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Abstract 

Shanks et al. (2015) challenged the evidence that various forms of decision making can be 

influenced by romantic/mating primes. In their comment, Sundie, Beal, Neuberg, and Kenrick 

(in press) question both the meta-analysis and the 8 studies Shanks et al. reported, and 

describe an alternative p-curve analysis which they interpret as showing that romantic 

priming is a genuine phenomenon. In this reply we comment on several contradictions in 

Sundie et al.’s article. First, they suggest that Shanks et al.’s replication experiments yielded 

different results from the original studies because we failed to appreciate the contextual 

sensitivity of romantic priming effects, but this argument rests largely on evidence from the 

very studies we were unable to replicate, and a wealth of other evidence suggests that social 

priming effects are largely invariant across samples and settings. Secondly, Sundie et al. 

criticize the selection rule by which Shanks et al. identified relevant priming studies, but then 

go on to include exactly the same set of studies in their p-curve analysis. Thirdly, they 

criticize Shanks et al.’s selection of statistical results from these studies and propose a much 

wider selection, but then acknowledge that their selection process is poorly suited to 

assessing publication bias and p-hacking. Fourthly, we show that their p-curve analysis, far 

from demonstrating that this literature is unaffected by p-hacking, in fact shows the exact 

opposite. Sundie et al. claim that Shanks et al.’s priming manipulation was demonstrably 

weak, but their argument is based on a confusion between different dependent measures. 

We conclude that romantic priming remains unproven, and urge researchers in this field to 

undertake high-powered pre-registered replication studies. 
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Can various forms of decision making, including risk-taking and consumer choices, be 

influenced by romantic/mating primes? Shanks et al. (2015) questioned the published 

evidence on this issue and made two major proposals, that past research on romantic 

priming should be viewed with considerable caution because it showed strong evidence of 

publication bias and/or p-hacking, and that in any case several of the key findings could not 

be replicated. Meta-analyses and replication studies have cast doubts on the reproducibility 

of other forms of social priming such as ‘money’ (e.g., Lodder, Ong, Grasman, & Wicherts, in 

press) ‘flag’ (e.g., Klein et al. 2014), ‘intelligence’ (e.g., O'Donnell et al., 2018), and ‘religious’ 

priming (e.g., Billingsley, Gomes, & McCullough, 2018). Shanks et al.’s findings suggest that 

the reality of romantic/mating priming is equally doubtful. 

In their Comment, Sundie et al. (in press) argue that the conclusions of our article (Shanks et 

al., 2015) are flawed for a number of reasons. These criticisms are undermined, we argue, 

by a series of profound contradictions: 

(1) Sundie et al. point to a failure to appreciate the contextual sensitivity of romantic 

priming effects as a reason why Shanks et al.’s replication experiments failed to obtain 

evidence of romantic priming, but beyond being a speculation, this argument rests to a 

substantial degree on the very effects (e.g., gender effects) we were unable to 

replicate. Moreover we present statistical evidence showing that effects highly similar 

to romantic priming are not particularly sensitive to contextual variation. 

(2) Sundie et al. criticize us for failing to provide an adequate definition of the effect of 

interest and for “including a hodgepodge of variables that stretched the limits of what 

can and should be compared meta-analytically… Treating such disparate effects as 

belonging to a single distribution of the same effect calls into question whether any sort 

of meaningful interpretation is possible” (p. 8). Yet the identical set of studies formed 

the basis of their own p-curve analysis. 

(3) Sundie et al. take issue with the method by which we selected effects from the set 

of 15 studies we identified, and conclude that our assessment of publication bias or p-

hacking is therefore invalid. But after describing a meta-analysis based on a different 

selection rule – namely including all 144 available effects – they concede that 

“examining a funnel plot that includes all of the simple and main effects from a set of 

studies designed to examine interactions is poorly suited to providing any definitive 

information about publication bias or p-hacking in a literature.” 

(4) We critically evaluate Sundie et al.’s new p-curve analysis, demonstrating that it 

serves if anything to bolster the case for being extremely cautious about romantic 

priming. 
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In addition to highlighting these contradictions, we also point out a fallacious argument 

Sundie et al. make regarding the priming manipulation Shanks et al. employed. The claim 

that this manipulation was demonstrably weak rests on a confusion between different 

dependent measures. We end this Reply by making a proposal about how this field of 

research could profitably move forward in the future. 

Contextual sensitivity of priming effects 

If a given result is highly contextually sensitive, then there is a real risk that a replication will 

fail to recapitulate the precise context in which the effect was originally observed and fail to 

replicate it. Research on contextual sensitivity highlights time, location, culture and 

population as the major contextual variables (Van Bavel, Mende-Siedlecki, Brady, & Reinero, 

2016). Sundie et al. begin their Comment by arguing that any conclusions drawn from the 

meta-analysis and experiments Shanks et al. conducted must be weak because we failed to 

respect the contextual sensitivity of the research we evaluated.  

We do not dispute that romantic priming effects, if real, are likely to be sensitive to a range of 

factors, just like any other psychological measurements. But the case that Sundie et al. make 

for the supposed high contextual sensitivity of the original effects, beyond being a 

speculation, rests largely on the very evidence that is in dispute. Sundie et al.’s Table 1 lists 

interactions of gender (a contextual variable) with manipulations such as public versus 

private display, consumption versus benevolence decisions, and conspicuousness of the 

decision, for example, but these are all interactions we were unable to replicate. It is plainly 

circular to base a criticism of a failed replication on the very result that cannot be replicated. 

Is there any other concrete evidence regarding the contextual sensitivity of phenomena like 

romantic priming? Indeed there is, although not mentioned by Sundie et al. Several multi-lab 

replication projects have found that priming effects very similar to romantic priming are not 

especially contextually sensitive, at least in the sense that they do not vary systematically 

across different countries, cultures, languages, samples, and so on. As shown in Table 1 (to 

which we return later), in the multi-lab replication projects by Ebersole et al. (2016), Klein 

(2014), Klein et al. (in press), and O'Donnell et al. (2018), the degree of heterogeneity across 

laboratories for 7 types of priming, measured by the conventional statistics Q and I2, was 

small and only statistically significant in one case. For example, Klein (2014) found no 

heterogeneity in money priming across 36 laboratories in countries as diverse as Malaysia, 

Brazil, Turkey and the United States and across which the mean age of the tested participant 

samples varied from 18-35. The common appeal to hidden moderators as an explanation for 

replication failures is strongly challenged by these and related (e.g., Caruso, Shapira, & 

Landy, 2017) results, at least in the case of social priming. 
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A further contradiction is that Sundie et al.’s Table 1 lists other factors which are manipulated 

independent variables characterizing the stimuli or the type of decision being investigated, 

not contextual variables. For instance, manipulations of tactile versus visual or more versus 

less attractive stimuli, or of temporal versus physical length decision making measures, do 

not fall under the definition of contextual factors. 

This is not the only inconsistency in Sundie et al.’s claims about contextual sensitivity. They 

state, for instance, that “in many of the original research studies critiqued by Shanks et al., 

participants were pre-qualified as being heterosexual in orientation, before being asked to 

respond to manipulations designed only for heterosexuals (e.g., men asked to review dating 

profiles of attractive women). Shanks et al.’s replication studies had no such prequalification, 

and they retained substantial percentages of participants in their replication samples who 

had reported a non-heterosexual orientation. Moreover, whereas most participants in the 

original research papers were young undergraduate students, Shanks et al. recruited 

participants up to age 60.” 

Sexual orientation and age are certainly contextual variables (relating to the population 

studied), but the first part of this statement is a dubious claim: Participants were pre-qualified 

as heterosexual in only 8 of the 15 studies Shanks et al. evaluated. Nearly half (7/15) of the 

studies, including two in which Sundie et al. themselves participated (Griskevicius et al., 

2007; Sundie et al., 2011), made no reference to such pre-screening. In several of our 

experiments we did ask participants to report their sexual orientation. For example, in 

Experiments 7a and 7b, replicating experiments by Greitemeyer, Kastenmüller, and Fischer 

(2013), only 12/235 participants (5.1%) self-identified as homosexual. Excluding them makes 

no difference to the results, as re-analysis of the dataset (https://osf.io/ytvj7/) reveals. 

Likewise, the age profile of our participant samples was nothing like as different from the 

original studies as Sundie et al. imply. The 120 participants in our Study 7a, for example, had 

a mean age of 21.7 years, very close to that in Greitemeyer’s experiment (mean = 20.3). In 

Experiments 7a and 7b, less than 10% of participants were older than 35. Again, excluding 

these participants does not alter the conclusions. Moreover, contrary to Sundie et al.’s 

speculation, age has very little effect on behavior. In Figure 1 we plot data from Experiment 8 

which was pre-registered with a total sample of 650 participants, endeavoring to replicate a 

study by Li, Kenrick, Griskevicius, and Neuberg (2012). From this sample we have extracted 

loss aversion scores for all 222 participants allocated to the romantic prime group and all 222 

participants allocated to the control group (for details of the experiment and the loss aversion 

score, see Shanks et al., 2015). It can clearly be seen that neither age nor gender moderates 

loss aversion scores, nor is there any suggestion that the difference between the prime and 

control groups is larger for young male participants. Priming is absent across the age range1. 

https://osf.io/ytvj7/
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In sum, the argument that our replication experiments should be discounted because we 

failed to recognize the contextual sensitivity of romantic priming effects is a weak one. 

Sundie et al. provide no evidence that romantic priming is any more contextually sensitive 

than any other psychological phenomena, and indeed the heterogeneity of similar priming 

effects is low. Their argument rests to a large extent on the very results that we were unable 

to replicate, and many of the factors listed in their Table 1 and described as contextual 

variables are actually manipulated independent variables. Moreover, nearly half the studies 

included in the meta-analysis reported no pre-screening for sexual orientation, and restricting 

our analyses on the basis of age and sexual orientation does not alter the conclusions. 

Specifying the effect of interest 

It goes without saying that an important aspect of meta-analysis is to specify with as much 

precision as possible what the effect of interest is. We described in some detail how we 

conducted our literature search for studies assessing the effects of mating primes, using a 

variety of different priming manipulations to activate mating/romantic motives/goals, on 

decision-making dependent variables. We highlighted the boundaries of this effect of 

interest, excluding for instance non-decision-making behaviors such as creativity and 

aggression. We defined our effect carefully, not least in terms of an explicit specification of 

the search terms we used to identify studies from a range of databases. 

Sundie et al. (in press) argue that our meta-analysis is in effect uninterpretable because our 

selection of effects to include was flawed and “stretched the limits of what can and should be 

compared meta-analytically” (p. 8). Yet they included precisely the same set of 15 studies in 

their own p-curve analysis (see below). If the effect was ill-defined for one form of meta-

analysis then it must be for other types too. Sundie et al. seem unaware of the contradiction 

between asserting that we should not have compared this set of studies meta-analytically 

while simultaneously conducting their own analysis on these same studies and drawing 

positive conclusions from it. 

It is curious that despite criticizing our specification of the effect of interest, Sundie et al. 

neither identify any additional studies that we failed to include in our meta-analysis nor any 

that were included inappropriately. If we “used a flawed procedure to identify and exclude 

effects…” (p. 4) then why have Sundie et al. not provided concrete evidence, in the form of 

examples, to bolster this claim? The fact that the included studies employed a range of 

different decision-making dependent variables is consistent with standard practice, provided 

that due heed is paid to the magnitude of observed heterogeneity. Just to give one example, 

the Hagger, Wood, Stiff, and Chatzisarantis (2010) meta-analysis of the ego depletion effect 

included measures of the control of attention, emotion, thoughts, impulses, cognitive 
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processing, choice and volition, and social processing, all employing distinct dependent 

variables.  

Regarding the effects we included, Sundie et al. say that “treating such disparate effects as 

belonging to a single distribution of the same effect calls into question whether any sort of 

meaningful interpretation is possible” (p. 8). But the measurement of heterogeneity in meta-

analysis (e.g., via the I2 statistic) is aimed precisely at determining whether a set of effects is 

too disparate to be analysed as a unitary set, or whether instead a moderation analysis 

needs to be conducted. If our selection of studies was so questionable, why was the 

observed heterogeneity so low (I2 = 19.6%)? (We return to this issue below when we 

comment on Sundie et al.’s own meta-analysis). 

Method for effect-size selection  

In our meta-analysis we endeavored to include all reported tests of the hypothesis that 

romantic or sexual primes would affect some target decision making behaviour. We did not 

select effect sizes depending on the observed results (whether they were significant or not) 

but instead depending on the predictions of the authors (whether they were predicted to be 

significant). 

As an example, Greitmeyer et al. (2013) gave participants in their experimental condition a 

priming task where they were asked to rate the attractiveness of opposite sex photos and to 

imagine and briefly write about a perfect date with one of the individuals. In the control 

condition participants rated different pictures (e.g., of streets). The effect of these primes on 

various risk-taking behaviors (e.g., sexual, gambling) was measured. 

In our meta-analysis we included the (significant) effects Greitmeyer et al. obtained for male 

participants but we excluded the (null) effects for female participants. The rationale was 

straightforward: Greitmeyer et al. predicted the former but not the latter: 

“It was predicted that the mating prime would have differential effects on women’s and 

men’s intentions to engage in risky sex: whereas a mating prime should increase 

men’s intentions to engage in risky sex (relative to a control prime), it should not affect 

women’s risk-taking.” (pp. 22-23). 

Why did we follow the standard practice of other recent meta-analyses of social priming 

effects (e.g., Lodder et al., in press) and select effects on the basis of the researcher’s 

predictions? The reason is clear: if this literature has been contaminated by publication 

bias/p-hacking, then that will only be detectable by looking at the primary outcome measures 

– that is, the effects that the researchers set out to test. It will not be detectable on secondary 

outcome measures (such as effects on females, or in males with high investment strategies) 
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because publication does not depend (or at least does not depend so strongly) on the results 

obtained with secondary measures. This in a nutshell is why our selection method paid heed 

to the researchers’ key experimental predictions. 

Sundie et al. (in press) argue (pp. 9-11) that our policy for including or excluding effects in 

our meta-analysis was arbitrary and applied inconsistently. In support of this charge, they 

offer the following example: 

Moreover, there was great inconsistency in how this “key experimental prediction” 

selection criteria was applied. For example, sometimes this operationalization was 

based on the hypotheses of the original study authors and sometimes based on the 

judgment of Shanks et al. (2015). Consider that Chan (2015, Experiment 1) predicted 

that a manipulation of romantic motivation using same-sex photos would influence risk-

taking, and this effect was included in Shanks et al.'s meta-analysis, but that Hill and 

Durante (2011, study 1) predicted an effect of romantic motivation on risk-taking using 

the same manipulation as Chan—and this effect was not included by Shanks et al. in 

their meta-analysis. In their supplement, Shanks et al. suggest that they did not include 

the effect from Hill and Durante because they were only interested in opposite-sex 

effects. (p. 9). 

Did we exclude the Hill and Durante result because we were only interested in opposite-sex 

effects (in which case, why include the Chan results)? Far from it. At no point did we state 

that our meta-analysis was restricted to opposite-sex effects (and this is not stated anywhere 

in our article or Supplemental materials, contrary to Sundie et al.’s assertion). So why was 

one of these effects included and the other excluded? Was it because we applied the 

selection rule inconsistently? The reason for excluding the Hill and Durante effect was, 

again, based on the authors’ theoretical perspective. Hill and Durante included both 

opposite- and same-sex conditions in their experiment and conceptualized the same-sex 

condition as constituting a ‘competition’ prime. The opposite-sex condition plainly provides a 

better estimate of the effect of mating/sexual primes on decision making, which was our 

focus. By contrast, Chan took a different theoretical perspective, regarding same-sex 

photographs as being mating primes: “when the average heterosexual man sees attractive 

males, he likely perceives himself to be less physically-attractive and less desirable as a 

mating partner to women. Compensatory theories in psychology suggest that this perceived 

lack should motivate him to increase his desirability as a mating partner to women” (Chan, 

2015, p. 408). Thus by the stated criterion, it was appropriate to include one of these effects 

but not the other (and of course note that excluding the Chan result makes a negligible 

difference to the asymmetry of the funnel plot). 
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Sundie et al. also claim that we “included a number of effects in [our] meta-analysis of “key 

experimental predictions” that were not even reported in the original articles… It seems 

doubtful that authors would fail to present tests of their “key experimental predictions” in their 

articles, and that editors would agree to publish such articles” (p. 10). In reality our selection 

procedure was anything but arbitrary, and we submit that any neutral person would choose 

the same effect sizes as we did if she was following our stated selection rules. 

To illustrate how wide of the mark this criticism is, in the context of trying to extract statistical 

results for a meta-analysis, consider one of the examples Sundie et al. give. In their study of 

priming effects on temporal discounting, Kim and Zauberman (2013, Study 4) say: 

Specifically, for delayed monetary rewards, participants in the hot condition 

demonstrated decreased happiness after the manipulation (Mbefore = 102.01 mm, SD = 

57.76 vs. Mafter = 84.83 mm, SD = 48.89), F(1, 52) = 4.74, p < .05, ω2 = .06, whereas 

happiness ratings in the control condition were the same before and after the 

manipulation (Mbefore = 105.49 mm, SD = 60.95 vs. Mafter = 109.35 mm, SD = 60.13), 

F(1, 52) = 0.50, p = .48, ω2 = 0. Supporting our hypothesis that sexual cues induce 

impatience by making delayed rewards seem even less attractive, we found that 

preference for delayed rewards decreased after the sexual-cue presentation, but 

immediate rewards did not become more attractive. (p. 333, underlining added). 

Although the design and analysis of the study is somewhat complex, it could hardly be 

clearer that they key result is the reduced happiness in the hot condition (which we 

calculated by comparing the Mafter ratings in the hot versus control condition), and to see its 

transparent link to Kim and Zauberman’s hypothesis (underlined).  

To conclude that an effect such as this could not have been the authors’ key experimental 

prediction because it was not reported in the original research paper is misleading. Kim and 

Zauberman chose to report statistical analyses comparing scores after versus before the 

manipulation whereas our meta-analysis required a comparison of scores after the 

manipulation in the experimental versus control groups, but this is a detail. Every datapoint 

included in the meta-analysis required some data transformation to derive an appropriate 

effect size. 

Sundie et al. go on to claim (p.11) that our ““key experimental prediction” inclusion criterion 

is… likely to produce the appearance of bias even if none exists” but this assertion rests on 

an incorrect characterization of our selection rule. They say: 

Suppose that an aspiring replicator was conducting a meta-analysis of a set of effects 

that, in truth, had no publication bias. Let us then suppose that the replicator decided 

on an inclusion criterion of only selecting effects that were positive and significantly 
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different from zero. Because this has the same effect as publication bias (i.e., both 

include only significant effects), it would yield an affirmative test for publication bias. 

Notably, the appearance of bias in this example is due entirely to the nature of the 

“only significant effects” inclusion criterion employed. (p. 11). 

In implying that this scenario applies to our meta-analysis, Sundie et al. are misrepresenting 

our selection rule. To be clear, the criterion we adopted did not require effects to be 

significant (indeed some were not, at the conventional p < .05 level), it required them to be 

key experimenter predictions, and there is no necessary reason why this criterion must yield 

a biased outcome. If a set of researchers independently conducted the same experiment in a 

Many Labs study, with the key experimental prediction being pre-registered, the ensuing 

results would be perfectly unbiased estimates. There would be no bias in selecting these 

effects for a meta-analysis. 

It is perhaps natural that Sundie et al. think we selected studies on the basis of statistical 

significance. If that indeed had been our decision rule, we would have ended up selecting 

effect sizes highly overlapping with the effect sizes that we did extract based on the authors’ 

predictions. This coincidence between the experimental predictions and the resulting 

statistically significant effects is exactly what is suspicious. 

Sundie et al. criticize our calculation of bias in our funnel plot (Shanks et al., Figure 2) on the 

basis that “if the true effect size were zero, and non-significant effects were suppressed due 

to publication bias or p-hacking, then publications capitalizing on these biases should just as 

often show negative effects as they do positive effects, resulting in a biased distribution on 

the left and right side of zero” (p. 13). The logic of this criticism is hard to follow. If a 

researcher, predicting on theoretical grounds that a romantic prime would make male 

participants more risk-seeking, instead obtained a statistically-significant result in the wrong 

direction, then this result would probably be just as likely to be consigned to a file drawer as 

a nonsignificant result. Publication bias and/or p-hacking are wholly consistent with the 

funnel plot asymmetry we observed. 

The Sundie et al. effect-size selection method 

Sundie et al.’s response to this supposed selection bias is to conduct an alternative meta-

analysis (Sundie et al., Figure 1) in which they apply no selection at all. They take every 

effect, even ones where the authors explicitly predicted a null result. Their meta-analysis 

includes, for instance, the effect for females (mentioned above) that Greitmeyer et al. 

explicitly predicted would be absent. But this approach radically changes the question the 

meta-analysis is seeking to address. Imagine that we’re interested in knowing whether 

statins are effective treatments for individuals with high blood cholesterol. It would be 
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patently inappropriate to include in a meta-analysis studies which tested the (mainly null) 

effects of statins in individuals with normal cholesterol levels. Yet this is precisely what 

Sundie et al.’s approach amounts to, yielding a theoretically-uninterpretable meta-analysis. 

This problem is illustrated by many other effects included in Sundie et al.’s meta-analysis but 

excluded from that of Shanks et al. Consider a study (Kim & Zauberman, 2013, Study 2) 

designed to test the hypothesis that “Sexual cues induce impatience through their ability to 

lengthen the perceived temporal distance to delayed rewards” (p. 328). These authors first 

showed participants either sexual or control photographs to rate, and then administered a 

time-perception task in which participants adjusted the length of a line on the computer 

display to represent a time interval (e.g., 6 months). In our meta-analysis we included the 

effect of priming condition on time perception. Kim and Zauberman also included a control 

task, described as follows: “to examine whether the effect of sexual cues is specific to 

judgment of future time or applies more generally, we measured participants’ perception of a 

line length” (p. 330) – in other words to check that the priming manipulation affected time 

perception per se rather than having a general effect on perceptual judgments. In this control 

task, which was not affected by the prime, participants judged the length of a line shown on 

the screen. Obviously, we did not include this control task in our meta-analysis. Yet Sundie 

et al. did. It is hard to see what possible logic might justify this inclusion. The outcome 

measure was not predicted by Kim and Zauberman to show a priming effect, nor was it a 

decision making measure. 

Hill and Durante (2011, Study 2) primed women with a mating-related or control task and 

then measured willingness to take risks to test 

“the hypothesis… that activating mating goals would lead to suppressed beliefs about 

the likelihood of incurring negative side-effects from the target health risk behaviors... 

Accordingly, participants filled out two types of measures for each of the target risk 

behaviors. First, they were asked to estimate the likelihood of experiencing negative 

health side-effects from the two attractiveness-enhancement risks — going tanning and 

using diet pills — and two control risks — using cough syrup as a sleep aid (an off-label 

use) and painting in a nonventilated room to avoid outside noise.” (p. 389). 

They observed a positive priming effect for tanning and diet pills but not for cough syrup or 

painting, “lending support for these effects being specific to risks associated with 

attractiveness enhancement” (p. 391). Again we excluded these control measures on the 

grounds that they are irrelevant to the focal question, as well as being predicted by the 

authors not to show a priming effect, while Sundie et al. included them. 



  Reply to Sundie et al. 

12 
 

It is not necessary to labor the point further. If one includes effects such as these (many of 

which were null effects) then it is hard to see how the outcome could be any different from 

what Sundie et al. obtained – a dilution of both the mean effect size and the funnel plot 

asymmetry, and an increase in heterogeneity. In sum, the logic for conducting an unselective 

meta-analysis is very hard to discern. Whatever the question is that such a meta-analysis 

addresses, it is not the question that Shanks et al. were concerned with: Whether the primary 

outcome measures reported in this literature, for which a priming effect was predicted, show 

evidence of publication bias/p-hacking. Put differently, if one is interested in testing for 

publication bias/p-hacking, then one has to focus on the dependent measures on which it is 

plausible to imagine these factors might have had an influence. 

The inappropriateness of the meta-analysis shown in their Figure 1 is clearly not lost on 

Sundie et al., because they acknowledge that their selection process is poorly suited to 

assessing publication bias and p-hacking. They say: “There are, however, problems with this 

approach to examining bias as well… even with all of the effects included in the funnel plot, it 

still does a poor job of representing the effects that would most likely be subject to 

publication bias, or the target of p-hacking… Consequently, examining a funnel plot that 

includes all of the simple and main effects from a set of studies designed to examine 

interactions is poorly suited to providing any definitive information about publication bias or 

p-hacking in a literature” (pp. 14-15). We could not agree more, but are left wondering how 

Sundie et al. intend the meta-analysis reported in their Figure 1 to clarify rather than confuse 

the discussion. 

Heterogeneity 

Sundie et al. argue that the effects of mating motives are heterogeneous and that the rules 

we followed for selecting effect sizes to include in our meta-analysis artificially reduced this 

true heterogeneity. When a much broader selection of effects is allowed in Sundie et al.’s 

meta-analysis, the degree of heterogeneity increases markedly and minimal evidence of 

funnel plot asymmetry is obtained. Thus the argument is that in reality the effects measured 

across these studies are highly diverse and they should not therefore be pooled in a meta-

analysis. 

Against this argument, it is important to emphasize that the heterogeneity observed in their 

larger meta-analysis (I2 = 58.9%) does not demonstrate that it is inappropriate to pool these 

effects. In fact this level of heterogeneity is in line with the average heterogeneity observed in 

meta-analyses generally, including in ones in which all contributing studies have highly 

similar designs and dependent measures. For example, recent analyses of published meta-

analyses by Rubio-Aparicio, Marín-Martínez, Sánchez-Meca, and López-López (2018) and 
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Stanley, Carter, and Doucouliagos (2018) found median I2 values of 60% and 74%, 

respectively. More directly pertinent, Table 1 lists a sample of recent meta-analyses of other 

priming effects. Like studies on romantic priming, these effects are investigated by 

measuring the effect of a prime (such as money or religious words) on a dependent 

measure, often in the decision making domain. The heterogeneity Sundie et al. observe in 

their larger meta-analysis is not at all out of line with the figures reported in these other meta-

analyses. So there is no evidence that this body of effects is any more heterogeneous than is 

typical in behavioural research generally or priming research specifically, or that it was 

inappropriate of us to aggregate them for meta-analysis. 

Moreover Sundie et al.’s conclusions regarding heterogeneity between their and our meta-

analyses are virtually pre-ordained. Their method of challenging a meta-analysis that reveals 

funnel-plot asymmetry and homogeneity of effect sizes (the one reported by Shanks et al.) is 

to merge it with a large set of additional effect sizes yielding a meta-analysis that (a) Sundie 

et al. themselves concede makes little conceptual sense, and which (b) shows little 

asymmetry and a considerable amount of heterogeneity. But this pattern obviously lends 

itself to a very different interpretation: Our selection process was more appropriate than 

Sundie et al.’s precisely because it yielded low heterogeneity. By mixing together primary 

and secondary outcome measures, the increase in heterogeneity that Sundie et al. obtained 

is entirely unsurprising. The fact that the effects we studied were homogeneous exactly 

supports our decision to select those effects. 

To make this point concrete, consider the following simulation. In this model we mix two sets 

of studies. In both sets the real effect size is d = 0 and all variation comes from sampling 

error (sampling random values from a central t-distribution with N-2 degrees of freedom). 

Therefore, in truth, there is absolutely no non-random heterogeneity across the studies nor 

any priming effect. Set 1, which represents the studies’ primary outcome measures, 

undergoes publication bias. For the sake of simplicity, this is modeled by running 1000 

experiments and retaining only the ones with significantly positive results (usually 2.5% of 

them in a two-tailed test)2. Set 2, which represents all the secondary outcome measures that 

Sundie et al. included in their meta-analysis, is completely unbiased: everything is published. 

This is modeled by just sampling 100 studies. Mixing both sets results in a combined dataset 

of about 125 studies where 100 are unbiased and 25 have been subject to publication bias. 

Each of these simulations yields a funnel plot like the one shown in Figure 2. 

Several noteworthy results emerge in this model. First, there is significant heterogeneity 

across studies. If we repeat this process 100 times, the mean I2 across simulations is 40.5% 

and the associated Q statistic is statistically significant in all iterations. This is interesting 

because, actually, there is no true heterogeneity in these datasets: They all come from a 
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population with a true d = 0 and with SD = 0 in the true effect. But mixing biased and 

unbiased studies induces a substantial amount of observed heterogeneity. Therefore, 

Sundie et al.’s finding that there is too much variability across effect sizes to run a 

meaningful meta-analysis is likely to be the result of mixing biased effect sizes from primary 

outcomes and unbiased effect sizes from secondary outcomes. This is also important for a 

second reason. The fact that heterogeneity is large in Sundie et al.’s meta-analysis might 

invite the reader to think that there must be some true effects. After all, if effects are different 

from each other it follows that not all of them can be null effects. But these simulations show 

that, if a subset of studies is biased, they can. Another interesting result is that Egger's 

regression test becomes less able to detect bias when the 100 unbiased studies are added. 

Across the 100 simulations, Egger's test is only significant 32% of the time. 

It could be argued that the fact that our simulation produces results similar to the ones 

obtained by Sundie et al. does not necessarily mean that this is the process that actually 

produced their data set. To put this hypothesis to the test, ideally, one would need a meta-

analytic model that could assume that the submitted data come from a population of effects 

where the true effect is close to zero but both heterogeneity and the average observed effect 

size have been inflated artificially by mixing (a) a set of studies affected by publication or 

reporting biases and (b) a set of unbiased studies. Fortunately, such models exist. For 

instance, the selection model devised by Vevea and Hedges (1995) includes the assumption 

that non-significant studies may have a lower (but nonzero) probability of being published 

and entered into a meta-analysis and can correct for the inflation of effect sizes and 

heterogeneity produced by this ‘selection’ process. 

When this model is applied to the set of effect sizes computed by Sundie et al. (summarized 

in their Figure 2), it returns an average effect size that is still significant, d = 0.12, 95% CI 

[0.04, 0.19], but only half the magnitude of the effect computed by an equivalent standard 

random-effects meta-analysis applied to the same data set, d = 0.24, 95% CI [0.18, 0.31]. 

Heterogeneity is also halved from τ2 = 0.08 to 0.04. And, most importantly, the likelihood 

ratio comparing the fit of these two models is significant, χ2(1) = 13.89, p < .001, confirming 

that the selection model, which assumes publication bias, fits the data better than an 

unadjusted model ignoring such a possibility3. 

In sum, Sundie et al.’s meta-analysis does not remotely challenge the claim that the primary 

outcome measures in the target studies manifest publication bias/p-hacking. Because 

publication bias/p-hacking would affect the primary but not secondary measures, it is a 

statistical necessity that when the unbiased secondary measures are added to a meta-

analysis, heterogeneity will increase and funnel-plot asymmetry will be diluted. This is both 

what Sundie et al.’s results and the model shown above reveal. In fact, far from indicating 
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that this literature is unbiased, the data set gathered by Sundie et al. shows exactly the 

opposite when analysed with a sufficiently powerful method. 

Sundie et al.’s p-curve analysis 

As an alternative to the Shanks et al. meta-analysis and their own one, Sundie et al. report a 

p-curve analysis (Simonsohn, Nelson, & Simmons, 2014). They state that – in contrast to our 

findings – their p-curve analysis “suggests a different, more positive conclusion with no 

evidence of p-hacking” (Abstract). In showing that the data included in this analysis has 

evidential value, this analysis implies that romantic priming is a true phenomenon. We make 

several observations about this analysis. 

First, Sundie et al.’s conclusions are strikingly at variance with a completely independent 

analysis with a similar method reported by Schimmack (2016) which they do not refer to. 

Schimmack’s results and conclusions are identical to those of Shanks et al. – namely that 

there is irregularity in the romantic priming literature. Secondly, this analysis highlights a self-

contradiction. Sundie et al. criticize our protocol for selecting studies to include in our meta-

analysis (see above), yet include in their p-curve analysis exactly the same set of 15 articles. 

Thirdly, we described previously Sundie et al.’s criticism of our method of selecting effect 

sizes to include in our meta-analysis (based on the researchers’ predictions). Ironically, this 

is exactly the selection rule required by p-curve: “Included p values must meet three criteria: 

(a) test the hypothesis of interest… the researcher’s stated hypothesis determines which p 

values can and cannot be included in p-curve” (Simonsohn et al., 2014, p. 540). Thus Sundie 

et al.’s own approach contradicts their assertion that it is inappropriate to pay heed to the 

original research article’s key experimental predictions. The mere fact that Sundie et al. used 

p-curve at all and that they followed Simonsohn et al.’s rules implicitly supports our decision 

to select only some contrasts. 

Fourthly, another outcome of the p-curve analysis is the strong evidence that the body of 

studies is woefully under-powered, not having significantly greater power than 33% (the 

actual estimate of power is 37%). Sundie et al. do not comment on what this says about the 

published romantic priming literature, which despite this lack of power yields almost 

exclusively significant results. 

In fact, there are good reasons to suspect that the actual average power must be even lower 

than 37%. By far the most delicate part of p-curve analysis is the selection of the crucial 

statistical contrast from each study. Simonsohn et al. (2014) provided detailed guidelines for 

the selection of p-values in different experimental designs. In general, the selection rules are 

straightforward for simple designs, such as those involving a correlation or comparing just 

two conditions. But as the complexity of designs and hypotheses grows, the chances of 
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selecting the wrong statistic increase substantially and, not surprisingly, the creators of p-

curve analysis have expressed concerns about recurrent failures to follow their guidelines in 

published studies (Nelson, Simmons, & Simonsohn, 2017; Simmons, Nelson, & Simonsohn, 

2017). Sundie et al. recognise explicitly that in some cases they did not follow these 

guidelines because the authors of the papers they assessed failed to report the appropriate 

contrasts. Furthermore, their disclosure table reveals that they included many omnibus tests 

in their analysis which, in the words of Nelson et al. (2017) “are almost never the right test to 

select in psychological research”. 

The consequences of this decision are not trivial. In Figure 3 we plot the (reciprocal) p-values 

of each of the contrasts in the main analysis of Sundie et al. As can be seen, some of the 

smallest p-values come from contrasts that are easily identifiable as omnibus tests, because 

they refer to F-tests with more than one degree of freedom in the numerator. In fact, the 

smallest effect size, an order of magnitude lower than the next smallest p-value, comes from 

one such contrast. (Note that Figure 3 plots reciprocal p-values on a logarithmic scale.) 

Given that p-curve analysis (particularly the continuous test) is highly sensitive to outliers, 

including or excluding these p-values in the analysis makes a substantial difference4. Once 

all the omnibus tests in Figure 3 are removed from the analyses, the evidential value of 

studies fails to reach statistical significance in a binomial test, p = .076, and in the half p-

curve, z = -0.60, p = .275, although it remains significant in the continuous test, z = -2.21, p = 

.014. More importantly, the average estimated power after correcting for publication bias falls 

to 22% with 95% CI [7%, 42%], which again leads us to wonder how so many studies could 

yield significant support for their main hypotheses given their puzzlingly low statistical power. 

Perhaps more interestingly, the selection of contrasts made by Sundie et al. for their p-curve 

analysis provides yet another opportunity to test for publication and reporting bias in this 

literature with a data set that we did not select and that, consequently, cannot possibly be 

influenced by our “agenda” (Sundie et al., p. 3). We converted each of the contrasts selected 

for the main p-curve analysis to a correlation per degree of freedom, following the same set 

of equations and code used in the Supplementary Material of Open Science Collaboration 

(2015) to compare effect sizes and test for funnel plot asymmetry. Of note, this method also 

excludes data from F-tests with more than one degree of freedom in the numerator, in this 

case because their standard errors cannot be computed. There is no reason why these 

effect sizes, coming from the analysis of disparate effects, should follow any particular 

distribution and, definitely, it makes no sense to wonder what the average effect size of these 

tests is. Yet when one plots these effect sizes against their standard errors (see Figure 4) an 

all too familiar shape arises, which, we think, speaks for itself. 



  Reply to Sundie et al. 

17 
 

Whatever the merits of these various arguments about study selection, the key point is that 

all of the proposed datasets reveal evidence of irregularity. Added to the original Shanks et 

al. (2015) dataset, we now have the larger set that Sundie et al. aggregated (144 effect 

sizes, plotted in their Figure 1), plus the dataset they deemed suitable for p-curve (their 

Figure 2), and our version of this dataset that excludes 6 effects derived from omnibus tests. 

As Table 2 summarises, there is evidence of publication bias and/or p-hacking in all of them, 

across a range of convergent analytic techniques. 

Shanks et al.’s replication studies 

The second half of Sundie et al.’s Comment argues that a series of flaws in our 8 replication 

studies render them largely uninformative about the original effects they sought to examine.  

We acknowledge at the outset that replication experiments, like all experiments, are rarely 

perfect and would almost invariably, with the benefit of hindsight, be conducted differently 

and better. The contextual factors discussed above, such as sexual orientation and age, are 

good examples. Data collection is rarely unconstrained by resources. But how fair is it to 

claim, as Sundie et al. do, that “each Shanks et al. replication study contained multiple 

methodological deviations from the parallel original study” (p. 24)? To give just one 

counterexample, Study 7 replicated Greitmeyer et al.’s (2013) experiments on sexual risk-

taking and gambling nearly exactly and indeed did so with considerably larger sample sizes, 

by a factor of about 3. Whereas Greitmeyer et al. obtained effect sizes of around 0.8, our 

replication estimates were zero. Sundie et al. make no mention of these striking replication 

failures. They also (p. 22) criticize our use of predominantly online samples, yet Study 7a 

included more participants tested in laboratory cubicles than Greitemeyer et al. themselves 

tested and had substantial statistical power even in this sub-sample to detect the effect 

Greitemeyer et al. obtained – and again, analysing data from just these participants reveals 

no change in the outcome. 

We explicitly acknowledged differences between our studies and the originals (indeed 

including a Table listing the main differences), and presented considerable information (such 

as Bayesian analyses) relevant to judging the adequacy of our sample sizes. One of our 

studies was fully pre-registered, to date one of only two such studies in the entire romantic 

priming literature (the other is by Chiou, Wu, & Cheng, 2017), and had a sample size of 650, 

far larger than any other study in the field. Whatever flaws individual experiments may have 

had, the sheer weight of evidence across our studies makes it highly unlikely that all our 

results are false negatives. 

Manipulation checks 
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Sundie et al. (pp. 23-24) make the perfectly valid point that manipulation checks are 

important for ensuring that a replication study is successfully manipulating the key variables 

in the selected participant sample. As they acknowledge, we reported data from one 

particularly important check which obtained a satisfactory medium-sized effect. Nonetheless, 

Sundie et al. criticize us for not doing more to pre-test our priming manipulations and 

dependent measures to confirm, for example, that items assumed to represent conspicuous 

consumer items were indeed judged as such by our participants. 

Although it is hard to imagine that items like a car or holiday, taken from the original studies, 

could be viewed otherwise, a key point to emphasize is that most of the studies included in 

the meta-analysis reported no pre-testing of their manipulations or dependent measures 

whatsoever. We showed that primes increased desire for a romantic partner, but the majority 

of studies in the meta-analysis included no such checks. 

By comparing the effect of our priming manipulation against one of their own checks 

(Griskevicius et al., 2006), Sundie et al. imply (p. 19) that ours may have been too weak to 

be an effective prime. This is an erroneous conclusion based on an elementary confusion. 

They cite a check (Griskevicius et al., 2006) from a study not included in the meta-analysis 

which obtained a very large effect size (d > 7) of a prime. Our own effect was much smaller 

(d = 0.41). But the dependent measure in the Griskevicius et al. study was different from that 

used in our experiment: They measured sexual arousal whereas we measured desire for a 

romantic partner. These are completely different dependent variables. Someone can feel 

sexually aroused as a result of looking at pictures of attractive individuals without any 

change in her/his desire for a romantic partner. Sundie et al.’s confusion is akin to the 

following scenario: Imagine two employees X and Y are given pay increases of unknown 

amounts. X’s subjective life satisfaction improves by 0.01% whereas Y’s bank balance 

increases by 50%. Therefore Y received a larger pay increase than X. 

None of the studies in the meta-analysis estimated an effect size for the manipulation we 

tested, but if they had, what would they have found? Does the Griskevicius et al. estimate or 

our estimate give a better guide? There is simply no way of knowing, and crucially it cannot 

be inferred that our effect was weaker. Put differently, there is no reason to think that if we 

had used sexual arousal as our dependent measure we would have obtained a weaker effect 

than Griskevicius et al. did. Sundie et al.’s argument about the strength of our manipulation is 

fallacious and rests on comparing apples and oranges. 

Conclusion 

Sundie et al. claim that we misapplied the selection method we adopted (namely to base our 

inclusion rule on the original authors’ predictions). We have argued, instead, that almost 
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anyone following our rule would have made the same selections that we did, and our 

decisions about which effects to include in our meta-analysis, based on experimenters’ 

predictions, were appropriate. We regard it as illogical to conduct a meta-analysis which 

includes all effects from the studies in question. We have suggested that the new meta-

analysis reported by Sundie et al. is both conceptually uninterpretable and also fails to 

demonstrate anything new or unexpected. It is uninterpretable because it includes effects 

(such as the results of a control condition measuring a dependent variable unconnected with 

decision making and showing, as the authors expected, a null result) that have no bearing on 

the original authors’ predictions. Its results are unsurprising because even if it is the case (as 

Shanks et al. claimed) that the primary outcome measures from the target articles reveal 

evidence of publication bias/p-hacking, one would expect to see the overall effect size as 

well as the funnel plot asymmetry become diluted and heterogeneity increased with the 

inclusion of secondary effects much less likely to have been affected by publication bias/p-

hacking. This is exactly the outcome Sundie et al. obtained and is perfectly consistent with 

Shanks et al.’s conclusion. 

Sundie et al.’s p-curve analysis highlights the internal contradictions in their approach and 

serves, if anything, to strengthen our conclusion that publication bias and/or p-hacking may 

be a genuine problem in this field of research. Despite condemning our study selection 

protocol, Sundie et al. include exactly the same set of studies in their p-curve analysis. 

Despite condemning our method for selecting effects from within these studies – based on 

the experimenters’ key predictions – they employ exactly the same method in selecting 

effects to include. And contrary to their claim that the analysis reveals no evidence of 

publication bias and/or p-hacking, Figure 4 shows the exact opposite: A striking and highly 

significant correlation between effect size and sample size in the very sub-set of data Sundie 

et al. thought it reasonable and appropriate to include in their analysis. 

Regarding the second main part of the Comment, the points raised (i) are mostly pure 

speculations, (ii) were acknowledged at length by Shanks et al., (iii) and have minimal 

empirical support (e.g., the results do not change if sub-groups are selected based on age). 

If Sundie et al. are confident that mating motives can prime decision-making measures, one 

might wonder whether debate about our meta-analysis and empirical results is the best way 

for the field to proceed. Better would be to conduct new and preferably pre-registered studies 

employing all the instructions, manipulation checks and so on that Sundie et al. and other 

evolutionary psychologists working in this field regard as critical to obtaining the key priming 

effects. Indeed a successful study of exactly this sort has recently been published (Chiou et 

al., 2017). Better still would be a multi-lab registered replication project.  
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Footnotes 

 

1. Though note that the experiment was sensitive to loss aversion which across both groups 

and genders is significantly negative, loss aversion score = -10.3, 95% CI [-17.7, -2.9]. 

 

2. We are not implying that bias in this literature is entirely due to selective publication and 

that only 2.5% of the studies ever conducted are published. Questionable research practices 

can yield similar levels of bias more “efficiently”, that is, without condemning most studies to 

the file drawer (e.g., Yu, Sprenger, Thomas, & Dougherty, 2014). 

 

3. This analysis does not take into account the fact that some of these effects were 

statistically dependent. We are not aware of any selection model that explicitly addresses 

this issue. 

 

4. It is worth briefly expanding on the pattern of results which yielded the contrast with the 

smallest p value in Sundie et al.’s dataset. This comes from an experiment (Greitemeyer et 

al., 2013, Experiment 3) which yielded a 2-way interaction [F(2, 111) = 12.31] between 

participant gender and condition (short-term prime vs. long-term prime vs. control). The basis 

of this interaction was an overall priming effect in male participants (Cohen’s d = 1.65, 

combining the short- and long-term prime conditions, which did not differ). Females showed 

no priming effect. However Shanks et al.’s Experiment 5 failed to replicate this effect in 

males, despite having very high power (1 – β = 1.00) to detect an effect of the magnitude 

observed by Greitemeyer et al. and high power to detect an effect of half the size (power = 

0.97). There is therefore a major question mark over Greitemeyer et al.’s result and by 

extension over any dataset which includes it. 
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Table 1 

Measures of heterogeneity (Q and I2) in the Shanks et al. (2015) meta-analysis of romantic 

priming and published meta-analyses of related priming effects. 

 

Study Domain Q df p I2 

Meta-analyses of published literature 

Shanks et al. (2015) Romantic priming 53.7 42 .11 19.6% 

Billingsley et al. (2018) Religious priming 43.4 8 < .001 88.5% 

Lodder et al. (in press) Money priming 1048.7 245 < .001 81.3% 

Shariff et al. (2016) Religious priming 195.2 91 < .001 53.4% 

Weingarten et al. (2016) Action priming 934.8 351 < .001 62.5% 

Vadillo et al. (2016) Money priming 441.7 99 < .001 81.5% 

Meta-analyses of multi-lab replication studies 

Ebersole et al. (2016) 

Metaphoric restructuring 21.9 19 .29 18.2% 

Warmth perceptions 16.9 20 .66 0.0% 

Klein et al. (2014) 

Money priming 28.4 35 .78 0.0% 

Flag priming 30.3 35 .69 0.0% 

Klein et al. (in press) 

Consumption priming 63.8 53 .15 12.0% 

Warmth priming 73.0 46 .01 37.0% 

O’Donnell et al. (2018) Intelligence priming 28.1 22 .17 17.4% 

 

 



  Reply to Sundie et al. 

25 
 

Table 2 

Datasets of romantic priming effects and relevant evidence of publication bias/p-hacking in each. 

 

Source Dataset No. of articles No. of effects 
Evidence of 
publication 

bias/p-hacking? 
Support 

Shanks et al. 
(2015) 

Figure 2 15 43 Yes 
Funnel plot asymmetry, Egger’s test, t(41) = 6.24, 
p < .0001 

Sundie et al. 
(in press) 

Meta-analysis 
(Figure 1) 

15 144 Yes 
Vevea and Hedges (1995) selection model fits 
better than random-effects meta-analysis, χ2(1) = 
13.89, p < .001 

p-curve 
(Figure 2) 

15 32 Yes Power = 37% 

Omnibus tests 
removed 

15 26 Yes 

(i) Power = 22% 
(ii) Nonsignificant right skew, pHalf = .275 
(iii) Funnel plot asymmetry, Egger’s test, t(23) = 

6.48, p < .0001 (Figure 4) 
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Figure Captions 

Figure 1 

Scatterplot of loss aversion scores as a function of age for male (left panel) and female (right 

panel) participants in the prime and control groups of Shanks et al.’s (2015) Experiment 8. If 

romantic primes make males but not females less averse to losses and do so in an age-

dependent manner then the best-fitting regression lines in the left but not right panel should 

be more widely separated (scores lower in the control [red dotted line] than in the prime [blue 

dotted line] group) in young than older participants. This is clearly not the case, with the lines 

virtually superimposed (no priming) across the age range for both male and female 

participants. See the online article for the color version of this figure. 

Figure 2 

Funnel plot based on the model described in the text. Each dot depicts the effect size 

(Cohen’s d) of a simulated study plotted against the inverse of that study’s SE. The studies 

come from two sets, a biased one (red dots) and an unbiased one (green dots). In both sets 

the real effect size is d = 0 but publication bias is applied to the biased set such that only 

statistically significant effects are included. See the online article for the color version of this 

figure. 

Figure 3 

Reciprocal p values (log scale) for all effects included by Sundie et al. in their p-curve 

analysis. Red bars depict omnibus tests (F-tests with more than one degree of freedom in the 

numerator), green bars depict the remaining tests. 

Figure 4 

Funnel plot of the data selected by Sundie et al. (in press) for their p-curve analysis, omitting 

results from omnibus tests. Each dot depicts effect size (Fisher’s z-transformed correlation) 

against the inverse SE. See the online article for the color version of this figure. 

 


