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Stimulus-dependent representational drift in
primary visual cortex
Tyler D. Marks 1 & Michael J. Goard 1,2,3✉

To produce consistent sensory perception, neurons must maintain stable representations of

sensory input. However, neurons in many regions exhibit progressive drift across days.

Longitudinal studies have found stable responses to artificial stimuli across sessions in visual

areas, but it is unclear whether this stability extends to naturalistic stimuli. We performed

chronic 2-photon imaging of mouse V1 populations to directly compare the representational

stability of artificial versus naturalistic visual stimuli over weeks. Responses to gratings were

highly stable across sessions. However, neural responses to naturalistic movies exhibited

progressive representational drift across sessions. Differential drift was present across cor-

tical layers, in inhibitory interneurons, and could not be explained by differential response

strength or higher order stimulus statistics. However, representational drift was accompanied

by similar differential changes in local population correlation structure. These results suggest

representational stability in V1 is stimulus-dependent and may relate to differences in pre-

existing circuit architecture of co-tuned neurons.
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O
ngoing experience-dependent and homeostatic synaptic
plasticity suggest that neocortical connectivity is in a
constant state of flux1,2. The potential for ongoing

synaptic modification enables animals to rapidly adapt to a
changing environment. However, in the face of ongoing plasticity,
the cortex must somehow create stable representations of the
external world and internal behavioral states in order to reliably
represent the external environment and produce behaviors
necessary for an animal’s survival. To investigate how the brain
handles the tradeoff between flexibility and long-term stability,
researchers have sought to perform longitudinal measurements of
the same neurons over long time periods to measure “repre-
sentational drift” in neuronal response properties3.

Many early chronic recording studies used extracellular
recordings to track neurons in the motor cortex and hippo-
campus. These regions serve as suitable targets due to their
relevance in producing stable representations for stereotyped
behavior, but the results have not been conclusive. Many studies
in motor cortices reveal highly stable motor representations4–6,
but others report unstable individual M1 neuron tuning proper-
ties underlying stable ensemble-level representations of highly
stereotyped motor actions7–10. It has often been difficult to draw
strong conclusions from electrophysiology experiments due to
low sample sizes, electrode drift, ambiguity in neuron identifi-
cation across sessions, and potential sampling biases. In parti-
cular, high spike rate neurons are likely oversampled in blind
electrophysiology recordings and may consequently give a biased
impression of stability across the population4,11,12. Two-photon
imaging has several advantages for chronic neural measurements.
First, it has granted us insight into the dynamics of subcellular
structures13, such as the finding that sensory experience accel-
erates dendritic spine instability underlying synaptic turnover in
sensory cortex14 (though see ref. 15). Second, in vivo 2-photon
calcium imaging enables the functional recording of large,
structurally identified populations of neurons16. Although multi-
photon imaging sacrifices temporal resolution afforded by precise
spike measurement, its high spatial resolution mitigates sampling
biases and reduces ambiguity in neuronal identification during
chronic measurements, allowing for longitudinal studies of large
neuronal populations11,17,18.

These developments have produced the opportunity to expand
the investigation of cortical stability to other brain areas over
longer time periods. Recent studies in the posterior parietal cortex
revealed that stable learned associations can be achieved by
neuronal populations in the presence of individual neurons
whose coding properties continuously drift19,20. However, studies
in the sensory cortex have frequently found more stable stimulus
representation in single neurons12,16,18,21–25. While single-neuron
representational drift has been theorized to play a role in learning
in areas like the motor cortex and hippocampus3,8,26–28, recent
evidence has also demonstrated its presence in odor-evoked
responses in the mouse olfactory cortex29. It is less clear what
purpose would be served by instability in early sensory areas,
where the circuitry is tasked with reliably representing external
sensory information on a single exposure. Even so, there is sub-
stantial trial-to-trial variability in single neurons30–35, even in the
early sensory cortex. The evidence of stable stimulus repre-
sentation in the face of this variability has led to the suggestion
that the functional connectivity of the sensory cortex may grant it
robustness to noise while maintaining the ability to undergo
experience-dependent plasticity17.

Almost all chronic recording studies examining stability in the
visual cortex have used simple parameterized stimuli, such as
oriented drifting gratings, as they present straightforward mea-
surements for determining the stability of individual neuron
response properties. These studies are largely in consensus,

finding a high degree of stability with respect to orientation
tuning, spatial frequency tuning, and size tuning18,22,36, although
responses to such stimuli may be susceptible to longitudinal
reduction as a result of repeated stimulus presentation37. Previous
work has characterized the existence of small subnetworks of
highly stimulus-responsive neurons coexisting against a backdrop
of relatively unresponsive neurons38,39, and a recent study reports
these highly active neurons to be particularly stable amidst con-
textual modulation factors40. Responses to grating stimuli are also
found to be stable following monocular deprivation25 and even
apical or basal dendritic ablation41. However, gratings are
designed to optimally stimulate the receptive fields of visual
cortical neurons and have simple visual statistics compared to an
animal’s natural visual input. In addition, orientation tuning is
widely believed to be “hardwired” early in development42–45, and
iso-oriented neurons exhibit high connectivity46,47 likely serving
to stabilize orientation responses through ongoing Hebbian
plasticity47,48. Ensembles of neurons driven by naturalistic stimuli
are not necessarily iso-tuned, and almost certainly exhibit lower
levels of intrinsic connectivity. As a result, there may be con-
siderably more representational drift in response to naturalistic
stimuli than to gratings, particularly over long time periods
(weeks to months)49.

Here, we perform chronic 2-photon calcium imaging of
thousands of neurons in the primary visual cortex (V1) of awake,
head-fixed mice viewing both oriented drifting grating stimuli as
well as repeated presentations of a continuous naturalistic movie.
We demonstrate stable orientation preference and high stability
of grating responses across sessions, consistent with previous
work. However, responses to repeated presentations of natur-
alistic movies exhibited progressive drift across sessions, involving
the gain and loss of individual response peaks over the course of
several weeks. The stimulus-dependent difference in response
stability was true even for neurons exhibiting selectivity to both
grating and natural movie stimuli. This representational drift was
seen across cortical layers and in both excitatory and inhibitory
cell types and could not be explained by response magnitude or
eye movements. Finally, we found that representational drift in
response to natural stimuli was accompanied by greater drift in
the correlation structure of the local neuronal population during
natural stimuli than for gratings. Taken together, these results
demonstrate that neurons can exhibit different levels of stability
to distinct encoded features.

Results
Visual cortical neurons exhibit representational drift in
response to natural stimuli. We performed chronic 2-photon
imaging to measure single-cell visual responses over many weeks
in the primary visual cortex (V1) of awake, head-fixed transgenic
mice expressing the calcium indicator GCaMP6s in excitatory
neurons (13 fields in 12 mice50–52). The mice passively viewed the
same visual stimuli on every session (Fig. 1a, b; see “Methods”),
starting with a repeated sequence of periodic oriented drifting
gratings (passive drifting grating (PDG)), followed by repeated
presentations of a 30 s continuous naturalistic movie (MOV).
Recordings were performed at 7 ± 1 day intervals for a total of
5–7 weeks. To ensure our selected imaging fields solely contained
V1 neurons, we used a widefield microscope to determine visual
area boundaries through established retinotopic mapping
procedures53–55 (Fig. 1b, “Methods”). Visual landmarks such as
blood vessels were used to identify and align the 2-photon ima-
ging field on a given recording session, and small differences in
the alignment of the horizontal plane were corrected in post-
processing using nonrigid image registration software9. Somatic
regions of interest (ROIs) were defined based on the average
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fluorescence maps and average pixelwise activity maps across
sessions (see “Methods”). To mitigate experimental artifacts
stemming from misalignments of the field in the z-direction
(depth) and to ensure unambiguous identification of individual
neurons across sessions, we manually inspected each defined ROI
across all sessions. We assigned each cell a quality rating
describing the neuron’s structural robustness and a presence
indicator on a session-by-session basis (Fig. 1c, Supplementary
Fig. 119). ROIs were considered for analysis only if they met a
sufficient quality threshold (quality index≧ 3; 4143 ROIs out of
5689) and if the neuron was present on all analyzed sessions.

To characterize a neuron’s responsiveness to a given visual
stimulus, we calculated its “reliability” on every session56, defined
by the Pearson correlation coefficient (CC) of the session-
averaged activity of two random halves of trials, iterated many
times, and averaged (see “Methods”). Reliability for both stimuli
followed a skewed distribution, with a higher number of neurons
responding reliably to the MOV stimulus (Fig. 1d). To determine
which neurons were visually responsive we tested the actual
reliability of the response to each stimulus against a null
distribution of reliability calculated with circularly shifted data
(“Methods”). We found that while the majority of neurons (68%
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of total) were visually responsive to the MOV stimulus and a
smaller proportion (29% of total) were responsive to PDG, an
even smaller subset (20% of total) were responsive to both stimuli,
which we called “dual responsive” (Fig. 1e). In addition, a
neuron’s response strength for one of the stimuli was uncorre-
lated with that of the other (Pearson correlation between neurons’
z-scored trial-averaged activity for both stimuli, r= 0.01,
p > 0.05).

Consistent with previous work characterizing the stability of
visual responses to gratings22,23,25,36,40, the PDG responsive
neurons we recorded exhibited highly stable orientation-tuned
responses (Fig. 1f, g, Supplementary Fig. 2). Orientation tuning
curves were strongly aligned across sessions for both single
neurons (Supplementary Fig. 2a, b) and for all tuned neurons
across all mice (Fig. 1g). Changes in orientation selectivity (OSI)
were minimal (4.4 ± 0.3% change from reference session on
average across all neurons present and tuned across all sessions)
and did not increase as a function of elapsed time (Supplementary
Fig. 2c). In the vast majority of cases (96% of neurons tuned on
the first session), shifts in orientation preference over 4–6 weeks
fell within ±1 orientation in the sequence of presentations
(Supplementary Fig. 2d).

Responses to the MOV stimulus, however, revealed striking
differences when compared to the PDG responses (Supplementary
Fig. 3, Supplementary Fig. 4a, b). Qualitatively, we found single
neuron responses to MOV to be volatile across sessions, observing
independent emergence and disappearance of individual response
peaks between sessions (Fig. 1f, Supplementary Fig. 3). In some
cases, this occurred suddenly or randomly between sessions, but in
many cases, such changes occurred gradually and continuously.
Note that the unstable responses to MOV were not found only in
neurons responding selectively to the MOV stimulus, but also in
the subset of neurons responsive to both stimuli, such as the
neuron in Fig. 1f, in which representational drift in MOV responses

could be directly contrasted with highly stable responses to the
PDG stimulus.

In contrast to measures of reliability occurring across trials
within a recording session, here we define “stability” as the
consistency of the average neuronal responses to the same visual
stimulus over many sessions. To quantify changes in single-
neuron response stability, we defined the “representational drift
index” (RDI) between two sessions as the difference between the
within-session between-trial correlation coefficient (CCWS) and
the between-session between-trial correlation coefficient (CCBS),
normalized by the sum of the two (Fig. 1h). Here, the CCWS

provides a baseline measurement of the robustness of a neuron’s
response and the CCBS provides a measurement of the robustness
of the signal across sessions. Note that the index will tend toward
0 for a neuron that is completely stable across sessions and tend
toward 1 for a neuron that is robust within a session, but not
across sessions. Such a correlation-based metric is necessary to
account for individual neurons exhibiting multiple response
peaks of varying degrees of amplitude during the time course of
the movie. Pooling data from all dual-responsive neurons across
all imaging fields (n= 824, 808, 793, 830, 761, 698 neurons from
13, 12, 12, 13, 11, 9 imaging fields for sessions 2–7 respectively),
we found that RDI values for MOV responses were on average
significantly greater than those for PDG on all sessions (p < 0.001
for sessions 2–6, p < 0.01 for session 7; linear mixed-effects model,
fixed effect for stimulus, random effect for mouse), and that the
representational drift was not random, but progressively
increased over sessions for most mice (Fig. 1i, Supplementary
Fig. 5a–c; PDG vs. MOV average RDI curve slopes, p < 0.05, two-
tailed paired-sample t-test). The RDI values were not significantly
different when including neurons responsive to single stimuli,
when compared to only dual-responsive neurons (comparing
single stimulus responsive to dual-responsive, p > 0.05 for all
weeks for both stimuli; linear mixed-effects model).

Fig. 1 Chronic 2-photon imaging reveals differential stability of visual responses in single cells. a Visual stimuli: top screen depicts a drifting grating of

one orientation as presented in the passive drifting grating (PDG) stimulus, bottom screen depicts a single frame from the natural movie (MOV) stimulus.

PDG is presented first as 8 repeats of a 12 orientation sequence, followed by 30 repeats of MOV. b Location of one example recording field in primary

visual cortex (V1). Left: widefield fluorescence image of a 4mm cortical window for one example Emx1-cre × ROSA-tTA × TITL-GCaMP6s mouse, with

overlay (light blue) of visual area boundaries determined by retinotopic mapping (see “Methods”); red box indicates the approximate location of 2-photon

recordings in V1; scale bar= 1 mm. Right: example average projection of a 2-photon imaging field; scale bar= 100 μm. Bottom: schematic of the head-fixed

mouse. c Example images of registered cells (see “Methods”) from the imaging field in (b) on all recording days. Top row, green: average projection of

GCaMP fluorescence channel. Bottom row, red: pixel-wise activity map (see “Methods”). Scale bar= 15 μm. d Top left: single-cell reliability distributions

for PDG and MOV stimuli on the first recording session for one example mouse. Reliability is defined as the Pearson correlation coefficient (CC) of trial-

averaged activity from two halves of the trials. Middle left: PDG reliability distribution; a subset of PDG responsive neurons is colored. Bottom left: MOV

reliability distribution; a subset of MOV responsive neurons is colored. Right: each neuron’s between-trial CC for PDG vs. MOV, for neurons present on the

reference session across all mice (n= 4142 neurons). Dots are colored by significant responsiveness to stimuli, as in (e). e Average percentage of neurons

significantly responsive to each stimulus (MOV only: 47.7 ± 2.1% sem, PDG only: 9.1 ± 0.9%, both: 20.4 ± 2.3%, none: 22.7 ± 2.2%). f Fluorescence traces

(ΔF/F) for one example neuron. Trials are concatenated across sessions. Left: responses to the PDG stimulus; overlay: orientation tuning curves for each

recording day. Right: responses to the MOV stimulus. White horizontal lines in each heatmap indicate divisions between recording sessions (8 trials

per session for PDG, 30 trials per session for MOV). Heatmaps for each stimulus are co-normalized. Below each heatmap are trial-averaged responses

colored by session. g Orientation tuning curves colored by session averaged across all orientation-tuned neurons in all imaging fields and aligned to 0°

based on preferred orientation. Neurons are only included if they are present on a given session and orientation tuned (740, 710, 694, 670, 701, 659, 596

neurons per session 1–7 respectively). h Top: representational drift index (RDI) curves for each stimulus for example neuron shown in (f); values closer to 0

indicates a more stable response (similar to the first recording session), and closer to 1 indicates greater response drift (see methods); inset: RDI formula:

CCWS=within-session correlation coefficient, CCBS= between-session correlation coefficient; dotted line indicates control RDI for this cell, determined

using half the trials of the session 1 as the reference and the other half as a test data set (see methods). i Average RDI curves across all imaging fields.

Values for each imaging field on a given session are calculated by averaging across neurons that are present on that session and visually responsive to both

stimuli. The dotted line indicates control RDI, as in (h). Error bars are ± sem. Significance markers indicate the comparison of average RDI between stimuli

for each session (n= 824, 808, 793, 830, 761, 698 neurons from 13, 12, 12, 13, 11, 9 imaging fields for sessions 2–7 respectively; F1,1648= 13.0,

p= 3.2 × 10−4, F1,1616= 53.0, p= 5.2 × 10−13, F1,1586= 23.9, p= 1.1 × 10−6, F1,1660= 12.9, p= 3.4 × 10−4, F1,1522= 19.9, p= 8.6 × 10−6, F1,1396= 8.0,

p= 4.8 × 10−3 for sessions 2–7 respectively; two-tailed F-test using a linear mixed-effects model, fixed effect for stimulus, random effect for mouse;

**p < 0.01, ***p < 0.001).
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Despite a robust difference in RDI between PDG and MOV
stimuli on average, we observed some variability between mice.
While most clearly exhibited a difference in stability between the
stimuli, this difference was either small or not significant in a
subset of mice (Supplementary Fig. 5a, mice 5, 11, 12). In addition,
while some mice exhibited a progressive divergence between the
PDG and MOV RDI curves (mice 1, 3, 4, 6, 8, 9), others exhibited
higher baseline RDI levels for MOV stimuli (mice 2, 7, 10). The
reasons for these differences were unclear given that there were no
identifiable correlated differences between groups of mice. For
instance, we found no significant relationship between animal age
at the first imaging session and the final RDI values for either
stimulus (Supplementary Fig. 5d). Furthermore, the exclusion of
neurons via thorough a priori manual inspection eliminated any
artifacts that may have resulted from misalignment of neurons
across sessions in some mice and repeating our analysis using
different ROI quality thresholds yielded robust results (Supple-
mentary Fig. 1). One potential source of variability between mice
is that craniotomies for cranial window implants can cause
inflammation and microglial activation57, which may, in turn,
result in increased synaptic turnover in superficial layers58. It is
possible that exposure of the brain in the cranial window
preparation may be partially responsible for the differences
between mice we observe. Thin-skull preparations for transcranial
2-photon imaging have been shown to result in a relatively low
degree of induced synaptic plasticity15. To test whether the
surgical preparation contributed to the drift in MOV responses,
we performed the same chronic imaging experiments in mice
(n= 4) with a thin-skull preparation and found a similar level of
differential stability between the two stimuli (Supplementary
Fig. 6a, b; p < 0.001 for sessions 2, 5, 6, p < 0.01 for session 7,
p < 0.05 for session 4, linear mixed-effects model).

Differences in RDI between stimuli are not explained by sti-
mulus temporal structure. Another potential concern is the
difference in presentation structure between the two stimuli. Does
the continuous nature of the MOV stimulus, compared to the
more discrete presentation of gratings (presentations separated by
inter-stimulus intervals), lead to the resulting differences in RDI?
To explore this, we repeated the experiments in another group of
mice (n= 4) using stimuli with matched temporal structures. In
addition to the original PDG and MOV stimuli, we presented: (1)
the PDG stimulus with concatenated grating presentations and
no interstimulus gray screens (PDG continuous), meant to match
the temporal structure of the original MOV stimulus, and (2) the
MOV stimulus split into 12 presentation periods of 2 s each,
broken up by 4 s interstimulus gray screens (MOV discrete),
meant to match the structure of the original PDG stimulus
(Supplementary Fig. 7a, b). As in our previous results, RDI curves
were significantly different between PDG and MOV (Supple-
mentary Fig. 7c, p < 0.01 for session 2, p < 0.001 for sessions 3–7).
Significant differences were also found comparing both sets of
temporal-structure-matched stimuli: RDI values for MOV were
greater than those for PDG continuous (p < 0.001 for sessions 3,
5, 7, p < 0.01 for session 4, p < 0.05 for session 6, linear mixed-
effects model), and RDI values for MOV discrete were greater
than those for PDG (p < 0.01 for session 2, p < 0.001 for sessions
3–7; linear mixed-effects model). In addition, the two new stimuli
exhibited a similar degree of differential drift as was seen from the
original stimuli (Supplementary Fig. 7d, p < 0.05 for session 2,
p < 0.001 for sessions 3–7, linear-mixed effects model). Since
neither stimulus manipulation was sufficient to eliminate differ-
ences between the stimuli, these results indicate that the greater
degree of representational drift to MOV stimuli is not attributable
to the temporal structure of the stimulus.

Finally, in the context of perceptual learning, it has been
demonstrated that repeated presentation of grating stimuli can
induce gain changes in cortical responses over many days during
the performance of visual perception tasks37,59. Passive stimulus
viewing alone may be sufficient to induce perceptual learning and
incite changes for both gratings and natural stimuli37,60,61,
possibly with differences across stimuli. To address this, we ran
additional experiments in which mice (n= 3) were shown the
PDG and MOV stimuli on Day 0, and then again on Day 42
without either of the visual stimuli presented in the interim.
These experiments also produced representational drift (Supple-
mentary Fig. 8a), as well as differential RDI values between the
two stimuli as was seen in the original experiments (Supplemen-
tary Fig. 8b, p < 0.001, linear mixed-effects model). As a result,
perceptual learning is not sufficient to account for the observed
differences in representational drift.

Responses to natural movies exhibit greater drift independent
of the magnitude. One factor that could explain differential
stability on the level of single neurons is the wide diversity of
stimulus responsiveness that exists in sensory cortices38,39. A
recent study in mouse V1 found considerable differences in long-
term stability between strongly and weakly visually responsive
neurons40. In addition, it is possible that early accounts of stable
cortical neurons from electrophysiology data may be influenced
by the biased sampling of, particularly active neurons. We asked if
a similar relationship between visual responsiveness and stability
could be found in our data. On average, the neurons responsive to
both stimuli with the strongest session-average z-scored respon-
ses were more stable than those with the weakest (Fig. 2a, Sup-
plementary Fig. 9a). The difference was modest but statistically
significant for both stimuli (0.04 difference in median RDI
between the top and bottom quartiles for PDG, p < 0.01; 0.07
difference for MOV, p < 0.001; Wilcoxon rank-sum test). Lack of
striking, conclusive results from this analysis led us to ask if there
may be further differences related to responsiveness that are not
observable on the single-neuron level.

The sparse and episodic structure of V1 neuron responses to
naturalistic stimuli has been well-characterized62–64 and was
qualitatively visible in our response data (Supplementary Fig. 3).
Most, but not all, neurons responsive to MOV exhibited more
than one time-distinct response “event” across the course of the
30 s stimulus (Figs. 1f and 2b, Supplementary Fig. 3). We asked if
a relationship between response strength and stability was present
at the level of the individual visual response events within each
neuron. For both stimuli, we used ΔF/F data to define response
event periods based on the statistical significance of each frame’s
single-trial responses compared to single-trial average baseline
responses, performed separately for each session (see “Methods”).
PDG and MOV responses in dual-responsive neurons yielded, on
average, ~1.9 and ~2.4 events per neuron, respectively, with a
sizable subset of neurons responding to MOV with 3 or more
events (51.6% of dual-responsive neurons, 57.2% of MOV
responsive neurons, Fig. 2c). The event rate distribution for
PDG was skewed further towards 1–2 events per neuron,
reflecting selectivity towards only 1 or 2 grating orientations
and occasional weak responses to neighboring orientations
(Fig. 2c). Events were categorized as either growing, decaying,
or remaining static over time-based on a statistical comparison of
their single-trial z-score values on the first two sessions versus the
last two sessions. We found that on average across all imaging
fields, PDG responses exhibited a much higher proportion of
events that remained static between sessions than MOV
responses did (~73% vs. ~54% for PDG and MOV respectively,
p < 0.001, two-tailed paired-sample t-test). Of the remaining 46%
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of MOV events, ~65% were events that decayed and ~35% were
those that grew between sessions (Fig. 2d). Examining the
strongest event periods (events surrounding neurons’ peak
response times) revealed that while a plurality of these events
remained static over time, over half were classified as either
growing or decaying (Fig. 2e).

To compare an event’s magnitude and its stability more
directly, we defined an event’s instability based on the normalized
difference between its average “late” z-score and its average “early”
z-score (last two versus first two sessions, respectively, see
“Methods”). This revealed that for both stimuli, an event’s
stability increased as a function of its overall response strength
(Fig. 2f, Supplementary Fig. 9a). This trend occurred to a similar
extent for both stimuli, and event instability was greater on

average for MOV events than they were for PDG events regardless
of event magnitude (Fig. 2g). As a result, differences in stability
between the two stimuli cannot be explained by the presence of
higher magnitude events in PDG responses compared to MOV
responses. In addition, we wondered if we could link an event’s
stability to its redundancy across all neurons in its respective
population, as previous findings show stability in sparse popula-
tion activity12. Indeed, event stability seemed to decrease as a
function of redundancy across all other neurons in the population
(Supplementary Fig. 9b, comparing first and last quartiles,
p < 0.001 only for PDG, Wilcoxon rank-sum test). In line with
this, we found that event redundancy decreased significantly as a
function of event response magnitude for both stimuli (Supple-
mentary Fig. 9c, comparing first and last quartiles, p < 0.001 for
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both stimuli, Wilcoxon rank-sum test). This contravenes the
possibility that stronger events may be driven by visual features of
the movie with higher bottom-up salience and thus may be
represented by a greater fraction of neurons in the population.

Differential stability is not explained by the state of arousal.
We performed a number of control experiments to account for
external factors that could contribute to these results. A previous
study reported that despite stable orientation tuning across days,
pupil size was positively correlated with trial-to-trial variability36.
We used an infrared camera to track the pupils of a subset of mice
(n= 4) to determine whether the differential stability could be
related to differences in a mouse’s arousal state across sessions as
measured by pupil movement or pupil size65. We observed that
large eye movements were rare and most movements consisted of
brief deviations from an otherwise stable average position that
changed minimally between sessions (Supplementary Fig. 10a, b).
Pooling data across mice, changes in the amount of eye move-
ment relative to the reference session were similar between sti-
muli (Supplementary Fig. 10c; p > 0.05, two-tailed paired-sample
t-test). Comparing changes in eye movement over time to RDI
curves for individual mice revealed no clear relationship between
eye movement and stability for either stimulus (Supplementary
Fig. 10d), although pooled data showed that eye movements may
decrease over time slightly more for MOV (Supplementary
Fig. 10e). Changes in pupil size over time showed similar results.
First, we tested the effect of pupil size on visual response mag-
nitude, as has been demonstrated previously65,66. We compared
each trial’s average pupil size (relative to session-average pupil
size) to its response gain (Methods) and found a moderate cor-
relation for both stimuli (Supplementary Fig. 11a, b; MOV
Pearson r= 0.31, p < 0.001, PDG Pearson r= 0.41, p < 0.001).
Changes in pupil size (relative to reference session) were not
significantly different between stimuli (Supplementary Fig. 11c;
p > 0.05, two-tailed paired-sample t-test). For both individual
mice and averages across mice, we found no clear differences in
pupil change over time (Supplementary Fig. 11d, e), and indivi-
dual mice showed no clear relationship between change in pupil
size and representational drift over time (Supplementary
Fig. 11e). In summary, though there were minor changes in pupil
area across sessions, the corresponding fluctuations in mouse

arousal state are not sufficient to explain progressive increases in
RDI, nor the difference in RDI between MOV and PDG stimuli.

Next, we considered the possibility that any subtle shifts in a
neuron’s spatial receptive field across sessions would manifest
only in MOV responses and not PDG responses. While changes
in a neuron’s receptive field would likely capture different visual
information for the MOV stimulus, this might not be the case for
PDG due to its repeated spatial pattern. To account for this, we
showed a subset of mice (n= 4) a spatial receptive field mapping
stimulus (presented last on every session) to measure neurons’
preferred altitude and azimuth on a given session (“Methods”). In
all tested mice, changes in neurons’ preferred altitude and
azimuth were minimal (Supplementary Fig. 12a) and showed no
correlation with higher RDI (Supplementary Fig. 12b, c),
indicating that receptive field shifts did not influence our findings.

Representational drift is distributed across cortical layers and
cell types. Because the distinct layers of the visual cortex have
stereotyped inputs, outputs, and connectivity within and between
other layers67, we wondered if they might show differences in
their capacities for representational drift. As L4 is the primary
recipient of input from the lateral geniculate nucleus (LGN), we
hypothesized that it would be comprised of neurons with rela-
tively stable responses to the MOV stimulus compared to neurons
in L2/3 and L5, which receive more processed input68. However, a
recent study of natural movie responses in the mouse visual
cortex found higher stability of firing rate and stimulus tuning in
L2/3 and L5 neurons compared to L4 neurons over multiple
days49. To investigate differences between layers, we chronically
implanted a subset of mice (n= 4) with a custom glass micro
prism that granted optical access to nearly the full cortical
column69 (Fig. 3a, b), and allowed us to separate neurons by
cortical layer based on ROI density (Fig. 3c). Comparing average
RDI values within each layer revealed that the cortical layer did
not have a significant effect on the instability of individual neu-
rons (Fig. 3d, e; stimulus type p= 3.32 × 10−11, layer p= 0.12,
two-way ANOVA). This homogenous distribution of neurons
exhibiting representational drift suggests that the transformation
of presumably stable visual input to unstable neural responses
occurs either at or before the first stage of information processing
in the cortex and propagates as the signal continues.

Fig. 2 Characterization of dynamic response events underlying single-cell responses. a Single neuron RDI as a function of responsiveness (session-

average z-score of ΔF/F activity). Each colored dot is one neuron; black dots are 10th percentile binned means; black line is a linear fit of the binned data;

shaded area indicates 95th percent confidence interval of the linear fit. Neurons are z-scored using the entire recording on a given session. Data are shown

for all neurons responsive to both PDG and MOV (n= 736 neurons). b Response events from one example neuron. Top: ΔF/F responses, all trials across all

recording sessions. Bottom: Trial-averaged response. Shaded areas indicate identified events. Insets: z-score trajectories (smoothed using 30-point moving

average) across all trials for the three events in the example neuron. c Number of response events per neuron. Left: all PDG responsive neurons are shown

in gray, dual-responsive neurons shown in color. Right: all MOV responsive neurons shown in gray, dual-responsive neurons shown in color. d Proportions

of event types (growing, decaying, and static) in responses to both stimuli. Event type is determined by z-scoring an event waveform’s single-trial

responses and comparing the distributions of these values between the first two sessions (60 trials) and the last two sessions (60 trials; Wilcoxon rank-

sum test). Gray dots are individual fields. Bar data shown are mean proportions across all imaging fields ± sem (n= 13 imaging fields; growing events

t12=−2.6, p= 0.04; decaying events t12=−4.2, p= 0.001; static events t12= 4.8, p= 3.8 × 10−4; two-tailed paired-samples t-test; *p < 0.05, **p < 0.01,

***p < 0.001). e Visualization of MOV response event magnitude changes. Left: bands indicate event periods for each neuron, colored by event type.

Neurons are ordered by time of maximum trial-averaged response. Right: proportions of event types for neurons’ peak responses (diagonal of the left plot).

Data are shown for all dual-responsive neurons. f Event instability (normalized delta z-score) as a function of event magnitude (session-average event z-

score). Each colored dot is one event; black dots are 10th percentile binned means ± 95th percent confidence interval. Box plots are the first quartile of data

tested against the fourth quartile (n= 365 events per quartile for PDG, Z= 7.3; n= 441 events per quartile for MOV, Z= 3.4; ***p < 0.001, two-sided

Wilcoxon ranksum test). Data are shown for all dual-responsive neurons. Boxplots are centered on the median, boxes extend to first and third quartiles,

whiskers extend to 1.5 times the interquartile range or minima/maxima in the absence of outliers. g MOV events are less stable than PDG events

independent of event magnitude. Binned means (10th percentiles) using data from (f) for both stimuli shown together. Data from all events across both

stimuli were pooled to determine bin edges, events from each stimulus were then binned separately. Error bars represent the 95th percent confidence

interval, gray lines are linear fits of the data. Significance markers indicate comparison of PDG and MOV values in each bin (**p < 0.01 for first bin,

***p < 0.001 for all other bins; two-sided Wilcoxon rank-sum test).
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We next investigated if MOV representational drift varied by cell
type. Inhibitory interneurons exhibit broader and less selective
tuning than excitatory cells, believed to be due to promiscuous
sampling from local excitatory populations70, which may result in
comparatively stable visual responses. Inhibitory interneurons in
mouse motor cortex71 and zebra finch HVC72 (but see ref. 73) have
been shown to exhibit considerable long-term stability alongside
less stable single excitatory neurons in the context of a motor task.
To investigate this, we repeated our experiments in L2/3 of
transgenic mice expressing GCaMP6s in GAD2+ inhibitory
neurons (n= 4, Fig. 4a, b). Inhibitory neurons exhibited clear
visually-evoked responses, and as expected most neurons responsive
to PDG were relatively broadly tuned (Fig. 4c). As in our excitatory
population results, of all 232 well-tracked neurons, only a subset
(14 ± 5%) were visually responsive to both PDG andMOV (Fig. 4d).
We considered this subset of dual-responsive neurons as we did for
the excitatory populations. Similar to the between-session changes
observed in excitatory neurons, we observed the appearance and
disappearance of individual visual response events within neurons
across sessions (Fig. 4c). As for excitatory neurons, we found that

responses to MOV exhibited greater representational drift than
responses to PDG (Fig. 4e, f; p < 0.05 for sessions 4, 5, p < 0.01 for
session 6, p < 0.001 for session 7, linear mixed-effects model).
However, we found that the degree of drift may not be consistent
across inhibitory cell types, as inhibitory neurons sharply tuned for
orientation exhibited higher RDI than those broadly tuned for
orientation (Supplementary Fig. 13). These results indicate that
progressive drift of responses to naturalistic stimuli is present across
the entire cortical network.

Representational drift is accompanied by changes in popula-
tion correlation structure. To further investigate the under-
pinnings of the stimulus-dependent instability, we hypothesized
that the greater representational drift in the MOV responses
might be due to the higher-order image statistics of the stimulus.
We reasoned that the additional cortical processing required for
encoding more complex visual features might lead to more
variable representation compared to that of oriented gratings. To
test this, we performed parametric phase scrambling on the

Fig. 3 Translaminar imaging shows equal RDI distributions across layers. a Schematic of glass microprism placement in V1. The red dotted line depicts

the translaminar imaging plane, which is rotated 90° from the original horizontal plane and spans ~700 μm of the cortical column, capturing neurons in L2-

5 for a typical recording. b Example average fluorescence image from a chronic imaging session of a prism field. Colored boxes are zoomed-in example cells

(red: L2/3 pyramidal neuron, green: L4 stellate neuron, blue: L5 pyramidal neuron). Scale bar= 100μm. c Delineation of cortical layers. Left: ROI density of

binned pixel windows perpendicular to the cortical column axis (corresponds to right subfigure); layers are determined by finding peak density and

assigning a 140 μm window around it as L4, and then a further 150 μm from the L4 deep boundary as L5. Right: example field is shown in (b) with an

overlay of all ROIs colored by layer; dotted line is the translaminar axis. d Example field shown in (b, c) with an overlay of ROIs of all well-tracked neurons

responsive to MOV, colored according to MOV RDI. Dotted lines are layer boundaries. e Session-averaged RDI distributions by stimulus and layer, using all

dual-responsive neurons recorded in prism fields (n= 64 L2/3 neurons, 111 L4 neurons, 121 L5 neurons from 4 mice). No significant difference was found

between layers, a significant difference was found between stimuli (layer F2,588= 2.06, p= 0.12; stimulus F1,588= 45.7, p= 3.32 × 10−11; two-way

ANOVA). Dotted lines indicate control RDI (as in Fig. 1h, i) using all dual-responsive neurons. Boxplots are centered on the median, boxes extend to first

and third quartiles, whiskers extend to 1.5 times the interquartile range or minima/maxima in the absence of outliers.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25436-3

8 NATURE COMMUNICATIONS |         (2021) 12:5169 | https://doi.org/10.1038/s41467-021-25436-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


original MOV stimulus74, which randomized the phase structure
of the images in the movie while maintaining the amplitude
spectrum and lower-level image properties. To a subset of mice
(n= 2), we presented the PDG stimulus in addition to a stimulus
consisting of 3 versions of the MOV stimulus: 100% phase
scrambled, 50% phase scrambled, and 0% phase scrambled (the
original movie), presented for 20 repeats each in random trial

order (Fig. 5a). However, we observed no major differences
between the RDI curves for the three MOV stimuli (Fig. 5b),
indicating that the increased representational drift is not due
purely to higher-order image statistics.

Our earlier results indicate that what separates stable and
unstable visual responses in V1 is the identity of the visual input,
and it would be inaccurate to conclude that a neuron itself is

Fig. 4 Inhibitory neuron populations also exhibit representational drift to MOV stimuli. a Average fluorescence image from an example field of inhibitory

neurons in L2/3 of V1 of GAD2-Cre × TITL2-G6s mice. Scale bar= 100 μm. b Example images of well-tracked neurons (see “Methods”) from the field in

(a) on all recording days, green and red colors are the same as in Fig. 1c. Scale bar= 15 μm. c Fluorescence traces (ΔF/F) for one example neuron. Trials are

concatenated across sessions. Left: responses to PDG. Right: responses to MOV. White horizontal lines indicate divisions between recording sessions.

Heatmaps for each stimulus are co-normalized. Below each heatmap are trial-averaged responses colored by session. d Average percentage of neurons

responsive to each stimulus (MOV only: 59.4 ± 1.9% sem, PDG only: 0.6 ± 0.6%, both: 14.4 ± 5.7%, none: 25.6 ± 6.3%). e RDI curves for the example

neuron shown in (c); dotted line indicates control RDI for this cell (see “Methods”). f Average RDI curves from neurons across all imaging fields; error bars

are ± sem; data shown for dual-responsive neurons present on any given session (n= 33, 34, 34, 33, 33, 31 neurons from 4 fields for sessions 2–7

respectively); significance markers indicate the comparison of each session’s PDG RDI values and MOV RDI values (F1,64 = 0.6, p= 0.44, F1,66= 0.3,

p= 0.61, F1,66= 6.6, p = 0.01, F1,64= 5.6, p= 0.02, F1,64= 7.9, p= 0.007, F1,60= 15.1, p= 2.5 × 10−4 for sessions 2–7 respectively; two-tailed F-test using a

linear mixed-effects model, fixed effect for stimulus, random effect for mouse; *p < 0.05, **p < 0.01, ***p < 0.001). Dotted lines indicate control RDI as in

previous figures.
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intrinsically stable or unstable. This raises the possibility that the
stability in different conditions is a function of the particular
functional inputs. We investigated whether or not the observed
stimulus-dependent representational drift in single neurons could
be linked to stimulus-dependent changes in the correlation
structure of the local population, as even in the primary sensory
cortex neuronal responses are strongly influenced by local circuit
activity34,75–77. Subnetworks of neurons co-responsive to natur-
alistic stimulus features may have less pre-existing connectivity
compared to subnetworks co-tuned to specific orientations of the
PDG stimulus, which have been found to exhibit high
interconnectivity47,48,78. Does the MOV population correlation
structure change across weeks while the PDG correlation
structure remains consistent? To answer this, on every session
for both stimuli we calculated pairwise between-neuron signal
correlations (SC), which capture shared responses to stimulus-
driven input, and noise correlations (NC), which capture shared
trial-to-trial variability (see “Methods”). Visualizing SC structure
on the final recording session (Dfinal) versus the reference session
(D0) for individual mice showed larger differences for MOV than
for PDG (Fig. 6a), and absolute changes in mean SC across
neurons were greater on average for MOV than for PDG in 12
out of 13 fields (Fig. 6b, c). Consistent with another study
investigating cross-session changes in grating stimulus correlation
structure35, both the MOV and PDG SC structures became
gradually less similar to D0 over time, as measured by the Pearson
correlation between each matrix and the D0 matrix (Fig. 6d).
However, the MOV correlation structure exhibited greater
divergence as a function of time since D0 (Fig. 6d, comparing
curves between stimuli, p < 0.05 for session 2, p < 0.01 for session
6, p < 0.001 for sessions 3, 4, 5, 7, two-tailed paired-sample t-test).
Note that changing SC structure does not necessarily result from
single-cell representational drift, as large, coordinated shifts in
activity among groups of neurons (e.g., arousal-related gain
changes) would result in representational drift without influen-
cing SCs among those neurons. Repeating these analyses for noise

correlations revealed a weaker effect than that of SC, though the
trend was in the same direction (Supplementary Fig. 14), possibly
due to relatively low levels of noise correlations in our data.
Previous studies indicate that NC measurements can vary
significantly and may be affected by a variety of factors, such as
spike rates and behavioral state75,79. For this reason, we cannot
conclusively determine whether drift is present in NCs as well. In
summary, the differential stability of responses to PDG and MOV
stimuli does not appear to be related to higher-order statistical
features in the MOV stimulus, but rather to the decreased
stability of the co-tuned neuronal ensembles driven by each
stimulus.

Discussion
Here we investigated the extent to which representational drift
exists in populations of individual neurons through a comparison
of neural responses to artificial (PDG) and naturalistic (MOV)
visual stimuli in the primary visual cortex of awake mice over
many weeks. We found that neurons exhibited highly consistent
orientation tuned responses to the grating stimulus overall
recording sessions (Fig. 1, Supplementary Fig. 2), consistent
with the previous work18,22,36,40. However, many of the same
neurons displayed less stable representations of the natural movie
stimulus (Figs. 1–2, Supplementary Figs. 3–5). Contrary to our
hypothesis that geniculate inputs to L4 may grant it more
consistent stimulus representation, translaminar imaging revealed
that this differential stability existed not only in L2/3 and L5 but
also in L4 (Fig. 3). Repeating our experiments in populations of
inhibitory interneurons yielded a similar difference in stability
between the two stimuli (Fig. 4). Importantly, the observed drift
could not be explained by external factors such as eye movement,
arousal, or surgical preparation (Supplementary Figs. 6, 10, and
11). In addition, the higher-order image statistics of natural sti-
muli were not found to contribute to the differential drift between
stimuli (Fig. 5). Finally, we found that the drift observed in MOV
responses was accompanied by changes in the population

Fig. 5 Stability is not dependent on the higher-order statistics of the visual stimulus. a Visual stimuli, where the original 30 repeats of MOV is replaced

with 20 repeats each of 0%, 50, and 100% phase-scrambled versions of the original movie, randomly interleaved. Bottom screens depict the same freeze-

frame from each of the movie versions. b Average RDI curves from all imaging fields; error bars are ± sem; values are calculated using only neurons that are

present on any given session (n= 120, 118, 118, 119, 113, 111 neurons from 3 fields for sessions 2–7 respectively). Average PDG RDI is significantly different

from average MOV RDI for all three movie versions (0% scramble F1,380= 10.7, p= 0.001, F1,368= 6.6, p= 0.01, F1,378= 40.2, p= 6.6 × 10−10, F1,374= 4.9,

p= 0.03, F1,362= 8.1, p= 0.005, F1,344= 4.9, p= 0.03 for sessions 2–7 respectively; 50% scramble F1,380= 52.7, p= 2.2 × 10−12, F1,368= 7.4, p= 0.007,

F1,378= 24.7, p= 1.0 × 10−6, F1,374= 4.2, p= 0.04, F1,362= 5.3, p= 0.02, F1,344= 2.9, p= 0.09 for sessions 2–7 respectively; 100% scramble F1,380= 26.8,

p= 3.6 × 10−7, F1,368= 9.4, p= 0.002, F1,378= 27.9, p= 2.1 × 10−7, F1,374= 5.9, p= 0.02, F1,362= 9.3, p= 0.002, F1,344= 6.5, p= 0.01 for sessions 2–7

respectively; two-tailed F-test using a linear mixed-effects model, fixed effect for stimulus, random effect for mouse; *p < 0.05, **p < 0.01, ***p < 0.001;

color of asterisk corresponds to MOV stimulus version compared to PDG). Dotted lines indicate control RDI, as in previous figures.
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correlation structure, potentially due to a lack of strongly con-
nected iso-tuned subnetworks that respond to grating stimuli
(Fig. 6).

From work that utilizes artificial stimuli such as gratings,
compelling evidence suggests that basic neuronal response
properties such as orientation tuning, spatial frequency tuning,
and size tuning are remarkably stable over time18,22,36. However,

another recent study reports that naturalistic stimulus responses
in the mouse visual cortex exhibit significant representational
drift49. By performing a direct comparison of artificial and nat-
uralistic visual stimulus-response in the same animals, our
experiments allowed us to reconcile this discrepancy by showing
that response stability is dependent on stimulus, and not simply
an intrinsic property of a given neuron.
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Further characterization of the representational drift observed
in MOV responses revealed two important results. First, we
showed that differential stability between stimuli existed not only
at the single-neuron level but also at the scale of individual
response events, wherein response events during the MOV sti-
mulus were more likely to experience bidirectional amplitude
changes across sessions than those that occurred during the PDG
stimulus (Fig. 2d, e). Second, consistent with previous work
demonstrating a relationship between response strength and
stability40, we found such a correlation to be evident on the level
of individual events (Fig. 2f, g, Supplementary Fig. 9a). These
results indicate representational drift may operate at the level of
specific functional inputs, rather than at the level of single neu-
rons. Deitch et al. found similar single neuron representational
drift that appeared to be dominated by changes in firing rate
rather than changes in stimulus tuning49. However, our results
indicate that these two properties are interconnected in that
changes in firing rate can manifest as changes in tuning over long
time scales. We also noted an inverse relationship between event
response strength and event redundancy, wherein the strongest
events are not only the most stable but also the least redundant
across other neurons in the recorded population (Supplementary
Fig. 9b, c). Neurons that primarily respond with strong, stable
events that are relatively sparsely represented across the popula-
tion may constitute a response class previously characterized as
“soloists”, and those that primarily respond with weak, redundant
events may represent “choristers” more strongly coupled to the
local population80,81. This is consistent with the developing
characterization of sensory cortices as being dominated by sub-
networks of particularly stable and robustly responding neurons
against a background of weakly responsive neurons25,38,39,79.

One question still outstanding is the extent to which repre-
sentational drift is present throughout the visual hierarchy. Pre-
sumably, repeated visual input is encoded in a consistent fashion
within the retina and the earliest stages of the visual pathway.
Based on the results that unstable responses arise as early as layer
4 of V1, one hypothesis might be that the primary visual cortex as
a whole represents a relatively intermediate processing stage in
which single neurons are permitted greater coding flexibility and
that LGN, which receives input directly from the retina, exhibits
greater stability. However, given recent results showing that
retinogeniculate and retinocollicular boutons are modulated by
arousal82,83, representational drift might begin even earlier.
Future studies using glass microprisms or GRIN lenses to allow
chronic optical access to LGN83 will allow elucidation of these
possibilities. Finally, it remains to be seen whether stimulus
representations stabilize as signals propagate to higher visual
areas, or if the capacity for drift is preserved across the entire
visual pathway. To answer this, another future direction would be
to perform similar longitudinal imaging in higher visual areas
concurrently with recordings from V1 in the same animals.

Representational drift appears in varying degrees across dif-
ferent brain structures, and most prevalently outside of the

sensory cortex. In motor and parietal cortices, evidence suggests
that population-level activity patterns remain intact, even as the
underlying neurons representing task or motor information
experience significant drift7,8,19,20,72, although see4,6. Several
studies have identified strong representational drift in hippo-
campal place cells that exhibit dynamic cognitive maps of the
environment27,28,84,85, though results vary across hippocampal
subregions86. One possible interpretation is that the opportunity
for representational drift increases with distance from the sensory
input, given that studies in sensory cortices have largely found
relatively stable tuning properties. In addition, in association
areas, the capability of single-neuron representations to drift
could play a role in providing flexibility for coding learned
associations19. However, our data show that this hypothesis may
be overly simplistic, as stability appears to be not only a property
of the individual neurons or brain region but also a function of
encoded information. As we show in V1, the same neuron can
simultaneously exhibit stable tuning properties and more malle-
able responses to naturalistic stimuli. It remains to be seen if this
holds true for other sensory, motor, and association regions as
well. Although representational drift will reduce the ability of
individual neurons to faithfully encode natural stimuli, there may
be compensatory mechanisms for maintaining a stable readout of
population activity in the face of ongoing drift20,36,87.

How would stable tuning properties be maintained in the
presence of representational drift? One possibility is that since
subnetworks of neurons iso-tuned for orientation exhibit high
connectivity (likely established early in development)47,48,78,
fundamental tuning properties would be stabilized throughout
the lifetime of the neurons. However, subnetworks of neurons co-
responsive to particular time points in a natural stimulus would
not necessarily belong to highly connected subnetworks.
Although two neurons responding to the same natural stimulus
feature might be connected at greater levels than chance78, they
are not necessarily reciprocally connected with other co-
responsive neurons in local subnetworks (in the manner of
neurons co-tuned for orientation), since there are numerous
spatial and temporal features present during each time point of a
natural stimulus. For example, if two neurons respond during the
same frame of a movie, one neuron might be responding to the
spatial frequency of the stimulus while another might be
responding to a particular temporal pattern, and these neurons
would not necessarily belong to a highly connected subnetwork.
This stimulus-dependent difference in reciprocal connectivity is
illustrated in Fig. 6e (note that responses to MOV are represented
as single response peaks for simplicity). Although we cannot
dismiss the possible long-term influence of top-down inputs to
V1, this lesser constraint imposed by local connectivity in the case
of natural stimuli could contribute to the differential shifts in
correlation structure we observed between the two stimuli and the
resulting differences in representational drift. Taken together, we
propose that co-tuned subnetworks of neurons can preserve
fundamental tuning properties while allowing for more flexible

Fig. 6 Between-neuron signal correlation stability is stimulus-dependent. a Pairwise signal correlations on session 1 (left), final session (middle), and

their difference (right) for one example field. Neurons are sorted by the time of peak response on D0 for each stimulus. Data are shown for all neurons

responsive to both stimuli. b Distributions of the single-neuron average change in signal correlations between first and final sessions for example field in A.

Dotted lines are means for each stimulus (n= 66 neurons, Z= 2.3, p= 0.02, two-sided Wilcoxon rank-sum test; *p < 0.05). c Field-average changes in

signal correlation between first and final sessions. Data shown for all fields. (n= 13 imaging fields; t12= 3.8, p= 0.003, two-tailed paired-sample t-test;

**p < 0.01). d Average instability of signal correlation matrices with respect to the first session over time (1−CCBS; where CCBS is the 2D cross-correlation

between signal correlation matrices). Data shown for all fields. Error bars are ± sem; significance markers indicate comparison of PDG and MOV values on

the given session (n= 13, 12, 12, 13, 11, 9 imaging fields for sessions 2–7 respectively; t12= 2.2, p= 0.04, t11= 5.8, p= 1.2 × 10−4, t11= 6.9, p= 2.4 × 10−5,

t12= 5.0, p= 3.1 × 10−4, t10= 4.5, p= 0.001, t8= 3.4, p= 0.009, for sessions 2–7 respectively, two-tailed paired-sample t-test; *p < 0.05, **p < 0.01,

***p < 0.001). e Schematic depicting the relationship between stimulus tuning stability and shifts in functional connectivity over time.
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responses to complex naturalistic stimuli. Such a governing
principle is potentially applicable to other cortical regions, where
highly interconnected neuronal subnetworks may preserve stable
encoding of fundamental input features while maintaining flex-
ibility in their responses to more complex inputs.

Methods
Animals. For cortex-wide calcium indicator expression, Emx1-IRES-Cre (Jax Stock
#005628) × ROSA-LNL-tTA (Jax Stock #011008) × TITL-GCaMP6s (Jax Stock
#024104) triple transgenic mice (n= 10) or Slc17a7-IRES2-Cre (Jax Stock
#023527) × TITL2-GC6s-ICL-TTA2 (Jax Stock #031562) double transgenic mice
(n= 2) were bred to express GCaMP6s in cortical excitatory neurons. For interneuron
activity measurements, we used GAD2-IRES-Cre (Jax Stock #028867) × TITL2-GC6s-
ICL-TTA2 (Jax Stock #031562) double transgenic mice (n= 4). For imaging experi-
ments, 12–30 week old mice of both sexes (5 males and 7 females for transgenic
excitatory populations, 2 males and 2 females for inhibitory populations) were
implanted with a head plate and cranial window and imaged starting 2 weeks after
recovery from surgical procedures and up to 10 months after window implantation. The
animals were housed on a 12 h light/dark cycle in cages of up to 5 animals before the
implants, and individually after the implants. All animal procedures were approved by
the Institutional Animal Care and Use Committee at the University of California, Santa
Barbara.

Surgical procedures. All surgeries were conducted under isoflurane anesthesia
(3.5% induction, 1.5–2.5% maintenance). Prior to incision, the scalp was infiltrated
with lidocaine (5 mg kg−1, subcutaneous) for analgesia, and meloxicam (2 mg kg−1,
subcutaneous) was administered preoperatively to reduce inflammation. Once
anesthetized, the scalp overlying the dorsal skull was sanitized and removed. The
periosteum was removed with a scalpel and the skull was abraded with a drill burr
to improve the adhesion of dental acrylic.

For standard cranial windows, a 4 mm craniotomy was made over the visual
cortex (centered at 4.0 mm posterior, 2.5 mm lateral to Bregma), leaving the dura
intact. A cranial window was implanted over the craniotomy and sealed first with
silicon elastomer (Kwik-Sil, World Precision Instruments) then with dental acrylic
(C&B-Metabond, Parkell) mixed with black ink to reduce light transmission. The
cranial windows were made of two rounded pieces of coverglass (Warner
Instruments) bonded with a UV-cured optical adhesive (Norland, NOA61). The
bottom coverglass (4 mm) fit tightly inside the craniotomy while the top coverglass
(5 mm) was bonded to the skull using dental acrylic.

For columnar imaging, we used custom-designed microprisms (Tower Optical)
that had a 200 μm square base and a 700 μm right-angle prism (design available on
our institutional lab website: https://goard.mcdb.ucsb.edu/resources). The
hypotenuse of the right-angle prism was coated with aluminum for internal
reflectance. The microprism was attached to a 5 mm diameter coverglass (Warner
Instruments) with a UV-cured optical adhesive (Norland, NOA61). Prior to
implantation, a 3–4 mm craniotomy was made over the primary visual cortex
(centered at 4.0 mm posterior, 2.5 mm lateral to Bregma). A 1 mm length medial-
to-lateral incision was then made through the dura and cortex to a depth of 1 mm
with a sterilized diamond micro knife (Fine Science Tools, #10100-30) mounted on
a manipulator, taking care to avoid blood vessels (~4.0 mm posterior, 2.5 mm
lateral to Bregma). Gelfoam (VWR) soaked in sterile saline was used to remove any
blood from the incision site. Once the incision site had no bleeding, the craniotomy
was submerged in cold sterile saline, and the micro prism was lowered into the
cortex using a manipulator, with the imaging face of the prism facing anterior. The
micro prisms assembly was completely lowered until the coverglass was flush with
the skull, then the edges of the window were sealed with silicon elastomer (Kwik-
Sil, World Precision Instruments), then with dental acrylic (C&B-Metabond,
Parkell) mixed with black ink. The micro prisms implant enabled imaging from
200 to 900 μm below the coverglass surface, corresponding to ~100–800 μm into
the cortex due to approximately 100 μm of dimpling near the top corner of the
prism. Cortical layers 2–5 were visible in all recordings, with partial visibility of
layer 1 and layer 6. The micro prisms implantations were stable for up to 6 months
following the surgery, similar to previously published results69.

For thinned-skull experiments, a 3–4 mm diameter patch of skull over V1 was
carefully thinned using a drill burr and then a rubber polishing bit until fully
translucent, being careful to keep the thinned skull wet with sterile saline. After the
thinning was complete, the saline was wicked away, a drop of cyanoacrylate
(Loctite 406) was placed on the thinned skull and a 3 mm coverglass (Warner) was
lowered using a manipulator until flush with the thinned skull. The implant was
then sealed with dental acrylic (C&B-Metabond, Parkell) mixed with black ink. The
thinned-skull window implantations were stable for up to six months following the
surgery, similar to previously published results88.

After cranial window implantation, a custom-designed stainless steel head plate
(eMachineShop.com) was affixed using dental acrylic (C&B-Metabond, Parkell)
mixed with black ink. After surgery, mice were administered carprofen
(5–10 mg kg−1, oral) every 24 h for 3 days to reduce inflammation. The full
specifications and designs for head plate and head fixation hardware are available
on our institutional lab website (https://goard.mcdb.ucsb.edu/resources).

Visual stimuli. All visual stimuli were generated with a Windows PC using
MATLAB and the Psychophysics toolbox89. Stimuli used for widefield visual sti-
mulation during retinotopic mapping were presented on an LCD monitor
(43 × 24 cm, 1600 × 900 pixels, 60 Hz refresh rate) positioned 10 cm from the eye at
a 30° angle to the right of the midline, spanning 130° (azimuth) by 100° (elevation)
of visual space. For chronic two-photon imaging experiments, visual stimuli were
presented on an LCD monitor (17.5 × 13 cm, 800 × 600 pixels, 60 Hz refresh rate)
positioned 6 cm from the eye at a 30° angle right of the midline, spanning 120°
(azimuth) by 100° (elevation) of visual space. Physical bars affixed to the table and
reference point distance measurements were used to ensure that the stimulus
monitor was fixed in the exact same location for each experiment.

Retinotopic mapping stimuli consisted of a drifting bar with a contrast reversing
checkboard (0.05 cycles degree−1 spatial frequency; 2 Hz temporal frequency) that
was spherically corrected to account for visual field distortions due to the proximity
of the monitor to the mouse’s eye. The stimulus was swept in the four cardinal
directions, repeated 20–60 times.

For PDG stimulation, 12 full-contrast sine-wave gratings (spatial frequency:
0.05 cycles/deg; temporal frequency: 2 Hz) were presented full-field, ranging from
0° to 330° from vertical in 30° increments. We presented 8 repeats of the drifting
grating stimulus; a single repeat of stimulus consisted of all 12 grating directions
presented in order for 2 s with a 4 s inter-stimulus interval (gray screen) to allow
calcium responses to return to baseline between presentations.

For natural movie visual stimulation, we displayed a grayscale 30 s clip from
Touch of Evil (Orson Wells, Universal Pictures, 1958) containing a continuous
visual scene with no cuts (https://observatory.brain-map.org/visualcoding/
stimulus/natural_movies). The clip was contrast-normalized and presented at
30 frames per second. We presented 30 repeats of the natural movie stimulus; each
repeat started with 5 s of the gray screen, followed by the 30 s of the movie. The
average illuminance of the movie clip is 4.2 lux, with a range of 3–9 lux.

For phase scrambled natural movie visual stimulation, the original 30 s natural
movie clip from Touch of Evil (Orson Wells, Universal Pictures, 1958) was separated
into phase and amplitude spectra using 2-D fast Fourier transform, and its phase
structure was randomly scrambled before being reconstructed with the original
amplitude data to form the new movie. For the 50% phase scrambled movie, only a
random half of the image’s phase elements were scrambled. We presented 20 repeats
for each of the original natural movie stimulus, the 50% phase scrambled movie, and
the 100% phase scrambled movie in random order on every session; each repeat
started with 5 s of the gray screen, followed by 30 s of one of the movies. Each
version was contrast-normalized and presented at 30 frames per second.

The receptive field mapping stimuli consisted of full-screen length vertical
(azimuth) or horizontal (altitude) bars (20° width) with contrast reversing
checkerboards (0.04 cycles degree−1 spatial frequency; 5 Hz temporal frequency).
These bars were presented for 1 s at a number of locations spanning the height
(altitude) and width (azimuth) of the screen in random order on every repeat (30
locations for altitude, 40 locations for azimuth) for a total of 10 repeats for each
direction, with a 2 s gray screen between repeats.

Eye tracking. To confirm that representational drift was not due to eye movements,
we performed eye tracking experiments on 4 mice. These mice were head-fixed
identically to imaging experiments, but an IR camera (Thorlabs DCC1645C with IR
filter removed; Computar T10Z0513CS 5–50mm f/1.3 lens) was placed such that the
image sensor was located immediately lateral to the stimulus monitor. The eye was
illuminated with an 850 nm infrared light source to visualize the pupil. Video was
acquired at 15 fps and images were analyzed offline in MATLAB (Mathworks).

The pupil was identified for each frame using an automated procedure. In brief,
raw images were binarized based on pixel brightness, and the resulting images were
morphologically cleaned by removing isolated pixels. For the initial frame, the
pupil was manually chosen. For subsequent frames, the pupil was chosen from
potential low intensity regions based on a linear combination of size, location, and
eccentricity of the pupil in the previous frame.

Widefield imaging. After >2 weeks of recovery from surgery, GCaMP6s fluores-
cence was imaged using a custom widefield epifluorescence microscope53. In brief,
broad spectrum (400–700 nm) LED illumination (Thorlabs, MNWHL4) was band-
passed at 469 nm (Thorlabs, MF469-35), and reflected through a dichroic (Thor-
labs, MD498) to the microscope objective (Olympus, MVPLAPO 2XC). Green
fluorescence from the imaging window passed through the dichroic and a bandpass
filter (Thorlabs, MF525-39) to a scientific CMOS (PCO-Tech, pco.edge 4.2).
Images were acquired at 400 × 400 pixels with a field of view of 4.0 × 4.0 mm,
leading to a pixel size of 0.01 mm pixel−1. A custom light blocker affixed to the
head plate was used to prevent light from the visual stimulus monitor from
entering the imaging path.

Widefield post-processing. Images were acquired with pco.edge camera control
software and saved into multi-page TIF files. All subsequent image processing was
performed in MATLAB (Mathworks). Visual field sign maps were derived and
segmented using established methods53. After processing, borders were drawn
around each patch, and resulting patches were compared against published sign
maps for both size and sign to label each patch as a visual area. Visual areas V1,
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LM, AL, PM, LI, RL, and AM were present in all mice. Area V1 was targeted for all
further recordings.

2-Photon imaging. After >2 weeks’ recovery from surgery, GCaMP6s fluorescence
was imaged using a Prairie Investigator 2-photon microscopy system with a resonant
galvo scanning module (Bruker). For fluorescence excitation, we used a Ti:Sapphire
laser (Mai-Tai eHP, Newport) with dispersion compensation (Deep See, Newport)
tuned to λ= 920 nm. Laser power ranged from 40 to 75mW at the sample depending
on GCaMP6s expression levels. Photobleaching was minimal (<1% min−1) for all
laser powers used. For collection, we used GaAsP photomultiplier tubes (Hama-
matsu). A custom stainless-steel light blocker (eMachineShop.com) was mounted to
the head plate and interlocked with a tube around the objective to prevent light from
the visual stimulus monitor from reaching the photomultiplier tubes. For imaging, we
acquired 760 × 760 pixel images at 10Hz using a 16×/0.8 NA microscope objective
(Nikon) at fields of view ranging from 690 × 690 μm (0.907 μm/pixel) to 414 × 414 μm
(0.544 μm/pixel). During imaging experiments, the polypropylene tube supporting the
mouse was suspended from the behavior platform with high tension springs (Small
Parts) to reduce movement artifacts.

For imaging across multiple weeks, imaging fields on a given recording session
were manually aligned based on visual inspection of the average map from the
reference session recording, guided by stable structural landmarks such as blood
vessels and neurons with high baseline fluorescence. Physical controls were used to
ensure precise placement of the head plate and the visual stimulus screen relative to
the animal, and data acquisition settings were kept consistent across sessions.
Recordings were taken once every 7 ± 1 days for 5–7 weeks. To acclimate to head
fixation and visual stimulus presentation, mice were head-fixed and presented the full
series of visual stimuli for 1–2 full sessions prior to the start of their experimental run.

2-Photon post-processing. Images were acquired using PrairieView acquisition
software and converted into TIF files. All subsequent analyses were performed in
MATLAB (Mathworks) using custom code (https://goard.mcdb.ucsb.edu/
resources). First, images were corrected for X-Y movement within each session by
registration to a reference image (the pixel-wise mean of all frames) using
2-dimensional cross-correlation. Next, to align recordings to the reference session,
we used semi-automated rigid registration, similar to prior work9,90. First, anchor
points were automatically generated from matching image features between aver-
age projections detected by the “Speeded-Up Robust Features” (SURF) algorithm
(Computer Vision Toolbox, Mathworks). The anchor points were manually cor-
rected through visual inspection, and additional anchor points were added when
necessary. These anchor points defined a predicted displacement vector field that
would be used to map coordinates from one session to the other. For each coor-
dinate, the predicted vector was defined by the average (weighted inversely by
distance) of the vectors for all defined anchor points. This vector field was then
applied to every frame of the recording to warp the coordinates of each image to
the reference coordinate plane.

To identify responsive neural somata, a pixel-wise activity map was calculated
using a modified kurtosis measure. Neuron cell bodies were identified using local
adaptive threshold and iterative segmentation, using average activity maps across
sessions. Individual pixels were filtered with a 3 × 3 pixel window before calculating
kurtosis to reduce outlier values. Automatically defined ROIs were then manually
checked for proper segmentation in a graphical user interface.

To ensure that the response of individual neurons was not due to local neuropil
contamination of somatic signals, a corrected fluorescence measure was estimated
according to:

FcorrectedðnÞ ¼ FsomaðnÞ � αðFneuropilðnÞ � �FneuropilÞ ð1Þ

where Fneuropil was defined as the fluorescence in the region <30 μm from the ROI
border (excluding other ROIs) for frame n. �Fneuropil is Fneuropil averaged over all

frames. α was chosen from [0 1] to minimize the Pearson’s correlation coefficient
between Fcorrected and Fneuropil. The ΔF/F for each neuron was then calculated as:

4F

F
¼

Fn � F0

F0

ð2Þ

Where Fn is the corrected fluorescence (Fcorrected) for frame n and F0 is defined as
the first mode of the corrected fluorescence density distribution across the entire
time series.

Analysis of 2-photon imaging data. To minimize potential artifacts introduced
by misalignments of the imaging fields across sessions, we manually inspected the
average projection and pixel-wise activity maps underlying every defined ROI
across all sessions. ROI quality scoring was based on the clarity of the cellular
structure in the average fluorescence and activity map (e.g., is the cell structure
visible in all weeks and clearly separated from nearby cells) and we included only
ROIs of sufficient quality in our analyses (threshold quality of 3 unless indicated
otherwise). Briefly, we defined ROI quality as follows: ROIs rated the quality of 4 or
5 were cells that were clearly present across sessions, and the cell structure could be
clearly resolved in both the average projection and activity map. ROIs rated the
quality of 3 were also cells unambiguously tracked across sessions but had average
maps that were often noisier than cells rated 4 or 5 (for example, they may be

identifiable solely by their appearance on the activity map). ROIs rated a quality of
2 were either cells that were not well-tracked or were not unequivocally neuronal
somata. ROIs rated the quality of 1 were cells that were not present on the reference
session. Each ROI was also marked as either present or not present on each session.
Although the activity map was not required to be constant across weeks since cells
can change their activity, we were particularly wary of correlated changes between
the average fluorescence and activity map that would suggest the movement of the
z-plane. This process was difficult to accomplish algorithmically, so we used sub-
jective assessments. However, in all cases, we defined ROIs using data spanning
both stimulus conditions to eliminate systematic bias.

Reliability on a given session was calculated as the Pearson correlation
coefficient (CC) between trial-averaged activity taken from two random halves of
trials. For MOV, the 30 trials were randomly subsampled to 8 to match PDG, a CC
value was found using this subsampled data, and then this was repeated 10 times
and averaged for a final reliability value.

A neuron’s responsiveness to a stimulus was determined based on a collective
measure of the reliability of the neurons in a given field using time-shuffled data.
First, a neuron’s activity on each trial was circularly shuffled by a random amount.
Next, a reliability value was calculated using this shuffled data. This was repeated
1000 times to yield a distribution of reliability values, and the 99th percentile of this
distribution was stored. This 99th percentile threshold was found for every neuron.
If a neuron’s actual average reliability across sessions was statistically greater than
the average of these 99th percentile values (two-tailed one-sample t-test), it was
classified as responsive to the stimulus. For the experiments in which mice were
imaged on only 2 recording sessions, if a neuron’s actual average reliability across
sessions was at least 3 standard deviations greater than the average of these 99th
percentile values, it was classified as responsive to the stimulus. For PDG, a
neuron’s OSI on a given session was calculated as:

OSI ¼
Rpref � Rorth

Rpref þ Rorth

ð3Þ

Where Rpref is the neuron’s average response to its preferred orientation, and Rorth

is the average response to the orthogonal orientations. To map the preferred
orientation for Fig. S2d, a neuron’s average orientation response vector was
wrapped (averaged between opposite orientations), linearly interpolated onto a
180° scale, and then fit with a gaussian curve to determine peak response.

The RDI with respect to a given session and the reference session was calculated
as:

RDI ¼
CCws � CCbs

CCws þ CCbs

ð4Þ

Where CCws is the Pearson correlation of the trial-averaged activity of two random
halves of trials within a session, and CCbs is the Pearson correlation of the trial-
averaged activity of two random halves of trials across the compared sessions. For
these calculations, negative CC values were rectified to zero. Control RDI values
were calculated by treating half of the trials on the first session as the “test session”
and the other half as the ‘reference session’.

Visual response events were identified using ΔF/F data and refined using
inferred spike rate data. For each neuron, each frame spanning the length of a
stimulus was evaluated for visual response significance by comparing the
distribution of its activity values across trials with the distribution of frame-
averaged gray-screen period baseline fluorescence values across trials (Wilcoxon
sign rank test, right-tailed). Frames were evaluated on a session-by-session basis: if
a frame was determined to be significantly responsive in this way on at least two
sessions, it was considered to be an event period frame. After each frame was
evaluated, the resulting events (periods of contiguous significant frames) were
cleaned up by discarding any events consisting of fewer than 5 frames (500 ms) and
combining any events 2 or fewer frames (200 ms) apart. Next, the second set of
event periods were defined independently using deconvolved spike rate data. A
peristimulus time histogram was calculated using spike rate data from all trials
across sessions, and frames above a threshold of 2 spikes/s were treated as event
periods. To avoid merging distinct response events due to fluorescence tails, the
original event periods determined using ΔF/F data were further refined using these
spike rate event periods such that detected ΔF/F events lasted no longer than 10
frames (1 s) past the end of the leading spike rate event period.

Event types were determined by z-scoring an event’s responses on every trial
against baseline activity and comparing the distributions of these z-score values
between the first two sessions (60 trials) and the last two sessions (60 trials) (two-
tailed Wilcoxon rank-sum test). Event instability, or normalized delta z-score, was
calculated as:

Norm: 4zScorej j ¼
jZlate � Zearly j

Zlate þ Zearly

ð5Þ

Where Zearly represents the average z-score of an event’s trial-averaged activity

on the first two sessions and Zlate represents the average z-score of an event’s trial-
averaged activity on the last two sessions. For boxplot comparisons in event
analyses, the first quartile of data was compared against the last quartile (Wilcoxon
rank-sum test).

To draw boundaries between cortical layers, layer 4 was identified by finding
peak ROI density along a user-defined translaminar axis of the window. A 140 μm
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window centered at this point was defined as the L2/3/L4 boundary and the L4/L5
boundary, and 150 μm deeper than the L4/L5 boundary was defined as the L5/L6
boundary91.

For comparing pupil size to visual responsiveness, a ΔF/F gain factor was
calculated for every trial. For each trial, a linear least-squares fit was performed
between each neuron’s activity for the trial and its trial-averaged activity for the
given session, and the alpha values produced by these fits were averaged across
neurons to yield the trial’s gain factor.

Pairwise signal correlations were calculated as the Pearson correlation
coefficient between two neurons’ trial-averaged activity on a given session. For
pairwise noise correlations, a neuron’s trial-average activity was first subtracted
from its activity on every trial. All frames were then concatenated into a continuous
signal, and the Pearson correlation coefficient was found between these full traces
(for MOV, only the first 5760 frames were used to match the length of the PDG
recording). Calculation of noise correlations using the average correlation of
response vectors across stimulus presentations produced similar results36.

Statistical information. To test the statistical significance of single groups com-
pared to a group of zero mean, one-sample t-tests (normally distributed data) or
Wilcoxon signed-rank (non-parametric) tests were performed. For comparing
experimental groups, two-sample paired t-tests were performed for paired groups,
and either unpaired t-tests (normally distributed data) or Wilcoxon rank-sum
(non-parametric) tests were performed for unpaired groups. Nested data were
compared using a linear mixed-effects model (fixed effect for stimulus, random
effect for mouse). Two-way ANOVA was performed for testing the effects of
multiple factors. All tests were performed two-tailed unless indicated otherwise.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The processed neuronal response data (Figs. 1–6) generated in this study have been

deposited in the Dryad database (https://doi.org/10.25349/D9M606). Source data are

provided with this paper.

Code availability
All of the code used for analysis are available on GitHub (https://github.com/ucsb-goard-

lab/Representational-Drift-Project).
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