0:56þ0:07
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Fig. 1 Loss of ground state molecules. Collisional loss of molecules in jN ¼
0;MN ¼ 0;mRb

i ¼ 3=2;mCs
i ¼ 7=2i with initial temperature of 1.5(1) μK and

peak density 1.9(2) × 1011 cm−3. Each result is the mean of at least five
experimental runs, with standard error shown. The solid black line shows a
fit to the coupled rate equations given in Eq. (2) with 1 standard deviation
(σ) uncertainty in γ shaded. The dashed lines show fits to the data with
fixed γ= 1, 2 and 3 corresponding to one-, two- and three-body loss,
respectively. Inset: Density dependence of the initial loss rate on a log–log
scale. The vertical error bars show the 1σ uncertainty in the linear gradient
fitted to the first 200ms of each loss measurement, and the horizontal
error bars show the 1σ uncertainty in the density derived from the
uncertainties in the starting temperature, number and trap frequencies. The
solid line is a linear fit, with 1σ uncertainty in the gradient shaded, while the
dashed lines indicate the expectations for one-, two- and three-body loss
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Fig. 2 Thermally averaged loss rate coefficient from the single-channel
model at 1.5 μK. k2(T) is plotted as a function of the loss parameter y and
the short-range phase shift δs. The solid and dashed black lines correspond
to the measured k2 and uncertainty, respectively

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11033-y ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3104 | https://doi.org/10.1038/s41467-019-11033-y | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(χ2red ¼ 0:473), and the fitted loss rate is shown as the blue line in
Fig. 3 with uncertainty given by the shaded region. This gives us
our first indication of the scattering length for RbCs+ RbCs
collisions; the fitted δs corresponds to 231 a0 < a < 319 a0.

Magnetic field dependence. The single-channel model has no
explicit dependence on magnetic field, but at fields below 98.8 G
the initial state is no longer the lowest in energy. If hyperfine-
changing collisions were a significant source of loss in the ground
state, we would expect the loss rate to rise at lower fields. Con-
versely, if the loss is entirely mediated by the formation of col-
lision complexes, it is unlikely to be affected by small changes in
the energy of the asymptotic states and the loss rate will be
independent of magnetic field.

We have measured loss of molecules at various magnetic fields
between 4.6 and 229.8 G, and over this range the loss rate does
not vary outside experimental uncertainties (see Supplementary
Note 2). This suggests that loss due to hyperfine-changing
collisions is not significant, and is consistent with the sticky
collision hypothesis.

Collisions in rotationally excited states. We also consider loss of
molecules in rotationally and hyperfine excited states56. We have
measured loss rate coefficients at 1.5 μK for two hyperfine-excited
states with N= 0, two states with N= 1 and one state with N= 2.
The universal rate changes between states because of different
rotational contributions to C6, as shown in Supplementary
Table 1. The rate coefficients as a fraction of the universal rate are
shown in Fig. 4, labelled by N and the total angular momentum
projection MF ¼ MN þmRb

I þmCs
I . This fraction is greater for

excited states than for the ground state, and markedly greater for
N= 2. The loss from the N= 2 state is consistent with the uni-
versal limit. This increase probably results from two-body
inelastic collisions. However, the higher angular momentum
also allows the incoming channel to couple to a larger number of

states of the collision complex49, which might enhance the
complex-mediated loss.

Collisions in a mixture of rotational states. We have also
measured loss from an incoherent mixture of the spin-stretched
states N= 0, MF=+5 and N= 1, MF=+6. These two states are
linked by a dipole-allowed transition, so collisions between them
experience an additional resonant dipole–dipole interaction. This
is equivalent to the interaction of two space-fixed dipoles d= d0/
√6= 0.50 D. For s-wave scattering this interaction cancels in first
order due to spherical averaging, but for higher partial waves it
dies off asymptotically as R−3. Even for s-waves, there are strong
higher-order effects with leading term proportional to R−4. These
terms die off much more slowly than dispersion forces at long
range, so may be expected to produce larger loss rates.

We start with a 50:50 mixture of molecules in the two states, at
T= 1.5(1) μK, and measure the number remaining in each state
as a function of time. We model the rates of change of the
densities n0(r, t) and n1(r, t), for molecules in N= 0 and N= 1,
respectively, by the coupled rate equations

_n0ðr; tÞ ¼ �k002 n0ðr; tÞ2 � 1
2 k

01
2 n0ðr; tÞn1ðr; tÞ;

_n1ðr; tÞ ¼ �k112 n1ðr; tÞ2 � 1
2 k

01
2 n0ðr; tÞn1ðr; tÞ:

ð3Þ

We use the values of k002 and k112 measured above for molecules
in identical rotational states. Fitting yields a value
k012 ¼ 7:2ð9Þ ´ 10�10 cm3 s−1 for the loss rate coefficient for
collisions between molecules in different rotational states. This
is significantly higher than for molecules prepared in a single
rotational and hyperfine state and demonstrates a significant
increase in the loss rate due to a resonant dipole–dipole
interaction.

Discussion
We have presented experimental measurements of loss rates for
nonreactive RbCs molecules. We have demonstrated that the loss
is best described by second-order rate equations. This suggests
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that the loss is governed by a two-body process and supports the
sticky collision hypothesis that the rate-limiting step is formation
of long-lived collision complexes48,49. Through investigating the
loss from the rotational and hyperfine ground state over a tem-
perature range of 0.85(5) to 3.3(3) μK, we have determined the
loss probability parameter y at short range to be less than 0.4. We
observe no change in loss rate with varying magnetic field. For
rotationally excited states, the loss is up to a factor of 2 faster,
probably due to rotational relaxation. For a mixture of rotational
states, the loss is much faster, because of resonant dipole
interactions.

Our results for the ground state are inconsistent with the
universal limit of complete loss at short range (y= 1). The model
of Mayle et al.48,49 gives a loss rate that is independent of the
density of states, provided the density is large and the average
width is related to the average spacing as given by RRKM theory.
In the ultracold limit, this rate is equivalent to the universal rate.
The lower loss probability that we observe indicates that the
average width is smaller than predicted by RRKM theory. This
demonstrates a breakdown of ergodicity. A possible interpreta-
tion is that complex formation can occur only when the mole-
cules collide at a limited range of relative orientations.

Our value of the loss parameter y is similar to that seen for
reactions of the type (1) in fermionic KRb (y ~ 0.4)43,51, suggesting
that a similar geometric restriction might apply in that case.
Takekoshi et al.3 published results with RbCs at a temperature of
8.7(7) μK, which is significantly higher than the present work. At
fields above 90 G, they observed k2 ~ 1 × 10−10 cm3 s−1, which is
consistent with both our fitted values of y and δs and the universal
limit. They also reported an increase in the loss rate by an order of
magnitude at lower fields, which they attributed to hyperfine-
changing collisions to form lower-energy states. However, as
shown in the Supplementary Fig. 3, the increased loss rates are
larger than the maximum allowed by reflection off the long-range
potential at the temperature of the experiment. The only other
nonreactive molecule for which collisions have been studied in
detail is NaRb; the results were interpreted as consistent with the
universal limit47,57, but the observed temperature dependence
resembles that calculated here for resonant s-wave scattering at
lower y, as shown by the orange line in Fig. 3.

In conclusion, our measurements of collisional losses in
ultracold RbCs support the sticky collisions hypothesis, but the
rates are significantly lower than the universal limit. By exam-
ining the temperature dependence, we have seen the first indi-
cation of the scattering length for RbCs+ RbCs collisions. By
preparing an incoherent mixture of ground and first-excited
rotational states, we turn on a resonant dipole–dipole interaction
which greatly increases the loss rate. Our results indicate that
active measures to suppress collisional loss will be needed in
experiments with high-density molecular gases, even if the
molecules are nonreactive.

Methods
Transfer of molecules to the ground state. We begin our experiments with a
sample of weakly bound RbCs Feshbach molecules58, confined to a λ= 1550 nm
ODT at a magnetic field of 181.5 G. We transfer the molecules to a single hyperfine
level of the X1∑+ rovibrational ground state via stimulated Raman adiabatic pas-
sage (STIRAP)4 in free space (i.e., with the trap light off) to avoid a spatially
varying ac Stark shift of the two-photon resonance59. The efficiency of the STIRAP
is typically 90%, and we can transfer to hyperfine states in N= 0 with MF=+5 or
MF=+4 depending on the selected laser polarisation60. Following STIRAP, the
molecules are recaptured by turning the trapping light back on. We set the intensity
of the trap light before (IFB) and after (IGS) STIRAP such that the ground-state
molecules experience the same trap parameters as they did in the Feshbach state,
i.e., IGS/IFB= αFB/αGS where αFB, αGS are the polarizabilities of the Feshbach and
ground states61. The ground-state transfer takes 20 μs and the trap light is off for
less than 200 μs in all experiments presented; we detect no significant heating or
loss from this modulation of the trap potential.

Detection of molecules. We measure the number of molecules by reversing the
association process, dissociating the molecules back to their constituent atoms
which are detected via absorption imaging. We, therefore, only image molecules
which occupy the specific hyperfine state accessed through the STIRAP. We extract
the number from each absorption image either by summing pixels in a fixed region
of interest or by least squares fitting to a 2D Gaussian function. We find similar
numbers using both methods. Results plotted in this work show the numbers found
using the pixel summing algorithm.

We produce up to Nmol= 4000 ground-state molecules. By varying the hold
time between the ground-state molecule recapture and the dissociation for imaging,
we record the time evolution of the number of molecules remaining in the
dipole trap.

Measurement of trap frequencies. We measure the trap frequencies experienced
by the molecules by observing centre-of-mass oscillations in the optical potential.
We also compare the oscillation frequencies for the molecules to those of atoms in
the same potential61. For the results shown in Fig. 1, we find (ωx, ωy, ωz)= 2π ×
(181(2), 44(1), 178(1)) Hz, where z is in the direction of gravity.

Measurement of temperatures. The initial temperature of the molecules is
measured by ballistic expansion in free space. Due to the small number of mole-
cules, we can only image the cloud over an expansion time of ~2 ms. For com-
parison, we also measure the temperature of atoms by the same method in similar
trapping conditions. We find good agreement between the temperature of the
molecules and that of the atoms. We do not measure the variation of temperature
as a function of time during the loss measurement, as the loss of molecules further
limits the maximum expansion time available leading to unreliable temperature
measurements.

The rate Eq. (2), which we use to model the loss, depends on both Nmol(t) and T
(t). As described in the main text, we fit Nmol(t) for a fixed initial T, allowing the
temperature to evolve as a function of time within the constraints of the model. We
have also fitted our results assuming the molecules remain at their initial
temperature throughout the measurement. In this limit, we find that our results are
still consistent with a two-body process. For the results in Fig. 1, we extract k2= 3.8
(5) × 10−11 cm3 s−1.

Optical trapping and varying temperature. To vary the temperature, we adia-
batically compress the molecules prior to ground-state transfer. The lowest tem-
perature measurements we perform use the λ= 1550 nm ODT in which the
Feshbach molecules are initially prepared. The trap light is derived from a single-
mode IPG fibre laser, which is split into two beams with focused waists 80 and
98 μm crossing at an angle of 27.5°. There is a frequency difference of 100MHz
between the two beams originating from the acousto-optic modulators used to
control the beam intensities independently. In this trap we can access temperatures
from 0.85(5) to 1.9(1) μK for geometrically averaged trap frequencies �ω=ð2πÞ
between 79 and 149 Hz. This trap is used for all loss measurements with a tem-
perature of 1.9 μK or below.

To explore higher temperatures, we transfer the molecules to a different optical
potential with λ= 1064.52 nm. The light is generated by a Coherent Mephisto
master oscillator power amplifier, and the trap formed by crossing two beams with
focused waists of 64 and 67 μm (and 160MHz frequency difference) at an angle of
54°. To transfer the molecules between the two traps, we ramp the powers linearly
over 50 ms. In this trap, we performed measurements at temperatures of 2.6(2) and
3.3(3) μK. The result in Fig. 3 with T= 2.9(1) μK is performed with a mixed
wavelength potential, using one beam of the λ= 1064 nm trap crossed with one
beam of the λ= 1550 nm trap. This removes the possibility of loss or heating due
to the 100/160 MHz beat frequency between the two beams, and allows us to rule
out intensity-dependent losses from either trap.

Eliminating other sources of loss. Collisions of ground-state molecules with Rb
atoms, Cs atoms or molecules in excited states could also cause loss. Following
Feshbach association, we remove the remaining Rb and Cs atoms from the trap via
the Stern–Gerlach effect. During the separation the atoms do not experience a trap
for over 20 ms, which is sufficient to ensure that all atoms have left the region of
interest. The STIRAP process is typically 90% efficient, with the ‘lost’ molecules
likely being addressed by the pump light and transferred to the 3∏1, υ= 29, N= 1
electronically excited state. The lifetime for molecules in this excited state is 16(1) μs59,
following which the molecules may decay to either a3∑+ or X1∑+. We have per-
formed measurements with STIRAP efficiency between 79% and 93% with no
measurable change to the loss rate indicating that the molecule fraction which is
not transferred to the ground state plays no role in the subsequent loss. This is
consistent with similar observations in NaRb47.

We have observed narrow resonant loss features around 1064.48 nm which are
dependent on the laser frequency and intensity. We have investigated the intensity
and density dependence of these features and conclude that they result from two-
photon excitation of the molecules. All measurements using the 1064 nm trap are
performed at a wavelength of 1064.52 nm, sufficiently far from the narrow loss
features to remove them as a source of loss. No additional loss features were
observed when trapping with 1550 and 1064 nm light together.
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We also discount other light-scattering losses in our experiments. Loss of
molecules due to the absorption of black-body radiation has a rate of 10−5 s−1 for
RbCs at room temperature62. For laser light with λ= 1550 nm, the photon energy
is greater than the dissociation energy of the electronic ground state but far below
the potential minimum for the b3∏ state. Photons of wavelength 1064.52 nm are
above the potential minimum of the b3∏ state, but transitions to the accessible
vibrational levels are strongly suppressed due to small Franck–Condon factors63.
By performing measurements at these two trapping wavelengths, we demonstrate
that the loss we observe is independent of the wavelength of the trap light.
Moreover, by using a mixed-wavelength trap, we eliminate the possibility of
intensity dependent losses.

Internal state control and transfer. Following the ground-state transfer, we pulse
on microwaves to perform either a single or a pair of coherent π-pulses, trans-
ferring the molecules to a different rotational and/or hyperfine state. The micro-
wave transfer is performed with the optical trap off, and has unit efficiency56. We
tune the intensity of the microwaves such that the Rabi frequency is small enough
to avoid off-resonant excitation of nearby transitions, while still obtaining a π pulse
duration of <100 μs. To read out the number of molecules in an excited state we
must reverse the sequence of π-pulses to transfer back to the original state used for
STIRAP.

Measuring loss in higher rotational states requires a good understanding of the
molecular polarizability, and hence the trapping potential observed for each state.
The trapping light is linearly polarised parallel to the magnetic field, and in this
case the states chosen each have a linear ac Stark shift as a function of laser
intensity. This is necessary to avoid possible Landau–Zener-type loss associated
with avoided crossings between hyperfine states61. For each state, we tune the
intensity of the optical trap so that the molecules always experience the same trap
frequency and depth as they do in the ground state. We do not expect any
spontaneous emission from the rotationally excited states as the rate is ~10−5 s−1.

Preparation of an incoherent mixture. To generate a 50:50 mixture of molecules
in different rotational states, we drive a π/2-pulse on the transition between N= 0,
MF=+5 and N= 1, MF=+6 in free-space. This puts the molecules into a
coherent, equal superposition of the two states. The molecules are recaptured in the
λ= 1550 nm ODT, where the superposition rapidly dephases due to spatial var-
iation in the energy difference between the states64. Using Ramsey spectroscopy, we
observe no signs of coherence after a 10 μs hold in the ODT; this is four orders of
magnitude faster than the timescale of the loss. The density matrix which describes
the cloud following this dephasing contains only the diagonal elements and thus
can be considered a mixed state.

As the two states have different polarizabilities, αN = 1/αN = 0 ≈ 0.9, we cannot
tune the laser intensity to match the trap parameters to those before preparation
for both states. We have performed experiments where the trap frequency and
depth is matched for either N= 0 and N= 1, and we measure the same value of k2
in both cases.

Dispersion coefficients. Dispersion coefficients C6 arise from the dipole-dipole
interaction in second order and may be calculated using perturbation theory. For
the interaction of two RbCs molecules, they are dominated by rotational terms
involving the permanent molecular dipole moment. The necessary matrix elements
can be found in, for example, ref. 65. The result for the rotational ground state,
C6;rot ¼ μ4elec=6B, is well-known. For rotationally excited states, the diagonal part of
C6 varies with the projection quantum number MN and with partial wave L. There
are additional contributions to C6 from electronic dispersion and induction
interactions, which we take from ref. 66.

We calculate the C6 coefficients using accurate values for the RbCs electric
dipole moment μelec ¼ 1:225 D4 and rotational constant B= 490.173994MHz56.
For the rotational ground state the combination of rotational and electronic
contributions gives C6 ¼ 141000 Eha

6
0. For the rotationally excited state, we find for

L= 0: C6 ¼ 141000 Eha
6
0 for N= 1, MN= 0; C6 ¼ 96000 Eha

6
0 for N= 1, MN= 1;

and C6 ¼ 82000 Eha
6
0 for N= 2, MN= 2.
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