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1. Introduction and the statement of results. Let X be a poly-
hedron. It is said to be totally n-dimensional if there exists a locally
finite triangulation K of X such that for each g€ K, an #n-dimensional
simplex 7 exists in K satisfying ¢ < z or ¢ = 7. (See Akin [1].) A totally
n-dimensional polyhedron X is an m-dimensional k-Euler space if there
exist a locally finite' triangulation K of X and a subecomplex L of K
satisfying the following:

(1) |Lj is a totally (» — 1)-dimensional polyhedron or empty.

(2) The cardinality of {re K|lo < 7} is even for every ¢ in K — L,
whenever dimo = n — k.

(8) The cardinality of {r€ K|o < 7} is odd for every ¢ in L, when-
ever dimo = n — k.

(4) The cardinality of {re€ L|o < 7} is even for every ¢ in L, when-
ever dimo=n — k — 1.

We usually denote 90X instead of |L|. If X is an mn-dimensional
k-Euler space, then 09X clearly is an (n — 1)-dimensional k-Euler space.
An n-dimensional k-Euler space X is closed if X is compact and 6X is
empty. If k = n, we said n-dimensional k-Euler spaces to be n-dimensional
Z,-Euler spaces. (See [10].)

Let X be an n-dimensional k-Euler space with a triangulation K.
Then the i-th Stiefel-Whitney homology elass s,(X) in H™(X, 3X; Z,) is
the homology class determined as the i-skeleton K* of the first bary-
centric subdivision K of Kforn — k <1 < n. Here H" is the homology
theory of infinite chains. The Stiefel-Whitney homology classes of k-Euler
spaces are well defined by Proposition 2.2,

Since an n-dimensional differentiable manifold M has a triangulation,
the i-th Stiefel-Whitney homology class s,(M) can be defined as above for
0 £ 14 < n. Whitney [16] announced that the i-th Stiefel-Whitney homology
class of an m-dimensional differentiable manifold M is the Poincaré dual
of the (n — 1)-th Stiefel-Whitney class w™*(M). Its proof was outlined
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by Cheeger [5] and given by Halperin and Toledo [6]. Blanton and
Schweitzer [2] and Blanton and McCrory [3] gave the proof by using an
axiomatic method. Taylor [15] generalized it to the case of Z,-homology
manifolds by using the method as in [2]. Matsui [10] studied the case
of Z,-Poincaré-Euler spaces in another method.

In this paper, we study the case of k-Poincaré-Euler spaces as in [10].
An n-dimensional k-Euler space X is said to be an n-dimensional k-Poincaré-
Euler space if the cap products [X].: HYX, Z,) — H*(X, 0X; Z,) are iso-
morphisms for 0 £ 1 < k. Let X be an n-dimensional k-Poincaré-Euler
space, Then there exists a proper embedding ¢: (X, dX) — (R, oR%™)
for o sufficiently large, where R»™ = {(&, %y ***, Tnia) | Tusa = 0}. (See
Hudson [8].) Suppose that R is a regular neighborhood of X in R2**.
Put R =RNoRY™ and R = cl(3R — B). Regard @ as an embedding from
(X, 0X) to (R, B). We also call (R; R, R; ») a regular neighborhood of
X in R***. Define U(p) in H*(R, R; Z,) as the Poincaré dual of ¢,[X].
Then the cup products U(p)': H(R; Z,) — H'**(R, R; Z,) are isomorphisms
for 0 <4 <k. We call Ugp) the Thom class of (R; B, R; ). Define
cohomology classes wi(@) by w'(p) = @* o (Ulp)V) ' Sq¢*U{p) for 0 = ¢ < k.
Put w®(p) =1+ w'(®) + --- + w* (). Then there exists a unique
cohomology class @W(X) such that #(X)Uw*(p) =1. Let @#(X) =1+
X! + --- + @(X), where @W(X) is in HYX; Z,). Define w{(X) by
wHX) = W4(X) for 0 <1 <k. We call w'(X) the i-th Stiefel-Whitney
class of a k-Poincaré-Euler space X for 0 <1¢ < k. Define w*(X) by
w(X) =1+ w(X) + --- + wX).

Let (R; R, B; ») be a regular neighborhood of an n-dimensional
k-Poincaré-Euler space X in R**¢. We will define homomorphisms (eb)':
RivalR, B) — Z, and (8%): N,,u(R, R) — Z, for i <k, where R, (R, R) is
the unoriented differentiable bordism group. We need the following:

TRANSVERSALITY THEOREM (Rourke and Sanderson [13] and Buoncris-
tiano, Rourke and Sanderson [4]). Let M and N be PL-manifolds. Sup-
pose that f:(M,oM)— (N,oN) is a locally flat proper embedding and
that X is o subpolyhedron in N. If fGM)NX =@ or if ON,oNNX)
18 collared in (N, X) and oNNX is block transverse to f|0M:oM — 0N,
then there exists an embedding g: M — N ambient isotopic to f relative
to ON such that X 1s block transverse to g.

Let f: (M, aM) — (R, R) be in N, .(R, B). By Transversality Theo-
rem, there exists an embedding g: (M, oM) — (Rx D?, Rx D*) for B suf-
ficiently large such that g = Ffx{0} and that (pxid)}(XxD? is block
transverse to g. Let Y = (pXid)™og(M) and let : Y — X xD? be the
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inclusion. If 4 <%, then Y is a closed Z,-Euler space by (1) of Lemma
4.3. Define (e&){(f, M) by the modulo 2 Euler number ¢(Y) of Y. Note
that + has a normal block bundle v in Xx D? from (1) of Lemma 4.3.
Define (€9 f, M) as @44 f, M) = {(y*w (X x DF)J @), [Y]), where w(v)
is the cohomology class determined by w*(@)U®() = 1. Now define a
homomorphism (0%)': N, (R, R) — Z, by (ok)' = (&%)* — (¢k)’. We can state
the main theorem of this paper as follows:

THEOREM. Let X be an Q—dimensional k-Poincaré-Euler space. Take
a regular neighborhood (R; B, R; @) of X in R™*. Then [X]Nw(X) =
8, {(X) for 1 £ m if and only if (o) = 0 for © < m, where m < k.

We can apply this theorem to k-regular spaces. Let R be a com-
mutative ring with unit. An n-dimensional 1-Euler space X is an n-di-
mensional k-regular space over R if a triangulation K of X satisfies the
following:

(1) For each ¢ in K — 9K, if dimeo =4, then H,(Lk(s; K); R) =
H(S~** R) for <k — 1.

(2) For each ¢ in 0K, if dim ¢ = ¢, then H;,(Lk(o; K); R) = H;(pt; R)
for £k — 1. '

(83) For each o in 9K, if dime =4, then H;(Lk(o; 0K); R) =
Hy (S % R) for j <k — 1.

An n-dimensional k-regular space over K is R-orientable if H™(X,,
0X,; R) = R for each connected component X, of X.

In order to apply our theorem to k-regular spaces, we need the
following:

PARTIAL POINCARE DUALITY THEOREM (Kato [9]). Let R be a com-
mutative ring with unit. Let X be an n-dimensional k-regular space
over R. Suppose that X is R-orientable unless R = Z,. Then the cap
products [X],: H(X; R) — H,_/(X, X; B) and [X],: H(X, 0X; R) —» H,_(X;
R) are epimorphisms for all i <k — 1 ori = n — k and monomorphisms
Joralli<kori=mn —k+ 1. Here H, is the homology theory of infinite
chains whenever H* is the ordinary cohomology theory, or H, is the
ordinary homology theory whenever H* 1is the cohomology theory of
cochains with compact support.

In [9], Kato prove this theorem in the case of compact k-regular
spaces over Z. But since we can prove this theorem by using the same
method as in [9], we do not repeat the proof here.

By our theorem and Partial Poincaré Duality Theorem, we have the
following:
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COROLLARY. Let X be an n-dimensional k-regular space over Z,.
Then [X]Nwi(X) = s,_(X) for all © <k.

In Section 2, we study the Stiefel-Whitney homology classes of k-Euler
spaces and prove a special product formula for the Stiefel-Whitney homology
classes. These are necessary to prove Lemma 5.1. The structure of the
bordism group of compact k-Euler spaces is given in Proposition 3.1.
Lemma 3.1 is necessary to prove Lemma 5.1. In Section 4, we give a
characterization of Stiefel-Whitney classes via the unoriented differenti-
able bordism group. In Section 5, we give a characterization of Stiefel-
Whitney homology classes via the unoriented differentiable bordism group.
Our theorem follows from Lemmas 4.1 and 5.1.

2. Stiefel-Whitney homology classes. The purpose of this section
is to show that Stiefel-Whitney homology classes of k-Euler spaces is well
defined and to prove a special product formula for Stiefel-Whitney ho-
mology classes.

In order to prove Propositions 2.2 and 2.3, it is convenient to define
k-Euler complexes for ball complexes.

A ball complex K (cf. [4]) is totally n-dimensional if for each ¢ in
K there exists an n-dimensional ball z in K such that 0 <7 or ¢ = 7.
A totally n-dimensional locally finite ball complex K is an n-dimensional
k-Euler complex if there exists a subcomplex L satisfying the same con-
ditions (1), (2), (3) and (4) as in the definition of k-Fuler spaces in Section
1. We usually denote 0K instead of L. An wn-dimensional k-Euler com-
plex K is said to be closed if K is a finite complex and 0K is empty.
A polyhedron X is an wn-dimensional k-Euler space if there exists an
n-dimensional k-Euler complex K such that X = |K|. We usually denote
0X instead of |0K|. Such definition of k-Euler spaces clearly coincides
with that in Section 1.

Let K be a ball complex. The barycentric subdivision K of K is
defined by K = {(6¢, **+, 0,)|0, < +++ < 0,, 0;€ K}. Then K can be regarded
as a ball complex. Denote the p-skeleton of K by K?. We need the
following to prove that Stiefel-Whitney homology classes of k-Euler spaces
is well defined:

ProposiTION 2.1. Let K be an n-dimensional k-Euler complex. Then
K are p-dimensional (p — n + k)-Euler complexes such that 6K* = 6K»
for n — k< p<n.

In order to prove this proposition, we need the following:

LemMA 2.1. Let K be a totally n-dimensional locally finite ball
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complex. If be K*™, then the cardinality of {ac K — K?|a > b} is even.

Proor. If p = n, then K — K” is empty. Thus we may assume that
p<mn. Leta=<{g, ++,0,0e6K— Krandletb = (z, +++, 7)€ K. Then
s>t + 1. Sinee the cardinality of {s€ K|o, < 0 < 0} is even for each
{g,, 0 € K, the cardinality {a € K — K?|a>b} is even for be K*'. q.e.d.

PROOF OF PROPOSITION 2.1. Note that the cardinality of (b€ K|a < b}
equals the sum of the cardinalities of {b€ K?|a < b} and {bec K — K?|a < b}
for ac K. By Lemma 2.1, the cardinalities of {be K|a < b} and {be
Krla < b} are congruent modulo 2 for ac K?* Therefore K* is a
p-dimensional (p — n + k)-Euler complex such that 6K? = 6K*~* for p >
n— k. q.e.d.

Let X be an n-dimensional k-Euler space with a ball complex strue-
ture K. Define the 4-th Stiefel-Whitney homology classes s,(X) by
s,(X) = j,[IK¥|] for n — k <1 < n, where j:|K‘| — X are the inclusions.
Let 84, (X) =8, pu(X)+++-+s,(X). The Stiefel-Whitney homology classes
of k-Euler spaces are well defined by the following:

ProprosiTION 2.2. Let K be an n-dimensional k-Euler complex and
let L be a subdivision of K. Then (Jp)Jl K] = Gl L] for n — k<
1t = n, where j and j, are the inclusions.

PrROOF. Define an (n + 1)-dimensional k-Euler complex W and an
n-dimensional k-Euler complex U by W= (KxI—- Kx{1hDU(Lx{1}) and
U= @KxI—oKx{1)U@Lx{1}), where I= {{0},{1},[0,1]}. We can
regard K and L as subcomplexes of W by the identifications K = K x {0}
and L = Lx{1}. Put U% = (U' — 8U)UaU*. Then U? is an i-dimen-
sional (# — n + k)-Euler complex in view of Proposition 2.1. Note that
K* and L' are i-dimensional (3 — »n + k)-Euler complexes and that W+
is an (¢ + 1)-dimensional (¢ — n + k)-Euler complex such that oW =
KiyU®UL* and 9U® = 6K*USL* by Proposition 2.1. Hence (5,).[| K*|] =
(7o) L] q.e.d.

The product formula for Stiefel-Whitney homology classes (Halperin
and Toledo [7]) may not hold for k-Euler spaces, but we need the follow-
ing to prove Lemma 5.1.

PROPOSITION 2.3. Let X be an n-dimensional k-Euler space. Then
$;(X)X[D] = 8 (Xx D) for n — k <1t =mn, where D =[—1,1].

PrRoOF. Let L and L be ball complexes defined by L = {{—1}, {1},
["‘1! 1]} and I_‘ = {<_1>’ <1>7 <0>7 <—17 O>v <17 0>}' Here <i1> = <{i1}>1
0y ={-1,1P and (%1, 0) = ({=*1},[—1,1]). Then |L| =D =[-1,1]
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and L is the barycentric subdivision of L. Let K be a ball complex such
that X = |K|. Let D, ¢;, ¢:,, and d,,, be chains with Z,-coefficients defined
as follows: ﬁ = Ze=il <5! 0>r ¢, = Z <007 M 0i>7 €i+1 = Z <(0'0’ 6)7 )
(Um 8), (o'pv 0)’ Tty (aiv 0)> + E <(Tm 5), ] (Tzn 5)7 (Tp+1v 0)’ "ty (Ti+1; O)> and
di+2 = Z [p]<('2'0, 8); Y (Tp! 6), (Tzn 0),---, (TH—U 0)>, where <00: B 0'i> ranges
over all i-balls of K* while <z, -+, 7,;,) ranges over all (i + 1)-balls of
K*, 0<p=<i+1 and ¢ = +1. Here [p] is the class of p modulo 2.
Then 8d.:, — €y — € X D) = X [il{(zyy &), *++, (Tissy €)).  Since .., <(T<£
€), -+, (Tis1, €)y is exact for each (¢, ---, 7.y, it follows that ¢,,,—e¢,x D
is exact. Note that s,(D), s,(X) and s,,,(X x D) coincide with the homology
classes defined by chains D, ¢, and &,.,, respectively, for n — k < 1 < n.
Thus s8,,,(Xx D) = s(X)X[D] for n —k <1 £ n. g.e.d.

3. Bordism groups of k-Euler spaces. Let {8, 6} be the bordism
theory of compact k-Euler spaces for k& > 0. Then {B, 5} is a homology
theory (See Akin [1].). If k& = o, then {8, 5} is the bordism theory of
compact Z,-Euler spaces. (See Akin [1] and Matsui [10].) Let (A4, B) be a
pair of polyhedra. Define a homomorphism s,: 8%(A, By—H, _,..(4, B; Z,) +
<o +H,(A, B; Z,) by s4)(@, X) = Xiien_i+:1 Px8:i(X). Then s, is well defined
by Proposition 2.1. Define a homomorphism j, ,: B%(4, B) — BI(A4, B) by
Jwa@ X) = (@, X) for p = q. Then the following holds:

PROPOSITION 3.1. The homomorphisms su,: BE(A, B)— H,_,.,(A, B;
Z) + -+ + HJ(A, B; Z,) are isomorphisms for 0 < k = n. The homomor-
phisms 3, : BL(A, B) — Bi(A, B) are surjective for p = q.

Proor. Put A¥®A, B =H, ,.(A B, Z,)+ --- + H(A, B; Z,) for
k > 0. Define the boundary operator of': h¥(A, B) — h¥ (B) as that of
the ordinary homology theory. Then {k{¥, 5%} is a homology theory with
compact support for &k > 0. Note that {B%, 5} is also a homology theory
with compact support and that s, is a homomorphism from B%(4, B) to
h¥(A, B) such that 0¥ osy = s; 0. Since h¥(pt) = Z, and Bi(pt) =
B.(pt) = Z, (cf. [10]) for n =0, ---, k — 1, and A¥(pt) = 0 and Bi(pt) = 0
for n = k, where pt is the space of one point, the homomorphism s, is
an isomorphism. (See Spanier [14].)

Let 7: hP’(4, B) — h'"(A, B) be the canonical projection. Note that
Sw°Jma = ToS8,. Since m is surjective, so is j,.q- q.e.d.

Let ¢ = (E(g), A, ¢) be a p-block bundle over a polyhedron A. Define
E(g) as the total space of the sphere bundle associated with £&. Then we
will define a homomorphism (ef)': B:,.,(E(e), E(g) — Z, for ¢ < k, where

t J(E(g), EE)) is the bordism group of compact k-Euler spaces. Let R
be a regular neighborhood of A in R*. Let j: ACR be the inclusion and
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p: R — A be a deformation retraction. Suppose that p*z = (E(»*e), R, ¢3)
is the induced bundle. Then there exist bundle maps (7, j): (E@), A) —
(E(p*8), R) and (P, p): (E(p*g), R) — (E(g), A). (See Rourke and Sanderson
[12].) For each (@, X) in B: (E(), E()), there exists an embedding
@: (X, 0X) — (E(p*e), E(p*e)) such that §=jop. By the transversality
theorem (see [12]), we may assume that $(X) is block transverse to
tzs R — E(p*g). Let Y = @ 'ory(R). Note that the inclusion YC X has
a normal block bundle, the total space of which is an n-dimensional
k-Euler space. Then Y is a closed ¢-dimensional k-Euler space. Hence
Y is a closed <-dimensional Z,-Euler space whenever 7 < k. Define
(e, X) by the modulo 2 Euler number ¢(Y) of Y.
To prove Lemma 5.2, we need the following:

LeEMMA 3.1. Let v = (E, M, ¢) be a normal p-block bundle of a proper
embedding from a compact q-dimensional triangulated differentiable
manifold M to D™ = [—1, 1]**%. Let U, be the Thom class of v. Then
(T U ) w*(M), 9usay( X)) = (), X) for every (p, X) in B (E, E)
for i <k. Here $4)(X) = sppiinn(X) + ¢+ + 8,40(X).

ProOF. The case k = « was proved in [10]. By Proposition 3.1, we
may assume that X is a Z,-Euler space. Note that ()i, X) = (e)(p, X)
for (@, X) in By (E, E) for ¢ < k. Then (U, U (") w*(M), @,84(X)) =
(e"i(p, X) for © < k, in view of the case k = . g.e.d.

4. A characterization of Stiefel-Whitney classes. The product
formula for Stiefel-Whitney classes (see Milnor [11]) may not hold for
k-Poincaré-Euler spaces, but we need the following to deduce Lemma 4.1
from Lemma 4.2:

ProPOSITION 4.1. Let X be an n-dimensional k-Poincaré-Euler space.
Then wi{(XxD) = wi{(X)x1 for 0 <1 <k, where D =[-1, 1}.

ProOF. Let (R; R, B; @) be a regular neighborhood of X in R»*e.
Let U(p) and U(p xid) be cohomology classes such that [R]N Ulp) = @, [X]
and [Rx DN U(p xid) = (@ xid),[X x D], where id: D — D is the identity.
Then U(pxid) = Ulp)x1. Note that U(p)U(@*)w'(p) = S¢*U(e) and
Ulp xid) U [(p xid)*]"'wi(p xid) = Sq*U(p xid) for 0 < ¢ < k. Then U(p x
) UT(e xid)* ' (w(e) x 1) = Sq'U(p xid) for 0 < ¢ < k. Hence wi(p Xid) =
wi(@)x1 for 0 £ 4 < k. Thus w(XxD)=w"(X)x1 for 0 ¢ <k. qg.e.d.

Let (R; B, R; @) be a regular neighborhood of an #%-dimensional
k-Poincaré-Euler space X in R***. Suppose that (%)% RN, (R, B) — Z, is
the homomorphism defined for 7+ < k in Section 1. We need the following
to prove our theorem:
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LEMMA 4.1. For every (f,M) in N (R, R), we have {(Ul@)U
(@ w®(X), f((MINw*(M))) = (@)(f, M) whenever i <k. Herew"™(X)=
1+ - + wi(X).

In order to prove Lemma 4.1, we need the following:

LEMMA 4.2. Let f:(M,o0M)— (R, R) be a PL-embedding with a
normal block bundle & where M is an (i + a)-dimensional triangulated
differentiable manifold. If @(X) is transverse to & and 1 <k, then
U@ U (@*) w™(X), £ ((M]Nw*(M))) = €5)Sf, M).

In order to prove Lemmas 4.2 and 5.2, we need the following:

LEMMA 4.3. Let (R; R, R; @) be a regular meighborhood of an
n-dimensional k-Poincaré-Euler space X in R>**. Let M be an (1 + a)-
dimensional triangulated differentiable manifold, where 0 < 1 < k. Given
@ PL-embedding f: (M, M) — (R, R) with a mormal block bundle & =
(E, M, fz), suppose that o(X) is transverse to & Let U, be the Thom
class of & and jz: E— R be the inclusion. Define ¥ = @~ o f(M) and
Xp =@ logu(E). Let pg: Xz— E and +y: Y — M be embeddings defined
by @x = jile® and Yy = fo(@|Y). Then the following hold:

(1) Y s a closed Z,-Euler space with a normal block bundle.

(2) (fo)(M]INf*U@) = (@) XN U

(3) [MINfU®@) = (ya)«lY].

Proor. (1) Clearly %z is a normal (n — 7)-block bundle of Y in
X. Note that E is an n-dimensional k-Euler space. Then Y is an i-
dimensional k-Euler space. Hence Y is a Z,-Euler space, since ¢ < k.
Since M is compact, Y is closed.

(2) Note that jzofy = fand [E]1N U = (fp).[M]. Thus (fz).(M]N
f*U@) =(EINjiU@)NU,. If [E]NjiU@) = (Pz)Xz], then (f).(IM]1N
FrU@) = (pg)«[Xz]N U.. Hence we have only to prove [E]NJjiU(p) =
(@) X:]. Let B =cl(R— j(E)) and let j.:(R; R R)— (R; R, R) be
defined by the inclusion. Regard j, as a map j,: (E; E, E) — (R: R, R),
where E = cl(0E — E). Note that (j,).E] = (jo)«[R] and [R]N Ulp) =
P.[X]. Then (jo)(EIN(G)*UP) = (a)x o P+[X] = (Gp)x © (Pu)«[Xel. Since
Go)s: H E, B, Z,) > H(R, R; Z,) is an isomorphism, we have [E]N
) U(@) = (Pr)«[XE]

(3) Note that [X]N (@) U: = ()Y ], where +z: ¥ — X, is the
inclusion. By (2), we have (fp).([MINSf*U(P)) = (Pu)s°(¥u)«[Y]. Note
that @goqrz = fzovy and that (f3).: H.(M, 0M; Z,) — H (E, E; Z,) is an
isomorphism. Then [M]N f*U(p) = (dy)«[ Y ]. g.e.d.

Proor Or LEMMA 4.2. We use the notation of Lemma 4.3. By (2)
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of Lemma 4.3, we have <(U(@)U(@*)w®(X), f(M]Nnw*(M))> =
fro (@) wB (X)) Uw* (M), (va)«[Y]). Let 4rz: Y — X be the inclusion.
Note that foyy = @oqry. Then (Ulp)U(@*)"'w*(X), £ ((M]Nw*(M))) =
{Prw P (X)Up* (M), [Y ) = pEw ™ (X) U@ (), [Y ) = {piw®(X) Ub(yis),
[YD. Thus {U(p)U(p*)w®(X), fulMINw*(M))) = €)*(f, M) by the
definition of (k). g.e.d.

PrOOF OF LEMMA 4.1. Let (f, M) be in %, (R, R). By Transversality
Theorem, there exists an embedding g: (M, 0M) — (Rx D?, R x D? such
that g = fx{0} and (pxid)(Xx D#) is block transverse to g. By Lemma
4.2, it follows that {(U(p)x 1) N[(p xid)*"'w* (X x D?), g . ([(M]1Nw*(M))) =
@®)(f, M). Note that w*(Xx Df) = w*(X)x1 by Proposition 4.1. Hence
CU(@)U(@*)"w®(X), f.(IMINw*(M))) = {(U(p)x 1) U[(pxid)*]"w* (X x D?),
gx((M]nw*(M))). Thus {Ul@)U(p*) w*(X), f(M]Nw*M))) = @)/,
M). q.e.d.

A characterization of Stiefel-Whitney classes is given by Lemma 4.1
and the following:

LEMMA 4.4. Let (A, B) be a pair of polyhedra. Let @ be in H*(A,
B, Z)fori=0,1, ---,k—1. Put®® =@ + ... + @, If<@% f.(M]N
w*(M))> = 0 for every (f, M) in N,(A, B), then 0% = 0.

ProOF. Since (0%, f (IM]Nw*(M))) = L@, f.IM]> for (f, M)eNR(A,
B), the assumption (@%, f,([M]Nnw*(M))> = 0 for every (f, M) implies
@ = 0. Suppose that ¢"=0, & =0, ---, 0/ =0. Then (@, f (IM]N
w*(M))) = L&, f,[M]) for (f, M)eN;,.(A, B). Hence, if (0%, f ([M]N
w*(M))> = 0 for every (f, M), it follows that @' = (. By induction on
j, we have 0% = (. q.e.d.

5. Characterizations of Stiefel-Whitney homology classes. Let
(R; B, R; ) be a regular neighborhood of an n-dimensional %-Poincaré-
Euler space X in R***. Suppose that (e£): N, (R, R) — Z, is the homo-
morphism defined for ¢ < k in Section 1. We need the following to prove
our theorem:

LEMMA 5.1. For every (f, M) in N, (R, R), we have {U(@)U (@p*) e
([X1)7'86:(X), fL((MINw*(M))) = (e&)'(f, M), whenever i <k. Here
Siy(X) = 8p_pn(X) + « -+ + 5,(X).

In order to prove this, we need the following:

LEMMA 5.2. Let f:(M,oM)— (R, R) be a PL-embedding with a
normal block bundle &, where M is an (1 + a)-dimenstonal triangulated
differentiable manifold. If o(X) is transverse to & and © <k, then
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U(@)U(@*) o ([X]0)"sw(X), fM]Nw*(M))) = (eo)'(f, M).

ProOF. We use the notation of Lemma 4.3. By (2) of Lemma 4.3,
we have (U(@)U(@*)™ o ([X]0) 81 (X), f(MINw*(M))) = w*(M)U f*o
(@) o ([X]n) s X), (fe)¥'(@Pe)«[XelN Uy)). Note that jyofy =f. Then
(U@)U(@*) ™o ([X]0)"85(X), fullM]INw*(M))) = U U ) w* (M), (@)«
[XeDNgEo(@*) e ([X])"8u(X)). Since there exists the following com-
mutative diagram

* %

HX; Z) <— HR;Z) -2 HE;Z)
1[X]u ) ) l ((SDE)*[XE])Q
HI(X, 0X; 2) -2 HI(B, (R — E); 2) 23 H(E, F; 7)

and since [X],, ®* and (jz). are isomomorphisms for 7 < k, we have
(@)« [ XD N 73 °_(‘P*)_1°([X]n)—ls(k)(X) = [Ue)x] e Pysu(X) = (P8 (Xp).
Let (ef): B,(E, E) — Z, be the homomorphism defined in Section 3. Then
CUU(H) " w* (M), (Pr)x8w(Xz)) = (68 (P Xp) by Lemma 3.1. Note that
(eb)'(f, M) = (e})(px, Xp) by definition. Thus (U(@) U (¢*)™ o ([X15) "84, (X),
Fe(IMINw*(M))) = (e)(f, M). q.e.d.

PrOOF oF LEMMA 5.1. Let (f, M) be in N, (R, B). Then there exists
an embedding g: (M, 0M) — (RxD?, RxD? such that g = fx{0} and
(pxi1d)(Xx D#) is block transverse to g by Transversality Theorem. By
Lemma 5.2, we have {(U(p)x1)U[(pxid)*]™'o([Xx D) "su, (X x D?),
9x([MINw*(M))) = (e§)*(f, M) for ¢ < k. Note that s4)/(X X Df) = 84,(X) X
[D?] by Proposition 2.3. Then (U(@)U(@*)™" e ([X]1) 8w (X), fullM]IN
w*(M))) = {(U(@)x HU[(pxid)*]™ ([ Xx D?]1) 8y (X X DF), g ([M]Nw*(M))>.
Thus (U(@) U(*) "o ([X]n) 85, (X), FuMINw* M)y = (e§)'(f, M) for ¢ <k.

q.e.d.

PrRoor oF THEOREM. If [X]nw'(X)=s,_(X) for i =m, then
(€& f, M) = (@%)'(f, M) for i < m by Lemmas 4.1 and 5.1. This means
(0k)* = 0 for 2 < m. Conversely, suppose that (of)* =0 for ¢ <m. By
Lemmas 4.1, 4.4 and 5.1, we have U(p)U(e*)'wi(X) = Ulp)U(p*)"o
([X10)7'8,-(X) for ¢ < m. Since U(p)U(¢*)™" and [X], are isomorphisms
for m < k, we have [X]Nwi(X) = s,_(X) for i = m. q.e.d.

ProOOF OF COROLLARY. Note that k-regular spaces over Z, are k-Euler
spaces by the consideration of the definitions. Then k-regular spaces over
Z, are k-Poincaré-Euler spaces by Partial Poincaré Duality Theorem. Let
y: Y — X x D? be the embedding used to define (ef)* and (¢})’. Note that
4 has a normal block bundle » in Xx D’ Then Y is an ¢-dimensional
k-regular space. Since Y is compact and ¢ < k, it follows that Y is a
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closed Z,-homology manifold. Hence 4*w* (X x D¥) = w*(Y)Uw*(®¥). Thus
(0k): = 0 in view of the definition of (ek)‘ and (€%)'. Hence [X]Nw!(X) =
8,_(X) for © < k by Theorem. qg.e.d.

[1]
[2]
[3]
[4]
{51
[6]
[7]

{81
[9]

[10]
1]
[12]
[13]
[14]

[15]
[16]

REFERENCES

E. AxiN, Stiefel-Whitney homology classes and cobordism, Trans, Amer. Math. Soc. 205
(1975), 341-359.

J.D. BLANTON AND P. A. SCHWEITZER, Axiom for characteristic classes of manifolds,
Proc. Symp. in Pure Math. 27 (1975), Amer. Math. Soc., 349-356.

J.D. BLanTON AND C. MCCRORY, An axiomatic proof of Stiefel conjecture, Proc. Amer.
Math. Soe. 77 (1979), 409-414.

S. BuoncrisTiaNo, C. R. ROURKE AND B.J. SANDERSON, A geometric approach to homology
theory, London Math. Soc. Lecture Notes, 18, 1976.

J. CHEEGER, A combinatorial formula for Stiefel-Whitney classes, in Topology of Mani-
folds, (Cantrel and Edward, eds.), Markham Publ., 1970, 470-471.

S. HALPERIN AND D. ToLEpO, Stiefel-Whitney homology classes, Ann. of Math. 96 (1972),
511-525.

S. HALPERIN AND D. TOLEDO, The product formula for Stiefel-Whitney homology classes,
Proc. of Amer. Math. Soc. 48 (1975), 239-244.

J.F.P. HupsoN, Piecewise Linear Topology, Benjamin, New York, 1969.

M. Kato, Topology of k-regular spaces and algebraic sets, Manifolds Tokyo 1973, Univ.
of Tokyo Press (1975), 153-159.

A Marsul, Stiefel-Whitney homology classes of Z:-Poincaré-Euler spaces, T6hoku Math.
J. 35 (1983), 321-339.

J. MILNOR AND J. STASHEFF, Characteristic classes, Ann. of Math. Studies 76, Princeton
Univ. Press., 1974.

C.P. RoOURKE, Block structures of in geometric and algebraic topology, Actes, Congress
intern. Math. Nice. (1970), 127-132.

C.P. RourkE AND B.J. SANDERsON, Block boundles, I and II, Ann. of Math. 87 (1968),
1-28 and 255-2177.

E.H. SPANIER, Algebraic Topology, McGraw-Hill, New York, 1966.

L. TAYLOR, Stiefel-Whitney homology classes, Quart. J. Oxford 28 (1977), 381-387.

H. WHITNEY, On the theory of sphere bundles, Proc. Nat. Acad. Sci. U.S.A. 26 (1940),
148-153.

IcHINOSEKI TECHNICAL COLLEGE
ICHINOSEKI, 021
JAPAN






