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Abstract

We develop a sticky hidden Markov model (HMM) with a Dirichlet distribution (DD) prior,

motivated by the problem of analyzing comparative genomic hybridization (CGH) data. As formulated

the sticky DD-HMM prior is employed to infer the number of states in an HMM, while also imposing

state persistence. The form of the proposed hierarchical model allows efficient variational Bayesian

(VB) inference, of interest for large-scale CGH problems. We compare alternative formulations of the

sticky HMM, while also examining the relative efficacy of VB and Markov chain Monte Carlo (MCMC)

inference. To validate the formulation, example results are presented for an illustrative synthesized data

set, and for speaker diarization from audio data (the first problem class for which the sticky HMM was

developed). Our main application is CGH, for which we consider data for breast cancer. For the latter,

we also make comparisons and partially validate the CGH analysis through factor analysis of associated

(but distinct) gene-expression data.

Index Terms

Infinite hidden Markov model, Hierarchical Bayesian modeling, Variational Bayesian, Multi-task Learn-

ing, DNA copy number

I. INTRODUCTION

Comparative genomic hybridization (CGH) yields data consisting of fluorescence intensity

ratios of test and reference DNA samples. The intensity ratios provide information about the

number of DNA copies in localized regions of a chromosome. Array CGH data analysis has

recently attracted increasing interest in both the biology and statistics communities. Specifically,

there is a growing need for algorithms that can automatically identify gains and losses in number
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of copies, and relate this to disease and illness.

A number of well-known methods strive to fulfill this need. For example, [1], [18], [19], [21],

[22] use segmentation to identify chromosomal segments with altered copy number. A variation

of a binary segmentation method [21], called circular binary segmentation (CBS), segments

the CGH data in each chromosome and computes the within-segment means. An edge filter is

applied in [19] to detect segments. Since there is also a clear dependence among the intensity

ratios of neighboring clones, [18] performs smoothing using the signs of neighboring data values,

inspecting the width and magnitude of the segments to detect regions of copy number change. A

disadvantage of such methods is that they cannot directly detect gains or losses. A recent paper

by [29] applies penalized matrix decomposition (PMD) for selecting important “clones” in array

CGH data. Nevertheless, the sequential information is not explicitly exploited in such a matrix

decomposition method, and the biological meaning of the selected “clones” are not assigned via

this method.

To make use of the physical dependence of the nearby fragments or “clones”, the hidden

Markov model (HMM) has been utilized by [10], [13] to analyze array CGH data, of which [10]

uses a traditional HMM employing Baum-Welch EM learning; [13] assigns biological meaning

to the latent states and implements a Bayesian HMM via an Metropolis-within-Gibbs algorithm.

The number of states must be preset in these two papers. However, this can lead to over- or

under-fitting if the underlying state structure is not modeled correctly.

Bayesian approaches have been investigated to automatically infer the number of states in an

HMM using Markov chain Monte Carlo (MCMC) [12] and reversible jumps [5], as well as a

nonparametric, infinite-state model that utilizes the hierarchical Dirichlet process (HDP) [26].

The latter method has proven effective in many applications [20]. To impose state persistence, [9]

proposes a sticky extension of HDP-HMM, allowing more robust learning of smoothly varying

dynamics. However, the lack of conjugacy between the two levels of Dirichlet processes and the

delta function in the sticky HDP-HMM [9] prohibit fast variational inference [2], [17], making

this approach computationally prohibitive when modeling very large data sets (of interest for

our CGH data).

Motivated by previous work, we develop a simplified form of the sticky HDP-HMM [9], called

the sticky hidden Markov model with Dirichlet distribution prior (sticky DD-HMM), and extend

the new model structure to analyze array CGH data in all chromosomes for multiple samples.
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Inference is performed efficiently via a variational Bayesian (VB) analysis [2], [17].

To validate the sticky HMM formulation, we first present example results on synthesized data

that is generated by a sticky-HMM, and real data associated with speaker diarization based on

audio data. The diarization problem was the first motivating problem for the sticky HMM [9],

and therefore it is also briefly considered here for the proposed new sticky-HMM formulation.

Another motivation for this example is that it has a clear definition of “truth”, aiding model

validation (this example also demonstrates that the proposed model is applicable to problems

beyond CGH analysis). The third data set we consider constitutes the motivating application of

this paper. Specifically, we consider CGH data associated with breast cancer. While there is no

explicit “truth” for this problem, the sticky-HMM results based on CGH data are compared to

complementary results manifested on associated gene-expression data. For that data we employ

a completely distinct modeling paradigm, based on factor-analysis formulations. Specifically, we

consider sparse Bayesian factor analysis [7] and a non-Bayesian penalized matrix decomposition

[29]. While these separate analyses on gene-expression data do not explicitly validate our CGH

analysis, there is a strong suggestion of biological correspondence.

The reminder of the paper is organized as follows. In Section II we review the learning of

HMMs with Dirichlet priors. In Section III we introduce the proposed sticky HMM for a single

data sequence, and make connections with related models. The proposed model is extended

for array CGH data analysis in Section IV, developing a “multi-task” model. The variational

Bayesian (VB) inference method is discussed in Section V. We demonstrate model performance

in Section VI, and conclude in Section VII.

II. REVIEW OF HIDDEN MARKOV MODEL WITH DIRICHLET PRIORS

A. Hidden Markov Model

The hidden Markov model (HMM) [24] is a generative statistical representation of sequential

data, with an underlying discrete Markovian process selecting state-dependent distributions from

which observations are drawn. Specifically, for a sequence of length T , an underlying “hidden”

state sequence S = (s1, s2, · · · , sT ) is drawn from p(st|st−1, · · · , s1) = p(st|st−1). The observed

sequence X = (x1, x2, · · · , xT ) is drawn as f(θst), where f(·) represents the observation model,

and θst is the set of parameters for the model indexed by the state at time t, st. Note that, given

the underlying states, the observations at each time are conditionally independent.
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Traditionally, the number of states associated with an HMM is initialized and fixed [24]. A

J-state HMM can be modeled as Ω = {W ,θ,w0}, where W is a J × J matrix with entry

wij representing the transition probability from state i to j; θ = {θ1, θ2, · · · , θJ} where θj

represents the observation-model parameters associated with state j; and w0 is a J-dimensional

probability vector defining the probability of being in each of the J states when performing the

first observation.

The data-generating process may be represented as

xt ∼ f(θst) ; t = 1, · · · , T

st ∼
⎧⎨
⎩

w0 = [w0,1, w0,2, · · · , w0,J ] if t = 1

wst−1 = [wst−1,1, wst−1,2, · · · , wst−1,J ] if t > 1
(1)

For given Ω, the joint probability of the observation and the underlying state sequence is

expressed as

p(X,S|W ,θ,w0) = w0,s1

T−1∏
t=1

wst,st+1

T∏
t=1

p(xt|θst) (2)

The data likelihood p(X|W ,θ,w0) can be obtained by integrating over the states using the

forward algorithm [24].

B. HMM with Dirichlet Distribution prior

The priors associated with w0 and the rows of W are typically Dirichlet distributions, since

these are conjugate to the multinomial likelihood. The standard Dirichlet distribution is written

as

p(w1, · · · , wJ |α1, · · · , αJ) =
Γ(

∑J
j=1 αj)∏J

j=1 Γ(αj)

J∏
j=1

w
αj−1
j (3)

with the mean and variance of an element, wj , represented as

E[wj] =
αj∑J
j=1 αj

, V[wj] =
αj(

∑J
j=1 αj − αj)

(
∑J

j=1 αj)2(
∑J

j=1 αj + 1)
(4)

To understand the properties of a draw from the Dirichlet distribution (DD), recall the “stick-

breaking” representation [25] for the draw w ∼ Dir(α1, . . . , αJ). We define α =
∑J

j=1 αj , and

g0 is a base probability vector with jth element g0j = αj/α. A draw w ∼ Dir(α1, . . . , αJ) may
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be constructed as

wi =
∞∑

k=1

hkδ(Zk = i) ; i = 1, · · · , J

hk = Vk

k−1∏
τ=1

(1 − Vτ ) , Vk = Beta(1, α) ; k = 1, · · · ,∞

Zk ∼ g0 ; k = 1, · · · ,∞ (5)

where δ(Zk = i) equals to one if Zk = i, and its zero otherwise. Hence w is built up as a sum

of probability vectors with all zeros and a single randomly selected one (defined by draws from

g0), with these probability vectors multiplied by the stick weights hk. Note that if α is small

then the draws from Beta(1, α) are such that only a relatively small number of sticks hk will

have significant weight, and hence with high probability a draw w will only possess a relatively

small number of components with significant mass (for large J). To simplify notation below,

the infinite-dimensional probability vector h constructed as above is denoted h ∼ Stick(α).

C. Infinite HMM with HDP prior

The above discussion motivates drawing w0 and the rows of W from Dir(α/J, . . . , α/J),

and setting J large. By setting α we place a prior on the number of anticipated states (via (5)),

and setting J large one may uncover the number of states required by the data. This idea has

motivated considering the limit J → ∞, yielding the infinite hidden Markov model (iHMM) [3].

It was subsequently shown [26] that the iHMM can be recast as a special case of the hierarchical

Dirichlet process (HDP).

A draw from a Dirichlet process (DP) may also be represented in stick-breaking form [14],

[25]

G =
∞∑

j=1

vjδθj
, v ∼ Stick(γ) , θj ∼ G0 (6)

where δθj
is a point measure concentrated at θj (each θj is termed an atom). Such a draw is

denoted G ∼ DP(γ,G0).

The DP is commonly used as a prior on the parameters of a mixture model with unknown

number of mixture components (see Figure 1(a)). This sampling process is often described via

a discrete indicator variable sn ∼ v, indicating which atom generates xn ∼ f(θsn).
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Fig. 1. (a) DPMM in which v ∼ Stick(γ), θj ∼ H , sn ∼ v, and xn ∼ f(θsn). (b) HDP mixture model with v ∼ Stick(γ),
wm ∼ DP(α, v), θj ∼ H , sm,n ∼ wm, and xm,n ∼ f(θsm,n). (c) Sticky HDP-HMM where the state evolves as st+1 ∼ wst ,
wj ∼ DP(α + κ, (αv + κδj)/(α + κ)), v ∼ Stick(γ), and xt ∼ f(θst). The original HDP-HMM has κ = 0.

The HDP [26] extends the DP to cases in which groups of data are produced by related, yet

unique, generative processes. In the HDP structure, the base probability measure, G0, is itself

drawn from a Dirichlet process. The formal notation is as follows,

Gm ∼ DP(α,G0) , G0 ∼ DP(γ,H) (7)

where Gm represents the prior distribution associated with group m. The HDP is a two-level

model, where the distribution on the atoms is shifted from the continuous H to the discrete (but

countably infinite) G0. An alternative representation of the model is

Gm =
∞∑

j=1

wm,jδθj
, wm ∼ DP(α,v) , G0 =

∞∑
j=1

vjδθj
, v ∼ Stick(γ) , θj ∼ H (8)

Observation xm,n is associated with one of the global set of discrete parameters via an indicator

random variable sm,n ∼ wm; see Figure 1(b).
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The HDP can be used to develop an HMM with an unknown state space [26]. For this HDP-

HMM, each HDP group-specific distribution, wm, is a state-specific transition distribution and,

due to the infinite state space, there are infinite many groups. Let st denote the state of the Markov

chain at time t. As is done typically, s1 ∼ w0. For t > 1, we have the Markov process st ∼ wst−1 ,

so that st−1 indexes the group to which xt is assigned. The current HMM state st then indexes

the parameter θst used to generate observation xt (See Figure Figure 1(c)). According to (8), the

HDP formulation effectively selects the number of states and their observation parameters via

the top-level DP and uses the mixing weights as the prior for a second-level Dirichlet distribution

from which the transition probabilities are drawn. Importantly, since G0 is composed of a discrete

set of atoms, the state-dependent probabilities are shared across the different wm. The lack of

conjugacy between the two levels in the model, however, means that a truly variational solution

[2], [17] does not exist.

D. Sticky HMM with HDP Prior

In the HDP-HMM construction, by sampling wj ∼ DP(α, v), the HDP encourages states to

have a similar transition distribution (E[wj,i] = vi). However, it does not differentiate self-

transitions from moves between states. In many applications one would like to be able to

incorporate prior knowledge that slow, smoothly varying dynamics are probable (i.e., that it

is likely to stay in the same state for prolonged time periods). When modeling systems with

state persistence, traditional HMM design may lead to many redundant (essentially duplicate)

states into which transitions occur, with the effect of manifesting a persistence in the observation

statistics. However, such models impede our ability to identify a single dynamical model which

best explains the observations (it undermines interpretability). Therefore, [9] proposed to instead

sample transition distributions wj as follows:

wj ∼ DP(α+ κ,
αv + κδj
α+ κ

) (9)

Here, (αv+κδj) indicates that an amount κ > 0 is added to the jth component of αv. When κ = 0

the original HDP-HMM is recovered. Because positive κ values increase the prior probability

E(wj,j) of self-transitions, [9] referred this extension as the sticky HDP-HMM (the model favors

“sticking” in the same state for prolong periods).
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The inference algorithm is simplified if we introduce the auxiliary random variable zt as

follows:

zt ∼ Ber(
α

α+ κ
) , st ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w0 if t = 1

δst−1 if t > 1 and zt = 0

v if t > 1 and zt = 1

(10)

where Ber(·) represents the Bernoulli distribution. In practice, the gamma prior and beta prior

are respectively put on α+ κ and κ/(α+ κ), which allows the degree of self-transition bias to

be strongly influenced by the statistics of observed data, as desired. Due to the delta function

and the HDP structure, the proposed sticky model was implemented by a slice sampler in [9].

However, such MCMC [12] inference may be impractical computationally when considering a

large dataset of sequential data.

III. STICKY HMM WITH DIRICHLET DISTRIBUTION PRIOR

A. Model Construction

We seek a simplified implementation of the sticky HDP-HMM, affording the opportunity to

avoid MCMC. Specifically, the proposed hidden Markov model, termed the sticky DD-HMM,

is represented as

xt ∼ f(θst) ; t = 1, · · · , T

st ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w0 if t = 1

ust−1 if t > 1 and zt = 0

wst−1 if t > 1 and zt = 1

; t = 1, · · · , T

zt ∼ Ber(βst−1) ; t = 2, · · · , T

βj ∼ Beta(c0, d0) ; j = 1, · · · , J

w0 ∼ Dir(α0/J, · · · , α0/J)

wj ∼ Dir(α/J, · · · , α/J) ; j = 1, · · · , J

uj ∼ Dir(γj,1, · · · , γj,J) , γj,j � γj,j′ , j′ �= j ; j = 1, · · · , J

θj ∼ H ; j = 1, · · · , J (11)
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A graphical representation of this model is depicted in Figure 2. When c0/(c0 + d0) → 0 the

original DD-HMM described in Section II-B is approximated. For future notational convenience,

below we represent

st ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w0 if t = 1

ust−1 if t > 1 and zt = 0

wst−1 if t > 1 and zt = 1

; t = 1, · · · , T (12)

zt ∼ Ber(βst−1) ; t = 2, · · · , T

as st ∼ S-HMM({wj,uj, βj}J
j=1,w0, st−1).

Recall from (5) that draws w ∼ Dir(α/J, · · · , α/J) will have components with an appreciable

number of components defined by Stick(α), and hence a relatively small α setting will allow

inference on which subset of J possible states are actually needed based on the data (J may be

set large). Further, from (5), a draw uj ∼ Dir(γj,1, . . . , γj,J) for γjj � γj,j′ for j′ �= j will favor

uj having large probability mass at component j and small mass for all j′ �= j (we refer to this

as an approximation to a point measure – delta function – at point j).

In (11) the parameter βj controls the degree of “stickiness” for state j (i.e., the probability

of staying in state j), and this is inferred by the data (with a beta prior imposed). The state-

dependent βj therefore plays the role of α/(α + κ) in (10), and can be different for different

states in this model. Further, the uj in (11) play the role of the delta function in (10). Therefore,

the model in (11) has many of the characteristics of the original sticky iHMM, but it yields

simplified inference, as discussed further below.

B. Relationship between sticky DD-HMM and sticky HDP-HMM

Comparing the sticky HDP-HMM in [9] to the proposed sticky DD-HMM, there are two main

modifications: i) using the DD prior to replace the HDP prior; ii) using a special DD construction

to approximate the delta function in (10).

1) DD vs HDP: In HDP structure as shown in (8), the draw wj ∼ DP(α,v) may be presented

in stick-breaking form, with the ith element of wj construct as wj,i =
∑∞

k=1 hj,kδ(Zj,k = i), with

hj ∼ Stick(α) and Zj,k ∼ v. We may also truncate the draw v ∼ Stick(γ) to J sticks (denoted

vJ ∼ StickJ(γ)), for large J [14]. Note that for the HMM transition matrix W is square, and

therefore we consider J rows. Using these representations, the truncated HDP construction in
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Fig. 2. Graph of the sticky DD-HMM. The detailed generative process is described in (11).

HDP-HMM may be represented as

wj,i =
∞∑

k=1

hj,kδ(Zj,k = i) ; i = 1, · · · , J ; j = 1, · · · , J

hj ∼ Stick(α) ; j = 1, · · · , J

Zj,k ∼ v ; k = 1, · · · ,∞ ; j = 1, · · · , J

vJ ∼ StickJ(γ) (13)

Note that we truncate Stick(γ) to J sticks [14], but do not truncate Stick(α). In other words,

although the transition matrix W is truncated, the h vector is still an infinite vector.

By comparing (13) to (5) we observe that the difference between the truncated HDP-HMM

(with truncation only for StickJ(γ)) is that in the HDP-HMM the atoms are drawn from vJ ,

which is drawn from Stick(γ); in the DD-HMM, vJ is essentially fixed as (1/J, . . . , 1/J) (Here

g0 = [1/J, . . . , 1/J ]T). It is felt that this is a very modest difference between the models, with

the DD-HMM construction having the advantage of simplified inference (particularly, variational

Bayesian inference [2] is tractable, of interest for large-scale problems).

The proposed DD-HMM is non-parametric, in that setting a large J allows the model to infer

the proper number of states from the data, analogous to studies of the truncated stick-breaking

representation [14]. Setting a large J does not imply that we believe that there are actually J

states, since from (5) only a relatively small set of components in wj will have appreciable
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amplitude (the same type of motivation for the stick-breaking view of DP and HDP). We also

emphasize that the stick-breaking representation of a draw from a Dirichlet distribution has

been introduced above to make the connection between the proposed model and a truncated

representation of HDP-HMM. However, when actually performing inference, it is often simpler

to just draw directly from Dir(α/J, · · · , α/J).

2) Special DD construction and relationship to delta function: To impose state persistence,

[9] introduced a binary switch variable zt ∼ Ber( α
α+κ

) to control the state indicator st. If zt =

0, st = δst−1; otherwise, st is drawn from wst−1 . However, such a prior cannot be directly

implemented by variational Bayesian (VB) inference [2], [17].

In (11), we use a discrete distribution vector ust−1 ∼ Dir(γst−1,1, · · · , γst−1,J) with γst−1,st−1 �
γst−1,j and j �= st−1 to sample the state indicator st if zt = 0. According to (4), with such special

hyper-parameters, E[ust−1,st−1 ] → 1 and V[ust−1,st−1 ] → 0, therefore, a draw st ∼ ust−1 will likely

be st−1. In this manner we approximate the point measure δst−1 .

IV. MULTI-TASK ANALYSIS FOR CGH DATA

For the motivating CGH problem of interest here, one typically has access to data from all 23

chromosomes. We wish to learn a sticky HMM for each of these chromosomes, and recognize

that there is likely statistical inter-relationships between the chromosomes that may be exploited.

We therefore wish to learn sticky HMMs for data sets m = 1, . . . ,M , for M = 23, and the

data from chromosome m is termed learning task m. The learning of sticky HMMs for all

M = 23 tasks jointly is referred to as multi-task learning [6]. We here extend the discussion in

the previous sections to sticky HMM learning in a multi-task setting. Similar MTL techniques

have been successfully applied to information retrieval [4] and computer vision [27], as well as

music (sequential data) analysis [20]. For the CGH problem of interest, since the CGH data in

one chromosome are limited, rather than building HMMs for each task (chromosome) separately,

it is desirable to appropriately share information (“strength”) across the M = 23.

In the proposed MTL model, each of the M = 23 chromosomes is assumed to have unique

state-transition statistics, but the state-dependent observation statistics are shared across the M

tasks. This implies that the different chromosomes share the same underlying states, but the state-

dependent transition probabilities are chromosome independent. The state-dependent observations

for the CGH data are assumed to be drawn from a Gaussian model [13], and the overall model
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is summarized as

xt ∼ Norm(μ
s
(m,l)
t

, σ−1

s
(m,l)
t

) ; t = 1, · · · , Tm ; m = 1, · · · , 23 ; l = 1, · · · , L

s
(m,l)
t ∼ S-HMM({w(m)

j ,u
(m)
j , βj}J

j=1,w
(m)
0 , s

(m,l)
t−1 ) ;

t = 1, · · · , Tm ; m = 1, · · · , 23 ; l = 1, · · · , L

w
(m)
0 ∼ Dir(α0/J, · · · , α0/J) ; m = 1, · · · , 23

w
(m)
j ∼ Dir(α/J, · · · , α/J) ; j = 1, · · · , J ; m = 1, · · · , 23

u
(m)
j ∼ Dir(γj,1, · · · , γj,J) , γj,j � γj,j′ , j′ �= j ; j = 1, · · · , J ; m = 1, · · · , 23

βj ∼ Beta(c0, d0) ; j = 1, · · · , J

(μj, σj) ∼
⎧⎨
⎩

δ0 × Ga(b(0), λ(0)) if j = 1

Norm(r(1), 1/(t(1)σj)) − Ga(b(1), λ(1)) if j > 1
; j = 1, · · · , J (14)

As discussed above, each chromosome has its own state-transition statistics, defined by w
(m)
0 ,

{w(m)
j }j=1,J and {u(m)

j }j=1,J with chromosome m ∈ {1, . . . , 23}. The state-dependent “sticki-

ness”, defined by βj for state j, is shared across the 23 chromosomes, as are the observation

statistics defined by (μj, σj). Note that state j = 1 has an imposed mean of zero, and this corre-

sponds to the no/low copy number state. In this model, we learn DD-HMMs with independent

state transition matrixes for each of the tasks (chromosomes) as well as share the same state set

across all tasks.

V. VARIATIONAL BAYESIAN INFERENCE

Bayesian inference seeks to estimate the posterior distribution of the latent variables Ψ , given

the observed data X and hyper-parameters Υ:

p(Ψ|X,Υ) =
p(X|Ψ,Υ)p(Ψ|Υ)∫
p(X|Ψ,Υ)p(Ψ|Υ)dΨ

(15)

where the denominator
∫
p(X|Ψ,Υ)p(Ψ|Υ)dΨ is the model evidence (marginal likelihood).

Here we employ variational Bayesian (VB) [2], [17] inference as a compromise between accuracy

and efficiency (the detailed reason for selecting VB will be discussed further in Section VI). VB

inference seeks a variational distribution q(Ψ) to approximate the true posterior distribution of
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the latent variables p(Ψ). The expression

log p(X|Υ) = L(q(Ψ)) + KL(q(Ψ) ‖ p(Ψ|X,Υ)) (16)

with

L(q(Ψ)) =

∫
q(Ψ) log

p(X|Ψ,Υ)p(Ψ|Υ)

q(Ψ)
dΨ (17)

forms a lower bound for log p(X|Υ). Accordingly, the goal of minimizing the KL divergence

between the variational distribution and the true posterior reduces to adjusting Ψ to maximize

(17).

VB inference [2], [17] assumes a factorized q(Ψ), i.e. q(Ψ) =
∏

k qk(Ψk), typically with the

same form as employed in p(Ψ|X,Υ). The mean-field variational distribution for the model

described in (14) is,

q(Ψ) = [
M∏

m=1

q(w
(m)
0 )][

M∏
m=1

J∏
j=1

q(u
(m)
j )][

M∏
m=1

J∏
j=1

q(w
(m)
j )][

J∏
j=1

q(βj)]

·[
M∏

m=1

L∏
l=1

q(s
(m,l)
1 )

Tm∏
t=2

q(s
(m,l)
t )][

M∏
m=1

L∏
l=1

Tm∏
t=2

q(z
(m,l)
t )][q(σ1)

J∏
j=2

q(μj, σj)] (18)

A general method for performing variational inference for conjugate-exponential Bayesian

networks outlined in [28] is as follows: For a given node in a graph, write out the posterior as

though everything were known, take the logarithm, the expectation with respect to all unknown

parameters and exponentiate the result. Since it requires computational resources comparable to

the expectation-maximization (EM) algorithm, variational inference is fast relative to MCMC

methods [12].

The update equations for the variational posteriors are listed as follows:

• q(w
(m)
0 ) = Dir(α̃0); where α̃0,i = α0/J+ < s

(m,·)
1,i >, with < s

(m,·)
1,i > denoting the expected

number of state indicators {s(m,l)
1 }L

l=1 with outcome i, for i = 1, · · · , J .

• q(u
(m)
j ) = Dir(γ̃j); where γ̃j,i =

∑L
l=1

∑Tm−1
t=1 < s

(m,l)
t,j >< s

(m,l)
t+1,i >< z

(m,l)
t,0 >, with

< z
(m,l)
t,0 > denoting the expected number of binary switch indicator z(m,l)

t with outcome 0.

• q(w
(m)
j ) = Dir(α̃j); where α̃j,i = α/J +

∑L
l=1

∑Tm−1
t=1 < s

(m,l)
t,j >< s

(m,l)
t+1,i >< z

(m,l)
t,1 >.

• q(βj) = Beta(c̃j, d̃j); where c̃j = c0 +
∑M

m=1

∑L
l=1

∑Tm

t=2 < s
(m,l)
t−1,j >< z

(m,l)
t,1 > and d̃j =

d0 +
∑M

m=1

∑L
l=1

∑Tm

t=2 < s
(m,l)
t−1,j >< z

(m,l)
t,0 >.
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• q(s(m,l)) ∝ exp
[
< logw

(m)

0,s
(m,l)
1

> +[
∑Tm−1

t=1 < z
(m,l)
t+1,0 >< log u

(m)

s
(m,l)
t ,s

(m,l)
t+1

>] + [
∑Tm−1

t=1 <

z
(m,l)
t+1,1 >< logw

(m)

s
(m,l)
t ,s

(m,l)
t+1

>][
∑Tm

t=1 < log p(x
(m,l)
t |μ

s
(m,l)
t

, σ
s
(m,l)
t

) >]
]
; where the detailed

expressions for < logw
(m)
i′,j >, < log u

(m)
i,j > and < log p(x

(m,l)
t |μj, σj) > with i′ = 0, · · · , J

and i, j = 1, · · · , J can be referred to [16], [23].

• q(z
(m,l)
t = 0) ∝ exp

[
< log(1 − β

s
(m,l)
t

) > + < log u
(m)

s
(m,l)
t−1 ,s

(m,l)
t

>
]
, and q(z

(m,l)
t = 1) ∝

exp
[
< log β

s
(m,l)
t

> + < logw
(m)

s
(m,l)
t−1 ,s

(m,l)
t

>
]
, for t = 2, · · · , Tm; where < log(1 − βj) >=

ψ(d̃j) − ψ(c̃j + d̃j) and < log βj >= ψ(c̃j) − ψ(c̃j + d̃j) with j = 1, · · · , J .

• q(σ1) = Ga(b̃1, λ̃1), and q(μj, σj) = Normal(r̃j, 1/(t̃jσj)) − Ga(b̃j, λ̃j) for j = 2, · · · , J ;

where the detailed expressions for r̃i,t̃i,b̃j and λ̃j with i = 2, · · · , J and j = 1, · · · , J can

be referred to [16].

VI. EXPERIMENTAL RESULTS

We present experimental results on three problems: illustrative synthetic data; audio diarization,

motivated by the first application of the sticky HMM [9]; and analysis of comparative genomic

hybridization (CGH) data for breast cancer. The second example allows examination of model

performance on a real problem for which there is “truth”. The CGH problem is the principal

motivating application of this paper, and comparisons are made to use of more traditional HMMs

for this problem [13]. We also partially validate the sticky-HMM CGH results through a Bayesian

factor analysis [7] of accompanying gene-expression data.

A. Synthetic Data

We synthesized data from the following sticky HMM:

W =

⎡
⎢⎢⎢⎣

0 1/2 1/2

1/2 0 1/2

1/2 1/2 0

⎤
⎥⎥⎥⎦ , w0 =

⎡
⎢⎢⎢⎣

1/3

1/3

1/3

⎤
⎥⎥⎥⎦ , β =

⎡
⎢⎢⎢⎣

0.05

0.03

0.03

⎤
⎥⎥⎥⎦

μ1 = 0 , μ2 = 60 , μ3 = −60 , σ1 = σ2 = σ3 = 0.01 (19)

From this model we generated a sequence of length T = 400. The generated observation sequence

is shown in Figure 3(a). Note that this example is very similar to the simulation example shown

in [9].
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To apply the DD-HMM and sticky DD-HMM models on this data, we set the truncation level

as J = 10. We place Beta(0.1, 0.9) priors on each βj , Dir(γj) with γj,j = 1 and γj,j′ = 10−3 for

j′ �= j priors on each uj , and Dir([10−3/J, · · · , 10−3/J ]) priors on w0 and on each wj . All the

above hyper-parameters have not been optimized or tuned.
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Fig. 3. Synthetic example. (a) Generated observation sequence, (b) DD-HMM using VB inference, (c) sticky HMM using
MCMC inference, (d) sticky DD-HMM using VB inference. The colored symbols denote ground truth: red ∗ represents the
state with μ1 = 0, green ◦ represents the state with μ2 = 60, blue � represents the state with μ3 = −60. Each observation is
assigned to a state index (J = 10), with the index shown along the vertical axis.

When employing MCMC inference, atoms vary across the collected samples from the posterior

[15], therefore, we cannot get an overall state label decision based on all collected samples; using

VB inference, atoms are fixed in the posterior computation, and we obtain a posterior distribution

on st, i.e. < st,j > for j = 1, · · · , J , and approximate the membership for each measurement by

assigning it to the state with largest probability. Therefore, besides the relatively fast computation,

another advantage of VB inference is the avoidance of the “label-switching” problem associated
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with MCMC [15]. Figures 3(b) and (d) present the “hard” (most likely) decisions employed to

provide state labels (the Bayesian analysis can also yield a “soft” decision in terms of a full

posterior distribution) for the generated sequential data via DD-HMM and sticky DD-HMM using

VB inference. To indicate the ground truth, different symbols and colors are used to represent

different states in the generated observation. In Figure 3(c) is shown the fraction of times within

the collection samples that a given portion of the signal share the same underlying state. As

demonstrated in Figure 3(b), without an extra self-transition bias, the original DD-HMM using

VB inference rapidly transitions among redundant states. Although not shown here for brevity,

the DD-HMM using MCMC has similar behavior. By contrast, from the results in Figures 3(c)

and (d), both MCMC and VB results via sticky HMM are in agreement with ground truth, which

infer a proper number of states and correct membership of each observation.

All experiments presented here have been performed in non-optimized software written in

Matlab, on a Pentium PC with 1.73 GHz CPU and 4G RAM. The above MCMC results were

computed using 5000 burn-in iterations and 5000 collection iterations, which took about 2 hours;

VB results converged after about 50 VB iterations, which required less than 10 minutes.

B. Audio Data

Provided with a spoken document consisting of multiple speakers, speaker diarization is the

process of segmenting the audio signal into contiguous temporal regions, and within a given

region a particular individual is speaking [9]. Further, one also wishes to group all temporal

regions in which a specific individual is speaking. The total number of speakers is unknown in

advance, and should be inferred from the data.

Here we consider identification of different speakers from a recording of broadcast news,

which may be downloaded with its ground truth1. The spoken document has a length of 122.05

seconds, and consists of three speakers. Figure 4(a) presents the audio waveform with a sampling

rate of 16000 Hz. The ground truth indicates that Speaker 1 talked within the first 13.77 seconds,

followed by Speaker 2 until the 59.66 second, then Speaker 1 began to talk again until 74.15

seconds, and Speaker 3 followed and speaks until the end.

1http://www.itl.nist.gov/iad/mig/tests/rt/2002/index.html
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Fig. 4. Audio data under consideration. (a) Original audio waveform, (b) representation in terms of MFCC features.

For the feature vector, we computed the first 19 Mel Frequency Cepstral Coefficients (MFCCs)

[11] over a 30 ms window every 20 ms, and defined the observations as averages over every 200

ms block, without overlap. We used the first 19 MFCCs because the high frequency content of

these features contained little discriminative information. The software that we used to extract

the MFCCs feature can be downloaded online2. There are 610 feature vectors in total, shown in

Figure 4(b); the features are normalized to zero mean and the standard deviation is made equal

to one. In the following experiment, we used multivariate Gaussian (not univariate Gaussian) to

characterize the feature vectors, and put the corresponding multivariate Gaussian and Wishart

priors on the mean and precision parameters.

The hyperparameters are set as in Section VI-A. The results in Figure 5 are shown in the

same style as that of Figure 3, where different symbols and colors in Figure 5(a) and (c)

represent different speakers; and Figure 5(b) shows the similarity matrix across all observations.

Figure 5 demonstrates that the sticky HMM implemented using MCMC and VB inference yield

comparably good segmentation performance, with results in close agreement with ground truth.

The experiments were performed on the same PC mentioned in Section VI-A. The MCMC

results with 5000 burn-in iterations and 5000 collection iterations took nearly 3 hours; while

VB results with 50 VB iterations just took about 10 minutes. Note that the form of the sticky

HMM developed here is motivated by but distinct from that in [9], for which a distinct form of

2http://www.ee.columbia.edu/∼dpwe/resources/matlab/rastamat/
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MCMC inference was employed (VB analysis was not performed in [9]).
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Fig. 5. Segmentation results for the audio recording. The colored symbols in (a) and (c) denote ground truth: red ∗ represents
Speaker 1, green ◦ represents Speaker 2, blue � represents Speaker 3. Each MFCC feature vector is assigned to a state index
(J = 10), with the index shown along the vertical axis. (b) denotes the fraction of times within the collection samples that a
given portion of the observation sequence shares the same underlying state. (a) DD-HMM using VB inference, (b) Sticky HMM
using MCMC inference, (c) Sticky DD-HMM using VB inference.

C. CGH Data

We examine the performance of the sticky DD-HMM on a breast cancer data set described

in [8] and available online3. The breast cancer data is composed of L = 89 tissue samples for

which both array CGH and gene expression measurements are available. There are in total 22215

gene-expression measurements and 2149 CGH measurements. We apply the proposed sticky

DD-HMM to analyze the CGH data, and make comparisons to the original DD-HMM and the

3http://icbp.lbl.gov/breastcancer/
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Bayesian HMM proposed in [13], for which the codes are included in the Bioinformatics toolbox

3.3 of Matlab software4. As a comparison/validation of the CGH data, the corresponding gene

expression data are analyzed via two factor-analysis formulations: sparse Bayesian factor analysis

(SBFA) [7] and the related (non-Bayesian) Penalized Matrix Decomposition (PMD) method [29].

All Bayesian results are presented using VB inference; for the size of this problem (with data

from all chromosomes analyzed jointly) MCMC inference is very expensive computationally.

In the following experiments we set the state truncation level to J = 15 (similar results were

found for larger truncations). The hyper-parameters for the sticky DD-HMM are: α0 = α = 10−3;

γj,j = 1 and γj,j′ = 10−3 for j′ �= j; c0 = 0.1 and d0 = 0.9; b(0) = 1.5 and λ(0) = 0.015; r(1)

is set to be the mean of all CGH observations, t(1) = 0.01, b(1) = 1.5 and λ(1) = 1.5t(1). All

these hyper-parameters have not been optimized or tuned, and the results are relatively invariant

to “reasonable” perturbation of these parameters.

The proposed model learns the posterior state-transition matrices of each chromosome w(m) for

m = 1, · · · , 23 simultaneously, and in so doing infers an estimate of the proper number of states

(using the multi-task framework of Section IV). As shown in Figure 6, although we initialized

the truncation level to J = 15, for the CGH data only four states are inferred. As indicated in the

sticky DD-HMM described in (14), for the first state μ1 = 0 (corresponding to no or a low level

of copying); the inferred posterior means of μi for i = 2, 3, 4 are r̃2 = −0.3361, r̃3 = 0.2937

and r̃4 = 0.6024. The second state corresponds to a copy-number reduction state, the third

state corresponds to a small copy-number increase, and the fourth state corresponds to marked

copy-number amplification. By contrast, the original DD-HMM, without a constraint on the first

state and without stickiness, inferred 7 states, of which the posterior means are r̃1 = 0.0063,

r̃2 = −0.1714, r̃3 = 0.2116, r̃4 = 0.3712, r̃5 = −0.2532, r̃6 = 0.5534 and r̃7 = −0.3651. Thus

three states corresponds to copy number loss state, and two corresponds to small copy number

gain state, as computed via DD-HMM (constituting the state redundancy required to manifest

stickiness in the observation statistics). The inferred four states of the sticky-HMM is consistent

with the biologically motivated and imposed four states employed in [13].

In CGH data analysis, we desire the assignment of state labels to each CGH fragment, and

wish to detect the copy loss or gain based on the state labels. Here we employed the Bayesian

4http://www.mathworks.com/products/bioinfo/demos.html
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Fig. 6. Mean posterior state-transition matrices of each chromosome, w(m) with m = 1, · · · , 23, inferred via the sticky
DD-HMM. The plots are meant to visualize matrices, where the green box reflects the relative probability strength (where there
is no green square, the probability is zero). Four meaningful states are inferred, and in the model a state truncation level of
J = 15 was employed.

HMM [13], DD-HMM and sticky DD-HMM to compare state labeling performance. In [13] the

authors explicitly imposed four states, for which the mean parameter μi for i = 1, 2, 3, 4 has the

constraint μ1 < μ2 < μ3 < μ4. The priors for the means are: μ1 ∼ Norm(−1, τ 2
1 ) · δ(μ1 < −ε),

μ2 ∼ Norm(0, τ 2
2 ) · δ(−ε < μ2 < ε), μ3 ∼ Norm(0.58, τ 2

3 ) · δ(ε < μ3 < 0.58), and [μ4|μ3, σ
−1
3 ] ∼

Norm(1, τ 2
4 ) · δ(< μ4 > μ3 +3σ3), where the parameter ε needs to be set in [13], and the results

may be sensitive to how ε is set. Such a prior structure also introduces some difficulties for

inference, and the computationally expensive Metropolis-Hastings (MH) method [12] is used

within Gibbs sampling [13]. In addition, [13] learns independent HMMs for the CGH data in
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each chromosome separately; the MTL approach developed in Section IV was not considered

in [13]. Since the four states are fixed, MCMC results via the Bayesian HMM [13] yield state

labels based on collected samples; for the other two models considered (DD-HMM and sticky

DD-HMM), for which VB inference is employed, a “hard” (most likely) decision is employed

to label the hidden states, as discussed in Section VI-A. Figure 7 presents the state labels for

example array-CGH profiles of samples from chromosome 1, as inferred by the three models.

The horizontal axis in these plots denotes the index of the DNA fragments or “clones”.

From Figure 7 we make the following subjective observations, with more quantitative results

presented below. The model developed in [13], corresponding to (a) in Figure 7, a priori imposes

four states. It appears that this model is not particularly discriminating in the underlying states

across the chromosome. For example, consider sample s0035 (third from left, top row). Although

the CGH value appears to noticeably increase with CGH position index (across the horizontal

axis), almost all CGH values associated with this chromosome and sample are assigned to the

same state. Similar phenomenon is exhibited on other samples from this chromosome (shown

in the figure), and from other chromosomes (not shown here, for brevity).

By contrast, the DD-HMM model, corresponding to (b) in Figure 7, is far more discriminating

in the underlying states (more state diversity, in general, as a function of position index). However,

because this model is not sticky, there is quick changing of states even where the CGH values are

not changing significantly in strength (e.g., larger position indices for sample s0077, the left-most

sample in the bottom row). This phenomenon appears to manifest redundant (superfluous) states

to mitigate the non-stickiness, thereby undermining model interpretability. This has motivated

the proposed sticky HMM, and the large scale of this problem has motivated a formulation that

admits a VB solution.

The proposed sticky HMM results are shown in (c) of Figure 7. Note that this model yields

a more diverse state usage than the model considered in (a), but the inferred states appear to

manifest the desired stickiness. For example, sample b0499 (second from left, top row) manifests

clear regions defined by three different states, contiguously partitioned as a function of position

index. The states appear to capture well the relative CGH intensity. Returning to sample s0077,

note that all the CGH values beyond index 70 along the horizontal are assigned to a single state

(unlike the results in Figure 7 (b)).

There is no explicit “truth” available for the CGH data, and therefore we use an associated but
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Fig. 7. State labels for example array-CGH profiles of chromosome 1. (a) Bayesian HMM [13], (b) DD-HMM, (c) Sticky
DD-HMM. The colored symbols denote different states: the normal state is represented via black ◦ for the three models; one
copy loss state inferred via Bayesian HMM and sticky DD-HMM, represented by red �, and two inferred via DD-HMM,
represented by red and yellow �; one small copy gain state inferred via Bayesian HMM and sticky DD-HMM, represented by
green �, and two inferred via DD-HMM, represented by green and blue �.
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independent data set based on gene-expression values on the same samples. Further, to analyze

these gene-expression data we employ two established methods: a Bayesian sparse factor analysis

(FA) model [7] and the related (but non-Bayesian) PMD method developed in [29].

The gene-expression data Y ∈ R
N×L is normalized to zero mean in each row, where each

row represents a separate gene, and the columns correspond to different samples. The FA model

seeks to factorize the data matrix into the form Y = AS + E, where A ∈ R
N×K is the factor

loading matrix, S ∈ R
K×L is the factor matrix, each row being a factor. Here N is the number

of genes and K is the number of factors. Typically one simply sets K [7], with K 
 N ;

E ∈ R
N×L is the error/noise matrix, addressing those aspects of Y not captured in the factors.

For the data considered N = 22215 and L = 89.

For gene-expression data analysis, one usually imposes sparseness priors on the factor loading

matrix, shrinking most of the elements to be near zero. A “spike-slab” sparseness construction

is used in [7]. As discussed in [7], since factor loading A is “sparse”, which means many of

the elements of A are close to zero, each column ideally will represent a particular biological

“pathway”, composed of a relatively small number of relevant genes related to a given latent

factor, which correspond to those having factor loadings not close to zero. In contrast, PMD

employs a non-Bayesian method to achieve the same goal. In the PMD method, the matrix Y is

approximated as Ŷ =
∑K

k=1 ξkUkΛk by minimizing ‖Y − Ŷ ‖2
F subject to sparseness penalties

on Uk and Λk. When the PMD is applied using an �1 penalty on Uk but not on Λk, a method

for sparse principle components results. In this way, ξkUk corresponds to factor loading of factor

k, and Λk corresponds to factor score.

In the two factor models, the (sparse) factor-loading matrix A yields the (typically relatively

small) subset of genes associated with a given “pathway”, and these genes may be linked to

regions on the 23 chromosomes. The objective is to examine whether the genes responsible

for the inferred pathways reside at portions of the chromosomes at which “interesting” activity

(raised or lowered level of copying) is revealed via the aforementioned CGH analysis.

Figure 8 presents results in which the gene-expression analysis was performed via FA [7] (very

similar gene-expression results were found using PMD [29] instead of FA, and are therefore

omitted for brevity). The top two figures display posterior probabilities of each CGH position

selecting the normal state (State 1). Specifically, the average probabilities across all samples
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are 1
L

∑L
l=1 < s

(m,l)
t,1 >, and the sigmoid transformation is 1

1+exp[−2(
PL

l=1<s
(m,l)
t,1 >− 1

L

PL
l=1<s

(m,l)
t,1 >)]

;

< s
(m,l)
t,1 > represents the posterior expectation of state indicator s(m,l)

t with outcome 1, and

parameter L = 89 denotes the total number of samples. The lower the probability of a CGH

being in State 1, presumably the more important the CGH measurements are, since the CGH

fragments with copy number losses or gains might be relevant to the breast cancer associated

with these data. We observe that the positions of informative (non-State 1) CGH data and

inferred important genes are consistent. Specifically, those regions of the chromosome that have

a low probability of being in State 1 are also regions (generally) for which the associated genes

contribute to the important factors (in Figure 8 we plot the factor loadings with associated

significant factor scores, these providing the principal description of the gene-expression data).

These results appear to suggest that CGH copy numbers that are inconsistent with typical

behavior (not in State 1) are indicative of a portion of the chromosome that are linked to the

illness under study, here breast cancer. Note that the ability to explicitly localize State 1 is

therefore important, with this a challenge for the non-sticky HMM, since redundant states may

be manifested, undermining interpretability of the results (see Figure 7(b)).

The experiments have been performed on the same computational platform mentioned in

Section VI-A. One VB run of the sticky DD-HMM, for 60 VB iterations, required about 4

hours for the whole CGH dataset (processing all chromosomes simultaneously). Typically 50

VB iterations are required to achieve convergence. All results are based on a single VB run,

with random initialization. It only required about 20 seconds for each Bayesian HMM [13]

MCMC run when considering a single CGH profile of one chromosome; however, all runs for

all 23 chromosomes required more than 11 hours. In addition to the computational challenges

associated with Bayesian HMM [13], each of the chromosomes is analyzed in isolation, and

therefore multi-task learning is not implemented (the state statistics are not explicitly shared

across chromosomes). Further, the results in Figure 7 suggest inferior underlying state inference

(which may be attributable to the lack of multi-task analysis).

VII. CONCLUSION

We have developed a hidden Markov model (HMM) with state persistence, termed the sticky

HMM with Dirichlet distribution prior (sticky DD-HMM). The new model is motivated by

[9], but the proposed construction allows convenient VB inference, of interest for the large-
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scale motivating CGH problem. For array CGH data analysis, we further extended traditional

single-task HMM to multi-task learning (MTL), where here the multiple tasks are linked to

specific chromosomes. The proposed multi-task model allows simple VB inference, yielding

fast computation times and efficient detection of copy losses and gains. The algorithm has been

demonstrated on synthetic data, real audio signal and real CGH data. The CGH results are

partially validated by a corresponding gene analysis using factor models [7], [29]. The sticky

DD-HMM extends the Bayesian HMM for application to CGH [13], in that stickiness is explicitly

imposed, and the number of underlying states is inferred from the data.
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Fig. 8. (a) Posterior probabilities of each CGH position selecting the normal state. The top figure shows the average probabilities
across all sample; the bottom figure shows the sigmoid transformation of the summations of the probabilities across all sample.
(b) Gene factor loadings of some useful factors via SBFA [7] with a total of K = 55 factors. The CGH and gene measurements
are aligned according to the index of the DNA fragments or “clones”.


