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Abstract

Most robot designers make the mechanical interface
between an actuator and its load as stiff as possible[9][10].
This makes sense in traditional position-controlled systems,
because high interface stiffness maximizes bandwidth and, for
non-collocated control, reduces instability. However, lower
interface stiffness has advantages as well, including greater
shock tolerance, lower reflected inertia, more accurate and
stable force control, less damage during inadvertent contact,
and the potential for energy storage. The ability of series elas-
ticity (usually in the form of a compliant coating on an end-
effector) to stabilize force control during intermittent contact
with hard surfaces is well known. This paper proposes that for
natural tasks where small-motion bandwidth is not of para-
mount concern, actuator to load interfaces should be signifi-
cantly less stiff than in most present designs. Furthermore, by
purposefully placing the majority of interface elasticity inside
of an actuator package, a new type of actuator is created with
performance characteristics more suited to the natural world.
Despite common intuition, such a series-elastic actuator is not
difficult to control.

After an analytic treatment of the trade-offs and limita-
tions of series elastic actuators, we present a simple hybrid
feed-forward / feed-back control system for their use. We con-
clude with test results from a revolute series-elastic actuator
being used in the arms of the MIT humanoid robot Cog[5] and

also in the arm of a small planetary rover1. A similar concept,
but with pulley driven series-elastic tendons, is presently
being used in a 2-D walking biped named “Spring Turkey”.

I. Introduction

Robot designers have traditionally maximized the inter-
face stiffness between actuators and loads[19], and with good
reason. Stiffness improves the precision, stability, and band-
width of position-control. When either open-loop positioning
or collocated feedback are used, increased interface stiffness
decreases end-point position errors under load disturbances.
In non-collocated feedback systems (where the position sen-
sor is located at the load side of the interface), increased stiff-

1. This work was supported by JPL contract # 959333, for
which we are most grateful.

ness both lowers necessary actuator motion in response to
load variations and raises the resonant frequency of the motor
inertia and interface compliance. As a result, stiffer interfaces
allow the bandwidth of a position control feedback loop to be
raised without compromising stability[7][8].

But stiffness isn’t everything. Most electric motors have
poor torque density and thus can deliver high power only at
high speed[15]. To provide high power to slowly moving
loads, gear reduction become necessary. Unfortunately, gears
introduce friction and/or backlash, torque ripple, and noise.

The use of N:1 gearing also causes an N2 increase in reflected
inertia so that shock loads cause very high stress on the teeth
of the output gear, possibly resulting in failure. This increased
reflected intertia and the typically high backdrive friction of
high ratio gear trains can also cause damage to the robot or
environment when unexpected contact occurs.

Reducing interface stiffness by inserting series elasticity
can resolve many of these problems. The basic configuration
of a series elastic actuator is shown below:

Fig. 1. Block Diagram of Series-Elastic Actuator

The first benefit of the series elasticity is to low-pass filter
shock loads, thereby greatly reducing peak output gear forces.
Although this also low-pass filters the actuator’s output, we
believe this is a place for an engineering trade-off, not the tra-
ditional “stiffer is better” minimization. The proper amount of
interface elasticity can substantially increases shock tolerance
while maintaining adequate small motion bandwidth for natu-
ral tasks like locomotion and manipulation.

Series elasticity also turns the force control problem into a
position control problem, greatly improving force accuracy. In
a series elastic actuator, output force is proportional to the
position difference across the series elasticity multiplied by its
spring constant. Because position is much more easy to con-
trol accurately through a gear train than force, the force errors
usually caused by friction and torque ripple are reduced. Fric-
tion and backlash are usually a trade-off in gear train design.
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Series elasticity allows this trade-off to be driven much further
towards high friction and low backlash, resulting in better
position control at the gear train’s output and thus better force
control at the load. Importantly, high friction, low backlash
gear trains can also be made inexpensively.

Increased series elasticity also makes stable force control
more easy to achieve. Contrary to the case in position control,
stable force control is easier to achieve when the frequency of
interface resonances are lowered. This is because force feed-
back works well at low frequencies, creating a virtual zero-
rate spring in series with the non-zero mechanical elasticity
(i.e. a net spring rate of zero).

Finally, series elasticity provides for the possibility of
energy storage. In legged locomotion, such energy storage can
significantly increase efficiency[1]. By incorporating elastic-
ity into the actuator package, efficiency benefits can be had
despite the elasticity being hidden from the higher level con-
trol system. In other words, unlike methods that try to account
for link elasticity at a systems level[19][20], the high level
control system thinks it is controlling independent force actu-
ators when in fact those actuators have internal springs that
provide the aforementioned benefits.

Several authors have previously studied methods for con-
trolling unavoidably flexible structures (such as those
expected in space[4]), and the role of interface compliance in
stabilizing force control during contact transitions[23]. But
with the exception of systems where energy-storage is para-
mount (such as the legs of a hopping robot[18]), and some
passive hand mechanisms[21][11], few have suggested that
elasticity should be incorporated into general purpose robotic
actuators. This seems strange, particularly for robots execut-
ing natural tasks, because elasticity is used for a wide variety
of purposes in animals[1].

II. Performance Limits

Series elasticity creates the need for elastic deformation of
the series element whenever force is modulated. This extra
motion may add either constructively or destructively to the
motion of the load. Thus, depending on the relative amplitude
and phase of the load’s force and motion waveforms, it is pos-
sible for the interface elasticity to either increase or decrease
bandwidth.

Ignoring output inertia, a series-elastic actuator can be
modeled as follows:

Fig. 2. Model of a series-elastic actuator
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with the following frequency-domain system diagram:

Fig. 3. Frequency Domain System Diagram

and the following variable definitions:

Fig. 4. System Variables

From the diagram above we can derive the following
equations:

(1)

(2)

Setting  and solving for Fm , in terms of Fl and Xl

we have:

(3)

As can be seen above, the motor force has three compo-

nents. The first,  , is the force applied through the elasticity

to the load. The second,  , is the force required to

accelerate the motor’s mass in order to change the deforma-

tion of the elasticity. The third,  , is the force

required to accelerate the motor’s mass so as to track motion
of the load. Of these three terms, only the middle one is
unique to the series elastic actuator.
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Mm Motor Mass

Ks Elasticity Spring Rate
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Ignoring velocity saturation, we can compute performance
by imposing a limit on the magnitude of Fm , i.e.

. For most motors, this translates into a bound

on the maximum motor current. It is helpful to draw a vector
diagram showing the magnitude and phase relationship of Fl

and Xl , and the resulting Fm :

Fig. 5. Phase Diagram of Necessary Motor Force

Here we have arbitrarily aligned Fl with the real axis. To

satisfy , end point Fm must land inside the cir-

cle of radius Fmax. Note that the series elasticity term

 opposes the  vector. Thus, for all frequencies

below  , the series elasticity will bring the starting point

of the  vector closer to the circle’s center and thus

allow for a greater range of possible motion amplitudes and
phases than would be possible with a stiff interface. If imped-

ance control[12] is used, the  term of the vector sum

will point to the right when simulating positive rate springs,
and thus the inclusion of series elasticity will improve actua-

tor performance. At frequencies less than , the maxi-

mum force amplitude of damping impedances, such as are
used in damping control[22], is also increased.

It is also informative to consider actuator output force as a

function of the output impedance  and motor force:
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(4)

This equation is plotted against actual test data later in the
paper.

III. Control

Stable, accurate, force control can be obtained by using
the architecture shown below, where  is the desired force:

Fig. 6. Control Architecture

The feed-forward paths attempt to fully compensate for all
three terms of equation 3, with the exception of the last (load
motion) term, where a gain  is made less than 1 so as to

prevent feedback inversion and instability.

Feedback to compensate for modeling errors and  is

accomplished by an ordinary PID loop, operating on force
error. This loop has a transfer function of:

(5)

with parameters defined as follows:

Fig. 7. Feedback Parameters

Stability can be analyzed by looking at the output imped-
ance as a function of frequency  with a commanded

force  :
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(6)

If the imaginary part of this impedance is less than or equal to
zero, than the actuator as whole will be passive and thus stable
when interacting with any passive load[13][14]. The only
imaginary component of the impedance comes from the PID
term, which is in the denominator. Thus, for the impedance to
have a negative imaginary part, the PID term must have a
positive imaginary part, i.e.:

(7)

which is guaranteed for all  when

(8)

i.e., when the integral gain is rolled off below a sufficiently
high frequency.

In a real system with motor saturation, the actuator will
take on the natural impedance of the series elasticity at suffi-
ciently high frequencies[10]. Thus, a light load mass may res-
onate with the series elasticity. To avoid this problem, placing
a minimum mass on the load will lower the resonant fre-
quency to where the control loop operates well. At this low
frequency, the impedance of the series elasticity disappears
from the overall impedance (which is very low), and reso-
nance cannot occur.

IV. Experimental Setup

To evaluate performance, a series elastic actuator, shown
in the photograph below, was constructed:

Fig. 8. Experimental Series-Elastic Actuator

The motor used was a MicroMo 3557K (48V, 25W) with a
66:1 reduction planetary gearbox. The gearbox’s output shaft
was attached to a steel torsion spring, which formed the series
elasticity. The actuator output was taken from the other end of
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the spring. The spring was of a cross-shaped cross-section,
which was found to give the best stiffness v. strength
characteristics. The inertia of the motor at the output of the

gearbox was calculated to be 0.02 kgm2 and the stiffness of
the spring was 34 Nm/rad, making the natural frequency of
the system 41 rad/s or about 7Hz. The twist in the spring was
measured using strain gauges mounted on the flats of the
spring.

The control loop used was similar to that shown in fig. 6,

only the  term was not implemented. The control param-

eters were set as follows:

A controlled load impedance was implemented by con-
necting the series elastic actuator’s output to a conventional
position-controlled motor, as shown below:

Fig. 9. Dual actuator test rig

V.  Results

Both force and position were commanded sinusoidally at
the same frequency, while magnitude and relative phase were
varied. The performance was measured by calculating the root
mean square force error and normalizing with respect to the
commanded force amplitude. By then limiting RMS force
error to a specific value, plots of the maximum possible output
force magnitude over a range of output impedences were
made. These were compared to the theoretical maximums
given by equation 4, modified to take into account motor effi-
ciency. In the plots below, the left plots show measured per-
formance, the right show theoretical predictions. In each plot,
the horizontal plane is impedance and the vertical axis is max-
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imum possible force magnitude. Tests were performed at 12,
25, 38 (resonance) and 44 rad/sec.:

Fig. 10. Maximum output force vs. load impedance at 12 rad/sec

Fig. 11. Maximum output force vs. load impedance at 25 rad/sec

Fig. 12. Maximum output force vs. load impedance at 38 rad/sec

Fig. 13. Maximum output force vs. load impedance at 44 rad/sec

At low frequencies, performance is quite good The small
downward spike corresponds to the lowest impedance that
could be generated on the test rig without large-motion satura-
tion. At resonance, performance at low impedances degrades,
while at larger impedances performance is still good. Above
resonance, it can clearly be seen that the actuator only per-
forms well when its output impedance has a negative real part,
which corresponds to positive spring-like behavior.

VI. Conclusions

Series-elastic actuators are presently being utilized in two
research robots, and a third is now under construction. The
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first robot is Cog[5], whose arms are powered by revolute
series-elastic actuators very similar to those used in the above
tests. Another robot - a planer biped walker named “Spring
Turkey” - utilizes series-elastic tendons to drive its leg joints.
The limbs of both of these robots are shown below:

Fig. 14. One of Cog ‘s Arms (left) and Spring Turkey’s Legs (right)

A series-elastic arm for a small planetary rover is pres-
ently under construction.

In early system tests, both Cog’s arm and Spring Turkey’s
legs have demonstrated performance that verifies the advan-
tages of series-elastic actuators. Both robots interact with the
environment under force or impedance control without any
instability during transient contact with hard surfaces. Both
robots have (so far) been robust to shock (presently more
often a result of control programming errors than the environ-
ment). Spring Turkey has recently taken a few steps, showing
that walking with series-elastic actuators is feasible

We believe that for natural tasks (such as walking and
manipulation), series elastic actuators provide many benefits
when compared to traditional actuators. These benefits
include shock tolerance, lower reflected inertia, more accurate
and stable force control, less damage during inadvertent con-
tact, and energy storage. Although zero motion force band-
width is reduced, force bandwidth for many tasks that involve
load motion is improved. This is particularly true for natural
tasks that are spring- or damper-like in their impedance[22].

We have shown that a simple control system can generate
a range of complex output impedances - not just that of the
passive series elasticity, and have demonstrated experimen-
tally that accurate, stable control is easy to achieve.

Several avenues are open for future work, including paral-
lel connections that extend both dynamic range and band-
width [17] and variable-rate springs whose modulation of bias
point can effect changes in passive stiffness. This type of
mechanism has been studied before[21] and a more sophisti-
cated version is currently being investigated at MIT by Ken
Salisbury’s group and that of the authors.
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