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ABSTRACT

The structure of the high-energy electron tail in a current-carrying, mag-

netized plasma column is determined self-consistently with the plasma wave

turbulence it generates. The theory applies to cases when runaway confinement

is good, radial excursions of the magnetic field lines being small. The unstable

spectra consist of absolutely unstable w = w waves and convectively unstable
pe

w = w k 1/k << w waves. Enhanced dynamic friction resulting from the w k /k

modes increases with parallel momentum, and cuts off the distribution

function at high energies. The convective nature of the modes gives a radial

structure to the cutoff, with the highest energies concentrated in the center.

Below the cutoff, the distribution function has a small positive slope. Equili-

brium is maintained by the w p waves which produce the back diffusion flux

necessary to offset the electric field acceleration. Five separate asymptotic

regions for the tail distribution function are identified and the calculation

is carried out to give an explicit solution. Once obtained, the solution is

expressed in Lagrangian form to determine the flow paths of particles in momentum

space. This clarifies the nature of the steady state.
/
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I. Introduction

When a weak electric field is applied to a plasma, the electron distribution

develops a drift, a slight distortion and at very high energies, a runaway electron

tail. In the classical runaway theory, the high energy tail extends to infinite

momentum (or rather grows indefinitely with time) and if included would produce a

2
divergence in the computed conductivity. The Spitzer-Harm conductivity results

by ignoring this part of the current. It works quite well when the runaway con-

finement is poor, as when large radial excursions of the magnetic field lines

3 4
occur, or orbit shifts are large. However, there are many practical cases

when the runaways are well confined and they can then contribute significantly to

the conductivity, radiation, and energy loss processes of the plasma.

We consider an infinitely long, radially finite plasma column immersed in

axial magnetic .and electric fields. A steady state for the high energy electrons

in this situation can be obtained in roughly two different ways. Runaway production

can be balanced by some loss mechanism. Experiments are often interpreted with a

5.
highly empirical version of this steady state. Alternatively, turbulence resulting

from the high energy tail could enhance the dynamic friction on the electrons and

6
prohibit the runaway process, even in the absence of radial loss. The waves that

interact with the runaways do not produce significant radial diffusion so that with

well formed magnetic surfaces, it is unlikely that the radial loss of runaways

determines the steady state. We will assume that the surfaces are well formed. In

addition, we assume that the plasma waves convecting radially do not reflect from

the edge and cause an absolute instability. These are the principal assumptions of

the analysis to be presented in this paper. From them, we develop a self-consistent

solution to the kinetic equations for the tail electrons and the waves.
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We find that the friction and diffusion forces produced by the turbulent waves

spectrum permit the particle distribution function to attain a steady state.

Electron runaway to infinite momentum occurs only on the column axis while

at other radii, the distribution is cut off by the friction from th unstable waves.

This, in fact, makes the designation "runaway" somewhat inappropriate. The

present paper is devoted to a detailed derivation of the structure of the

high energy distribution function and turbulent wave spectra. A subsequent

paper will give some of the consequences, such as: the plasma column

conductance and total number of tail electrons, the energy transported across

the magnetic field by the plasma waves, and the radiation at w .
pe

The phenomenon of electron runaway was first pointed out by

Giovanelli, who observed that since the dynamic friction due to Coulomb

collisions decreased at high velocity like v- 2 for any electric field

there would always be some velocity beyond which collisions could not

restrain electrons from accelerating indefinitely, Denoting the friction

force, F = i/ V(V /V) 2 , with V 0 /T'fm, and v = 4TrnelnA/m2j , this
e e e. e e

critical "runaway"' velocity is V - v Ar7E , where Er mve/e is the electricr e r r e

field at which thermal particles runaway.

An actual calculation of the runaway rate requires a determination of

the electron distribution function, This started with Spitzer and Harm 2

They analyzed thezFokker-Planck equation for electrons in a homogeneous,

unmagnetized plasma, 8

at m 2

3

+ V d3v'(f(v! )- - f -~ ) H- 2I (v - v')(ii - v')]
N 3v ] }()
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where I is the identity tensor and the ions have a Maxwellian distribution.

This equation was analyzed in the steady state, neglecting the slow

joule heating of the electrons. Their procedure was to expand the distri-

bution function in a power series in the electric field and then to solve the

resulting equations order by order using spherical harmonics. This led to

-18 -3/2
the classical resistivity (parallel), IS= 1.8 x 10 T lnA sec.SHe

This solution is valid for velocities v/V < (Er/E) 4, and so to be meaningful

E/Er must be small. (the limit E/Er >>' 1 was studied by Kovryzni k 9) For

Velocities above this, their representation of the -solution is inappropriate

10-15
arid a.different expansion procedure has to be used. The primary

concern was to determine the flux of electrons into the runaway region,

the socalled Runaway Rate. Upon expanding equation (1) for V >> v e in the

steady state, there results the following linear equation

Eu3( + f ) = (1 - l/2u2 ) 2 )f ) + (u - l/u)f + f (2)u u ii y y uu

where E is normalized to the runaway field, u is normalized to the thermal

velocity and p is the cosine of the angle between the electric field and

the velocity of the particle, subscripts denote derivatives. This is the

basic equation of the classical runaway problem.

The first attempt to calculate the flux was made by Dreicer. For

v < Vr, he assumed that the distribution function was determined predominantly

by collisions and hence was isotropic. Equation (2) was expanded in

spherical harmonics as in the Spitzer.Harm problem, The rate at which the

particles scattered across v= v was used to determine the runaway rate
r

numerically .
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Gurevich 11 realized that this picture of velocity space was too

simplified, that in fact as one approached V- . Vr the distribution function

was no longer isotropic but would be localized around the electric field

direction. He expanded the distribution function near V o yr and u >> 1,

using the form f = exp{$ 0 (u) + YJu)( - 1j) + $2u)(l - 1j), + ....

This was substituted into eq (2) which was then solved order by order

in the electric field. However, the match

to the distribution function near ib v-- was not performed correctly and an

assumption that = 0 to the lowest order led to a singularity in the dis-

tribution function when V - V r. In spite of this, the exponential-dependence

was correctly determined, only the premultiplicative term was wrong'.

12

Lebedev used a similar approach to Gurevich. He found, however,

that there was an internal boundary layer (since the coefficient of 3f/au

vanished at y1 = 1, Vi _i) at V =r and also did not set $l =0 to leading

order. However, he did set $2 0 to leading order. This led to an error

in matching to the bulk electron distribution function but did not produce

a singularity in the distribution function for V >> Vr. Thus he was able to

compute the runaway flux with reasonable accuracy and obtained

114
S = 0.36nv(V )(E /E) exp[ -E /4E - /2EIE (3)

L e r r r

The most rigorous solution to eq (2) was performed by Kruskal

and Bernstein, They made no ad hoc assumptions about the distribution

function, hut found it necessary to introduce five distinct regions for the

distribution function. The solutions were matched asymptotically at the

transition Between the various regions. Their expression for the flux is

given by
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S = cnv(v )(E /E) 3/8exp[ -E /4E - v2E /E ] (4)
KB r r r

The constant (c) is of order one, but not known precisely because the

differential equations in two of the regions were unsolved. The details of

the Kruskal-Bernstein solution are summarized in a recent paper by Cohen 13

who included impurity ions in the Fokker-Planck equation.

A numerical analysis of the Fokker-Planck eq- (1) was performed

by Kulsrud et al. 14 They found good agreement with the results of Kruskal-

Bernstein if c = 0.35 in eq (4). Comparing the runaway flux with the.

experimental observations of Van Goeler et al 15 they found that theory

predicted runaway rates which were generally larger than the experimental

values.

Finally, Connor and Hastie 16 included relativistic effects and

impurity ions in the Fokker-Planck equation. They used an asymptotic matching

procedure identical to that of Kruskal-Bernstein. The main result introduced

by the inclusion of relativistic effects was that, if the electric field

wasesufficiently small that vr = c (c = speed of light) then there would be

no runaways produced because for relativistic velocities the dynamic friction

no longer decreases with momentum. For this effect to come into play one requires

E/E << T/mc-
r

For future use, we cQmpute here some of the parameters from the class-

ical collisional solution, Since the tail in general extends to large

velocities, a fully relativistic treatment will be used ,To proceed, we first

define the following perpendicular moments
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f If(p I I ) = 2Trp dp f(pil ,p ) (5)

T (p!1)f p I I) = 27rp dp Cp2/2m) f (p I p ) (6)

where (pt , p ) are the parallel and perpendicular momentum respectively.

The time rate of change of the density of tail electrons is obtained by

integrating the time dependent Fokker-Planck equation over all p1 (which

annihilates the collision operator when p <<pn is satisfied) and over

pi from (-', c). This leads to nT/'t eEf (m)

since fu (-=) 0. Since fi () is obtained from the solution of the kinetic

equation, the runaway rate follows. On the other hand,

since fi (pil) is approximately flat beyond the runaway momentum, we can

also determine nT from this by noting that, f11(-) ~f1(p r c T e

where p is the thermal momentum. Then

n /n - 0.35(E /E) 11/8 /4E-- -E2E /E (7)T r r r

where we used the results of Kruskal-Bernstein together with the constant

determined by Kulsrud et al.

Another parameter we shall require is the perpendicular temperature.

Once fit is found, it can be obtained from eq (6). In the collisional

problem, using the approximately correct formulas of Lebedev, we find that

the perpendicular temperature at the runaway momentum is

T /T = 21/3 EE/E) 2/3 (8)
r er

17 18
In order to pro.duce a steady state, Pearson and Bateman

included collective: effects. They both added a dynamic
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friction term due to the Cherenhov emission of waves into the classical

eq. 2. Neither found substantial alterations of the runaway rate. This

is the expected result since in a thermal equilibrium (Maxwellian) plasma

the dynamic friction from the waves is smaller than that from collisions by

the factor ln(V.1 /v )/lnA. An additional problem of this calculation for a

stationary, infinite, homogeneous plasma is that the spectral eneregy

density of the waves diverges as marginal stability is approached. This

situation arises for 'Y > ~ r where the distribution function, fL i, is flat and

Landau damping vanishes.

In the analysis presented in this paper, the parallel

distrib'ution function f11 (pn )

is shown (with an enlarged positive slope) in Fig 1, along with the bulk

distribution function, for p l < pr, to which it matches. The height of the

tail in this notation in f nTpe. We will use the-results of

classical theoryfor nT. This does not mean that the analysis hinges on the validity of

the classical theory. Rather, the tail distribution function will match to any

bulk function which is flat at pi 'U pr and Gaussian in the perpendicular

direction, properties which are fairly universal consequences of the kinetic

equation in the vicinity of p n Mpr. Our results are written in terms of

n T/n, which in this analysis may take on any (small) value. Wave effects

become important for pi' > pr where the flattened tail permits instabilities

to develop. The unstable plasma wave spectrum spl;its into two distinct parts,

20.
as shown in Fig 2, And detailed in ec II , For simplicity, we

treat th-e strong magnetic field limt, Q >> a in which- the plasma
e p

I



9

wave frequency is w = w k1 /k, k being the wave vector component along

the magnetic field. That part of the spectrum with k ~0 and w w pe we

refer to as the "w modes". These waves are driven by a positive slope in
pe

fit . They have vanishing radial group velocity and when excited are absolutely

unstable. In the steady state, their saturation level is determined by

marginal stability. The second part of the spectrum, characterized by k > k

and hence w <w is referred to as the "w cos6" modes. They are driven
pe .pe

unstable by the anisotropy of the distribution function in the parallel

21, 22
direction through the wave-particle interaction at the first gyroresonance:

These modes have a large radial group velocity and are saturated by convection

out of the unstable region.

The waves contribute additions to the diffusion tensor of the particle

23
kinetic equation according to the well known quasi-linear operator. 3When the

kinetic equation (collisions plus waves) is integrated over p, one obtains

an equation of the form

9(eE - FI )fH 11 D(9fI1

where D11 contains contributions from both spectra, while only the wp cose

modes contribute to F11. This dynamical friction results from the

pitch angle scattering in the quasilinear response at the first gyro-

resonance which appears like a friction when projected on the parrallel

axis. The origin and physical mechanism of the friction term is discussed in

sec TI and Appendix A . Its relation to the overall solution is clarified

in section V, with the derivation of the flow pattern in momentum space which

characterizes the steady state. The terminology for labeling the kinetic coef-

ficients is, unfortunately, ambiguous, owing to the variety of forms in which the
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Fokker-Planck equation can be written. This leads to confusion over what does

and does not constitute a friction.

The effect of the enhanced plasma wave spectrum on the self-consistent

particle distribution function in Fig 1, can be understood in the following way.

First for comparison consider the bulk electrons with p I< p . For these,the collisional

dynamic friction exceeds the electric field acceleration, hence an individual

(test) electron would tend to slow down. In order to have a steady state, this

deceleration must be balanced by an outward velocity space diffusion flux

as is produced by a negative slope in the distribution function. This picture

remains qualitatively correct out to the runaway momentum, Pr* Beyond the

runaway momentum, the electric field dominates the collisional dynamic

friction and an individual electron tends to be accelerated. In the collisional

theory there is nothing to balance this tendency and electron runaway occurs.

There is no steady state. With the waves present, it is still true that

eE >Fii for some distance beyond p . The only way to maintain an equilibrium

is then to balance the electric field acceleration by a back diffusion flux.

This is precisely where the w modes come into play, maintaining the tail with

a small but finite positive slope. This positive slope persists up to a suf-

ficiently large momentum, that the dynamic friction from the we cos6

modes exceeds eE and cuts off the distrubution function.

It is easy to see that this state can be reached by the evolution of an

initial (non-stationary) distribution with a flat tail. First particles

accelerating through the runaway region pile up at the cutoff point. A positive

slope then develops there (.tReP.possbility of this happening was discussed

24
previously ), The w modes are th-en excjted and flatten fil by the backwardpa

diffusion of particles, until the small residual slope of the steady state is

achieved at marginal stability,
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These are the results obtained by examining the distribution function

at a fixed radius. However because the dynamic friction is produced

by the convectively unstable o cose modes, we would expect that the distri-
pe

bution function would develop a radial structure. This is indeed the case,

as is shown in fig 3 which is a plot of fl, in pl ,r space. The parallel

distribution function is flat in the shaded region and zero outside.

To complete the picture, it is necessary to determine the perpendicular

momentum space structure of the distribution function. Actually f 1 (p1 )

can be found 6 without knowing this, but then the origin of the dynamic

friction and the precise nature of the steady state are unclear. In

particular, the balance of friction and diffusion just described only applies

globally in the consideration of fi1 (pit). When the full distribution function

in the pL, pi plane is considered locally, such a balance does not occur,

and a momentum space flow results.

To- calculate the full f(p ,pj), it is necesary to identify five separate

asymptotic regions for the kinetic equation of the tail electrons. This is done

in sec III. We continue the scheme of Kruskal and Bernstein, numbering the

tail regions V - X, so that we match to region IV of the classical solution.

In sec IV, the procedure for obtaining f asymptotically is described and

carried out explicitly to determine T1 .

Finally, to clarify the nature of the steady state, we revert to a

Lagrangian description and calculate the electron flow lines in momentum space

in Sec V. The flow lines close on themselves to form vortices as shown in

Fig 4 .
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II. LINEAR STABILITY ANALYSIS

We outline here the stability properties of the electrostatic waves

which resonate with the runaway electrons. To be consistent with the

energies obtained by the runaways, it will be necessary to obtain relativ-

istically correct growth rates. This we do by identifying a simple trans-

formation rule to convert the usual dielectric function into a relativistic

one.

The transformation is obtained by writing down the linearized Vlasov equa-

tion for the one particle distribution function f(p,r,t) in relativistic

form, 25

-+ - p.-: f px - -- q--. = (0
t my- 3r y --O a3r 3p

where -0 = /mc, q is the signed charge, m is the non-relativistic mass,

B is the applied magnetic field, c is the speed of lightp the momentum,

$, f, f0 are the perturbed potential, distribution function and the steady

state distribution function respectively and y2 = 1 + p2/m2c 2 . Equation

(10) can be obtained from the non-relativistic Vlasov equation by

v + p/my (11)

S1 y 0 (12)

9/avl ma/ap1  (13)

VV + ma/p 11  (14)

V/ -+/3 (15)

fd3V fdsp (16)

where $ in(I5) is :the azimuthal angle.

It is easy to see that the procedure of obtaining the electrostatic

dielectric function commutes with the operations (ll to (16), so that they



13

may be applied directly to the usual non-relativistic dielectric function.
21

The real and imaginary parts are thus given by

Er(w,k) = 1 + Z ( 2 /k2) fd3p [J2(k pj/mQ )25  (n) f /(w - k p Y/m~y - nG 5/y)] (17)

E (w,k) E fd 3p (w2 /k 2 ) J2 (kp/mQ)
s,n PS n

x 6(w - k Ip /my - n y ) f (18)

where the sums are over species and harmonics of Qs ' n is the Bessel function,

(nn

and = mk 1 3/9p 1 + (nQ m p1 )/ p

The relevant waves have very high phase velocities, w/k1 >> ve, SO

that thermal corrections to the dispersion are negligible. The density of

tail electrons is assumed to be sufficiently small, n T/n << 1, that they

will not affect the frequency of oscillation but only the growth rate. In

this limit, Eq, (17) reduces to,

E= 1 W /W' - 2 /W2 k 11
2 k2  W2 /(W 2 

- 2) k1
2 k2  (19)

when w << 22, the real part of the frequency is given by
e

W2 ~ (1 + m./m k 2/k2) (20)
Wp2. 2 e 11 20

and finally, for k 2/kZ " m

W pe k11 /k (21)

which is the limit we utilize. Unstable lower hybrid waves with

k1
2/k2 < m /M can be excited at high plasma densities when the runaway

tail is very long. however, in

such cases, the total runaway number is extremely small and their effects

are minor.
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The waves considered can be destabilized in two different

ways. For modes driven by the n 0 or Landau resonance, w = <jP~l /my,

the growth rate, in the absence of collisional damping, is

gI/w = Tr(p, /y)2f 1 /3pH ( p =myw/k ). (22)

Note that the growth rate is maximized at the largest frequency of oscillation

or when k_ = 0. Since the radial group velocity vanishes as k - 0, we

expect an absolute instability with w w pe , whenever fi1 has a positive

slope. We refer to such modes as " modes".
pe

For the gyroresonance driven modes, at w- k1l p1 /m y - n2 /y = 0,

we take the limit p << p 12 , k p1 /m e << 1, and yw << Q , which can be

verified a posteriori. The n = 1 resonances are then dominant and we have

W /W =/4 W2 /Q2 k /k 2 my;/3p I T1 f I (-nQ m/k 1)1 n=-l peee

- 7r/4 n k2/k 2 2 /Q my/kII f( / ) (?3)pe e m1k 1  1~2/i

where y2  1 + p /m2c 2, TI and fl, are defined in Eq ( 5) and ( 6),

and the second term in 123) results from an integration by parts. The

parallel derivative term will turn out to be small, so we neglect it for

the moment (it has an additional destabilizing influence for the modes we

consider). Assuming 7negligible Landau damping for the mode considered,

instability will occur if f11 (m
2e/kIg ) > f j (-me/kII ). With the tremen-

dous anisotropy in the parallel distribution function, this condition is

generally satisfied, and (23) becomes

W /W 7 r/4 W2 /S12 k2 /k2 nry /k f I (mO /k I (4
i pe pe e e e
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These waves have large radial group velocities v "I v , hence the

convection time across the plasma column, L/v g, is always short compared

-l
to the growth time w . Provided the coherent reflections from the edge

are small, the instability is convective with a growth factor of

(25)- = W L/ 

The growth factor is large when k1 /kII > 1. The maximum kL is determined

by the minimum phase velocity at which Landau damping is negligible, i.e.

the runaway velocity. Thus, k1 ~ )p /v R and X increases with decreasing

k a . Since kI1 = mO e /pII , for constant fl, , the growth rate increases with

momentum. The dominant convective modes thus have w =wpe ki /k < wpe

and we refer to these as the "w cosV" modes. The resulting enhanced

wave spectrum, for distributions of the runaway type, are summarized

in fig 2.

To clarify the mechanisms by which these instabilities are produced,

and, more important, to facilitate the discussion of their effect on the

distribution function, we briefly examine the quasilinear response at the

two resonances. Using the conservation of energy and momentum between the

resonant particles and the unstable waves, one can obtain the particle

diffusion paths 23. The details can be found in Appendix . . For the

n = 0 interaction (w - wpe spectrum), the well known result is that

P j = constant (26)

Thus, unstable waves at the Landau resonance diffuse a test particle along

p1 = constant trajectories to lower and higher values of pl, with equal

probability (see Fig 5 ). However, with a local positive slope in the

distribution function, there is a net scattering of particles to lower

=7r/4 L w /Q 2kj /kI Ym:Q f I kg)
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energies thus tending to wipe out the positive slope and provide a source

of energy to amplify the waves. For the n = -l gyroresonance driven waves

(at w = w k 1 /k), the diffusion paths are significantly different. In the
pe

limit of k >> k,, the diffusion paths are given by

(P H - tp/kI )2 + P constant, (27.)

that is the particles diffuse along circles centered at the wave phase

velocity. Again a test particle gets scattered with equal probability in

either direction alon; the diffusion path, as shown in Fig 5 . Since

this scattering decreases the particle's total energy, the wave is amplified

(provided a negligible number of particles exist at the n = +1 resonance).

This accounts for the last term in Eq, (23). Finally, the tendency

to remove gradients along the diffusion path accounts for the first term

in Eq (23).
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III. Kinetic Equations for the Tail Electrons and the Unstable Waves

In this section we will derive the limiting forms of the wave and particle

kinetic equations appropriate to the calculation of the runaway tail. The dominant

scattering terms in the particle kinetic equation are those due to collisions and to

the n = 0,-l quasilinear diffusion. These terms dominate in different parts of

momentum space and their ordering defines the five asymptotic regions of the tail

distribution function.

To evaluate the kinetic coefficients in the particle equation, we need the

spectral energy distribution of the waves. For the W cose modes, the spectral

density can be obtained directly by integration of the wave kinetic equation, since

the modes are convectively unstable. While this is clearly a hypothesis, data does

tend to confirm it. Very low plasma density discharges undergo relaxed oscillations26

with the characteristics expected from the w cose mode when it is absolutely un-
pe

stable 27,28 . This regime disappears abruptly as the plasma density is raised,

suggesting the transition to a convective instability.

The w p instability, however, is absolute with a large growth rate, and it is

necessary to find its saturated state. Specifically, we take the saturated state

of the w modes to be determined by marginal stability, with the growth balanced

by some damping mechanism (E.g. collisions). This criterion specifies the slope of

the parallel distribution function. The diffusion coefficient, D11, needed to main-

tain this known steady state is found from the particle (parallel) kinetic equation,

and D11, in turn, determines the spectral density. This marginal stability analysis

(including the smooth matching to the rest of the distribution function) is described

in the present section. The diffusion coefficient so obtained is then used with the

full kinetic equation to find the complete distribution function in Sec IV.

The particle kinetic equation, including collisional, wave and particle

discreteness effects is written
3 0
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a + F.-0 C L (28)3t -3.2 t. 3tat 321 1 C + QfIL,- J

where F denotes the zero order forces. The effects of spatial diffusion

are of order F2/a2 <<1 compared to velocity space diffusion and have been

ignored. The first term on the right hand side is given by Eo -()

(or Equation (2) at high energies), the second term contains the quasilinear

terms (wave-particle, wave-wave, nonlinear Landau damping) and J is the

current due to particle discreteness (Cherenkov emission of waves). The

validity of the non-relativistic form of Eq (2-8) has been established

31
for both the stable and weakly unstable plasma regimes. For the situation

we consider, where a well developed unstable spectrum is present, the term

due to discreteness is negligible. Furthermore, the wave-particle terms in

the quasilinear operator are dominant, with the n = 0 (w = klipl/my) and

the n = -1 (w = kilpil/my + Qe /y) resonances being the most important since

k 2  << 1. Thus, in the steady state, the kinetic equation for the tail

electrons reduces to

eE - C (f) + C ( + C (f), (29)
3pg c 0  -1

where E is the applied electric field, the C's denote the collisional operators

and the subscripts have the obvious meanings,

The term due to collisions is given in Eq ~2). Expanding for

«- " u p ' PI I PR' it is

e < p , D > f (30
Cc(f) V p f + f + f) (30)Cei e if _p TL 3p- 3PH p11 P11 p it

The quasilinear operators are obtained by applying the transformation (11),-

3)
(16) to the non relativistic form giving
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C + C-= =- 16Tr2e2/m2  f d'k (e/) k/k
0 1 =0 1kil>0

x / n) j (kp(n)
n J (e/ ) 6 (wk - kil pl, /my - n(:/y) (31)

where Ek is the field plus particle energy density,

yz ~ + pZ /m
2c2

and

(n) = mk a 3/ p + (nflm 2
/pL) a ap.

The restriction k1 >Q dn the integral reflects the positive sign of the

phase velocity of the unstable waves. Frequencies are taken positive in

(31), with negative frequencies accounting for the factor of two which

has been included. Expanding the Bessel function for k? < 1, and

noting W De/ 3 = 2 for the plasma waves, these become

k~
0(f) =8 J kkkji /k2 D3p' 6( (pkl'/k -'.k pt /my) (3/Dp) f (32)

0~~ J 'kp

C1 (f) = 87rze 2  ski k/k 2 [(k 1 /=Q e) 3I/ 11  - (l/p )3/9p 1 1

x (pj/4) 6 (wpe ki /k - ki pl /my + Q 

X' ((k1 /n )e/api - (1/p 3/Dp jf. (W5

While the full spectrum appears in each of these operators, the dominant

contributions to7(2 ) and (33) come from the and the.:p cose

modes respectively.

Writing the operators i (3a) in terms of the total wave energy

is a helpful simplification of the equations. In this description, the

energy in the non-resonant particles is included with the waves
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Equation (30) describes the resonant distribution function, the non-

resonant distribution function is unnecessary and all the quasilinear

conservation theorems are satisfied (Appendix

We now consider the marginal stability problem to determine e

for the W modes. This utilizes the equation for the parallel dis-
pe

tribution function, obtained from Equation (24) by the operation f27rpdp_.

There results

eE3f 11 /3p I ( / 3plI )F1If + (3/Dpi1 ) Dfr-(D/3p11 ) f,

where

(34)

F11..= FC + F + XdTL/dpij , and DII-T= D 11+ Do + XT± with

F = V .psy 2/p2
C ei e

D 3'
DC ei Y3 /Pi

D = 872 e2f d 3ks k
0 k

F = 872e2f d 3kE k

x =' 372 2fd'k- kk

Upon doing the ki integrals I

that

k 1 /k 2 5(w k11 /k - kil pil /my )
pe

k2/k 2 k1 /2mQ e (w kj j/k - kil p1i/my

+ e /y)

k/k2 k 1 /2mQ 6(w ki /k - kj1 p i/mYL/k2ki e pe

+ e /Y)

(35)

(36)

(37)

(38')

(39')

n 38) andnW39), we find, for yw kj /k <<Q ,
pe e

X = mF/p I 4
(40)
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Equation (34) can be integrated once, using the boundary condition

corresponding to the condition that there be no flux of particle across

the surface p = p tR hat is af11 /app = 0 at p , = p , gives

D3f1 /9p I I (eE - F1 t.)f 11  (41)

Just beyond the runaway momentum, where the w cos6 modes are stable,

eE >FT and Eq. (41) implies that f11 has a positive slope. This is

to be compared with the slope at marginal stability where collisional

damping balances the growth rate of the w modes,

2p

af ap /ap =MS 1/ v./ Y2/p (42)

For some distance beyond pR (where FT ~FCis only slightly less than eE)

the slope obtained from Eq (41) will be less than that from Eq-

(42). In this region, V, the w modes are stable and(41) determines fl.

At the point pit = p0 , the two slopes are equal and for pit > p0 , Eq

(42) determines f . This match between the stable and marginally stable

regions of fl, is a smooth one.

Using the slope given by Eq (42) in Eq (41) gives the

diffusion coefficient from the w modes,
pe

D0 C + C pe ei /y2 (eE - FC) (43)

where we have used fl C = R), since the slope is so small. Putting

D = 0 in (43) also determines p0 which, since w /v . >> 1, is close to PR.O pe e

Evidently, there is a region of very rapid change, a boundary layer, near

p where D rises from zero to its asymptotic value

D =Tf W /V PiP /, 2 eE
0 C pe ei

(44)
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The boundary layer is denoted as region VI. The region where Eq (44)

applies is VII.

At large momentum, p >p1 , where the unstable w cos6 modes produce

significant friction, the slope in fi again approaches zero, signifying

the end of regaion VII. Here F >> FC and the analog of Equation (43) is

D (p1 I x-:T- + Trf W /Vp P /Yi (eE - F - -T) (4-5)
0 C pe e

Putting D =0 in (45) gives p2, the boundary to region VII. As before this is

accompanied by a boundary layer, region VIII, bringing us to regions IX and X,

where the w cos9 modes are dominant. The equation
pe

eE = F + xT1 (46)

defines the line P1 = PC, the boundary between regions IX and X, where

3f 1 /3pj 0. For p > pC, the slope is negative. The diffusion coefficient

is shown schematically in Fig. 6. In the Kruskal-Bernstein solution, region IV

extends out to Pup RpR(1+(E /E) We have replaced their region IV by our regions

V, VI, and a small part of region VII-a. Our region V corresponds to Kruskal-

Bernstein's region IV, when p 1 p < p0  Their region V (pl >>pR(1+(E /E) ) has

been replaced with our regions VII-a - X.

To summarize, we write out the leading order kinetic equations in the

different regions. Referring to Eq (34), (37) and 8)', these are:

Region V (pR i P0)

eE3f/;p11 = CC(f)

Region VIla (p0 < Pit < PI)

eE3f/3p g = C C ()+ ;/3 1 D 0aapf

Region VIIb (p -ip I < P2

eE3f/p - 3/a3p 1l (D 0 + p F/p ) ;/ p I f (49)

- l/p~ 3/3pL - ZL F 3/ p f - ;/3Pn p F/p. L/ 3p f

+ 1p 1 F/ps 3apI pL 3/p_ f,
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Region IX, X (p2  P11)

eE~f/ p1  = /p p2 F/p; /apj; f - 1/pL 9/Dpj 1 p2F 9/Dpi f

- / pF 1/pp IF f

+ P-L P-L F-L // p ~3 p-f, (50)

where D is given by Eq (44) in region VII. Equations (48.) and (49)

also apply in the boundary layers, regions VI and VIII respectively, except

that one must use the more exact expressionsGX43) andeg(45) for D
0C 0'

The saturated level of the w fluctuations follows from Eq (37)
pe

using Eq (44). We find

E = f d2kis = 1/8T m2 /e 2  
4 /k E/E nT/n (51)

To verify that this level is consistent with the assumptions of quasilinear

theory, we evaluate the autocorrelation time, T A (Akil IV - V p)

-1 -1
-1 pe, and the trapping time T (e2 /mk -Ak k TheS(k 1 Vph) p r t rk 1 £ki) h

ratio

(TAC Pt) = 1/(2Tr) 2 E/Er n T/n << 1, (52)

is always small, as required.

The convective, w cos6 modes, are described by the wave transport

equation

-gk -2 w k k (53)

where V is the group velocity, w. is the growth rate as given in Eqi
-g32

(24), and Pk is the emission due to part±cle discreteness. Equation (53)

describes the total energy in the mode at w = w k 1/k and can be thought of
pe

as the integral over the band of frequencies centered on w = w k1 /k. This
pe

equation has recently been discussed in some detail
33 ,'34
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the latter paper emphasizing its limitations . The case we treat, -ith a

steady state plasma and neglecting plasma gradients, is straightforward and

the meaning of eq. (52) is unambiguous.

The emission resulting from discreteness is easily obtained by the test

particle method. In the limit of weak damping or growth, the emission con-

centrates in a narrow line. Integrating over frequency then gives the net

emission into the mode which is,

P = M 2/16-72 W (kit /k)
4  fil (m,/k1 ), (54)

k pe

where we have included only the Cherenkov (wk = k1l v ) emission term since

(with ki. << 1) it is larger than the emission at the gyroresonances. This,

i.e. eq. (53) description does not have any divergences in a finite system. In

an infinite system E would diverge as marginal stability is approached from the

stable side, since the absorption vanishes.
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IV. THE SOLUTION OF THE KINETIC EQUATIONS

In general, our procedure is to develop an expansion for each region of

the particle kinetic equation and then match these together asymptotically.

If the detailed solution within the boundary layers (Regions VI and VIII) is

not needed, they can be replaced by jump conditions on the derivatives of

f and this substantially simplifies the matching procedure. In this way, we

obtain f in terms of known quantities and theunknown friction coefficient, F,

for the w cose modes. The last step is to calculate F, making the solution

self-consistent.

When the w modes are stabilized by collisional damping, as we assume

here, the expansion can be formally cast in terms of the small parameter

E/E (since D is a complicated function of E/E ) - just as in the classical0r

runaway theory . While it is tempting to do this, generality is lost

in the process and such a calculation could not be readily modified to include

alternative saturation mechanisms. We prefer instead to keep the expansion

parameter implicit, carrying out the solution to lowest non-trivial order in

each region and then matching. Since the solution in the largest region, VII,

is nearly constant in p gand expandable in series form, on does not have the

problem of calculating large exponents. The meticulous accuracy required in

the classical runaway problem is not needed here.

The point of departure from the classical solution is in region IV very

close to R1 and the region labeled V by Kruskal and Bernstein is eliminated.

Furthermore, we treat region IV, a boundary layer, different from Kruskal and

Bernstein. This is an important point which, however, belongs with the classi-

cal solution. We discuss it here only to the extent required to match the

tail and classical solutions together. The runaway rate is adequately deter-

mined by the distribution function at the end of region III and not significantly

altered by this match.
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An outline of our procedure is as follows. The coefficient of the first

parallel derivative, eE - FC, vanishes at pR* For this reason, the second

parallel derivative, although small, must be retained, making the kinetic

equation elliptic in region IV. This means that boundary data is required

for a unique specification and hence the solutions in both region III and

region IV must be known. Specifically, the necessary conditions are

R'p( p-), f(p ,P-L), f(Pg ,) 0, af/ap- (pl ,0) = 0.

The function f(p , in the space where regions III and IV overlap is known from

the classical solution in III. But with f(p0,pl) unknown until the entire problem

is solved, the solution in IV will contain one undetermined constant (function of

p1 ). Classically, region IV extends to pl1 = pR (1+(E/Er) /3) , p0, we have thus

labeled pR p < p0 as V.

Region V terminates at p0 with the onset of the w modes and the appearance
0 pe

of the coefficient D0 . This occurs very close to pR, see eq.(43), in fact

1/3
P0 R (E/Er) R which indicates a negligible chlange in f from p to

Region VI,the boundary layer were D0 changes rapidly, is replaced here by

simple jump conditions. These are obtained by integration of the

kinetic eq, (29), across the layer from pl, p0  to p11  p0. This gives,

to an accuracy of order (p + p 0)/p <1

f(p f 0, (55)

( O 0 + 0 (55)

D D(p + + D (P) 3f(p+,P9/)"p D (p) 3f(p ,pj-/apll (56.)

where the effects of the n = -1 terms were neglected since they don't come

into play until pl > pl.

Application of eq (55) and (56) brings us to region VII. In region

VII the kinetic equation is again elliptic and hence we require, f(p ,pi),
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f(p2 ,pj), Df(p 1 ,0)/Dp1 = 0, f(p1 ,co) = 0, for a unique specification. Thus

before completing the solution in region VII,we have to determine f(p2,p )

which is, again, unknown until the entire solution is found.

The boundary layer,VIII, is also replaced by jump conditions,

f(p2 + (57)

D 11 (p +) af(p+,p9L/bIp1 = [D (p) + D11 (p;) f(p2,93 1  (58)2 2 0 2 + 62 (58)0/DPII

which connect into region IX. The kinetic equation, for pu > p2, is parabolic

(only the n = -1 quasilinear terms) so the appropriate boundary conditions are

f(p2,p). This changeover to a parabolic equation permits the completion of

the solution, since the jump conditions'(56) andogoo) are now sufficient to

determine the functions f(p0 ,p1 ) and f(p p1 ).

We now turn to the evaluation of f region by region. We first give the

calculation formally for the whole distribution function and afterwards carry

out explicitly the determination of T1 (p1 ).

Region VII (p+ 11 i E2

The largest term in eq.(48,49)iisthe D0 (pi ) term. Seeking an expansion

for the distribution function in inverse powers of DO, then generates the

following sequence,

3/3p1  D0  3/apI, (0) 0 (59)

3/ap D 3/ap11 f l/ 3=/ -p_ p_ (D + p11 F) /np f(O) (60)0 1. c1- 2

where D V p 3y/p1 , F is defined in eq (38), and terms in (60)
C ei e

-2 2involving parallel derivatives, of order D or p p , have been discarded.

The boundary conditions to be used with eq (59) and (60) are
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S(0) + (p0 ,pJ) (61)

f() (p+,P) 0 (62)

(0) -

f (p2 P2 (63)

(P0 (64)

Integrating Eq. 39,60 we get

(0) P
(p 1,) = f(PP 1  ) f dp/D (p) (65)

(P I, p) dpT/D (P2){ - (pi) + eE dp"9f 0 )p

-LdO _L( 1+/ (66)

and

+ 2
8(P ) P-L p (0, )}/ dp /D O( (67)

g2 (p ) = { 2 dp'/D (p') [-eE dp" 9f "

+ J dp" i/p1_ 3/ 3pj_ pjDC + p':F) fio _3

p

l/ 2 dp/DO(p) (68)

The matching at p0 and p2 will be used to determine the unknown functions.

Region-IX (p2 <

To solve eq (50), we exploit the disparity of scales in p and p,

writing f in the factorized form

f(pn ,pf) - f I (pI )f (I P) (69)

where f,, is given by eq. (5) and f1 satisfies the normaliztion condition

27r 0f dpjpLf 1

Since p, << pl , the dominant term on the right hand side of equation (30) is

the perpendicular diffusion term. This creates a rapid spreading of f in the

perpendicular direction, but does not effect fl, , which is a slowly varying

function of pi, . The equation for f1 thus becomes
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eE 3fj3pI = 1 pli F 1/p 1  /Dpj pjL 3/ pJf (70)

In effect, eq-- (70) is the fast scale part of eq -(50). Application

of fdpp 1 to eq (50) annihilates the fast operator, leaving equation

(41) for the slow variations. Combining the solutions to equations (41) and

(70) gives the distribution function in region IX,

f(p11 ,p1) = El/2mT(p11 ) exp(-p /2mT(p )), (71)

T1 (p1 ) = T1 (p2) + f dp pF/meE (72)

2P

Region X (pli > PC

The self-consistent evaluation of fl, in this region is extremely awkward,

involving a determination of the pl, , p, and r dependences of f together with

F(r,p1 ); we do not have the benefit, as in the other regions, of a constant

fl, to lowest order. We therefore restrict the discussion to a qualitative

description of the cutoff.

To this end, we write equation (50) in the form

eE/p 11 Df/'p -1:1 ptF 2. (7

where . = 1/ g3/p - 1/p a/3p_ is a pitch angle scattering operator.

When F >eE, P<<pj , the leading order solution to (73>has f 0 so that

f is constant along the diffusion paths. With the boundary data given on

PII PC as f(p )= fc/27TmTj exp(-p j/2mT ) and the diffusion paths,

pj+ P2 = p + p2 , this gives, for p > PC

f(p1 ,p1 ) = rmTj exp( - p/2mT - (p - p )/2mTj ). (74)
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Integrating over p, results inz

fI (p ) fc exp(- (pi - pC)/2T )

demonstrating a rapid exponential decay.

Calculation of T,(p! ), for ? < 011< Pr

Since f is approximately Gaussian in the perpendicular direction, we use

the form f = f /27rmT exp (-pi/2mT_) so that, by taking moments in the

preceding formalism, the problem reduces to a series of ordinary differential

equations for Tf(p i )-

The jump condition at p2 , region VIII results by

taking the perpendicular energy moment of equation (38), giving

D3-'pT I,; + 2mF/p 3/3p Ti ) 2. mF/pI 3/aPg Tf 11 )+ (75)

Using the continuity of fl, and T_, which follows from eq. (37), and the fl,

equation (, ), this becomes



(D0 + 4mF/p 1 T ) T /3p = 4m.F/ p T 3T/3p (76)

which is the desired jump condition on the derivatives of T .

Using Eq. 72 for GT /,p and Eq. 65, 66 for T/2 after some aebra,

we find

p2

T (p2) =2T (pt) [1 + 4F /eE dp/77

We should now use the jump condition at p0 to determine T (p ), but because our
0 -J

Region V is so small, we shall assume that T (D ) T (pR) with negligibly small

erro-r. Using the value of DO( ) in Eq. 44, we find

T1(p 2 ) Tj(PR) (2 + (F/eE)a n'nT Nei/ pe pe/2 (p2 -P)/P0

x 0 e 2 e p e /mc) 2 1 (78)

Using B = 4ak n= 4 x 10 13, E 0.01 volts/cm, T 0.8 key, we find that

the two terms are of equal order,

T1 (p2) T±(PR) (I + 2.4/(1 + V5 )2(79)

where we used eq (") for Ti(pR) . The heating as is expected is quite

small in region VI- (see L 7).
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Evaluation of the Cutoff Momentum, pC

We require the spectral energy density of the w cosO modes. Since
pe

fl = fc in the region of interest, pR < p <Pc, this can be obtained

by a direct integration of eq. (53). We carry this out asymptotically

for large growth factor, Xk << 1, (see eq (25 ), which is the

appropriate limit for finding the cutoff.

We thus consider a cylinder of radius a (Fig 8) and look for the

Green's function solution to

2w.) G(r,r') = 6(r - r') (80)

where r, r' are the coordinates of the obsrevation and source points respec-

tively. The only waves which contribute to the spectral energy density at r

are those which when emmitted at r' propogate through the observation point

at r. That means we can transform into a coordinate system where one of the

axes is parallel to the line joining (r, r') and the other coordinate is

orthogonal to it (see fig. 8), hence eq. (80) can be written

(v a/xa -
2w.) G(x, x') (X - x )3 (x - xl ) (81)

Now decomposing G into G(x,x') = g(x1 ) 6(x - x ) and substituting this into

eq; (81), integrating over x and solving for the simple one dimensional

Green's function, we get

G(x,x', v, ) = 1/v exp p(x,x') H(x - x, )6(x - x' ) (82)
gj g.

where p(x,x') = 2w /v f ds is the distance between (x, x') and H, 6

x
denote the usual Heaviside unit step and Dirac delta functions respectively.

The spectral energy density is then obtained from
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ek = f d2  Pk(x')G(x, x', v )
kk - j

(83)

Since we are treating a homogeneous plasma, the emission function is inde-

pendent of the spacial location, The integral in, (8!3) is just an integral

over the Green's function. To evaluate this, we transform into a polar

coordinate system where e, e', $ denote the angles of the observation point,

source point and the group velocity (Fig, 3). In that case

we have

and xi = r'sin($ - 8")

x1 rcos6, x1 = r'cos( - 0'), x = rsine,

In addition, using the law of cosines, we have

1/2
p(x,x') = 2w./V. (r2 + r'2 . 2rr'cose')

27 2T a 2 T
d = Pk 0fd-fr'dr' f de e H(rcos6

(84)

- rl cos($ - G )

x d(rsine - r'sin($ - e') (85)

Performing the 0' integral first,

k, = g
EkL~ I I k g f 2ir dq 0 r'dr' ep/r'cos(q - 0')

Ie e0

where 80 is the solution to the sin(p - e;) = rsine/r'. Note that the integral

in &86). is maximized with O'7r which requires that $ =0. The maximum con-

tribution to the spectral energy density comes from the waves which propogate

through the axis of the plasma as shown by the dashed conic region in Tig 8.

f
0

(86)
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To do the asymptotic evaluation, we solve sin($ - e0) = r/r sin$ near

60 ~ r and $ =0. We define 80 = r + 6 and find that $ ~ 6/(1 + r/r').

Substituting this into eq (.86:), retaining the dominant terms for

62 << 1, and extending the integration limits on 6 gives

a C

k,k k/v f dr'r' f d6 (1/(r+r')) exp[2w /v (r+r')

x (1 - 62rr13/(r+r')4)] (87)
2

The remaining integrals can be carried out asymptotically with the dominant

contribution in the r' integral coming from r' = a. This yields (for r # 0),

E : P /2w, r(a+r)/rX exp(2X (r+a)/r) (88)

where Ak is given by equation (25), with L = r.

The friction coefficient can now be evaluated with eq. (83), the

integral again being susceptible to asymptotic methods on account of the

exponent. We find that the integrand maximizes at the minimum allowable

k1 , which here is set by the condition that Landau damping be absent,

kL - m p /p . This puts the phase velocity of the dominant modes at the

runaway point. We find

F~ 1 ~ , ) ij * 2 ez 2 (n /nT X~ (pyp )3) 3/2 (Q / 5

F (p l, r) = l/r2 e (nn : (Rp e pe)

x exp (rn T/n (w/ )2 r/A Ypii/pR (89)

where A = v /w- is the Debye length.
e e pe

The equation for the cutoff, equation (46), using equation ( ) for Ti_

becomes

eE = F + F /eE = (1 + 75-)F/,2 (90)



Remarkably, the ratio of the electric force to the dynamic friction

at the cutoff is given by the golden mean! Although this equation is trans-

cendental the unknown appears in a large exponent, and the desired root can

be found approximately to a very high accuracy. The details are given in

Appendix in the relativistic limit, y: p /mc, which is the most useful

one in practice. 2 n22 +
-. -I l~!:(1 + I n (91)

2p
'.Jere eX O

- [3/(/n - 3)] in. (In rf/('n 27 :)3., - E(l(n 27 e )3, and E- (23/2/m -+

5 1 2Xp,Jp,)f2(1,2a,)(eE/(e2 /N 2)[(/rXn/nXmC/p,)
3/

The nonrelativistic limit y+1 is obtained by deleting the ic/p term in ,

9/2
(91) replacing 27 by (9/2) and replacing 3/2 in the last term of by

3. Note that in eq- (91), p 'I h/r. This radial dependence of the
c

cutoff momentum arises because of the convective nature of the instability.

To see this, refer to fig. 3 and recall that p t mE2 /k . Consider a fixed
e

0
radius r0 and suppose that at some wave number kH (momentum p7), the distribution

function has cut off..

(For a slightly smaller k11 , there are no particles at the resonant momentum and

radius r0 so that the growth must start at a smaller radius r where f is not yet

cut off. In fact, solving eq (90) for r instead of pH , gives

the cutoff radius

rc _1 n e c 2 R (1+e)ln4

-_ ( +))-n( 9 2 )

e TrUT Wpe - Mc 1 + (Mc/p )

where

* - (3/2/(In r - 3/2)] In (in r/In 1.84), f - V{In 1.84) 3 /2, E- 2(2r)1/ 2 /(1 + 51/2)]

(T e /(_e 2  su 2)Xw for/2 (P 1p un ( cpnk) 3  and 1.84 _ (3/2 sn/2n

The net result for f l as a function of r and pl1 is shown in 7Fig



V. MOMENTUM SPACE FLOW PATHS

In order to better clarify the nature of the solution just obtained,

we compute the flow associated with the steady state distribution function.

This is effectively a transformation to a Lagrangian description from the

Eulerian one which was more convenient for the calculation of f. Note that

the steady state.kinetic equation can be written as the divergence of a

current (in momentum space) or, with angular symmetry

3X / P I, + 1/pjL 3/p P-jL Jj = 0, (93)

where J contains the collisional, n =0,-l quasilinear and electric field

fluxes or accelerations. Equation (93) is identically satisfied

J =x , with $p, $ , . The $ symmetry makes only one

component $ 4 necessary, so that

JL= - l 1  / DPj (P.JiP) , (94)

Jil = l/pjL D/ pfn (PP)* (95)

Taking J11 times eq (94) and subtracting J1 times eq (9_) gives

J II ~/ap t I (P) + JLa ~IP-L (P = 0 ('96)

a quasilinear partial differential equation , whose sdlution is given by

dp I /ds = J11, (97)

(98)
dp1 /ds J ,(98)

d/ds (pj4,) =0. (99)

The characteristics as given by eq (97) and%( 9 8) are the flow lines

we seek. Having obtained a solution with the Eulerian description, J1 and J1

are known, and the flow lines can be obtained by direct integration.



In regions VII, where the D term dominates in the parallel flow, we

have

dp I, /ds - D0 f/T 1 dT1 /dp_ (-l + P /2mT 1 ) (100)

dp1 /ds = v p y /p g p1/2mT 1 f. (101)
ei e

Thus for i perpendicular momentum, pj<2mT , the flow is toward higher

parallel momentum, while at higher perpendicular momentum the flow is reversed,

as shown in Fig 4 returning to the bulk. Since dpl, /dp_>> 1, the lines

are generally flat, nearly parallel to the pg axis.

In region IX, where the electric field and pitch angle scattering

from the w cose modes are dominant, the flow lines are

dp 11 /ds = eEf [1 - pL/2mTI F/eE (1 - F/eE) - (pl2mT1 FleE)
2] (102)

dpj/ds = p I p1 /2mT1 fF [ 1 - F/eE + F/eE p /2mT 1 ] (103)

These show generally the same behavior as in region VII. The difference here

is that for Pj ' 2mT-, dpi/dp1 >> 1 and the flow lines curve very rapidly

towards the vertical pL axis; most of the electrons turn around in this

region.
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APPENDIX A: The Quasilinear Friction Force

We discuss systems described by the Fokker-Planck equation, restricting

consideration to thermal and weakly turbulent situations. The standard form

of this equation6 is

- 3/3v 1/m F.f + 1 2/3V .
Si 2 1 j D. .f, (Al)

F ./m <Av ./At>,

In taking the

annihilates.

Equation

(A2)

D = <Av.Av./At>. (A3)
ii i j

momentum moment of eq. (Al), the second term on the right

The coefficient F is clearly interpretable as a force.

(Al) can also be written

3flt = - 3/av. 1/mF'f

where

F' = F - m/2 D. ./9v..
i i 12j 2

Now it happens for the special case

that the relation

F c/m 3/3v Dc

holds. Thus for thiscase

- /v 1/2m FCf
i i

+ 13/3v D . 3v f
2 i Jj i

of collisional Coulomb interactions,

+ /v 1 D. D /av. f,
i 2 ij 21

and excepting the factor of 1/2, the coefficients are the same whether one

where

(A4)

37

(A5)

(A6)
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uses eq. (A 1) or (A 4). The coefficent of the first term int(A 4),
C

38
F', is often referred to as the force of dynamical friction. This

terminology can be misleading since the second term iP,-(A4) also alters

the momentum, thus effecting a force. For example in Quasilinear therory,

FL = m/2 DQL/3v , so that F' = 0, and one would say that there are no1 ij Ji

friction forces in quasilinear theory. While this is certainly true

in the convention of eq. (A4) , it suggests an absence of forces, which is

not true. Clearly the waves can contain momentum and the extraction of it

from the particle will result in a force.

The coefficients (A 2) and (A 3) can be computed directly 39 for

an arbitrary (small) level of electric field fluctuations. The test

particle self-fields (which are not in general related to the ambient field

fluctuations) contribute to F. which can be written

F.(v) = eEs(v) + m/2 3D. /3v.. {A7)
i -- i ij j,

Therefore, -eEs = F', and it is the self-fields that are neglected in quasi-

linear theory. The force coefficient, eq. (A 7), is still non-zero in

general. In quasilinear theory, upon integrating over one of the coordinate

variables produces in certain situations a reduced equation which has the

form of eq. (A 4).
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APPENDIX B

(a) DIFFUSION PATHS USING CONSERVATION OF ENERGY AND MOMENTUM

We shall first use a simple physical argument to find when a resonant

particle is moved out of resonance by quasilinear scattering and thus pro-

vides a source of energy for the waves. 23  We define

nk = 1/8Tr2 3e / 3wr

as the density of waves in the neighborhood of wave number k. Then the

conservation of energy and parallel momentum between Ank waves having k

values between (k, k + Ak), resonating with N particles having velocities

between (v, v + Av) leads to,

mN (v j Av j, + v_1 AvjL + w rAn k ' 0 (BU)

mNAvj1 + k Ank = 0 (B2)

where k1l is determined by the wave particle resonance condition. The per-

pendicular momentum need not be conserved since the applied magnetic field

can absorb momentum. SolvingT 2) for Ank and substituting injBI) leads

to,

(vii - Wr/kI ) Avil + v1Av1  = 0 (B-3j

We study these diffusion paths for two specific resonances.

Consider first the Landau interaction at n = 0 which requires that

Wr = kli vi then we see that the diffusion paths are

= constant (B4vi
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That is, the particle is scattered along constant perpendicular energy paths.

The preferred direction being specified by the local slope in the distribution

function.

By combining the resonance condition for the n # 0 wave

action, wr - k1l vil -nO = 0, together with the definition of

velocity for the particular waves of interest, we can write

(B-3) in terms of v1i . This is easy to do in the case of

plasma waves, wr = w pek /k when k1 >> k j, and leads to,

particle inter-

the wave phase

Wr/kgl in eq.

magnetized

(V pe - /k) 2 + v2/2 = constant (B5)

These are circles centered at the wave phase velocity.

Once again the preferred direction will be given by the local slopes

in the distribution function (as seen by the diffusing particle).

A more satisfying way to derive these results would be to start from

the quasilinear kinetic equation and construct an H theorem. The kinetic

equation describing the quasilinear evolution of the resonant electron

23
distribution function is given by,

3f/3t = 87r2 e2/m 2 E fd3k E 6/k -' J (kv1 _/0) 6(wk-kl v - )
n

(B6)

a(n)
where C4) = k11 3/9v 1 + nS2/v1  a/9vj,J is the Bessel function, E2 is

the electric field energy density, and the delta function insures that

we onlypick out the resonant distribution function. Define H = fd v f lnf,
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then using;(B5)

dH/dt - 87r2 e2/mz E fd'v fdk E J2 (k v/Q)/k (W - klivil- n0)(-- (n)f)2/f (-7)

n

This implies that the marginally stable asymptotic states of f are given by the

zeroes of H. This occurs in two ways: if E vanishes (trivial case since there
k

are no waves present) or if

(n)f)2 =0 (B8)

with E2 # 0.
k

-ti(B8) is a simple first order partial differential equation it can be inte-

gratedi by the method of characteristics, giving

dv j/ds 1 (B9)

dv1 /ds = ng/vik (BlO)

df/dg = 0 (Bli)

In addition kil is specified by the delta function selection in eq.t 0)

Equation (Bll) implies that f is constant on the diffusion paths. Integrating

Eq. (B9-10) reproduces (B4-5). , Note that all of these analyses are based

upon the assumption that each of the gyroresonances can be treated without

any interferences from all the other gyroresonances. A wave at phase velocity

(Wr/k ) can suffer Landau growth (damping) at that phase velocity, gyroresonance

growth (n - -1) and gyroresonance damping (n - +1) and similarly for all the

other gyroresonances. In the case of the runaway electron tail, the distribution

is so anisotropic that the gyroresonance damping is negligible and Landau damping

is also negligible since the distribution function is flat. One final note,

when w « Q2, then the diffusion paths are virtually identical to constantr e

energy surfaces and there is very little free energy available to

drive the instabilities.
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(b) CONSERVATION THEOREMS IN QUASILINEAR THEORY

Finally, we briefly turn our attention to the separation of the distri-

bution function into resonant: (v ~w/k) and non resonant (v >> w/k) parts. and

the various conservation of energy and momentum theorems between the waves and

particles. We shall treat only the simple one dimensional model since the

results generalize quite easilty to the three dimensional case. The quasilinear

kinetic equations 0 in a one dimensional electric plasma are,

f(v,t )/9t = 3/3u D a/9u f(v,t) (B12)

3E /9t = 2 w E2  (B13)
k i k

D = 8T(e/m) 2 fdk E2/i(kv -w) (B14)

pe 1 - (W /k)
2  1/(v - Wr/k) f/9v - iTf(wpe /k) 3f/3v = 0 (B15)

v=w /k
r

where f(v,t) is the background distribution function, w is the growth rate,

E is the electrostatic electric field energy density, = 0 E = 0

characterizes the particular dispersion relation that we wish to study and gives

both the frequency of oscillation wr and the growth (damping) rate w .. We take

the principle part in the integral in eq. (B15) which is the same as integrating

only over the non resonant distribution function. It is well known that eq.

(Bil - B15) conserve particles, momentum and energy when the total distribution

function (resonant plus non resonant piece) is considered. Since it is somewhat

cumbersome to continuously treat the distribution function consisting of a

resonant and a non resonant piece, we shall instead consider a modified set of

kinetic equations,
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DfR(V,t)/9t = 3/9v D R f R(v,t)/3v (B16)

3E/9t = 2w Ck B17)

DR = 8r 2 (e/m) 2 fdk 1/v k/(a(W r )/Er ) 6[k - w /v (B18)
0 rr r r

k r r rk B9

where the R on the distribution function and diffusion coefficient signifies

that this is the resonant piece, and ek is the total wave energy density and

consists of the electric field energy density plus the kinetic energy of the

nonresonant particles, Cr is the real part of the plasma permittivity function

(B15). . The total wave energy density Ek is obtained froa

3/9t fE2 dk + /9t frLmv2f a 3/t fdk E2  (w e )/ w (B20)k k r r r

and using the kinetic equation for the non resonant (NR) distribution function

and electric field energy density. It is a simple matter to now show that the

kinetic equations inQ'(316) and(B19) conserve particles, momentum and

energy. In proving momentum conservation, the following result will be useful

a/Dt fnmvf = 2 fdk k E 2 WD /3W (B21)
ki r r

and in proving energy conservation it will be necessary to make use of

r r /3W r - r /k (w pe/k)2f Df/ v dv/(v - Wr /k)2  (B22)

W, - C (Wr ) /3E: (Wr )/aw r(B23)

i r r r re r

where Ei is the imaginary part of the plasma permittivity function int (B15)

The advantage of the above set of equations is that one no longer has to

solve for the nonresonant distribution function as long as the total wave energy

density is used in the diffusion coefficient. In addition, the waves now
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carry momentum, because the mechanical oscillation of the non resonant

electrons has been included in the description of the waves. The electro-

static field itself does not carry any momentum.
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APPENDIX . C

We outline a method of getting very accurate approximate solutions

to transcendental equations of the form,

A = eBx (Cl)

A,B are constants and Z can be any power. In the limit where Bx >> 1, we

look for solutions with x >> x0 where x0 is the point at which eq. (C-)

exhibits a minimum (x0 = Z/B). It is now convenient to define y = x/x0

look for solutions with y >> 1. Taking the logarithms of eq. '(C-1), we

obtain,

1 2. C2
y - lny -lnA(/B) = 0 (C2)

For y >> 1 this can be solved by iteration,

(0) 1 2,(3
y ( = lnA(Z/B) (C3)

y (1)= lny(0 ) (C4)

y (2 lny (C5)

(0) (1) (2) (n)where y >> y >> y , which is kept up until y > 1, where it must

be stopped. The remainder term then determines the error in the asymptotic

series. Since the sequence generated consists of compounded logarithms, the

terms decrease very rapidly. For our case of interest, the first two terms

suffice to produce

y = x/(Z/B) ln((A/B )(ln(A(,/B) ) ) (C6)

This is a good approximation for the exponential term of eq. (Cl) However it is

sbmetimes necessary to imprve upon:tle expansianin compounded logarithms.
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This is done by performinga Newton-Raphson iteration using eq.- (C6) as tCe

initial guess. This leads to

x = (1 + )xA (C7)

where xA is given in eq. A(c-6) and

£ = (Z/lnC - Z)ln(lnr/lnA(Z/B) ) (C8)

= (A/B ) [ln A(Z/B) ] (C9)
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Figure Captions

Fig. 1

The parallel distribution function fl, (p, ) 2wrfpdp f as a function of plu

The drift velocity of the bulk is indicated by p and the runaway momentum by

PR. The classical (collisional) distribution function is shown 
dashed for

p > PR. The positive slope due to the w modes is shown highly exaggerated
R pe

for pR _ P11 < The dynamic friction due to the w cose modes
R C* pe

becomes effective for P11 > p 2 p pe and cuts the distribution function

off at pC. The n = ±1 gyroresonance interactions are shown. The non-relativistic

picture can be obtained simply by letting y = 1.

Fig. 2

The plasma wave spectrum consists of w modes k11~0 and w cose modes k2> k1j.pe pe

The maximum k is limited by Landau damping (w/kil > vR). The X denotes the

position of the maximally unstable waves for a finite length tail (p11 < C

Fig. 3

The structure of the high energy tail in momentum and position space. The

distribution function is equal to the classical one in the shaded region and

is zero outside.

Fig. 4

Contours of the acceleration field stream function. The fact the lines close upon

themselves is indicative of a steady state. In the dashed region between po< Pju < p

the flow lines have not been computed exactly.

Fig. 5

The quasilinear diffusion paths for the n = 0 (Landau) resonance and the n = -l

gyroresonance. In the Landau case, the diffusion paths are p1 = constant while

in the gyroresonance case they are circles centered at the wave phase velocity.
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Fig. 6

The diffusion coefficient due to the absolutely unstable wpe modes. Region IV

of Kruskal-Bernstein extends approximately to pl, ru pR(1+(E/ER) 1/3) > p0 where

DO(P 0) = 0. Hence we have relabeled their region IV by our V, VI and part of

VIIa. Their region V is replaced by our regions VII - X. Regions VI, VIII

where D varies rapidly are replaced by jump conditions.

Fig. 7

The perpendicular temperature as a function of momentum in the various regions.

The heating in region VII is greatly exaggerated.

Fig. 8

Transformation of coordinates for the evaluation of the Green's Function from

(r,e) to coordinates centered on a line joining (r, r'). Waves propogating

through the conical region (shaded) produce the dominant contribution to the

fluctuation level at (r,e = 0). The plasma radius is denoted by a.
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