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Abstract

It is now well established that stromal interaction molecule 1 (STIM1) is the calcium sensor of

endoplasmic reticulum (ER) stores required to activate store-operated calcium entry (SOC) channels

at the surface of non-excitable cells. Yet little is known about STIM1 in excitable cells such as striated

muscle where the complement of calcium regulatory molecules is rather disparate from that of non-

excitable cells. Here, we show that STIM1 is expressed in both myotubes and adult skeletal muscle.

Myotubes lacking functional STIM1 fail to exhibit SOC and fatigue rapidly. Moreover, mice lacking

functional STIM1 die perinatally from a skeletal myopathy. In addition, STIM1 haploinsufficiency

confers a contractile defect only under conditions where rapid refilling of stores would be needed.

These findings provide novel insight to the role of STIM1 in skeletal muscle and suggest that STIM1

has a universal role as an ER/SR calcium sensor in both excitable and non-excitable cells.

Store-operated calcium entry (SOC) is a well established mechanism to refill internal calcium

stores in many types of cells. Refilling of internal calcium stores depends on an endoplasmic

reticulum (ER) calcium sensor that was recently identified as Stromal Interaction Molecule 1

(STIM1) 1, 2. STIM1 is a single-pass transmembrane phosphoprotein located in the membrane

of the ER, where it interacts with SOC channels in the plasma membrane 3. Following the

release of stored calcium, STIM1 molecules sense internal store depletion and aggregate at

sites within the ER (called punctae) in close proximity (10–15 nm) to SOC channels located

in the plasma membrane 4–6. STIM1 punctae thus serve as critical links between internal

calcium stores and SOC channels on the plasma membrane 7. STIM1-dependent SOC is

important for many cell processes, including calcium-dependent gene expression.

STIM1 influences the activity of several different types of calcium channels including store-

operated (Orai1 and TRPC1/4 channels) and receptor-operated channels (TRPC3/6 and ARC

channels) 8. Orai 1 has been shown to be required for store-operated calcium entry by genome-

wide screens, and STIM1 is needed to activate Orai channels 9, 10 Recent work has also

identified several TRP channels and ARC channels as STIM1-regulated channels that are

activated following agonist stimulation in non-excitable cells 11, 12. Orai (CRACM) family

members (Orai1–3) form highly selective calcium channels with the characteristics of Icrac

when co-expressed with STIM1. In contrast, Orai channels co-expressed with STIM2 display

both store-operated and store-independent gating 13. Orai1 may also exist in a complex with

transient receptor potential channels (TRPC1) where, together, STIM1, Orai1 and TRPC1 form
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store-operated channels as has been described in epithelial cells of salivary glands 14. STIM1

has also been shown to influence TRPC1 channel gating through a direct interaction that

requires the C-terminal ERM or lysine rich region 12, 15. Finally, STIM1 can also influence

other TRPC channels through an indirect mechanism that requires TRPC1, as silencing STIM1

reduced TRPC3 currents 12. Thus, it seems clear that STIM1 is required as part of a more

general mechanism to activate plasma membrane calcium entry channels of several types.

While substantial evidence supports the critical role of STIM1 signaling in regulating SOC in

non-excitable cells, far less is known about SOC in excitable cells such as striated muscle,

where huge fluctuations in cellular calcium are required for muscle contraction16. Muscle

contraction requires excitation-contraction (EC) coupling, a process whereby changes in the

membrane potential evoke release of the SR calcium stores by the ryanodine receptor (RYR1).

Refilling of internal stores for EC coupling was previously thought to occur exclusively through

the resequestration of calcium by the highly efficient calcium pumps (SERCA) located in the

SR membrane 17. However, SOC was recently shown to exist in myofibers where it can be

activated rapidly in response to store-depletion 18.

It is thought that the fundamental role for SOC in muscle is to refill internal calcium stores to

ready the myofiber for subsequent muscle contraction 19. Defects in muscle SOC are believed

to lead to muscle fatigue and exercise intolerance 20. However, we recently proposed that SOC

is also necessary to maintain NFAT transactivation during both muscle development and the

remodeling response to exercise 19, 21. In this context, we hypothesize that NFAT

transactivation through sustained SOC confers a form of memory of recent neurostimulation

to the trained muscle. The identification of STIM1 as the sensor of calcium store depletion

allowed for the generation of a genetic model to test our hypothesis that SOC provides a pool

of calcium required not only for skeletal muscle contraction, but also for muscle development

and remodeling.

RESULTS

We pursued studies of STIM1 to assess a previously unrecognized role for this protein in

skeletal muscle, where SOC is necessary for NFAT translocation and NFAT signaling is known

to play an important role in myogenesis and in the adaptation to exercise (see Supplemental

information Fig. s1a) 19, 22, 23. We first analyzed the spatial and temporal expression pattern

for STIM1 during myogenesis. We found that STIM1 is expressed at low levels in myoblasts,

but that its expression is increased following differentiation into multinucleated myotubes (Fig.

1A). Interestingly, STIM1 redistributes from a peri-nuclear localization in myoblasts to the

cell periphery of differentiated myotubes (Fig. 1B–C). This localization of STIM1 near the

plasma membrane appears to occur under basal conditions even when stores are fully loaded

with calcium, unlike the redistribution of STIM1 to the cell periphery following store depletion

in non-excitable cells 4, 24. The STIM1 redistribution appears to be a unique feature of

myotubes and may reflect the spontaneous calcium release required for myogenesis. Consistent

with the increase in STIM1 expression and its peripheral location in myotubes, the rate of

Ba+2 entry (a surrogate for Ca+2 entry) in myotubes was 4–5 times faster (2.72 × 10−3 arbitrary

units/second), than in myoblasts (5.57 × 10−4 arbitrary units/second) (p<0.001) (Fig. 1D and

E). In addition, myotubes overexpressing a wildtype (WT) or a constitutively active form of

STIM11 displayed an increase (2.5 and 4.5 fold respectively) in basal NFAT transactivation

when compared to myotubes expressing endogenous STIM1 or compared to myotubes in which

STIM1 expression was silenced using an shRNA plasmid directed against mouse STIM1

(see Supplemental Information Fig. s1B–D). These data suggest that differentiation signals

upregulate STIM1 in skeletal myotubes which is correlated with greater SOC. Moreover,

myotubes overexpressing WT STIM1 or a constitutively active form of STIM1 (D76A) show

enhanced NFAT-dependent transcriptional regulation during myogenesis (Fig. s1B).
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Calcineurin/NFAT signaling controls morphogenetic events of muscle formation, which occur

around embryonic day 15.5 (E15.5) 25–27. STIM1 mRNA expression increases in the embryo

starting at E7.5 through E15.5: concomitant with this period are morphogenic events that are

controlled by NFAT transactivation (see Supplemental Information Fig. s2A). A STIM1

specific probe detected STIM1 mRNA by in situ hybridization in the embryonic limbs and

brain at E16.5 (see Supplemental Information Fig. s2 B–D), whereas the sense probe failed to

detect any signal (see Supplemental Information Fig. s2 C–E). Thus, results of these in vitro
and in vivo studies indicate STIM1 may have relevant role in muscle differentiation.

We next established a loss of function model for STIM1 using a gene-trap approach that results

in expression of a STIM1-LacZ fusion protein under the control of the endogenous STIM1

promoter (ES cell line RRS558) (Fig. 2A–C). The STIM1-LacZ fusion protein leaves the N-

terminal SAM and EF hand domains of the native STIM1 protein intact, but disrupts the ERM

coiled-coiled domains that are required for SOC activation 15, 28. The localization of the

STM1-LacZ fusion protein in STIM1+/gt heterozygous mice can thus be used to determine

which cells express the endogenous STIM1 protein. We detected the STIM1-LacZ fusion

protein in all muscle groups that were harvested from STIM1+/gt heterozygous mice, and also

in the Purkinje neurons of the cerebellum and in a selected subset of cells of the spleen and

thymus (see Supplemental Information Fig. s3A–E). Intercrossing STIM1+/gt heterozygotes

revealed neonatal lethality affecting most STIM1gt/gt animals before weaning (Table 1).

Surviving STIM1gt/gt mice exhibited a significant reduction in body weight, hypotonia of the

lower limbs on hindlimb suspension, and generalized fatigue (Fig 2D). Embryos harvested

between E11.5 and E16.5 revealed normal Mendelian ratios for STIMgt/gt mice (25%), but

only ten percent of neonates examined between P0 to P7 were STIM1gt/gt, indicating late fetal

or neonatal demise.

Primary myotubes were isolated from STIM1+/+, STIM1+/gt and STIM1gt/gt mice to determine

whether deleting the C-terminus of STIM1 affected SOC. SOC, as assessed using the rate of

Ba+2 entry, was significantly reduced in Fura-2 loaded myotubes from STIM1gt/gt and

STIM1+/gt mice (1.62 × 10−4 and 2.92 × 10−3 arbitrary units/sec respectively) compared to

STIM1+/+ myotubes (7.0 × 10−3 arbitrary units/sec) (Fig 2E–F). These studies demonstrate

that the mutation in the STIM1 gene results in a loss of function model.

We analyzed the properties of SOC currents (Isoc) in primary myotubes isolated from

STIM1+/+, STIM1+/gt and STIM1gt/gt mice using whole-cell patch-clamp recording. For these

studies, we used recording solutions and protocols that are standard for recording Isoc in other

cells 29, 30 and SOC was activated by depleting calcium stores with the SERCA antagonist

thapsigargin (2μM) (Fig. 3A). SOC currents were analyzed from 33 STIM1+/+ myotubes that

exhibited a voltage-gated Na+ current. SOC currents recorded from these myotubes displayed

current-voltage relationships with two distinct patterns: an inwardly rectifying current (19/33

cells) and a linear current (14/33 cells) (Fig. 3A–C, and Fig. s4A–C, respectively). The inwardly

rectifying current displayed a current density at −80mV of −5.05 pA/pF for STIM1+/+ and

−1.98 pA/pF for STIM1+/gt myotubes. In contrast, store depletion with thapsigargin (2μM)

evoked little change in the current density in STIM1gt/gt myotubes. The inwardly rectifying

currents recorded from STIM1+/+ and STIM1+/gt myotubes resembled SOC currents recorded

in other systems 31 and were therefore studied in greater detail. The myotube SOC current was

as permeable to barium (98%) or cesium (90%) as to calcium (Fig 3D and E), which is

consistent with the ion selectivity profile of SOC channels 32. Moreover, switching the external

solution from 2 mM calcium to a divalent-free solution resulted in a large increase in the current

amplitude (278% control) (Fig 3D–E), indicating an increase in the permeability of monovalent

cations in the absence of Ca+2, which is another hallmark of SOC currents. Finally, myotube

SOC currents were inhibited by the trivalent cation Gd+3 (10 μM) (Fig. 3D–E) and the

compound SKF96566 (10 μM) (not shown). These findings suggest that the SOC currents
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recorded from STIM1+/+ myotubes resemble calcium release activated calcium (CRAC)

currents recorded from many non-excitable cells 33, 34. The linear currents that were recorded

from a subset of myotubes suggest that, in addition to (classic) CRAC-like SOC currents, other

plasma membrane currents may also be activated following store depletion in skeletal

myotubes. Although the nature of these currents is currently unknown, future studies to further

characterize the currents activated by store depletion in skeletal myotubes will more fully

define the mechanism(s) underlying SOC in these excitable cells. It is possible, for example,

that the observation of a linear current in some myotubes and an inwardly rectifying current

in other myotubes may reflect differences in the complement of channels that are activated by

store depletion in these two populations of myotubes and may also reflect differences in SOC

currents between excitable cells and non-excitable cells.

We next examined the localization of STIM1 in skeletal muscle from the hindlimbs of adult

mice. Immunostaining for STIM1 using two independent antibodies displayed a striated pattern

that partially co-localized with the RYR channels that are known to be present at the terminal

cisternae (Fig. 4A–C). These studies suggested that STIM1 may localize to the skeletal

myofiber SR. We next examined STIM1 expression in subcellullar fractions of rabbit skeletal

muscle. Isolated microsomal fractions were obtained using sucrose gradients and revealed

STIM1 expression in fractions corresponding to the t-tubule, longitudinal SR, and the terminal

cisternae (Fig. 4F). We also examined the expression of the STIM1-LacZ fusion protein by

electron microscopy (Fig. 4D–E). Aggregates of the reaction products of beta-galactosidase

were detected in the longitudinal SR as well as the junction of the t-tubule and terminal

cisternae. The STIM1-LacZ aggregates were detected in the majority of, but not all, foot

processes, which is mostly likely because we examined only STIM1+/gt muscles. These results

provide insight into the structure of SOC complex in muscle and may explain differences in

SOC kinetics that we and others have observed in myofibers compared to non-excitable cells
35.

We next carried out a series of studies to investigate how the loss of STIM1 affects skeletal

muscle structure and function. Histological sections of muscles from STIM1gt/gt mice revealed

increased central nucleation (see Supplemental Information Fig. s5A–C), a hallmark of a

congenital myopathy. In addition, dystrophin staining of muscles from STIM1gt/gt mice

revealed markedly reduced muscle cross sectional area compared to STIM1+/+ mice (Fig 5A–

B). Ultrastructural analysis of tibialis anterior (TA) muscle of STIM1gt/gt mice using

transmission electron microscopy revealed markedly swollen mitochondria in the

subsarcolemmal and intramyofibrillary space compared to control STIM1+/+ littermates (Fig.

5C–D, STIM1gt/gt, and Fig. 5E, STIM1+/+). These ultrastructural abnormalities in muscles of

STIM1gt/gt mice were also associated with altered expression of muscle specific proteins of

the SR and sarcomere (Fig. 6A). There was a marked decrease in the expression of SERCA1

and myosin heavy chain in hindlimb muscles from STIM1gt/gt neonatal mice, supporting the

histological evidence of muscle damage.

Based on these indications of muscle pathology, we hypothesized that the perinatal lethality

in STIM1gt/gt is due to a congenital myopathy. To test our hypothesis, we assessed the physical

and functional characteristics of skeletal muscle from STIM1+/gt mice as well. Although

sarcomeric architecture was basically preserved, foot processes appeared intact, and the

weights, lengths and single twitch contractions of isolated extensor digitorum longus (EDL)

muscles evoked with stimulation at 60 and 80 mV were not different between eight-week old

STIM1+/gt and STIM1+/+ mice (not shown), force frequency measurements of isolated EDL

muscles 36 from STIM1+/+ and STIM1+/gt mice revealed an inability of STIM1+/gt muscles to

generate the same level of tetanic forces as STIM1+/+ mice (Fig. 6D–E). Moreover, EDL

muscles isolated from STIM1+/gt mice displayed a marked reduction in the time to fatigue as

compared to those taken from STIM1+/+ mice (24 ± 4.7 sec vs. 35.6 ± 0.5 sec, p<0.002) (Fig
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6F). Taken together, these results suggest that muscles from STIM1+/gt mice display severe

defects in force generation and fatigue resistance and support the notion that neonatal STIM1

mutant mice manifest significant muscle weakness.

Refilling of internal calcium stores following membrane depolarization has long been

recognized to occur through the rapid action of the calcium pump (SERCA) located in the

longitudinal SR 37. However recent evidence that store-operated calcium influx is required to

refill internal stores has implicated SOC in the regenerative calcium oscillations observed in

muscle and suggests that SOC is required to prevent muscle fatigue 20. Calcium oscillations

in myotubes depend in part on calcium entry and may play a role in regulating gene expression

during muscle differentiation 21, 38, 39. We therefore examined KCl-evoked calcium

transients from STIM1+/+, STIM1gt/+ and STIM1gt/gt myotubes. While a single KCl-evoked

calcium transient was not significantly different between STIM1+/+, STIM1gt/+ and

STIM1gt/gt myotubes, indicating comparable levels of internal calcium stores, a train of KCl

pulses resulted in a rapid decrement in the amplitude of subsequent calcium transients in

STIM1+/gt and STIM1gt/gt myotubes. Control STIM1+/+ myotubes responded to subsequent

KCl-pulses with a minor decrement in calcium transient amplitude (Fig. 7A–D). At the end of

each KCl stimulation protocol, we measured the SR calcium store content by depleting stores

with thapsigargin (2 μM) and caffeine (10 mM) and found that STIM1+/gt and STIM1gt/gt

myotubes showed significant defects in refilling of internal stores compared to STIM1+/+

myotubes (Fig. 7E). These results indicate that SOC is needed to refill internal calcium stores

in a muscle that is subjected to repeated stimulation, in order to prepare for the next

depolarization.

DISCUSSION

In this study, we provide evidence that mice carrying mutant STIM1 have defects in muscle

differentiation and in muscle contractile activity. We find that neonatal mice lacking functional

STIM1-dependent SOC die from a perinatal myopathy and that haploinsufficiency of STIM1

in adult mice confers increased susceptibility to fatigue. These findings support a model where

STIM1 is required to activate SOC and refill internal stores in myotubes in response to signals

associated with muscle differentiation and in myofibers subjected to increased motor nerve

activity. Although the precise signals are not known at this point, it is likely that STIM1-

mediated SOC is important for both short term calcium responses, i.e. muscle contraction, and

long term responses such as a remodeling through calcium dependent gene expression.

In this work, we provide evidence that STIM1 is critical for myotube development and that the

loss of STIM1 results in defective SOC, which underlies defective muscle differentiation both

in vitro and in vivo. STIM1 expression increased during myotube differentiation and correlated

with increased SOC activity in myotubes compared to myoblasts. STIM1-dependent SOC

plays an important role in NFAT dependent gene expression as was evident from STIM1 gain

and loss of function studies in C2C12 cells. It is also likely that STIM1-dependent store refilling

is important to maintain calcium oscillations that are needed for muscle differentiation 40. For

example, STIM1gt/gt myotubes fail to exhibit SOC in response to thapsigargin induced SR store

depletion or in response to repeated KCl-pulses. Moreover, STIM1+/+ myotubes exposed to a

series of depolarizing signals maintain full calcium stores, while STIM1gt/gt myotubes fail to

refill their stores. These results suggest that STIM1 is important for store refilling following

calcium release from RYR1-containing calcium stores by membrane depolarization, which is

important for muscle differentiation 41.

In mature muscle, we found that STIM1 haploinsufficiency confers a contractile defect only

under conditions of increased contractile demand, where calcium store depletion is most likely

to occur. Under these conditions of increased muscle usage, STIM1 haploinsufficiency likely
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results in ineffective sensing of store depletion that occurs with high frequency stimulation,

thus resulting in a defect in force generation and early fatigue. In the present study we were

unable to distinguish whether the increased fatigue results from defective refilling of RYR1-

containing calcium stores or a developmental defect. We did find, however, that muscles from

STIM1gt/gt mice expressed reduced levels of SERCA1 and myosin heavy chain. Reduced

expression of either of these proteins might result in reduced muscle performance. Taken

together, these studies of STIM1 mutant mice indicate that SOC is an important calcium

signaling pathway in muscle operating to refill calcium stores needed for muscle contraction.

We found that STIM1 is localized to the muscle SR where calcium is released by RYR1 and

refilled by SERCA1. In fact, STIM1 localizes to both the foot process and longitudinal SR. It

is possible, therefore, that SOC is important in muscle to augment EC coupling, through a

mechanism in which STIM1 senses the depletion of RYR stores with augmented contractile

activity, activates SOC channels in the t-tubule membrane, and thus increases calcium store

refilling. In this way, STIM1 may function as a sensor of contractile stress. In this model,

muscles under ambient conditions would cycle calcium through the RYR calcium stores in

rapid fashion; however muscles under conditions of increased motor nerve activity would

activate STIM1-dependent SOC to rapidly refill internal stores. SOC would provide a sustained

increase in subsarcolemmal calcium that would set in motion a series of remodeling events

aimed at optimizing muscle performance. This muscle remodeling might include the

upregulation of TRPC3 channel expression that serves to augment SOC with subsequent bouts

of exercise 19. Interestingly, recent reports suggest that STIM1 can interact with TRPC1 and

indirectly with TRPC3 channels to mediate SOC in diverse cell types 12, 15, 42, 43. The

findings presented here provide the first genetic evidence for essential physiological functions

of SOC in skeletal muscle and validate a conceptual model whereby SOC confers cellular

memory of recent motor nerve activity. In this way, STIM1-dependent SOC in muscle provides

a mechanism to sustain increases in [Ca+2]c in order to preserve contractile function during

repeated contractions and to activate calcium-dependent signaling events that underlie

remodeling responses associated with neurostimulation.

SOC has been recognized as mechanism of calcium overload in skeletal myopathies such as

muscle dystrophy 44–46. Yet the only physiological functions known to date for STIM1 and

Orai1 have been revealed by mutations in human Orai1 gene, where a defect in SOC leads to

severe combined immunodeficiency, and in C. elegans mutants, where mutations in STIM1

and Orai homologues lead to abnormal gut function and infertility 47, 48. However, one patient

with a mutation in Orai1 also manifests a skeletal myopathy that may involve impaired

calcineurin/NFAT signaling (3). Moreover, Orai1 reporter mice indicate the robust expression

of Orai1 in mature skeletal muscle 49. Here we provide direct evidence that loss of STIM1 in

mice produces a skeletal myopathy. Taken together, these studies indicate that STIM1

participates in a conserved calcium signaling network that is active in diverse cell types which

utilize calcineurin signaling to respond to changing environmental stimuli.

METHODS

Cell culture

C2C12 cells were propagated in Dulbecco’s Modified Eagle Medium (DMEM)-low glucose

media supplemented with 10% fetal bovine serum (FBS) and 100U/mL penicillin-

streptomycin. C2C12 differentiation from myoblasts to myotubes took place over 5 days while

incubated in differentiating media (DM) containing DMEM-high glucose media with 2% horse

serum, 10μg/mL transferrin, 10μg/mL insulin, 50mM HEPES buffer pH 7.4, 100 U/mL

penicillin-streptomycin. Experiments involving C2C12 cells were performed after 5 days in

DM except when otherwise noted. Primary myoblasts were isolated from STIM1gt/gt,

STIM1+/gt, and STIM1+/+ neonates by collagenase digestion using a previously described

Stiber et al. Page 6

Nat Cell Biol. Author manuscript; available in PMC 2009 June 9.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



protocol and subsequently allowed to differentiate into myotubes as described above for

C2C12 cells 50.

[Ca2+]i imaging

C2C12 cells were plated on 0.1% gelatin-coated glass coverslips at least 12 hours prior to

imaging. Imaging of myotubes was performed after switching over to differentiating media for

5 days. Ca2+ imaging was performed with a 40 X objective on an automated fluorescence

microscope with a Photometrics CoolSnap camera. C2C12 cells were loaded with 10 μM

Fura-2-acetoxymethyl ester in extracellular buffer (140 mM NaCl, 2.8 mM KCl, 2 mM

CaCl2, 2 mM MgCl2, 10 mM glucose, and 10 mM HEPES) for 30 minutes at room temperature

while shielded from light. Fura-2 fluorescence was measured by illuminating the cells with an

alternating 340/380 nm light every 1–2 seconds and fluorescent images were captured at 510

nm. Changes in intracellular Ca2+ concentration were derived from changes in the ratio of

fluorescent intensity at 340 and 380 nm. For Ca2+ add-back experiments, C2C12 cells were

bathed in Ca2+-free media (140 mM NaCl, 2.8 mM KCl, 4 mM MgCl2, 10 mM glucose, 10

mM HEPES, and 10 mM EGTA), and then treated with 2 μM of thapsigargin and 10 μM of

verapamil, followed by 2 mM barium after Ca2+ store depletion.

Immunhistochemistry

C2C12 cells were fixed as myoblasts or myotubes with ice-cold methanol at −20 °C for 10

minutes. Immunostaining with anti-STIM1 antibody (BD Biosciences) was performed at a

dilution of 1:100. Images were obtained with a 40x objective on Zeiss-LSM 510 META

fluorescence microscope and analyzed with MetaMorph software (Universal Imaging). For

immunofluorescence studies of muscle tissues, muscles were frozen in OCT and then

cryosectioned. Images were obtained using a 40X objective on a Zeiss LSM 510 inverted

confocal microscope. Rabbit anti-RYR1 antibody was obtained from Dr. Gerhard Meissner

(UNC Chapel Hill).

Whole-cell Patch-Clamp Recordings

Patch clamp experiments were performed to record currents in the whole cell mode with

pipettes filled with solutions containing 137 mM cesium aspartate, 2 mM CsCl, 8 mM

MgSO4, 15 mM HEPES, 12 mM BAPTA, pH 7.2 (with CsOH), 310 mOsm (with d-Mannitol).

The external solution consisted of 150 mM NaCl, 2 mM CaCl2, 1 mM MgCl2,10 mM HEPES,

10 mM glucose, 20 mM sucrose, pH 7.4 (with NaOH), 320 mOsm(with d-mannitol); in NMDG

solution, Na+ was replaced with equivalent concentration of NMDG; in Ba2+ solution, Ca2+

replaced by Ba2+; in divalent -free (DVF)solution, Ca2+ and Mg2+ were omitted and 10mM

EDTA was added. To block the L-type Ca2+ channel, verapamil (10μM) was added in external

solutions; K+ channel blocked by Cs+ in the internal solution; and the voltage-dependent

Na+ channel was inactivated by the stimulation protocol. The osmolarity of each solution was

verified with a freezing-point osmometer (Advanced Instruments). Voltage across the cell

attached membrane patch was controlled and currents recorded using an Axonpatch-200A

amplifier with Digidata 1200 interface and analyzed with pCLAMP software. Currents were

induced by 200 ms voltage ramp protocols every 2 seconds (1 mV/ms, from 100mV to

−100mV), at a holding potential 0mV. Experiments were performed at room temperature with

a sample rate of 4 kHz (filter 2 kHz). For analysis of Isoc, the first ramps before activation of

SOC currents (usually 1–3) were pooled and used for leak-subtraction of all subsequent current

recordings.

Antibodies and western blotting

Cell extracts were prepared by washing the cells with PBS and then extracting proteins with

lysis buffer: PBS, 5mM EDTA, 5mM EGTA, 1mM sodium vanadate, 10mM sodium
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pyrophosphate, 50mM sodium fluoride, and 1% Triton X-100. Proteins were resolved on SDS-

polyacrylamide gels and electroblotted onto nitrocellulose membranes (Amersham

Biosciences, Hybond-C Extra). After transfer, nitrocellulose membranes were blocked for 1

hour at room temperature in 5% milk with Tris-buffered saline/Tween 20 (TBST): 10mM Tris

HCl, pH 8.0, 150mM NaCl, 0.1% Tween 20. Next, the membranes were incubated overnight

at 4°C with anti-STIM1 primary antibody (BD Biosciences) diluted 1:250 with 1% milk in

TBST. After washing with TBST, membranes were incubated at room temperature for 1 hour

with secondary antibody. Peroxidase activity was visualized with enhanced

chemiluminescence (Amersham Biosciences, ECL Advance™ Western Blotting Detection

Kit). SERCA1 and MyoD antibodies were obtained from Affinity Bioreagents. Unless

otherwise stated, equal loading was confirmed by immunoblotting with alpha-tubulin Ab

(Santa Cruz).

STIM1 Gene Silencing

DNA templates for the synthesis of silencing RNA were cloned into an expression plasmid for

subsequent transfection. The selection of the coding sequence for targeting STIM1 mRNA was

done by using the siRNA Target Finder and Design Tool from Ambion. The potential target

sequence was subjected to a BLAST search against mouse EST libraries to ensure specificity

of the target. The oligonucleotide sequences were: si-4 construct, sense, 5′
GACCTCAATTACCATGACC 3′, antisense, 3′ CTGGAGTTAATGGTACTGG 5′; si-6
construct, sense, 5′ CCGTTACTCTAAGGAGCAC 3′, antisense 3′
GGCAATGAGATTCCTCGTG 5′. C2C12 myocytes were transfected using Fugene reagent

(Roche).

STIM1-targeted mice

T he ES cell line RRS558 from BayGenomics was generated by using a gene trap protocol

with pGT0Lxf vector containing the engrailed 2 gene and β-galactosidase/neomycin-resistance

fusion protein. A comparison between the BayGenomics database and the NCBI UniGene

database suggested that the insertion site for this gene-trap construct is in exon 8 of STIM1,

which corresponds to a fusion protein consisting of the extracellular and transmembrane

domain of STIM1 with a β-galactosidase protein on the N terminus. A PCR based strategy was

used to map the exact location that the gene-trap construct inserted into the STIM1 gene.

Genotyping of littermates using tail digest genomic DNA first involved amplifying the LacZ

gene to identify the mice with a targeted allele and then a second round of PCR using primers

specific to the insertion site of the gene-trap construct was performed to identify homozygous

mice.

β-galactosidase staining

All mouse tissues were dissected with cold PBS and immediately fixed with 4% PFA at 4°C

for 1 hour. After rinsing the tissues with rinsing solution (5 mM EGTA, 0.01% deoxycholate,

0.02% NP40, 2 mM MgCl2) 3 × 15 minutes at room temperature, the tissues were incubated

in the dark with staining solution (5 mM K3Fe(CN)6, 5 mM K4Fe(CN)6, 5 mM EGTA, 0.01%

deoxycholate, 0.02% NP40, 2 mM MgCl2, 1 mg/mL X-gal solution) at 37°C until desired

intensity was reached. The specimens were then washed with PBST, post-fixed with 4% PFA

overnight, and then stored in 70% EtOH. Paraffin sectioning of the stained organs was

performed by standard methods and subsequently stained with H&E. For electron microscopy

of STIM1gt/+ muscle, samples were post-fixed in 2% PFA and 2% glutaraldehyde in 0.1 M

cacodylate buffer pH7.4 for 12 hours. Sections were fixed in 1% OSO4 and embedded in an

epoxy resin mixture. Ultrathin sections were studied with an EM 410 electron microscope

(Phillips). For control experiments STIM1+/+ samples were processed as above.
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Skeletal Muscle Contractility and Fatigability

STIM1+/gt and STIM1+/+ control mice were anesthetized and intact EDL muscles were

removed and placed in Krebs buffer (pH 7.4). The intact whole muscles were placed in a 30

ml chamber between platinum stimulating electrodes and bathed in Krebs buffer continuously

aerated with 95% O2. The force transducer measurements were recorded and analyzed on

computer using Polyview software (Grass, West Warwick, RI). Muscles were subjected to

multiple frequencies of stimulation of 200 msec duration to produce the force-frequency

relationship. Muscles were fatigued by stimulation at the frequency which produces maximum

tetanic force, as well as submaximal frequencies, at 1 second intervals for 5 minutes while

recording the changes in force production over time. All animal studies were performed under

an approved IACUC protocol.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Muscle differentiation is associated with increased expression of STIM1 and
redistribution of STIM1

A) Differentiating C2C12 cells were harvested at the indicated times and protein lysates were

separated by SDS-PAGE and immunoblotted for STIM1 and SERCA1 using specific

antibodies. Complete scans of these gels are shown in supplemental information (supplemental

fig 6). B) STIM1 expression in C2C12 myoblasts (MB, scale bar = 10 μm) and C) in C2C12

cells allowed to differentiate into myotubes (MT, scale bar = 20 μm). STIM1 aggregation and

redistribution to the cellular periphery occurs during myogenesis. Arrows represent

peripherally localized STIM1. D) Store-operated calcium entry was greater in myotubes than

in myoblasts. Fura-2 loaded C2C12 myoblasts and myotubes were placed in zero calcium media,

and treated with thapsigargin to induce store depletion and verapamil to inhibit L-type Ca2+

channels. Once cytoplasmic Ca2+ returned to baseline, barium was added to the extracellular

medium as a surrogate for Ca2+. Representative average tracings of individual myoblasts and

myotubes showed a significant increase in store-operated influx in myotubes. E) The rate of

store-operated barium influx, calculated by the first derivative of the 340/380 nm ratio in the

first 100 seconds of influx, was 5.57 × 10−4 ± 4 × 10−5 arbitrary unit/sec (n = 23) in myoblasts,

and 2.72 × 10−3 ± 3 × 10−4 arbitrary unit/sec (n = 6) in myotubes (p<0.001). The data shown

represent the mean ± SE.
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Figure 2. Gene trap strategy for STIM1

A) Mouse STIM1 gene showing the exon structure in boxes (upper panel). Corresponding

STIM1 locus with gene trap vector insertion (lower panel). The gene trap vector carries the

engrailed2 intron (en2) and splice acceptor site (SA), β-galactosidase reporter gene and a SV40

polyadenylation site (SV40pA) inserted between exons 7 and 8. B) Both WT and gene-trapped

STIM1 protein contain the EF hands and SAM domain of the N-terminus that localizes to the

ER lumen, and the membrane spanning region (TM). The cytosolic loop is depicted at the C-

terminus only in the WT locus as the gene trap product fuses the first 30 amino acids of STIM1

N-terminus to β-gal. C) Lysates prepared from muscles of WT, +/gt, and gt/gt mice and

immunoblotted for STIM1 revealed WT STIM1 and STIM1 fusion protein. Complete scans

of these gels are shown in supplemental information (supplemental Fig 6). D) Two week old

gt/gt mice appeared smaller and weaker compared to WT littermates. (STIM1gt/gt is seen on

the left.) E–F) Store-operated calcium entry in primary myotubes prepared from WT, +/gt, and

gt/gt mice. Fura-2 loaded primary myotubes were placed in zero calcium media, and treated

with thapsigargin to induce store depletion and verapamil to inhibit L-type Ca2+ channels.

Once cytoplasmic Ca2+ returned to baseline, barium was added to the extracellular medium as

a surrogate for Ca2+. Representative average tracings of individual myotubes showed a

significant decrease in store-operated influx in +/gt and gt/gt myotubes compared with

myotubes prepared from WT littermate controls, with minimal influx in gt/gt myotubes.
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Figure 3. Store depletion fails to activate SOC current in primary myotubes lacking functional
STIM1

SOC currents in response to TG (2μM) were recorded from myotubes prepared from

STIM1gt/gt, STIM1+/gt, and STIM1+/+ mice. A) Examples of thapsigargin (TG)-induced Isoc

responses in STIM1 gt/gt, +/gt, and +/+ myotubes. The currents were induced by a 200ms

voltage ramp protocol (1mV/ms), from 100mV to −100mV, from a holding potential of 0mV

(see inset). Sweeps occurred every 2 seconds. Peak Isoc was leak-subtracted and normalized

by membrane capacitance. Isoc current density was measured at −80mV. Store-depletion

resulted in a large Isoc peak in STIM1 +/+ myotubes (green trace) and a smaller Isoc response

in STIM1 +/gt myotubes (red trace), but no significant response in STIM1 gt/gt (blue trace)

myotubes. Isoc was inhibited rapidly after the addition of gadolinium (Gd3+, 100μM). B) I/V

plots of the Isoc currents after TG perfusion at the times indicated in A) of STIM1 +/+ (a, green

trace), STIM1 +/gt (b, red trace), STIM1 gt/gt (c, blue trace). Note the stimulatory effect of

TG was absent in STIM1 gt/gt myotubes. C) Group mean values of peak Isoc at −80mV and

+80mV in STIM1 +/+ (n=19), STIM1 +/gt (n=8), vs. STIM1 gt/gt (n=8) myotubes; *, P<0.05,

STIM1 gt/gt vs. STIM1 +/+, and STIM1 +/gt myotubes. D) An example of TG-induced Isoc

response at +80mV and −80mV in solutions containing Ca2+, Ba2+, divalent-free (DVF), and

Gd3+ containing solutions respectively. E) Group mean changes of peak Isoc at −80mV in the

presence of Ba2+ (maroon bar, n=12), DVF (yellow bar, n=10), and Gd3+ (blue bar, n=9)

containing external solutions. Open bars represent control Isoc (100%). *, P<0.05, control

versus Ba2+, DVF, or with Gd3+.
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Figure 4. STIM1 Localization

A) Immunostaining for STIM1 in skeletal muscle using a STIM1 specific antibody displayed

a striated pattern. B) Immunostaining for RYR. C) Merged panel shows partial overlap of

STIM1 and RYR. Scale bar (A–C) = 5 μm. D-E) Expression of the STIM1-LacZ fusion protein

by electron microscopy. Aggregates of the reaction products of beta-galactosidase were

detected in the longitudinal SR (white arrowhead) as well as the junction of the t-tubule and

terminal SR (black arrowhead). Scale bar (D–E) = 500 nm. F) Isolated microsomal fractions

were obtained using sucrose gradients from rabbit muscle which revealed the absence of

STIM1 expression in the fraction corresponding to the contractile proteins and debris (1), and

the presence of STIM1 expression in the terminal cisternae (2), longitudinal SR (2 and 3), and

t-tubular fractions (4 and 5). * indicates fraction with greatest [H3+] RYR binding. Complete

scans of these gels are shown in supplemental information (supplemental Fig 6).
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Figure 5. Mice without functional STIM1 display a neonatal skeletal myopathy

A–B) Dystrophin immunostaining of cross sections taken from neonatal muscle of

STIM1+/+ and STIM1gt/gt mice. Nuclei were counterstained with DAPI. Scale bar = 200 μm.

C–E) Transmission electron microscopy was used to examine muscle ultrastructure from

STIM1 gt/gt (C and D) and STIM1+/+ mice (E). TA muscles were taken from 7–10 day old

STIM1+/+ and STIM1gt/gt mice. 5000X images were obtained from muscles of two mice. Scale

bar = 500 nM.

Stiber et al. Page 16

Nat Cell Biol. Author manuscript; available in PMC 2009 June 9.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 6. Muscle gene expression and functional analysis of mutant STIM1 mice

A–C) Muscle protein lysates taken from neonatal mice (STIM1gt/gt, STIM1+/gt versus

STIM1+/+) displayed a reduction in SERCA1 (top panel) and Myosin Heavy Chain (middle

panel) in mutant STIM1 mice as assessed by immunoblotting with specific antibodies for

SERCA1 and MHC (MF20). Quantification using densitometry is provided for studies of three

mice for each genotype for SERCA1 (B) and MHC (C). Complete scans of these gels can be

found in supplemental information (supplemental Fig 6). D) Contractile force measurements

after tetanic stimulation of EDL muscles taken from STIM1+/gt (n=4) and STIM1+/+ mice

(n=4). E) Bar graphs represents maximal forces (mean ± SE) following tetanic stimulation for

STIM1+/gt and STIM1+/+. F) Bar graph of time to fatigue after repetitive stimulation for

muscles taken from STIM1+/gt and STIM1+/+ mice. Time to fatigue was measured using a

protocol of one 100Hz stimulation per sec, for a duration of 200ms. Values (mean ± SE)

represent the time required for a decay in force generation to 50% maximal force, following

stimulation of 4 muscles from each genotype.

Stiber et al. Page 17

Nat Cell Biol. Author manuscript; available in PMC 2009 June 9.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 7. STIM1 mediated store refilling is required for fatigue resistance in skeletal myotubes

A–C) Calcium transients were measured from STIM1+/+(A), STIM1+/gt (B) and STIM1gt/gt

(C) myotubes by a series of KCl pulses (55mM) in the presence of [Ca+2]o. SR store content

was then determined by stimulating myotubes in a zero [Ca+2]o solution with TG (2uM) and

caffeine (10mM). D) STIM1+/+ myotubes responded to a series of KCl stimulations with little

change in the amplitude of the calcium transient (black trace). STIM1+/gt (red trace) and

STIM1gt/gt (blue trace) myotubes responded to the series of KCl-pulses with a decrement in

peak amplitude of the calcium transient as measured by the ratio of the amplitude of subsequent

KCl pulses to the initial KCl pulse (PX/P1). E) Calcium store content after KCl stimulation in

STIM1+/+, STIM1+/gt and STIM1gt/gt myotubes. Data shown represent mean ± SE.
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