STIEFEL-WHITNEY HOMOLOGY CLASSES OF k-POINCARÉ-EULER SPACES

Dedicated to Professor Itiro Tamura on his sixtieth birthday

AKINORI MATSUI

(Received October 13, 1983)

- 1. Introduction and the statement of results. Let X be a polyhedron. It is said to be totally n-dimensional if there exists a locally finite triangulation K of X such that for each $\sigma \in K$, an n-dimensional simplex τ exists in K satisfying $\sigma \prec \tau$ or $\sigma = \tau$. (See Akin [1].) A totally n-dimensional polyhedron X is an n-dimensional k-Euler space if there exist a locally finite triangulation K of X and a subcomplex L of K satisfying the following:
 - (1) |L| is a totally (n-1)-dimensional polyhedron or empty.
- (2) The cardinality of $\{\tau \in K \mid \sigma \prec \tau\}$ is even for every σ in K-L, whenever dim $\sigma \geq n-k$.
- (3) The cardinality of $\{\tau \in K \mid \sigma \prec \tau\}$ is odd for every σ in L, whenever $\dim \sigma \geq n-k$.
- (4) The cardinality of $\{\tau \in L \mid \sigma \prec \tau\}$ is even for every σ in L, whenever dim $\sigma \geq n-k-1$.

We usually denote ∂X instead of |L|. If X is an n-dimensional k-Euler space, then ∂X clearly is an (n-1)-dimensional k-Euler space. An n-dimensional k-Euler space X is closed if X is compact and ∂X is empty. If $k \geq n$, we said n-dimensional k-Euler spaces to be n-dimensional \mathbb{Z}_2 -Euler spaces. (See [10].)

Let X be an n-dimensional k-Euler space with a triangulation K. Then the i-th Stiefel-Whitney homology class $s_i(X)$ in $H_i^{\text{inf}}(X, \partial X; \mathbf{Z}_2)$ is the homology class determined as the i-skeleton \overline{K}^i of the first barycentric subdivision \overline{K} of K for $n-k < i \leq n$. Here H_*^{inf} is the homology theory of infinite chains. The Stiefel-Whitney homology classes of k-Euler spaces are well defined by Proposition 2.2.

Since an n-dimensional differentiable manifold M has a triangulation, the i-th Stiefel-Whitney homology class $s_i(M)$ can be defined as above for $0 \le i \le n$. Whitney [16] announced that the i-th Stiefel-Whitney homology class of an n-dimensional differentiable manifold M is the Poincaré dual of the (n-i)-th Stiefel-Whitney class $w^{n-i}(M)$. Its proof was outlined

by Cheeger [5] and given by Halperin and Toledo [6]. Blanton and Schweitzer [2] and Blanton and McCrory [3] gave the proof by using an axiomatic method. Taylor [15] generalized it to the case of \mathbb{Z}_2 -homology manifolds by using the method as in [2]. Matsui [10] studied the case of \mathbb{Z}_2 -Poincaré-Euler spaces in another method.

In this paper, we study the case of k-Poincaré-Euler spaces as in [10]. An n-dimensional k-Euler space X is said to be an n-dimensional k-Poincaré-Euler space if the cap products $[X]_{\cap}$: $H^{i}(X, \mathbb{Z}_{2}) \to H^{\inf}_{n-i}(X, \partial X; \mathbb{Z}_{2})$ are isomorphisms for $0 \le i < k$. Let X be an n-dimensional k-Poincaré-Euler space. Then there exists a proper embedding $\varphi: (X, \partial X) \to (\mathbf{R}_{+}^{n+\alpha}, \partial \mathbf{R}_{+}^{n+\alpha})$ for α sufficiently large, where $\mathbf{R}_{+}^{n+\alpha} = \{(x_1, x_2, \dots, x_{n+\alpha}) | x_{n+\alpha} \geq 0\}$. (See Hudson [8].) Suppose that R is a regular neighborhood of X in $\mathbb{R}^{n+\alpha}_+$. Put $\tilde{R} = R \cap \partial R_{+}^{n+\alpha}$ and $\tilde{R} = \operatorname{cl}(\partial R - \tilde{R})$. Regard φ as an embedding from $(X, \partial X)$ to (R, \tilde{R}) . We also call $(R; \tilde{R}, \bar{R}; \varphi)$ a regular neighborhood of X in $\mathbb{R}^{n+\alpha}_+$. Define $U(\varphi)$ in $H^{\alpha}(R, \overline{R}; \mathbb{Z}_2)$ as the Poincaré dual of $\varphi_*[X]$. Then the cup products $U(\varphi)^{\cup}$: $H^{i}(R; \mathbb{Z}_{2}) \to H^{i+\alpha}(R, \bar{R}; \mathbb{Z}_{2})$ are isomorphisms for $0 \le i < k$. We call $U(\varphi)$ the Thom class of $(R; \overline{R}, \overline{R}; \varphi)$. cohomology classes $w^i(\varphi)$ by $w^i(\varphi) = \varphi^* \circ (U(\varphi)^{\cup})^{-1} \circ Sq^i U(\varphi)$ for $0 \leq i < k$. Put $w^{(k)}(\varphi) = 1 + w^{(k)}(\varphi) + \cdots + w^{k-1}(\varphi)$. Then there exists a unique cohomology class $\widetilde{w}(X)$ such that $\widetilde{w}(X) \cup w^{(k)}(\varphi) = 1$. Let $\widetilde{w}(X) = 1 + 1$ $\widetilde{w}(X)^1 + \cdots + \widetilde{w}^n(X)$, where $\widetilde{w}^i(X)$ is in $H^i(X; \mathbb{Z}_2)$. Define $w^i(X)$ by $w^i(X) = \widetilde{w}^i(X)$ for $0 \le i < k$. We call $w^i(X)$ the i-th Stiefel-Whitney class of a k-Poincaré-Euler space X for $0 \le i < k$. Define $w^{(k)}(X)$ by $w^{(k)}(X) = 1 + w^{(k)}(X) + \cdots + w^{k-1}(X).$

Let $(R; \tilde{R}, \bar{R}; \varphi)$ be a regular neighborhood of an n-dimensional k-Poincaré-Euler space X in $R_+^{n+\alpha}$. We will define homomorphisms $(e_{\varphi}^k)^i$: $\mathfrak{N}_{i+\alpha}(R, \bar{R}) \to \mathbb{Z}_2$ and $(\tilde{e}_{\varphi}^{\kappa})^i$: $\mathfrak{N}_{i+\alpha}(R, \bar{R}) \to \mathbb{Z}_2$ for i < k, where $\mathfrak{N}_{i+\alpha}(R, \bar{R})$ is the unoriented differentiable bordism group. We need the following:

TRANSVERSALITY THEOREM (Rourke and Sanderson [13] and Buoncristiano, Rourke and Sanderson [4]). Let M and N be PL-manifolds. Suppose that $f:(M,\partial M)\to (N,\partial N)$ is a locally flat proper embedding and that X is a subpolyhedron in N. If $f(\partial M)\cap X=\varnothing$ or if $(\partial N,\partial N\cap X)$ is collared in (N,X) and $\partial N\cap X$ is block transverse to $f|\partial M:\partial M\to\partial N$, then there exists an embedding $g:M\to N$ ambient isotopic to f relative to ∂N such that X is block transverse to g.

Let $f:(M,\partial M)\to (R,\bar{R})$ be in $\mathfrak{R}_{i+\alpha}(R,\bar{R})$. By Transversality Theorem, there exists an embedding $g:(M,\partial M)\to (R\times D^{\beta},\,R\times D^{\beta})$ for β sufficiently large such that $g\cong f\times \{0\}$ and that $(\varphi\times \mathrm{id})(X\times D^{\beta})$ is block transverse to g. Let $Y=(\varphi\times \mathrm{id})^{-1}\circ g(M)$ and let $\psi\colon Y\to X\times D^{\beta}$ be the

inclusion. If i < k, then Y is a closed \mathbb{Z}_2 -Euler space by (1) of Lemma 4.3. Define $(e_{\varphi}^k)^i(f,M)$ by the modulo 2 Euler number e(Y) of Y. Note that ψ has a normal block bundle ν in $X \times D^{\beta}$ from (1) of Lemma 4.3. Define $(\widetilde{e}_{\varphi}^k)^i(f,M)$ as $(\widetilde{e}_{\varphi}^k)^i(f,M) = \langle \psi^* w^{(k)}(X \times D^{\beta}) \cup \widetilde{w}(\nu), [Y] \rangle$, where $\widetilde{w}(\nu)$ is the cohomology class determined by $w^*(\nu) \cup \widetilde{w}(\nu) = 1$. Now define a homomorphism $(o_{\varphi}^k)^i : \mathfrak{N}_{i+\alpha}(R,\overline{R}) \to \mathbb{Z}_2$ by $(o_{\varphi}^k)^i = (\widetilde{e}_{\varphi}^k)^i - (e_{\varphi}^k)^i$. We can state the main theorem of this paper as follows:

THEOREM. Let X be an n-dimensional k-Poincaré-Euler space. Take a regular neighborhood $(R; \widetilde{R}, \overline{R}; \varphi)$ of X in $\mathbf{R}_+^{n+\alpha}$. Then $[X] \cap w^i(X) = s_{n-i}(X)$ for $i \leq m$ if and only if $(o_{\varphi}^k)^i = 0$ for $i \leq m$, where m < k.

We can apply this theorem to k-regular spaces. Let R be a commutative ring with unit. An n-dimensional 1-Euler space X is an n-dimensional k-regular space over R if a triangulation K of X satisfies the following:

- (1) For each σ in $K \partial K$, if dim $\sigma = i$, then $H_j(Lk(\sigma; K); R) = H_i(S^{n-i-1}; R)$ for $j \leq k-1$.
- (2) For each σ in ∂K , if dim $\sigma = i$, then $H_j(Lk(\sigma; K); R) = H_j(pt; R)$ for $j \leq k-1$.
- (3) For each σ in ∂K , if dim $\sigma = i$, then $H_j(Lk(\sigma; \partial K); R) = H_j(S^{n-i-2}; R)$ for $j \leq k-1$.

An *n*-dimensional *k*-regular space over R is R-orientable if $H_n^{\inf}(X_{\alpha}, \partial X_{\alpha}; R) = R$ for each connected component X_{α} of X.

In order to apply our theorem to k-regular spaces, we need the following:

Partial Poincaré Duality Theorem (Kato [9]). Let R be a commutative ring with unit. Let X be an n-dimensional k-regular space over R. Suppose that X is R-orientable unless $R = \mathbb{Z}_2$. Then the cap products $[X]_{\cap} \colon H^i(X;R) \to H_{n-i}(X,X;R)$ and $[X]_{\cap} \colon H^i(X,\partial X;R) \to H_{n-i}(X;R)$ are epimorphisms for all $i \leq k-1$ or $i \geq n-k$ and monomorphisms for all $i \leq k$ or $i \geq n-k+1$. Here H_* is the homology theory of infinite chains whenever H^* is the ordinary cohomology theory, or H_* is the ordinary homology theory whenever H^* is the cohomology theory of cochains with compact support.

In [9], Kato prove this theorem in the case of compact k-regular spaces over Z. But since we can prove this theorem by using the same method as in [9], we do not repeat the proof here.

By our theorem and Partial Poincaré Duality Theorem, we have the following:

COROLLARY. Let X be an n-dimensional k-regular space over \mathbb{Z}_2 . Then $[X] \cap w^i(X) = s_{n-i}(X)$ for all i < k.

In Section 2, we study the Stiefel-Whitney homology classes of k-Euler spaces and prove a special product formula for the Stiefel-Whitney homology classes. These are necessary to prove Lemma 5.1. The structure of the bordism group of compact k-Euler spaces is given in Proposition 3.1. Lemma 3.1 is necessary to prove Lemma 5.1. In Section 4, we give a characterization of Stiefel-Whitney classes via the unoriented differentiable bordism group. In Section 5, we give a characterization of Stiefel-Whitney homology classes via the unoriented differentiable bordism group. Our theorem follows from Lemmas 4.1 and 5.1.

2. Stiefel-Whitney homology classes. The purpose of this section is to show that Stiefel-Whitney homology classes of k-Euler spaces is well defined and to prove a special product formula for Stiefel-Whitney homology classes.

In order to prove Propositions 2.2 and 2.3, it is convenient to define k-Euler complexes for ball complexes.

A ball complex K (cf. [4]) is totally n-dimensional if for each σ in K there exists an n-dimensional ball τ in K such that $\sigma < \tau$ or $\sigma = \tau$. A totally n-dimensional locally finite ball complex K is an n-dimensional k-Euler complex if there exists a subcomplex L satisfying the same conditions (1), (2), (3) and (4) as in the definition of k-Euler spaces in Section 1. We usually denote ∂K instead of L. An n-dimensional k-Euler complex K is said to be closed if K is a finite complex and ∂K is empty. A polyhedron K is an K-dimensional K-Euler space if there exists an K-dimensional K-Euler complex K such that K is a finite complex of the complex K instead of K instead of K instead of K instead of K such definition of K-Euler spaces clearly coincides with that in Section 1.

Let K be a ball complex. The barycentric subdivision \overline{K} of K is defined by $\overline{K} = \{(\sigma_0, \dots, \sigma_p) | \sigma_0 \prec \dots \prec \sigma_p, \sigma_i \in K\}$. Then \overline{K} can be regarded as a ball complex. Denote the p-skeleton of \overline{K} by \overline{K}^p . We need the following to prove that Stiefel-Whitney homology classes of k-Euler spaces is well defined:

PROPOSITION 2.1. Let K be an n-dimensional k-Euler complex. Then \overline{K}^p are p-dimensional (p-n+k)-Euler complexes such that $\partial \overline{K}^p = \overline{\partial K}^{p-1}$ for n-k .

In order to prove this proposition, we need the following:

LEMMA 2.1. Let K be a totally n-dimensional locally finite ball

complex. If $b \in \overline{K}^{p-1}$, then the cardinality of $\{a \in \overline{K} - \overline{K}^p | a > b\}$ is even.

PROOF. If p=n, then $\bar{K}-\bar{K}^p$ is empty. Thus we may assume that p< n. Let $a=\langle \sigma_0, \, \cdots, \, \sigma_s \rangle \in \bar{K}-\bar{K}^p$ and let $b=\langle \tau_0, \, \cdots, \, \tau_t \rangle \in \bar{K}^{p-1}$. Then s>t+1. Since the cardinality of $\{\sigma\in K\,|\,\sigma_0\prec\sigma\prec\sigma_1\}$ is even for each $\langle\sigma_0,\,\sigma_1\rangle\in\bar{K}$, the cardinality $\{a\in\bar{K}-\bar{K}^p\,|\,a>b\}$ is even for $b\in\bar{K}^{p-1}$. q.e.d.

PROOF OF PROPOSITION 2.1. Note that the cardinality of $\{b \in \overline{K} | a < b\}$ equals the sum of the cardinalities of $\{b \in \overline{K}^p | a < b\}$ and $\{b \in \overline{K} - \overline{K}^p | a < b\}$ for $a \in \overline{K}$. By Lemma 2.1, the cardinalities of $\{b \in \overline{K} | a < b\}$ and $\{b \in \overline{K}^p | a < b\}$ are congruent modulo 2 for $a \in \overline{K}^{p-1}$. Therefore \overline{K}^p is a p-dimensional (p-n+k)-Euler complex such that $\partial \overline{K}^p = \overline{\partial K}^{p-1}$ for p > n-k.

Let X be an n-dimensional k-Euler space with a ball complex structure K. Define the i-th Stiefel-Whitney homology classes $s_i(X)$ by $s_i(X) = j_*[|\bar{K}^i|]$ for $n-k < i \leq n$, where $j: |\bar{K}^i| \to X$ are the inclusions. Let $s_{(k)}(X) = s_{n-k+1}(X) + \cdots + s_n(X)$. The Stiefel-Whitney homology classes of k-Euler spaces are well defined by the following:

PROPOSITION 2.2. Let K be an n-dimensional k-Euler complex and let L be a subdivision of K. Then $(j_K)_*[|\bar{K}^i|] = (j_L)_*[|\bar{L}^i|]$ for $n - k < i \leq n$, where j_K and j_L are the inclusions.

PROOF. Define an (n+1)-dimensional k-Euler complex W and an n-dimensional k-Euler complex U by $W=(K\times I-K\times\{1\})\cup(L\times\{1\})$ and $U=(\partial K\times I-\partial K\times\{1\})\cup(\partial L\times\{1\})$, where $I=\{\{0\},\{1\},[0,1]\}$. We can regard K and L as subcomplexes of W by the identifications $K=K\times\{0\}$ and $L=L\times\{1\}$. Put $\bar{U}^{(i)}=(\bar{U}^i-\partial\bar{U})\cup\bar{\partial}\bar{U}^{i-1}$. Then $\bar{U}^{(i)}$ is an i-dimensional (i-n+k)-Euler complex in view of Proposition 2.1. Note that \bar{K}^i and \bar{L}^i are i-dimensional (i-n+k)-Euler complexes and that \bar{W}^{i+1} is an (i+1)-dimensional (i-n+k)-Euler complex such that $\partial \bar{W}^{i+1}=\bar{K}^i\cup\bar{U}^{(i)}\cup\bar{L}^i$ and $\partial\bar{U}^{(i)}=\partial\bar{K}^i\cup\partial\bar{L}^i$ by Proposition 2.1. Hence $(j_K)_*[|\bar{K}^i|]=(j_L)_*[|\bar{L}^i|]$.

The product formula for Stiefel-Whitney homology classes (Halperin and Toledo [7]) may not hold for k-Euler spaces, but we need the following to prove Lemma 5.1.

PROPOSITION 2.3. Let X be an n-dimensional k-Euler space. Then $s_i(X) \times [D] = s_{i+1}(X \times D)$ for $n - k < i \leq n$, where D = [-1, 1].

PROOF. Let L and \bar{L} be ball complexes defined by $L = \{\{-1\}, \{1\}, [-1, 1]\}$ and $\bar{L} = \{\langle -1 \rangle, \langle 1 \rangle, \langle 0 \rangle, \langle -1, 0 \rangle, \langle 1, 0 \rangle\}$. Here $\langle \pm 1 \rangle = \langle \{\pm 1\} \rangle$, $\langle 0 \rangle = \langle [-1, 1] \rangle$ and $\langle \pm 1, 0 \rangle = \langle \{\pm 1\}, [-1, 1] \rangle$. Then |L| = D = [-1, 1]

292 A. MATSUI

and \bar{L} is the barycentric subdivision of L. Let K be a ball complex such that X=|K|. Let \bar{D} , c_i , \tilde{c}_{i+1} and d_{i+2} be chains with Z_2 -coefficients defined as follows: $\bar{D}=\sum_{\iota=\pm 1}\langle \varepsilon,0\rangle,\ c_i=\sum\langle \sigma_0,\cdots,\sigma_i\rangle,\ \tilde{c}_{i+1}=\sum\langle (\sigma_0,\varepsilon),\cdots,(\sigma_p,\varepsilon),(\sigma_p,0),\cdots,(\sigma_i,0)\rangle+\sum\langle (\tau_0,\varepsilon),\cdots,(\tau_p,\varepsilon),(\tau_{p+1},0),\cdots,(\tau_{i+1},0)\rangle$ and $d_{i+2}=\sum [p]\langle (\tau_0,\varepsilon),\cdots,(\tau_p,\varepsilon),(\tau_p,0),\cdots,(\tau_{i+1},0)\rangle$, where $\langle \sigma_0,\cdots,\sigma_i\rangle$ ranges over all i-balls of \bar{K}^i while $\langle \tau_0,\cdots,\tau_{i+1}\rangle$ ranges over all (i+1)-balls of \bar{K}^{i+1} , $0\leq p\leq i+1$ and $\varepsilon=\pm 1$. Here [p] is the class of p modulo 2. Then $\partial d_{i+2}-(\tilde{c}_{i+1}-c_i\times\bar{D})=\sum [i]\langle (\tau_0,\varepsilon),\cdots,(\tau_{i+1},\varepsilon)\rangle$. Since $\sum_{\iota=\pm 1}\langle (\tau_0,\varepsilon),\cdots,(\tau_{i+1},\varepsilon)\rangle$ is exact for each $\langle \tau_0,\cdots,\tau_{i+1}\rangle$, it follows that $\tilde{c}_{i+1}-c_i\times\bar{D}$ is exact. Note that $s_1(D),s_i(X)$ and $s_{i+1}(X\times D)$ coincide with the homology classes defined by chains \bar{D} , c_i and \tilde{c}_{i+1} , respectively, for $n-k< i\leq n$. Thus $s_{i+1}(X\times D)=s_i(X)\times [D]$ for $n-k< i\leq n$.

3. Bordism groups of k-Euler spaces. Let $\{\mathfrak{B}_n^k, \partial\}$ be the bordism theory of compact k-Euler spaces for k > 0. Then $\{\mathfrak{B}_n^k, \partial\}$ is a homology theory (See Akin [1].). If $k = \infty$, then $\{\mathfrak{B}_n^k, \partial\}$ is the bordism theory of compact \mathbb{Z}_2 -Euler spaces. (See Akin [1] and Matsui [10].) Let (A, B) be a pair of polyhedra. Define a homomorphism $s_{(k)} \colon \mathfrak{B}_n^k(A, B) \to H_{n-k+1}(A, B; \mathbb{Z}_2) + \cdots + H_n(A, B; \mathbb{Z}_2)$ by $s_{(k)}(\varphi, X) = \sum_{i=n-k+1}^n \varphi_* s_i(X)$. Then $s_{(k)}$ is well defined by Proposition 2.1. Define a homomorphism $j_{(p,q)} \colon \mathfrak{B}_n^p(A, B) \to \mathfrak{B}_n^q(A, B)$ by $j_{(p,q)}(\varphi, X) = (\varphi, X)$ for $p \geq q$. Then the following holds:

PROPOSITION 3.1. The homomorphisms $s_{(k)} \colon \mathfrak{B}_n^k(A, B) \to H_{n-k+1}(A, B; \mathbf{Z}_2) + \cdots + H_n(A, B; \mathbf{Z}_2)$ are isomorphisms for $0 < k \leq n$. The homomorphisms $j_{(p,q)} \colon \mathfrak{B}_q^q(A, B) \to \mathfrak{B}_p^q(A, B)$ are surjective for $p \geq q$.

PROOF. Put $h_n^{(k)}(A, B) = H_{n-k+1}(A, B; \mathbf{Z}_2) + \cdots + H_n(A, B; \mathbf{Z}_2)$ for k > 0. Define the boundary operator $\partial_n^{(k)} : h_n^{(k)}(A, B) \to h_{n-1}^{(k)}(B)$ as that of the ordinary homology theory. Then $\{h_n^{(k)}, \partial_n^{(k)}\}$ is a homology theory with compact support for k > 0. Note that $\{\mathfrak{B}_n^k, \partial\}$ is also a homology theory with compact support and that $s_{(k)}$ is a homomorphism from $\mathfrak{B}_n^k(A, B)$ to $h_n^{(k)}(A, B)$ such that $\partial_n^{(k)} \circ s_{(k)} = s_{(k)} \circ \partial$. Since $h_n^{(k)}(pt) = \mathbf{Z}_2$ and $\mathfrak{B}_n^k(pt) = \mathfrak{B}_n(pt) = \mathbf{Z}_2$ (cf. [10]) for $n = 0, \dots, k-1$, and $h_n^{(k)}(pt) = 0$ and $\mathfrak{B}_n^k(pt) = 0$ for $n \geq k$, where pt is the space of one point, the homomorphism $s_{(k)}$ is an isomorphism. (See Spanier [14].)

Let $\pi: h_n^{(p)}(A, B) \to h_n^{(q)}(A, B)$ be the canonical projection. Note that $s_{(q)} \circ j_{(p,q)} = \pi \circ s_{(p)}$. Since π is surjective, so is $j_{(p,q)}$. q.e.d.

Let $\xi = (E(\xi), A, t)$ be a p-block bundle over a polyhedron A. Define $\overline{E}(\xi)$ as the total space of the sphere bundle associated with ξ . Then we will define a homomorphism $(e_{\xi}^k)^i : \mathfrak{B}_{p+i}^k(E(\xi), \overline{E}(\xi)) \to \mathbb{Z}_2$ for i < k, where $\mathfrak{B}_{p+i}^k(E(\xi), \overline{E}(\xi))$ is the bordism group of compact k-Euler spaces. Let R be a regular neighborhood of A in \mathbb{R}^{α} . Let $j: A \subset R$ be the inclusion and

 $p\colon R\to A$ be a deformation retraction. Suppose that $p^*\xi=(E(p^*\xi),\,R,\,\ell_R)$ is the induced bundle. Then there exist bundle maps $(\bar{j},\,j)\colon (E(\xi),\,A)\to (E(p^*\xi),\,R)$ and $(\bar{p},\,p)\colon (E(p^*\xi),\,R)\to (E(\xi),\,A)$. (See Rourke and Sanderson [12].) For each $(\varphi,\,X)$ in $\mathfrak{B}^k_{p+i}(E(\xi),\,\bar{E}(\xi))$, there exists an embedding $\bar{\varphi}\colon (X,\,\partial X)\to (E(p^*\xi),\,\bar{E}(p^*\xi))$ such that $\bar{\varphi}\cong j\circ\varphi$. By the transversality theorem (see [12]), we may assume that $\bar{\varphi}(X)$ is block transverse to $\ell_R\colon R\to E(p^*\xi)$. Let $Y=\bar{\varphi}^{-1}\circ\ell_R(R)$. Note that the inclusion $Y\subset X$ has a normal block bundle, the total space of which is an n-dimensional k-Euler space. Then Y is a closed i-dimensional k-Euler space. Hence Y is a closed Y-dimensional Y-Euler space whenever Y-dimensional Y-Euler space Y-dimensional Y-Euler s

To prove Lemma 5.2, we need the following:

LEMMA 3.1. Let $\nu = (E, M, \iota)$ be a normal p-block bundle of a proper embedding from a compact q-dimensional triangulated differentiable manifold M to $D^{p+q} = [-1, 1]^{p+q}$. Let U_{ν} be the Thom class of ν . Then $\langle U_{\nu} \cup (\iota^*)^{-1} w^*(M), \varphi_* s_{(k)}(X) \rangle = (e_{\nu}^k)^i (\varphi, X)$ for every (φ, X) in $\mathfrak{B}_{p+i}^k(E, \bar{E})$ for i < k. Here $s_{(k)}(X) = s_{p+i-k+1}(X) + \cdots + s_{p+i}(X)$.

PROOF. The case $k = \infty$ was proved in [10]. By Proposition 3.1, we may assume that X is a \mathbb{Z}_i -Euler space. Note that $(e_{\nu}^{\infty})^i(\varphi, X) = (e_{\nu}^k)^i(\varphi, X)$ for (φ, X) in $\mathfrak{B}_{p+i}^{\infty}(E, \overline{E})$ for i < k. Then $\langle U_{\nu} \cup (\iota^*)^{-1} w^*(M), \varphi_* s_{(k)}(X) \rangle = (e_{\nu}^k)^i(\varphi, X)$ for i < k, in view of the case $k = \infty$. q.e.d.

4. A characterization of Stiefel-Whitney classes. The product formula for Stiefel-Whitney classes (see Milnor [11]) may not hold for k-Poincaré-Euler spaces, but we need the following to deduce Lemma 4.1 from Lemma 4.2:

PROPOSITION 4.1. Let X be an n-dimensional k-Poincaré-Euler space. Then $w^i(X \times D) = w^i(X) \times 1$ for $0 \le i < k$, where D = [-1, 1].

PROOF. Let $(R; \tilde{R}, \bar{R}; \varphi)$ be a regular neighborhood of X in $R_+^{n+\alpha}$. Let $U(\varphi)$ and $U(\varphi \times \mathrm{id})$ be cohomology classes such that $[R] \cap U(\varphi) = \varphi_*[X]$ and $[R \times D] \cap U(\varphi \times \mathrm{id}) = (\varphi \times \mathrm{id})_*[X \times D]$, where id: $D \to D$ is the identity. Then $U(\varphi \times \mathrm{id}) = U(\varphi) \times 1$. Note that $U(\varphi) \cup (\varphi^*)^{-1} w^i(\varphi) = Sq^i U(\varphi)$ and $U(\varphi \times \mathrm{id}) \cup [(\varphi \times \mathrm{id})^*]^{-1} w^i(\varphi \times \mathrm{id}) = Sq^i U(\varphi \times \mathrm{id})$ for $0 \le i < k$. Then $U(\varphi \times \mathrm{id}) \cup [(\varphi \times \mathrm{id})^*]^{-1} (w^i(\varphi) \times 1) = Sq^i U(\varphi \times \mathrm{id})$ for $0 \le i < k$. Hence $w^i(\varphi \times \mathrm{id}) = w^i(\varphi) \times 1$ for $0 \le i < k$. Thus $w^i(X \times D) = w^i(X) \times 1$ for $0 \le i < k$. q.e.d.

Let $(R; \tilde{R}, \bar{R}; \varphi)$ be a regular neighborhood of an n-dimensional k-Poincaré-Euler space X in $\mathbb{R}^{n+\alpha}_+$. Suppose that $(\tilde{e}^k_{\circ})^i : \mathfrak{R}_{i+\alpha}(R, \bar{R}) \to \mathbb{Z}_2$ is the homomorphism defined for i < k in Section 1. We need the following to prove our theorem:

LEMMA 4.1. For every (f, M) in $\mathfrak{N}_{i+\alpha}(R, \bar{R})$, we have $\langle U(\varphi) \cup (\varphi^*)^{-1}w^{(k)}(X), f_*([M] \cap w^*(M)) \rangle = (\widetilde{e}_{\varphi}^{k})^i(f, M)$ whenever i < k. Here $w^{(k)}(X) = 1 + \cdots + w^{k-1}(X)$.

In order to prove Lemma 4.1, we need the following:

LEMMA 4.2. Let $f:(M,\partial M) \to (R,\bar{R})$ be a PL-embedding with a normal block bundle ξ , where M is an $(i+\alpha)$ -dimensional triangulated differentiable manifold. If $\varphi(X)$ is transverse to ξ and i < k, then $\langle U(\varphi) \cup (\varphi^*)^{-1} w^{(k)}(X), f_*([M] \cap w^*(M)) \rangle = (\tilde{e}_{\varphi}^k)^i (f,M)$.

In order to prove Lemmas 4.2 and 5.2, we need the following:

LEMMA 4.3. Let $(R; \widetilde{R}, \overline{R}; \varphi)$ be a regular neighborhood of an n-dimensional k-Poincaré-Euler space X in $R_+^{n+\alpha}$. Let M be an $(i+\alpha)$ -dimensional triangulated differentiable manifold, where $0 \leq i < k$. Given a PL-embedding $f: (M, \partial M) \to (R, \overline{R})$ with a normal block bundle $\xi = (E, M, f_E)$, suppose that $\varphi(X)$ is transverse to ξ . Let U_ξ be the Thom class of ξ and $j_E: E \to R$ be the inclusion. Define $Y = \varphi^{-1} \circ f(M)$ and $X_E = \varphi^{-1} \circ j_E(E)$. Let $\varphi_E: X_E \to E$ and $\psi_M: Y \to M$ be embeddings defined by $\varphi_E = j_E^{-1} \circ \varphi$ and $\psi_M = f^{-1} \circ (\varphi \mid Y)$. Then the following hold:

- (1) Y is a closed Z₂-Euler space with a normal block bundle.
- $(2) (f_E)_*([M] \cap f^*U(\varphi)) = (\varphi_E)_*[X_E] \cap U_{\varepsilon}.$
- (3) $[M] \cap f^*U(\varphi) = (\psi_M)_*[Y].$

PROOF. (1) Clearly $\psi_M^*\xi$ is a normal (n-i)-block bundle of Y in X. Note that E is an n-dimensional k-Euler space. Then Y is an i-dimensional k-Euler space, Hence Y is a \mathbb{Z}_2 -Euler space, since i < k. Since M is compact, Y is closed.

- (2) Note that $j_E \circ f_E = f$ and $[E] \cap U_{\mathfrak{k}} = (f_E)_*[M]$. Thus $(f_E)_*([M] \cap f^*U(\varphi)) = ([E] \cap j_E^*U(\varphi)) \cap U_{\mathfrak{k}}$. If $[E] \cap j_E^*U(\varphi) = (\varphi_E)_*[X_E]$, then $(f_E)_*([M] \cap f^*U(\varphi)) = (\varphi_E)_*[X_E] \cap U_{\mathfrak{k}}$. Hence we have only to prove $[E] \cap j_E^*U(\varphi) = (\varphi_E)_*[X_E]$. Let $\tilde{R} = \operatorname{cl}(R j_E(E))$ and let $j_R : (R; \tilde{R}, \bar{R}) \to (R; \tilde{R}, \bar{R})$ be defined by the inclusion. Regard j_E as a map $j_E : (E; \tilde{E}, \bar{E}) \to (R; \bar{R}, \bar{R})$, where $\tilde{E} = \operatorname{cl}(\partial E \bar{E})$. Note that $(j_E)_*[E] = (j_R)_*[R]$ and $[R] \cap U(\varphi) = \varphi_*[X]$. Then $(j_E)_*([E] \cap (j_E)^*U(\varphi)) = (j_R)_* \circ \varphi_*[X] = (j_E)_* \circ (\varphi_E)_*[X_E]$. Since $(j_E)_* : H_*(E, \bar{E}; \mathbf{Z}_2) \to H_*(R, \tilde{R}; \mathbf{Z}_2)$ is an isomorphism, we have $[E] \cap (j_E)^*U(\varphi) = (\varphi_E)_*[X_E]$.
- (3) Note that $[X_E] \cap (\varphi_E)_* U_{\varepsilon} = (\psi_E)_* [Y]$, where $\psi_E \colon Y \to X_E$ is the inclusion. By (2), we have $(f_E)_* ([M] \cap f^* U(\varphi)) = (\varphi_E)_* \circ (\psi_E)_* [Y]$. Note that $\varphi_E \circ \psi_E = f_E \circ \psi_M$ and that $(f_E)_* \colon H_* (M, \partial M; \mathbf{Z}_2) \to H_* (E, \widetilde{E}; \mathbf{Z}_2)$ is an isomorphism. Then $[M] \cap f^* U(\varphi) = (\psi_M)_* [Y]$. q.e.d.

PROOF OF LEMMA 4.2. We use the notation of Lemma 4.3. By (2)

of Lemma 4.3, we have $\langle U(\varphi) \cup (\varphi^*)^{-1} w^{(k)}(X), f_*([M] \cap w^*(M)) \rangle = \langle f^* \circ (\varphi^*)^{-1} w^{(k)}(X) \cup w^*(M), (\psi_M)_*[Y] \rangle$. Let $\psi_{\mathcal{X}} \colon Y \to X$ be the inclusion. Note that $f \circ \psi_{\mathcal{M}} = \varphi \circ \psi_{\mathcal{X}}$. Then $\langle U(\varphi) \cup (\varphi^*)^{-1} w^{(k)}(X), f_*([M] \cap w^*(M)) \rangle = \langle \psi_{\mathcal{X}}^* w^{(k)}(X) \cup \psi^*(M), [Y] \rangle = \langle \psi_{\mathcal{X}}^* w^{(k)}(X) \cup \psi_{\mathcal{M}}^* \bar{w}(\xi), [Y] \rangle = \langle \psi_{\mathcal{X}}^* w^{(k)}(X) \cup \bar{w}(\psi_{\mathcal{M}}^* \xi), [Y] \rangle$. Thus $\langle U(\varphi) \cup (\varphi^*)^{-1} w^{(k)}(X), f_*([M] \cap w^*(M)) \rangle = (\tilde{e}_{\varphi}^*)^i (f, M)$ by the definition of $(\tilde{e}_{\varphi}^*)^i$.

PROOF OF LEMMA 4.1. Let (f,M) be in $\mathfrak{R}_{i+\alpha}(R,\bar{R})$. By Transversality Theorem, there exists an embedding $g\colon (M,\partial M)\to (R\times D^{\beta},\bar{R}\times D^{\beta})$ such that $g\cong f\times\{0\}$ and $(\varphi\times \mathrm{id})(X\times D^{\beta})$ is block transverse to g. By Lemma 4.2, it follows that $\langle (U(\varphi)\times 1)\cap [(\varphi\times \mathrm{id})^*]^{-1}w^{(k)}(X\times D^{\beta}),\ g_*([M]\cap w^*(M))\rangle=(\widetilde{e}_{\varphi}^{k})^i(f,M).$ Note that $w^{(k)}(X\times D^{\beta})=w^{(k)}(X)\times 1$ by Proposition 4.1. Hence $\langle U(\varphi)\cup (\varphi^*)^{-1}w^{(k)}(X),f_*([M]\cap w^*(M))\rangle=\langle (U(\varphi)\times 1)\cup [(\varphi\times \mathrm{id})^*]^{-1}w^{(k)}(X\times D^{\beta}),\ g_*([M]\cap w^*(M))\rangle.$ Thus $\langle U(\varphi)\cup (\varphi^*)^{-1}w^{(k)}(X),f_*([M]\cap w^*(M))\rangle=(\widetilde{e}_{\varphi}^{k})^i(f,M).$

A characterization of Stiefel-Whitney classes is given by Lemma 4.1 and the following:

LEMMA 4.4. Let (A,B) be a pair of polyhedra. Let Φ^i be in $H^i(A,B;\mathbf{Z}_2)$ for $i=0,1,\cdots,k-1$. Put $\Phi^{(k)}=\Phi^0+\cdots+\Phi^{k-1}$. If $\langle \Phi^{(k)},f_*([M]\cap w^*(M))\rangle=0$ for every (f,M) in $\mathfrak{R}_*(A,B)$, then $\Phi^{(k)}=0$.

PROOF. Since $\langle \varPhi^{(k)}, f_*([M] \cap w^*(M)) \rangle = \langle \varPhi^0, f_*[M] \rangle$ for $(f, M) \in \mathfrak{N}_0(A, B)$, the assumption $\langle \varPhi^{(k)}, f_*([M] \cap w^*(M)) \rangle = 0$ for every (f, M) implies $\varPhi^0 = 0$. Suppose that $\varPhi^0 = 0$, $\varPhi^1 = 0$, \cdots , $\varPhi^j = 0$. Then $\langle \varPhi^{(k)}, f_*([M] \cap w^*(M)) \rangle = \langle \varPhi^{j+1}, f_*[M] \rangle$ for $(f, M) \in \mathfrak{N}_{j+1}(A, B)$. Hence, if $\langle \varPhi^{(k)}, f_*([M] \cap w^*(M)) \rangle = 0$ for every (f, M), it follows that $\varPhi^{j+1} = 0$. By induction on f, we have $\varPhi^{(k)} = 0$.

5. Characterizations of Stiefel-Whitney homology classes. Let $(R; \tilde{R}, \bar{R}; \varphi)$ be a regular neighborhood of an n-dimensional k-Poincaré-Euler space X in $\mathbb{R}_+^{n+\alpha}$. Suppose that $(e_{\varphi}^k)^i \colon \mathfrak{R}_{i+\alpha}(R, \bar{R}) \to \mathbb{Z}_2$ is the homomorphism defined for i < k in Section 1. We need the following to prove our theorem:

LEMMA 5.1. For every (f, M) in $\mathfrak{R}_{i+\alpha}(R, \bar{R})$, we have $\langle U(\varphi) \cup (\varphi^*)^{-1} \circ ([X]_{\cap})^{-1} s_{(k)}(X), f_*([M] \cap w^*(M)) \rangle = (e_{\varphi}^k)^i (f, M), \quad whenever \quad i < k. \quad Here s_{(k)}(X) = s_{n-k+1}(X) + \cdots + s_n(X).$

In order to prove this, we need the following:

LEMMA 5.2. Let $f:(M, \partial M) \to (R, \overline{R})$ be a PL-embedding with a normal block bundle ξ , where M is an $(i + \alpha)$ -dimensional triangulated differentiable manifold. If $\varphi(X)$ is transverse to ξ and i < k, then

296

A. MATSUI

$$\langle U(\varphi) \cup (\varphi^*)^{-1} \circ ([X]_{\cap})^{-1} s_{(k)}(X), f_*([M] \cap w^*(M)) \rangle = (e_{\varphi}^k)^i (f, M).$$

PROOF. We use the notation of Lemma 4.3. By (2) of Lemma 4.3, we have $\langle U(\varphi) \cup (\varphi^*)^{-1} \circ ([X]_{\cap})^{-1} s_{(k)}(X)$, $f_*([M] \cap w^*(M)) \rangle = \langle w^*(M) \cup f^* \circ (\varphi^*)^{-1} \circ ([X]_{\cap})^{-1} s_{(k)}(X)$, $(f_E)_*^{-1}((\varphi_E)_*[X_E] \cap U_{\xi}) \rangle$. Note that $j_E \circ f_E = f$. Then $\langle U(\varphi) \cup (\varphi^*)^{-1} \circ ([X]_{\cap})^{-1} s_{(k)}(X)$, $f_*([M] \cap w^*(M)) \rangle = \langle U_{\xi} \cup (f_E^*)^{-1} w^*(M)$, $((\varphi_E)_*[X_E]) \cap j_E^* \circ (\varphi^*)^{-1} \circ ([X]_{\cap})^{-1} s_{(k)}(X) \rangle$. Since there exists the following commutative diagram

and since $[X]_{\cap}$, φ^* and $(j_E)_*$ are isomomorphisms for i < k, we have $((\varphi_E)_*[X_E]) \cap j_E^* \circ (\varphi^*)^{-1} \circ ([X]_{\cap})^{-1} s_{(k)}(X) = [(j_E)_*]^{-1} \circ \bar{\varphi}_* s_{(k)}(X) = (\varphi_E)_* s_{(k)}(X_E)$. Let $(e_{\xi}^k)^i : \mathfrak{B}_n(E, \bar{E}) \to \mathbb{Z}_2$ be the homomorphism defined in Section 3. Then $\langle U_{\xi} \cup (f_E^*)^{-1} w^*(M), (\varphi_E)_* s_{(k)}(X_E) \rangle = (e_{\xi}^k)^i (\varphi_E, X_E)$ by Lemma 3.1. Note that $(e_{\varphi}^k)^i (f, M) = (e_{\xi}^k)^i (\varphi_E, X_E)$ by definition. Thus $\langle U(\varphi) \cup (\varphi^*)^{-1} \circ ([X]_{\cap})^{-1} s_{(k)}(X), f_*([M] \cap w^*(M)) \rangle = (e_{\varphi}^k)(f, M).$ q.e.d.

PROOF OF LEMMA 5.1. Let (f,M) be in $\mathfrak{N}_{i+\alpha}(R,\bar{R})$. Then there exists an embedding $g\colon (M,\partial M)\to (R\times D^\beta,\bar{R}\times D^\beta)$ such that $g\cong f\times\{0\}$ and $(\varphi\times\mathrm{id})(X\times D^\beta)$ is block transverse to g by Transversality Theorem. By Lemma 5.2, we have $\langle (U(\varphi)\times 1)\cup [(\varphi\times\mathrm{id})^*]^{-1}\circ ([X\times D^\beta]_\cap)^{-1}s_{(k)}(X\times D^\beta),$ $g_*([M]\cap w^*(M))\rangle=(e_\varphi^k)^i(f,M)$ for i< k. Note that $s_{(k)}(X\times D^\beta)=s_{(k)}(X)\times [D^\beta]$ by Proposition 2.3. Then $\langle U(\varphi)\cup (\varphi^*)^{-1}\circ ([X]_\cap)^{-1}s_{(k)}(X),f_*([M]\cap w^*(M))\rangle=\langle (U(\varphi)\times 1)\cup [(\varphi\times\mathrm{id})^*]^{-1}\circ ([X\times D^\beta]_\cap)^{-1}s_{(k)}(X\times D^\beta),$ $g_*([M]\cap w^*(M))\rangle.$ Thus $\langle U(\varphi)\cup (\varphi^*)^{-1}\circ ([X]_\cap)^{-1}s_{(k)}(X),f_*([M]\cap w^*(M))\rangle=(e_\varphi^k)^i(f,M)$ for i< k. q.e.d.

PROOF OF THEOREM. If $[X] \cap w^i(X) = s_{n-i}(X)$ for $i \leq m$, then $(e_{\varphi}^k)^i(f,M) = (\widetilde{e}_{\varphi}^k)^i(f,M)$ for $i \leq m$ by Lemmas 4.1 and 5.1. This means $(o_{\varphi}^k)^i = 0$ for $i \leq m$. Conversely, suppose that $(o_{\varphi}^k)^i = 0$ for $i \leq m$. By Lemmas 4.1, 4.4 and 5.1, we have $U(\varphi) \cup (\varphi^*)^{-1} w^i(X) = U(\varphi) \cup (\varphi^*)^{-1} \circ ([X]_{\cap})^{-1} s_{n-i}(X)$ for $i \leq m$. Since $U(\varphi) \cup (\varphi^*)^{-1}$ and $[X]_{\cap}$ are isomorphisms for m < k, we have $[X] \cap w^i(X) = s_{n-i}(X)$ for $i \leq m$. q.e.d.

PROOF OF COROLLARY. Note that k-regular spaces over \mathbb{Z}_2 are k-Euler spaces by the consideration of the definitions. Then k-regular spaces over \mathbb{Z}_2 are k-Poincaré-Euler spaces by Partial Poincaré Duality Theorem. Let $\psi \colon Y \to X \times D^{\beta}$ be the embedding used to define $(e_{\varphi}^k)^i$ and $(\tilde{e}_{\varphi}^k)^i$. Note that ψ has a normal block bundle ν in $X \times D^{\beta}$. Then Y is an i-dimensional k-regular space. Since Y is compact and i < k, it follows that Y is a

closed Z_i -homology manifold. Hence $\psi^* w^{(k)}(X \times D^{\beta}) = w^*(Y) \cup w^*(\nu)$. Thus $(o_{\varphi}^k)^i = 0$ in view of the definition of $(e_{\varphi}^k)^i$ and $(\widetilde{e}_{\varphi}^k)^i$. Hence $[X] \cap w^i(X) = s_{n-i}(X)$ for i < k by Theorem. q.e.d.

REFERENCES

- [1] E. Akin, Stiefel-Whitney homology classes and cobordism, Trans, Amer. Math. Soc. 205 (1975), 341-359.
- [2] J. D. BLANTON AND P. A. SCHWEITZER, Axiom for characteristic classes of manifolds, Proc. Symp. in Pure Math. 27 (1975), Amer. Math. Soc., 349-356.
- [3] J. D. BLANTON AND C. MCCRORY, An axiomatic proof of Stiefel conjecture, Proc. Amer. Math. Soc. 77 (1979), 409-414.
- [4] S. BUONCRISTIANO, C. R. ROURKE AND B. J. SANDERSON, A geometric approach to homology theory, London Math. Soc. Lecture Notes, 18, 1976.
- [5] J. CHEEGER, A combinatorial formula for Stiefel-Whitney classes, in Topology of Manifolds, (Cantrel and Edward, eds.), Markham Publ., 1970, 470-471.
- [6] S. HALPERIN AND D. TOLEDO, Stiefel-Whitney homology classes, Ann. of Math. 96 (1972), 511-525.
- [7] S. HALPERIN AND D. TOLEDO, The product formula for Stiefel-Whitney homology classes, Proc. of Amer. Math. Soc. 48 (1975), 239-244.
- [8] J. F. P. Hudson, Piecewise Linear Topology, Benjamin, New York, 1969.
- [9] M. Kato, Topology of k-regular spaces and algebraic sets, Manifolds Tokyo 1973, Univ. of Tokyo Press (1975), 153-159.
- [10] A MATSUI, Stiefel-Whitney homology classes of \mathbf{Z}_2 -Poincaré-Euler spaces, Tôhoku Math. J. 35 (1983), 321–339.
- [11] J. MILNOR AND J. STASHEFF, Characteristic classes, Ann. of Math. Studies 76, Princeton Univ. Press., 1974.
- [12] C. P. ROURKE, Block structures of in geometric and algebraic topology, Actes, Congress intern. Math. Nice. (1970), 127-132.
- [13] C. P. ROURKE AND B. J. SANDERSON, Block boundles, I and II, Ann. of Math. 87 (1968), 1-28 and 255-277.
- [14] E. H. SPANIER, Algebraic Topology, McGraw-Hill, New York, 1966.
- [15] L. TAYLOR, Stiefel-Whitney homology classes, Quart. J. Oxford 28 (1977), 381-387.
- [16] H. WHITNEY, On the theory of sphere bundles, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 148-153.

ICHINOSEKI TECHNICAL COLLEGE ICHINOSEKI, 021 JAPAN