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Abstract The spectrotemporal receptive field (STRF) pro-

vides a versatile and integrated, spectral and temporal, func-

tional characterization of single cells in primary auditory

cortex (AI). In this paper, we explore the origin of, and rela-

tionship between, different ways of measuring and analyz-

ing an STRF. We demonstrate that STRFs measured using a

spectrotemporally diverse array of broadband stimuli—such

as dynamic ripples, spectrotemporally white noise, and tem-

porally orthogonal ripple combinations (TORCs)—are very

similar, confirming earlier findings that the STRF is a robust

linear descriptor of the cell. We also present a new deter-

ministic analysis framework that employs the Fourier se-

ries to describe the spectrotemporal modulations contained

in the stimuli and responses. Additional insights into the
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8057 Zürich, Switzerland

STRF measurements, including the nature and interpreta-

tion of measurement errors, is presented using the Fourier

transform, coupled to singular-value decomposition (SVD),

and variability analyses including bootstrap. The results pro-

mote the utility of the STRF as a core functional descriptor

of neurons in AI.
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1. Introduction

It has been over twenty years since the spectrotemporal re-

ceptive field (STRF) was conceived to describe and measure

auditory neurons’ joint sensitivity to the spectral and tem-

poral dimensions of acoustical energy (Hermes et al., 1981;

Aertsen and Johannesma, 1981b; Smolders et al., 1979; Eg-

germont et al., 1981; Johannesma and Eggermont, 1983).

It was specifically associated with (1) stimuli characterized

by randomly varying spectrotemporal features, and (2) an

approach labeled reverse correlation, by which the neuron

informs the experimenter, via action potentials, of the fea-

tures that were of interest to it (de Boer and de Jongh, 1978;

Eggermont et al., 1983b). The STRF offered a view of neu-

ronal function that complemented, and was usually consis-

tent with, that obtained using classical stimuli such as tones

(tuning curves and rate-level functions), clicks (impulse re-

sponses), and noise (bandwidth sensitivity). In addition, it

neatly fit within an analytical framework, bolstered by the

fields of time-frequency analysis (Cohen, 1995) and non-

linear systems theory (Eggermont, 1993), within which the

functionality of neurons could, in principle, be systemati-

cally explored to any level of detail.
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The term “STRF” does not denote here the full com-

plex (likely nonlinear) receptive field of an auditory neu-

ron. Rather it is a technical term that has traditionally

been used to refer specifically to the linear relationship be-

tween the time-dependent spike rate of a neuron and the

time- and frequency-dependent energy—in short, the dy-

namic spectrum—of a stimulus. In order to measure the

STRF, the reverse-correlation approach prescribes comput-

ing the average dynamic spectrum of those portions of a

stimulus preceding the neuron’s spikes. In this context, the

STRF is commonly interpreted as the spectrotemporal pat-

tern that optimally activates a neuron (Young, 1998). The-

oretically, as long as all patterns occur randomly, indepen-

dently, and equiprobably, the STRF can be revealed by this

“spike-triggered average” (Eggermont, 1993).

As with tuning curves, rate-level functions, and other com-

monly used neuronal response measures, the STRF provides

only a limited view of the receptive field of a neuron, one

that is useful only within the context of the experiment or

the nature of information sought from it. For example, tun-

ing curves are useful as approximate indicators of a units

BF and bandwidth, but are largely irrelevant as a gauge of

its dynamic range and temporal properties. Similarly, the

STRF is a useful measure of spectrotemporal features likely

to drive a cells responses. However, being a measure of the

linear component of the stimulus-response relationship, it is

mostly effective in predicting the linear aspects of the re-

sponses, predictions that can be accurate if the non-linear

portions are small or are well known and can be accounted

for in the measurement (e.g., spike-rate rectification and satu-

ration). In some cases, the linear component of the response

is small and hence one does not expect clean and reliable

STRF measurements, i.e., the STRFs exhibit significant ran-

domness or high variability across presentations, or are poor

predictors of responses to novel stimuli. Examining these

sources of variability and prediction errors provides useful

information regarding the limitations of the STRF and ways

to extend it beyond the linear domain.

Although the STRF has been slow to mature, it is now

increasingly used to study the physiology of central auditory

neurons. In retrospect, the often slow pace of progress can be

partially attributed to the reverse-correlation methodology,

which remains fairly opaque. In particular, reverse correla-

tion provides no straightforward formal basis for describing

the effectiveness of, or relations between, specific stimuli, be-

cause only the average statistics of stimuli are specified. For

example, Gaussian broad-band noise, the “ideal” stimulus for

reverse-correlation, is often ineffective when applied to cen-

tral auditory neurons (but see (Keller and Takahashi, 2000)).

Meanwhile, a range of other stimuli and associated tech-

niques have been auditioned, modulated broad-band noise

(Miller et al., 2002; Escabı́ and Schreiner, 2002), random se-

quences of tones or chords (Aertsen and Johannesma, 1981a;

Epping and Eggermont, 1985; Schafer et al., 1992; deCharms

et al., 1998; Theunissen et al., 2000; Rutkowski et al., 2002),

and natural stimuli (Aertsen and Johannesma, 1981a; Yeshu-

run et al., 1987; Schafer et al., 1992; Theunissen et al., 2000;

Sen et al., 2001). While it is sometimes implied that the au-

ditory system processes different stimuli differently, it has

not been made clear, because of the lack of vocabulary, to

what extent different stimulation methods should yield dif-

ferent results. Additionally, most of the employed stimuli

share randomness in their spectrotemporal design, in accor-

dance with the reverse-correlation approach, but this style

of stimulation is bound to be inefficient (Victor and Knight,

1979; Sutter, 1992).

Because of these shortcomings, we endeavored to record

a deterministic and analytical reformulation of spectrotem-

poral reverse correlation (Klein et al., 2000). The roots of

this new methodology are in the Fourier-based analysis (Pa-

poulis, 1962) of any given stimulus in terms of its spectrotem-

poral modulation frequency content. Each spectrotemporal

modulation frequency is the conjunction of a spectral and a

temporal modulation frequency; the higher the spectral mod-

ulation frequency, the sharper the spectral feature (e.g., sharp

peaks or edges in the spectrum), and the higher the temporal

modulation frequency, the more abruptly that feature changes

in time. As a population, the strongest phase-locked response

in central auditory neurons occurs over a select range of low

spectral and temporal modulation frequencies (Rees and

Moller, 1983; Shamma et al., 1995; Schreiner and Calhoun,

1995; Kowalski et al., 1996a; Depireux et al., 2001; Sen

et al., 2001; Miller et al., 2002; Escabı́ and Schreiner, 2002).

Not surprisingly, the most fruitful stimuli have had spec-

trotemporal modulation frequencies concentrated within this

range. Our approach extends these past successes by making

explicit the relations between the spectrotemporal modula-

tion frequency content of a stimulus, the stimulus duration

and bandwidth, and the accuracy of the STRF measurement.

This enables the flexible design of diverse stimuli that min-

imize both stimulation time and measurement error, within

the constraints of a particular experiment. These constraints

include information about not only the STRF, but also about

the nonlinear and stochastic aspects of the stimulus-response

transformation, which are not directly described by the

STRF. Another important advantage of this methodology

is that it can be used to describe the mechanics of STRF

measurement with any given stimulus, thus providing a

language with which apparently disparate methods can be

discussed.

We focus in this article on three specific types of

stimuli with increasing level of complexity, applied in

primary auditory cortex (AI) of the anesthetized fer-

ret. At one extreme are the dynamic ripple stimuli

(Kowalski et al., 1996a, b; Depireux et al., 2001), which each

consist of a single spectrotemporal modulation frequency. At
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the other extreme is spectrotemporally white noise (STWN),

which contains many superimposed spectrotemporal modu-

lation frequencies. Intermediate are temporally orthogonal

ripple combinations (TORCs), consisting of special combi-

nations of several spectrotemporal modulation frequencies

each. We shall explore the relations between these stim-

uli, and compare the responses they evoke and the resulting

STRF measurements. Among the issues addressed are the

similarity between the STRF measurements, their fidelity

and noise-robustness, their susceptibility to common neu-

ronal nonlinearities, and the expected amount of data nec-

essary to achieve an measurement with a desired level of

accuracy. The methods used to address these issues are quite

general, though the specific findings apply only to the popu-

lation of neurons in AI studied here.

2. Methods

2.1. Theory

In this section, we outline the methodological basis of this

study. Its key element is an analytical description of the

stimulus-to-response transformation, in terms of the pro-

cessing of spectrotemporal modulation frequencies. In this

context, the result of reverse correlation is derived, first as-

suming that the response is deterministically and linearly

related to the stimulus, and then considering the separate

effects of response variability and nonlinearity.

At the core of the STRF-based model of neural function-

ality is the following equation:

r (t) =
∫ ∫

h(τ, x) · s(t − τ, x) dτ dx (1)

where the neuronal response r at any time t is the linear

integration of influences arising from stimulus energy s at

different tonotopic locations x (here corresponding to the

logarithm of frequency) and different times in the past τ . The

strength and nature of the influences—whether they are exci-

tatory (positive), or suppressive or inhibitory (negative)—is

described by the STRF as denoted by h(τ ,x). In the context

of reverse correlation, r(t) is typically taken to be the time-

dependent spike rate of a neuron (Eggermont et al., 1983a;

Keller and Takahashi, 2000; Sen et al., 2001).

2.1.1. The linear processing of spectrotemporal

modulation frequencies.

Our analytical description of dynamic spectra is based upon

the Fourier series (Papoulis, 1962), using elemental Fourier

components which are cosine waves as a function of both

t and x: a · cos(2πwt + 2π�x + ψ). The wave has a peak

value of a and starting phase ψ . The wave frequency is w

cycles/second (Hz) along t and � cycles/octave (cyc/oct)

along x. Since the dynamic spectrum details the modula-

tion of acoustic energy as a function of both x and t, these

frequencies are referred to as modulation frequencies: spec-

tral (�) and temporal (w). A single Fourier component is

said to consist of a single spectrotemporal modulation fre-

quency, defined by a specific (w, �) pair. Just as a sum of

pure tones of various frequencies, amplitudes, and phases

can describe any acoustic waveform over a finite duration,

a sum of various spectrotemporal modulation frequencies

(with appropriate amplitudes and phases) can describe any

dynamic spectrum over a finite duration T and bandwidth X.

Further, just as the frequency content of an acoustic wave-

form (i.e., the amplitudes and phases of its constituent tones)

is described by its (Fourier) spectrum, the spectrotemporal

modulation frequency content of a dynamic spectrum is de-

scribed by its spectrotemporal modulation spectrum S.

When the STRF is recast as operating upon S,

one arrives at a complementary description called the

spectrotemporal modulation transfer function H. H[w,

�], which is the 2-D Fourier transform of the STRF

h(t, x), details the linear component of neural processing of

spectrotemporal modulation frequencies. Such processing is

already under study in auditory neurophysiology (Kowalski

et al., 1996a, b; Depireux et al., 2001; Miller et al., 2001,

2002; Escabı́ and Schreiner, 2002) and psychoacoustics (Chi

et al., 1999), and is also being investigated for various

signal-processing tasks, including audio coding (Atlas and

Shamma, 2003; Klein et al., 2003) and speech recognition

(Hermmansky, 1999; Nadeu et al., 2001; Kleinschmidt and

Gelbart, 2002; Kleinschmidt, 2002).

S and H are mathematically defined as follows. Consider

a dynamic spectrum s(t, x) and an STRF h(t, x), both given

over a finite range of T seconds and X octaves. Using the

exponential form of the Fourier series, s can be expressed by

the sum

s(t, x)=
∞

∑

k=−∞

∞
∑

l=−∞

(

a[wk,�l ]e
jψ[wk ,�l ]

)

e j2π(wk t+�l x), (2)

where e is the base of the natural logarithm, j =
√

−1, k

and l are integers, wk = k/T, and �l = l/X. This is perhaps

the simplest form of the Fourier series to use; ironically it

employs “complex” exponential functions. These functions

are related to the real-valued Fourier components through

the trigonometric identity cos(φ) = 1
2
(e jφ + e− jφ), etc. Ac-

cordingly, each term in this sum, indexed by k and l, has a

complex-conjugate counterpart, indexed by −k and −l, such

that a[wk, �l] = a[w−k, �−l] and ψ[wk, �l] = −ψ[w−k,

�−l]. Henceforth we will simplify the notation by drop-
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ping the k and l subscripts, however keeping in mind that

w and � are discrete-valued variables (as indicated by the

square brackets). Thus, the amplitudes and phases of the

modulation-frequency components are given by a[w, �] and

ψ[w, �], which together form S[w,�] = a[w,�]e jψ[w,�].

As for the STRF, its Fourier series description can be repre-

sented by the same sinusoidal components, but with differ-

ent amplitudes b[w, �] and phases θ [w, �], which together

formH [w,�] = b[w,�]e jθ[w,�]. As we’ll see, b generally

describes describes the strength of the response to particular

spectrotemporal modulation frequencies, while θ describes

the timing of the response.

In practice, s(t, x) is represented on a computer by dis-

crete samples, s[tk, xl] = s(k�t , l�x ), taken at a rate of l/�t

samples/second and 1/�x samples/octave, where k and l are

integers. Again, we will drop the k and I subscripts, however

keeping in mind that t and x are now discrete-valued vari-

ables. By the sampling theorem (Oppenheim and Schafer,

1989 ), this assumes that S is sufficiently smooth; that is,

it can be described by a limited number of temporal and

spectral modulation frequencies no higher than l/(2�t) and

1/(2�x), respectively. Within these limits, S[w, �] is then ob-

tained by computing the Discrete Fourier Transform (DFT)

of s[t, x] (using the Fast Fourier Transform, or FFT, algo-

rithm) (Oppenheim and Schafer, 1989). Analogously, H[w,

�] is obtainable via the (Discrete) Fourier Transform of the

STRF h[t, x].

Since the response, r(t), depends only on time, its Fourier-

series description utilizes only temporal modulation frequen-

cies. It can be derived by inserting the Fourier-series descrip-

tions of s and h into Eq. (1) and carrying out the integration.

The result is that the Fourier Transform of the sampled re-

sponse r[t] has the form

R[w] =
∑

�

H [w,−�] · S[w,�]

=
∑

�

H [w,�] · S[w,−�] (3)

Recall that in Eq. (1) the response was obtained by inte-

grating over the spectral axis (x) after temporally convolving

the dynamic spectrum with the STRF; here, the convolu-

tion is realized via the multiplication of Fourier Transforms1

(Oppenheim and Schafer, 1989), and the integration over x is

replaced by a summation over � . Therefore, each frequency

w in the response results from all spectrotemporal modula-

tion frequencies in the stimulus sharing the same temporal

component w.

1 Strictly speaking, this implements a circular convolution. If the stim-

ulus is not periodic, this can be converted to a linear convolution by

including zeros (silence) before and after the stimulus (Oppenheim and

Schafer, 1989).

2.1.2. Fourier-based reformulation of spectrotemporal

reverse correlation.

The STRF was, in Section 2.1.1, recast in terms of the pro-

cessing of spectrotemporal modulation frequencies. The re-

sult of spectrotemporal reverse correlation will now be de-

rived in this context.

If spike times are quantized, and stimuli are sampled,

with a temporal resolution △t, then the average stimulus

preceding a neuron’s spikes is proportional to the temporal

cross-correlation between the stimulus and a “binned spike

train” response, y[t], consisting of the number of spikes ob-

served in consecutive �t intervals (Eggermont et al., 1983b).

For now, we assume that y[t]/�t, with units of spike rate

(spikes/second), is equal to r[t] (the sampled STRF-based

response), whose Fourier Transform R[w] was derived in

Eq. (3). Cross-correlation is a linear operation and, much

like convolution, it can be realized via the multiplication of

Fourier Transforms2 (Oppenheim and Schafer, 1989). This

takes the following form, in the case of spectrotemporal re-

verse correlation:

R[w] · S∗[w,−�] = H [w,�] · |S[w,−�]|2

+
∑

�′ �=�

H [w,�′]S[w,−�′]S∗[w,−�]

= H [w,�] · (a[w,−�])2 + ε̃[w,�], (4)

where ∗ denotes complex conjugation and|S[w,�]| =√
S[w,�] · S∗[w,�] = a[w,�] is the magnitude of S.

Eq. (4) represents the Fourier Transform of the reverse cor-

relation result.

An important special case exists when |S| is flat

(a[w, �] = a) over the extent of H that is nonzero, and

further ε̃[w,�] = 0. Then, Eq. (4) is proportional to the H,

with

H [w,�] =
R[w] · S∗[w,−�]

a2
, (5)

Since h[t, x] is, by definition, the inverse Fourier Trans-

form of H[w, �], this implies that, in this special case, reverse

correlation will yield a result proportional to the STRF.

This desirable result has immediate implications

for effective stimulus design. That the spectrotempo-

ral modulation spectrum should be flat equivalently

requires the stimulus contain in equal strength all spec-

trotemporal modulation frequencies needed to construct H.

If the stimulus contains a subset of the necessary modula-

tion frequencies, then only part of H can be constructed:

H will be filtered. The ε̃ = 0 requirement is not so sim-

2 Modulo the previous note concerning circular convolution.
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ply related. This is a systematic stimulus-induced error, de-

pendent upon temporal correlations between different spec-

trotemporal modulation frequencies in the stimulus (it may

also be framed in terms of temporal correlations between

the stimulus energy at different tonotopic locations) (Klein

et al., 2000; Theunissen et al., 2000). It will be nonzero

if the stimulus contains multiple spectrotemporal modula-

tion frequencies that share the same value of |w|, and there-

fore by Eq. (3) evoke the same frequency in the response.

For a general stimulus, ε̃ will not be zero, or even small,

and therefore one of three methods must be used to elim-

inate or reduce its effects: First, if stimuli are sufficiently

diverse over time or over multiple stimuli, then ε̃ asymp-

totically approaches zero as the stimulus duration or the

number of stimuli increases (Klein et al., 2000 ); second,

specially designed stimuli may be employed for which ε̃

is zero (Kvale et al., 1998 ; Klein et al., 2000); and third,

additional computations may be undertaken to try and ad-

just for the correlations in the stimulus (Aertsen et al., 1980;

Aertsen and Johannesma, 1981a; Theunissen et al., 2000). In

this article, we concentrate on the first two of these methods.
Given some knowledge about H, creative stimulus design

is facilitated by the simple relationship of Eq. (5) between

the measurement of points in H and the corresponding points

in the spectrotemporal modulation spectrum. For example,

suppose H is quadrant-separable (Kowalski et al., 1996b;

Depireux et al., 2001), i.e., within each quadrant, the value

at every point is the product of a single vertical cross-section

with a single horizontal cross-section. Then, using only stim-

uli from a single vertical cross-section and a single horizontal

cross-section within each quadrant is sufficient to measure

the entire H. As discussed below, the assumption of quadrant

separability is made for STRFs measured using one stimu-

lus set (dynamic ripples). Note that the same measurements

could be made using differently structured stimuli that di-

rectly probe all points of H. The extent that measured STRFs

agree across stimulus sets measures linearity; but the extent

that STRFs measured using dynamic ripples disagree with

the other measured STRFs, does not distinguish between

lack of linearity and lack of quadrant separability.

Thus far, we have assumed that the response is

deterministically and linearly related to the dynamic spec-

trum. In the next two sections, we relax these assumptions

and consider how response variability and nonlinearity ef-

fects the real-world results. Accordingly, Eq. (5) is hence-

forth treated as a measurement of H (and subsequently the

STRF), using an observed response that is not necessarily

fully described by the STRF.

2.1.3. Reliability of the STRF measurement.

We have assumed thus far that the transformation from stim-

ulus to response is deterministic. However, in response to

identical stimulus presentations, neuronal responses exhibit

inherent variability (Shadlen and Newsome, 1998), and so

the result of reverse correlation is somewhat indeterminate.

Therefore, Eq. (4) should be interpreted as the mean result,

which would be obtained by averaging the results of an in-

finite number of identical experiments. Due to the linearity

of reverse correlation, this is also the result obtained if r[t]

is taken to be the mean of y[t]/�t (the mean time-dependent

spike rate).

This mean result is called the signal. The difference be-

tween the actual measurement and its mean is called noise.

The exact form of the noise varies from measurement to

measurement. The mean squared-magnitude of the noise, as

a function of t and x, is called the variance of the measure-

ment (the square of the standard error). The overall reliability

of the measurement can be gauged from the signal-to-noise

ratio, SNR = P/〈σ 2〉, which is the average power (squared-

magnitude) of the signal (P) relative to the average variance

of the noise (〈σ 2〉), where the averages are performed over

all t and x. Note that both P and 〈σ 2〉 are preserved by the

Fourier Transform (Papoulis, 1962; Oppenheim and Schafer,

1989), and therefore the SNR of h[t, x] is identical to that of

H[w, �] (with the averages performed over w and �).

With this in mind, the signal and noise components of the

SNR can be directly traced through Eq. (5) to the response.

The variance of H is found to be

V ar{H [w,�]}

=
V ar{R[w]} |S[w,−�]|2

a4
=

V ar{R[w]}
a2

, (6)

since R[w] is the only source of variance.

Analogously, the squared-magnitude (power) of H is

|H [w,�]|2 =
|R[w]|2

a2
(7)

If r is taken to be the mean response, this equation de-

scribes the signal power. If instead r denotes the actual

response, then the resulting H measurement (and equiva-

lently, the STRF measurement) will be composed of sig-

nal plus noise, and therefore its average power will exceed

P by 〈σ 2〉, provided the signal and noise components are

uncorrelated.

In summary, response variability is a source of error in

the STRF measurement. This is referred to as non-systematic

error, since its exact form varies from measurement to mea-

surement. The expected size of the error is quantified by

〈σ 2〉. At the same time, the signal power (P) and response

power are closely related. Therefore, stimuli that maximize

the response power relative to the response variance will

result in more reliable STRF measurements (higher SNR).

Note also that, in theory, the SNR of the STRF measure-
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ment could be obtained directly from the response, without

actually computing the STRF.

2.1.4. Nonlinear contributions.

So far, we have only discussed the relationship between mod-

ulations in the dynamic spectrum and modulations of the

mean spike rate as being purely linear. Of course nonlin-

earities such as rectification (the strictly positive nature of

the spike rate) and synaptic depression (Chance et al., 1998;

Carandini et al., 2002) introduce additional response compo-

nents. To the extent that these components are correlated with

the stimulus, they result in systematic, stimulus- dependent

errors to the STRF measurement.

A detailed accounting for various nonlinearities is not

given here. Suffice it to say that a portion of the response

can be described by Eq. (1), and the remaining nonlin-

ear portion may be described by additional terms in a

Volterra or Wiener functional expansion, which have long

been used in neuroscience (Eggermont, 1993) and systems

theory (Schetzen, 1980). The portion of the nonlinearity

manifest at the odd- and even-numbered terms of the expan-

sions is dubbed odd- and even-order nonlinearity, respec-

tively. Fourier-based descriptions of the input-output char-

acteristics of such systems are already well studied e.g.,

(Victor and Knight, 1979; Victor and Shapley, 1980; Boyd

et al., 1983). They describe how multiple stimulus frequen-

cies (e.g., spectrotemporal modulation frequencies) interact

to form nonlinear response frequencies, or distortion prod-

ucts. It is those distortion products manifested at frequencies

overlapping with the linear portion of the response that in-

terfere with the STRF measurement.

Knowledge about the stimulus dependence of distortion

products facilitates the detection, identification, and extrac-

tion of nonlinear response elements (Spekreijse and Oost-

ing, 1970; Victor and Shapley, 1980; Boyd et al., 1983).

For example, odd- and even-order non-linearities are dis-

tinct in that their distortion products are composed of prod-

ucts of odd and even numbers of stimulus elements, re-

spectively. By straightforward trigonometry, one can de-

termine the possible response frequencies that may be ob-

served for a stimulus of known (or cleverly designed) com-

position, and further determine how the amplitude of these

distortion products will change if a gain is applied to the

stimulus.

2.2. Experimental details

We now detail how the above methodology is exploited by

the methods used in this study.

2.2.1. Surgery and animal preparation.

Data were collected from 16 domestic ferrets (Mustela puto-

rius) supplied by Marshall Farms (Rochester, NY). The fer-

rets were anesthetized with sodium pentobarbital (40 mg/kg)

and maintained under deep anesthesia during the surgery.

Once the recording session started, a combination of Ke-

tamine (8 mg/Kg/Hr), Xylazine (1.6 mg/Kg/Hr), Atropine

(10 µg/Kg/Hr) and Dexamethasone (40 µg/Kg/Hr) was

given throughout the experiment by continuous intravenous

infusion, together with Dextrose, 5% in Ringer solution, at

a rate of 1 cc/Kg/Hr, to maintain metabolic stability. The

ectosylvian gyrus, which includes the primary auditory cor-

tex, was exposed by craniotomy and the dura was reflected.

The contralateral ear canal was exposed and partly resected,

and a cone-shaped speculum containing a miniature speaker

(Sony MDR-E464) was sutured to the meatal stump. For

more details on the surgery see (Shamma et al., 1993).

2.2.2. Recordings, spike sorting, and selection criteria.

Action potentials from single units were recorded using

glass-insulated tungsten microelec-trodes with 5–7 M� tip

impedance at 1 kHz. In each animal, electrode penetrations

were made orthogonal to the cortical surface. In each pene-

tration, cells were typically isolated at depths of 350–600 µm

corresponding to cortical layers III and IV (Shamma et al.,

1993). In 12 animals, neural signals were fed through a win-

dow discriminator and the time of spike occurrence relative to

stimulus delivery was stored using a computer. In the other 4

animals, the neural signals were stored for further processing

offline. Using MATLAB software designed in-house, action

potentials were then manually classified as belonging to one

or more distinct neurons, and the spike times for each neu-

ron were recorded. The action potentials assigned to a single

neuron met the following criteria: (1) the peaks of the spike

waveforms exceeded 4 times the standard deviation of the en-

tire recording; (2) each spike waveform was less than 2 ms in

duration and consisted of a clear positive deflection followed

immediately by a negative deflection; (3) the spike wave-

forms were not visibly different from each other, modulo the

noise; (4) the histogram of inter-spike-intervals evidenced a

minimum time between spikes (refractory period) of at least

1 ms. This procedure occasionally produced units with very

low spike counts. After consulting the distribution of spike

counts for all units, units that fired fewer than one spike

per two seconds of stimulation were excluded from further

analysis.

Analysis of the dynamic-ripple recordings was published

previously (Depireux et al., 2001). Here we used the same

selection criteria for those recordings that were used in that
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study. Those criteria were somewhat more stringent than

those used for the TORC and STWN recordings; conse-

quently, there are conspicuously fewer instances of low-SNR

STRFs and low spike counts in the dynamic-ripple results,

with respect to the TORC and STWN results.

2.2.3. Stimulus realization and delivery.

A stimulus is designed by first specifying its envelope S. Re-

call from Section 2.1.2 that the spectrotemporal modulation

frequencies contained in the stimulus are used to reconstruct

the STRF. Through the properties of the Fourier Series de-

scribed in Section 2.1.1, the set of frequencies required for

this construction is defined by four parameters: T and X, the

temporal extent (memory) and spectral extent (bandwidth) of

STRF; and wc and �c, the maximum temporal and spectral

modulation frequencies in H. For all results reported here,

T was 250 ms, X was 5 octaves, wc was 24 Hz, and �c was

1.4 cyc/oct. These values were chosen a priori based upon

the likely structure of STRFs in AI, as inferred from previ-

ous studies (Kowalski et al., 1996a, 1996b; Depireux et al.,

2001).

The requisite set of modulation frequencies need not be

contained within a single stimulus; it may be divided among

multiple stimuli. Stimuli thus devised are used to indepen-

dently reconstruct different areas of H, which are finally

combined to form the complete measurement. Some benefits

of this scheme include the reduction of measurement errors

and the option of using short-duration stimuli (Klein et al.,

2000).

The design of S subsequently specifies (via an inverse

Fourier Transform) a desired or “target” dynamic spec-

trum. We realized this target with a sum of amplitude-

modulated (AM) tones of various carrier frequencies (typ-

ically 100 tones per octave) and random phases (Kowalski

et al., 1996a). First, the target is scaled so that its values lie

within ±90% of the mean value. The mean value, which cor-

responds to the mean amplitude of the tones, is set 10–20 dB

above the neuron’s threshold (measured previously with pure

tones). Finally, the AM pattern of each tone is specified by the

cross-section of the envelope S at the corresponding spectral

location x.

Three types of stimuli are used in this study: dynamic-

ripple stimuli, temporally orthogonal ripple combinations

(TORCs), and spectrotemporally white noise (STWN). As

exemplified in Fig. 1, they distribute spectrotemporal mod-

ulation frequencies among stimuli in different ways. Due to

the peak-amplitude constraint on the dynamic spectra, they

also employ markedly different modulation-frequency am-

plitudes; increasing the number of modulation frequencies in

a stimulus (implying more complex modulations) generally

requires the amplitude of each frequency to be decreased so

that their sum is contained within a given range. In any case,

the amplitudes of all modulation frequencies within a given

stimulus were identical. If a stimulus contained multiple

modulation frequencies, their phases were randomly

assigned; otherwise they were (arbitrarily) set to zero.

Additional details about these stimuli are provided later in

Section 3.1.

The Fourier series endows dynamic spectra, thus de-

signed, with a common periodicity of T = 250 ms and

X = 5 octaves. One spectral period was realized in each

stimulus, whose 5-octave bandwidth was centered upon the

neuron’s pure-tone tuning curve (measured previously). The

temporal periodicity of the dynamic spectra was exploited;

this enabled multiple observations of the response, since

(assuming the neuron’s memory is less than T seconds) all

temporal periods beyond the first constitute identical stim-

ulus presentations. A stimulus sweep consisted of a lim-

ited number (4 or 12) of stimulus periods, and had a rise

and fall time of 8 ms. Multiple sweeps were presented for

each stimulus. Sweeps of different stimuli, separated by

3–4 s of silence, were presented in a pseudorandom order,

until a neuron was exposed 60–120 periods (15–30 s) ach

stimulus.

All stimuli were gated and fed through an equalizer into

an earphone. Calibration of the sound delivery system (to

obtain a at frequency response up to 20 kHz) was performed

in situ with the use of a 1/8 in. Brüel and Kjaer 4170 probe

microphone. The earphone was inserted into the ear canal

through the wall of the speculum to within 5 mm of the

tympanic membrane. The speculum and microphone setup

resembles closely that suggested by Evans (Evans, 1979).

2.2.4. Response measurement and STRF calculation.

Each stimulus resulted in a collection of response observa-

tions y[t] (i.e., binned spike trains), each member of which

consisted of the number of spikes occurring in successive

�t = 1 ms intervals during one stimulus period (see, e.g.,

Fig. 2B). The total number of stimulus periods used was n.

The transient epochs, during the first period of each sweep,

were disregarded; only the steady-state portion of the re-

sponse was utilized. The spike rate r[t] was then estimated

from the sample mean of y[t]/�t: r [t] = 1
n

∑n
i=1 yi [t]

/

�t

where yi[t] is the response to the ith stimulus period. This is

the response whose Fourier Transform is used to calculate H

(and subsequently the STRF), or some portion thereof, via

Eq. (5). These calculations are very simple and are completed

in MATLAB (Mathworks) in a fraction of a second.

2.2.5. Reducing nonlinear interference with the

inverse-repeat method.

In this article, we concentrate on even-order nonlinearities;

they are ubiquitous in the brain (e.g., due to rectification),
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Fig. 1 The S magnitudes are

illustrated for members of each

of the three stimulus

types—dynamic-ripple stimuli,

TORCs, and STWN. The stimuli

all have the same duration

(250 ms), and contain 1, 6, and

90 spectrotemporal modulation

frequencies, respectively. By

virtue of the dynamic range

constraint on the intensities of

the dynamic spectrum, the

stimuli must employ different

modulation-frequency

amplitudes a. The amplitudes,

relative to those of the STWN

stimulus, are indicated in

parentheses.

Fig. 2 Measuring the STRF of one neuron with different types of

ripple stimuli. A: (Top panel) Dynamic spectrum of a single dynamic-

ripple stimulus with w = −8 Hz and � = 0:2 cyc/oct. 90 stimulus

periods were used. (Middle panel) Inset displays the response as time-

dependent spike rate estimate, r[t]: Raw estimate (blue) (using �t =
1 ms), linear (8 Hz) plus DC (0 Hz) approximation (red), and the ap-

proximation obtained by including the (even-order) 16 Hz distortion

product (black). The magnitude of the Fourier Transform of response is

shown in the panel, clearly exhibiting the linear 8 Hz component (red),

nonlinear distortion products (green), and the remaining noise compo-

nent (blue). Also shown is the square-root of the response variance (the

standard error) as a function of frequency (black). (Bottom panels):

Measurements of (left) H and (right) h (or STRFDR) after all 30 stimuli.

The grey outlines in H (left panel) indicate the cross-sections that were

directly measured. B: (Top panel) Dynamic spectrum of a TORC with

� = 0.2 cyc/oct and w’s between 4 and 24 Hz. 75 stimulus periods were

used. (Middle panel) Inset shows response as time-dependent spike rate

estimate, r[t], after the inverse-repeat procedure: Raw estimate (blue),

linear plus DC approximation (red) obtained by discarding frequencies

above 24 Hz, and the response predicted from the previously obtained

STRFDR in A (dashed black). (Bottom panels): Same as in A above

using 15 pairs of TORC stimuli. C: (Top panel) Dynamic spectrum

of a STWN with �’s between 0.2 and 1.4 cyc’oct and w’s between

4 and 24 Hz. 75 stimulus periods were used. (Middle panel) Inset

shows response as time-dependent spike rate estimate, r[t]: Raw esti-

mate (blue), the linear plus DC approximation (red), and the response

predicted from STRFDR (dashed black) and STRFTORC (dashed green)

in A and B above. Panel also shows response Fourier Transform mag-

nitude. The linear 4–24 Hz components (red) are barely distinct from

the noise (blue). Also shown is the square-root of the response variance

(the standard error) as a function of frequency (black). (Bottom Panels)

The measurements of H and STRFSTWN averaged over 30 stimuli.
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and can severely distort the reverse-correlation measurement,

particularly when the stimulus is brief (Swerup, 1978). For-

tunately, its ill effects are easily isolated and extracted by

the inverse-repeat method (Moller, 1977; Wickesberg and

Geisler, 1984). In its simplest form, this method calls for

two stimuli (here, dynamic spectra) that sum to a constant

value. While the linear responses to the two stimuli are oppo-

site in sign, the even-ordered distortion products are identical

(Victor and Shapley, 1980). Therefore, the even-order effects

are removed by subtracting the two responses and dividing

by two (or instead isolated by adding the responses). This

method is investigated in conjunction with TORC stimula-

tion.

2.2.6. Signal and noise calculations: Non-systematic

errors.

As mentioned in Section 2.1.3, the measures of signal power

P and noise variance 〈σ 2〉, and therefore the SNR, apply to

both h[t, x] and H[w, �]. For a single stimulus-response pair,

a simple relationship was identified in Eq. (6) between the

variance of H[w, �] and the variance of R[w]. Note that latter

variance is, in turn, proportional to the variance of ỹ[w], the

Fourier Transform of the response to one stimulus period;

specifically,

Var{R[w]} =
1

n

Var{ỹ[w]}
�2

t

(8)

Thus, the variance of H[w, �] could be quickly estimated

from the sample variance of ỹ[w] (across all stimulus pe-

riods), without repeating the experiment or subdividing the

data.

However, the H measurement may incorporate the mea-

surements from multiple stimulus-response pairs; if so, its

variance will depend on how the individual measurements

are combined. If a point on H[w, �] is the average of N

measurements, then its variance will simply tend to scale by

1/N with respect to that of an individual measurement. But

more complicated functions of the individual measurements

(such as that used for the dynamic-ripple stimuli (Depireux

et al., 2001)) may obscure the relation between the variance

of H and that of the constituent responses. In such a case, the

bootstrap method may be employed. This method simulates

the randomness of a statistic that is a function of a collection

of identical observations, without repeating the experiment

or subdividing the observations (Efron and Tibshirani, 1993;

Politis, 1998). In the present context, a new H is computed

from a new, identical-sized collection of y[t], assembled by

selecting members of the original collection randomly and

with replacement. The sample variance of H, or some func-

tion thereof, is calculated after repeating the process many

times (we used 300), which is feasible due to the simplicity

of the computations.

For the sake of equal footing, we used the bootstrap

method to estimate the variance of H for all stimulus types.

After subsequently calculating 〈σ 2〉, the SNR was inferred

from the average power of H, which, as mentioned in Section

2.1.3, approximately equals P+〈σ 2〉.

2.2.7. Signal and noise calculations: Systematic

measurement errors.

The SNR quantifies the size of the signal compared to the

size of the non- systematic component of the measurement

error. However, the possible additional contribution of sys-

tematic errors—that is, those induced by non-ideal stimulus

structure (i.e., ε̃ in Eq. (4)) and by non-linearities—cause the

actual error level of the STRF measurement to exceed that

described by the SNR. There exists an opportunity to obtain

a more “correct” measure of the SNR, provided that all errors

are evenly distributed over the STRF measurement, because

the signal tends to be concentrated in an early region of the

STRF measurement between 0 and 125 ms–in other words,

neuron’s responses are only weakly effected by stimulus

conditions more than 125 ms – in the past. Accordingly, a

corrected SNR measure, SNRcor, was obtained after dividing

the average power of the early region of the STRF measure-

ment by the average power of the late (post 125 ms) region.

Note that the late region of the STRF measurement contains

the uncorrelated contributions of both non-systematic and

systematic errors, while the noise power estimate used for

SNR only measures the non-systematic component; there-

fore, SNRcor should be less than or equal to SNR (modulo the

inaccuracies in measuring SNR and SNRcor), with equality

when there are no systematic errors.

2.2.8. Error reduction with the singular-value

decomposition.

To further reduce errors in the STRF measurement, we in-

vestigated the singular- value decomposition (SVD), applied

to either h[t, x] or H[w, �] (which are both just matrices of

numbers). The SVD is a well-studied tool for resolving the

structure of matrices that are corrupted by errors (Stewart,

1993; Hansen, 1998). It works by breaking up an arbitrary

matrix into a sum of separable matrices, which, in the cur-

rent context, are each formed by the product of one temporal

vector and one spectral vector. The first matrix takes the

best separable approximation out of the original matrix; the

second takes the best separable approximation out of the re-

mainder, and so on. The importance of each separable matrix

is gauged by its singular value, which is the square root of its

average power. The total number of separable matrices re-
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quired to describe a matrix (the number of nonzero singular

values) is called the matrix’s rank.

A basic theorem (Stewart, 1991) implies that if the error-

free STRF can be well approximated by only a few separable

matrices, then the addition of small and evenly distributed

errors will only slightly perturb their form, as they constitute

the first few matrices in the SVD of the STRF measure-

ment. The additional and subsequent matrices required to

describe the measurement will describe mostly errors, and

thus should be discarded. In fact, there are a priori reasons

to believe that STRFs are well approximated by low-rank

matrices. Typically, cortical STRFs are localized in a com-

pact area of the spectrotemporal domain and the modulation-

frequency domain (Depireux et al., 2001; Miller et al., 2002);

this alone will limit their rank. Still lower limits will be im-

posed by special structure within the STRF or the H, such

as spectral-temporal separability (Eggermont et al., 1981;

Depireux et al., 2001; Sen et al., 2001), quadrant separabil-

ity (Depireux et al., 2001), and temporal symmetry (Simon

et al., subm).

In practice, determining which separable matrices should

be discarded is a complex problem (Stewart, 1993; Hansen,

1998). Most approaches use knowledge or assumptions about

the size and structure of the errors to bound the singular

values (or functions thereof) of those separable matrices de-

scribing mostly errors. Through simulations, we found that

methods based solely on variability analysis tended to un-

derestimate the size of the errors; instead, the most generally

accurate methods gauged the error level directly from the

post-125-ms region of the STRF measurement (for a similar

method see (Sen et al., 2001)). We used the largest singular

value from this region (or its Fourier Transform) to threshold

the singular values of the pre-125-ms region (or its Fourier

Transform). In theory, the STRF (or H) is optimally approx-

imated using only those separable matrices with singular

values above this threshold, and discarding the remainder

(Stewart, 1993; Hansen, 1998).

Although this approximation is in some sense optimal,

it is still prone to error. As the error level increases, more

and more error leaks into the approximation and, conversely,

more and more of the STRF power is lost under the er-

ror threshold (Hansen, 1998). This second case is of pri-

mary interest in this study; we will gauge the proportion of

(error-free) STRF power excluded from the SVD approxi-

mation. A naive gauge of this is αSVD, the proportion of the

STRF measurement’s power contained in the SVD remainder

(Depireux et al., 2001). Unfortunately, when the level of mea-

surement error is high, αSVD itself will be inflated, because

much of the remainder will consist of error. However, we

can use the bootstrap method to estimate the size (average

variance) of the part of the remainder resulting from non-

systematic errors, and subtract it out. This leads to a more

accurate gauge of the proportion of lost STRF power, particu-

larly when the systematic errors are small: βSVD, the average

power of the systematic component of the remainder, divided

by P. In Section 3.4, we use αSVD and βSVD together to study

how measurement errors effect the performance of the SVD.

2.2.9. STRF comparisons.

In this article, the correlation coefficient is used to quan-

tify the similarity between two different STRF measure-

ments. This takes values between −1 and +1, with +1

indicating a perfect match. Comparisons are made over

the first 125 ms of the measurements, both before and

after the SVD is applied. Note that the correlation coef-

ficients for the pre-SVD comparisons will be limited by

SNRcor; if two identical STRFs are corrupted by indepen-

dent and identically distributed errors, the correlation co-

efficient should approximately equal SNRcor/(SNRcor + l).

To the extent that the SVD approximations result in in-

creased SNRs, they will allow for higher correlation coeffi-

cients, which we modeled as gSNRcor/(gSNRcor + 1), where

g represents a multiplicative gain in SNRcor.

2.2.10. Simulations.

Simulations were employed in order to verify the perfor-

mance of these methods under realistic conditions. The core

of a simulation is an STRF (tailor-made or derived from

a low-rank approximation of an actual measurement) and

a set of stimuli. The STRF-based responses to the stim-

uli are computed via Eq. (3). These responses are then al-

tered; usually they are rectified and then subjected to another

static nonlinearity, such as a squaring function. The result,

representing the time-varying spike rate, is used to create

spike trains with inhomogeneous Poisson statistics (Berry

and Meister, 1998; Oram et al., 1999), with a time step

of 50 µs. These spike trains are treated as the responses

of a neuron with an unknown STRF, and are subjected to

the very same analyses as the real responses. Wherever the

bootstrap method was employed, its expected performance

was simulated against a Monte-Carlo procedure, employ-

ing 300 sets of independent responses with identical spike

rates.

3. Results

The results of this study are presented as follows. In

Section 3.1, we detail the measurement of a neuron’s

STRF using each of the three stimulation types, and we

subsequently illustrate the computation of the SVD-based

STRF approximations. In Section 3.2, for neurons whose

STRFs were measured with multiple stimulus types, we
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examine the similarity between the multiple measure-

ments and the corresponding SVD approximations, as a

function of the level of measurement error. In Section

3.3, we analyze the origins and stimulus dependence of

the measurement errors. Finally, in Section 3.4, we study

how measurement errors affect the sufficiency of the SVD

approximations.

3.1. Overview

In this section, we detail the measurement of a neuron’s

STRF using dynamic-ripple stimuli (Fig. 2A), TORCs

(Fig. 2B), and STWN (Fig. 2C), respectively. The S mag-

nitudes for examples of each of these stimulus types are

illustrated in Fig. 1. The respective STRF measurements are

denoted STRFDR, STRFTORC, and STRFSTWN . Computation

of the SVD-based approximations of the measurements is

subsequently detailed.

3.1.1. Dynamic-ripple stimuli.

For the dynamic-ripple stimuli (Kowalski et al., 1996a; De-

pireux et al., 2001) shown in Fig. 2A, each stimulus is

composed of a single spectrotemporal modulation frequency

(Fourier component). It can therefore be considered the audi-

tory equivalent to the drifting sinusoidal luminance gratings

used in visual neuroscience (Valois and Valois, 1990). Fig-

ure 2A shows the dynamic spectrum of one such stimulus

(top panel), which has a temporal modulation rate w of −8 Hz

and a spectral modulation rate � of 0.2 cyc/oct.

The response r[t] to this stimulus (middle panel)) exhibits

both linear and nonlinear aspects, as well as variability. Ac-

cording to the linear model of Eq. (3), the response should be

a pure 8 Hz sinusoid, with amplitude and phase determined

by H[8, 0.2]. Clearly, r[t] (C: blue) is modulated at 8 Hz,

but it also contains nonlinear components. The (Discrete)

Fourier Transform R[w] makes this explicit: In addition to

a prominent 8 Hz component (in red), distortion products

(in green) with frequencies of 0 Hz (the “DC” or average of

r[t] over t) and 16 Hz are plainly visible. Given the stimulus

composition, these distortion products betray the presence of

2nd-order, and possibly 0th-order (“spontaneous” activity),

nonlinearity (both of which are even-order). With respect

to the linear plus DC description (red curve in inset panel),

including the 16 Hz distortion product (black curve) better

accounts for the sharpness and non-negative nature of the

response.

The remaining portion of the response looks like noise.

It is the manifestation of the period-to-period response vari-

ability. In the Fourier Transform of the response, it takes the

form of a shallow baseline of energy that extends over all fre-

quencies. Note that the square-root of the response variance

(i.e., the standard error), calculated via Eq. (8), is similarly

distributed over the components of R[w] (black curve).

The existence of response components due to nonlinearity

and variability does not necessarily imply that they interfere

with the STRF measurement. Since the stimulus consists of

a single spectrotemporal modulation frequency with a tem-

poral component of 8 Hz, only the 8 Hz component of the

response is correlated with the stimulus, and ε̃ in Eq. (4) is

zero. The only source of error is the portion of the nonlinear-

ity and variability that happens to be manifest at 8 Hz. The

reverse-correlation STRF (STRFDR) can be assembled from

results of consecutive presentations of dynamic ripples with

different single spectrotemporal modulation frequencies. It

is important to note that, due to time constraints, these point-

by-point measurements of H were restricted to two cross-

sections, as indicated by the gray outlines in left panel (Bot-

tom row). The full H was then constructed from a normal-

ized outer product of these cross-sections (Depireux et al.,

2001).

3.1.2. Temporally orthogonal ripple combinations.

In contrast to the dynamic-ripple stimuli, the TORC stimuli

(Klein et al., 2000) can directly measure the entirety of the H,

because each stimulus is used to measure multiple points at

once. The stimuli are necessarily more complex, containing

six spectrotemporal modulation frequencies (Fourier compo-

nents) each. However, no two Fourier components in a given

stimulus share the same value of |w| (they are temporally or-

thogonal; their temporal correlation is zero); therefore, each

spectrotemporal modulation frequency in the stimulus will

evoke a different temporal frequency in the linear part of the

response.

The dynamic spectrum of one TORC is shown in Fig. 2B

(top panel). It is composed of six spectrotemporal modu-

lation frequencies having the same � of 0.2 cyc/oct, but

different w’s spanning the range of 4 to 24 Hz. The associ-

ated response (inset in middle panel: blue) exhibits a com-

plex modulation of the spike rate. The smoothed response,

obtained by discarding the frequencies above 24 Hz, is su-

perimposed in red. A more accurate view of the linear part

of the response is also shown (in dashed black), which was

obtained from the inverse-repeat procedure. It is very similar

to the response predicted by STRFDR (Fig. 2A). The Fourier

Transform of the response confirms the strong presence of

the 4 to 24 Hz components (in red) expected from the lin-

ear model. However, with respect to the noise baseline, the

response is weaker than it was for the above dynamic-ripple

stimulus.

In the reverse-correlation operation, the 4 Hz response

component is orthogonal to all stimulus components besides

the 4 Hz component, the 8 Hz response component is cor-
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related only with the 8 Hz stimulus component, and so on;

ε̃ is again zero. The STRF after all stimuli are presented,

are shown in bottom panels. It bears a striking resemblance

to STRFDR, despite the drop in both SNR and SNRcor. This

indicates that estimates of the neuron’s STRF are robust to

changes in the spectrotemporal modulation frequency con-

tent of stimuli.

3.1.3. Spectrotemporally white noise.

The Spectrotemporally white noise (STWN) is the most

complex of the ripple-based stimuli; its S contains all spec-

trotemporal modulation frequencies (Fourier components)

with equal amplitudes and uniformly distributed phases. The

typically poor efficacy of such stimuli can be improved some-

what by limiting the S to a relevant range of spectral and tem-

poral modulation frequencies (Klein et al., 2000). Figure 2C

(top panel) shows the dynamic spectrum of one such stimu-

lus, which contained all w’s between 4 and 24 Hz and all �’s

between 0 and 1.4 cyc/oct. Although the response shown

below (inset of middle panel) is quite a bit weaker than

those observed in Fig. 2A and B, when smoothed (red) it is

still comparable to the linear predictions from both STRFDR

(dashed black) and STRFTORC (dashed green); this is de-

spite the fact that the 4 to 24 Hz response frequencies pre-

dicted by the linear model are barely distinct over the noise

baseline.

This reverse-correlation scenario differs from that of

the other two stimulus types. Each of the linear response

frequencies is now the sum effect of multiple Fourier

components of the stimulus sharing the same tempo-

ral modulation frequency. Every response frequency will

in turn be correlated with each of the stimulus compo-

nents sharing the same temporal modulation frequency.

It is therefore not initially clear which stimulus compo-

nent caused what component of the response; all points

on the H corresponding to a given w cannot be distin-

guished. This ambiguity manifests itself in the form of a

large ε̃.

Because ε̃ is dependent upon the (randomly assigned)

phases of the S, it has an incoherent structure that is dis-

tributed over the entire measurement, and its strength can be

reduced by averaging the results from multiple stimuli with

different phases (or by using more finely spaced w’s, i.e.,

increasing the base stimulus period T) (Klein et al., 2000 ).

This argument also applies to the manifestations of variabil-

ity and even-order nonlinearity (some odd-order distortion

products are however not dependent on the phases of the

stimulus frequencies (Victor and Shapley, 1980)). The re-

sult obtained after averaging the results from 30 different

stimuli is shown in the bottom panels (approximately the

same result would be obtained by extending T by a fac-

tor of 30). Despite a further decrease in SNR and SNRcor,

its similarity to STRFDR (Fig. 2A) and STRFTORC (2B)

is impressive; the STRF of the neuron has maintained its

form for more than an hour, over vastly different stimulus

types.

3.1.4. Application of the singular-value decomposition.

In this section, we demonstrate the use of the SVD for pro-

ducing approximations of the measurements of the STRF

and H. Such approximations represent an optimal trade-off

between error reduction and signal loss, provided the errors

are evenly distributed over the measurements (Stewart, 1993;

Hansen, 1998). The proportion of signal lost is gauged by

βSVD (see Methods).

The SVD of the STRFTORC from Fig. 2B is illustrated in

Fig. 3A. The singular values of the first 12 separable matrices

from the SVD are shown (top row), along with the error-

derived threshold (see Methods) indicated by the dashed

line. The first singular value, corresponding to the separable

rank 1 matrix (bottom row), towers over the others, and

alone exceeds the threshold. The STRF is well described

by this separable matrix, while the sum of the remaining

separable matrices, consists of unstructured measurement

errors. Indeed, βSVD = 4.8%, indicating that more than 95%

of the STRF power is captured by this rank-1 approximation.

That is, in large part this STRF represents the product of

independent spectral and temporal integration.

In contrast, the SVD of a different neuron’s

STRF {TORC} is shown in Fig. 3B. This STRF does not

look separable; for inputs at different tonotopic locations x,

the temporal integration by the neuron (in its network) is

not related by a simple scaling of the same function. In this

case, the second singular value (top row panel) also protrudes

above the threshold, the rank-1 approximation (middle pan-

els) fails to describe the STRF’s oblique-ness, and βSVD is

high at 27.2%. After including the second separable matrix

(bottom row panels), the approximation is vastly improved

(βSVD = 6.7%), and the remainder again chiefly consists of

unstructured errors.

The SVD can alternatively be applied to the H. While

the SVD of the full H yields an approximation identical

to that of the STRF, applying the SVD separately to each

of the quadrants of the H will generally produce a differ-

ent approximation. This procedure is of interest chiefly be-

cause previous studies (using dynamic-ripple stimulation)

have suggested that the H’s of AI neurons are well described

as being quadrant-separable (Kowalski et al., 1996b; De-

pireux et al., 2001), implying that the SVD of each quadrant

of the H should yield at most one separable matrix of sig-

nificance. Therefore, if the STRF is not separable, it could

be advantageous (in terms of error reduction) to approxi-
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Fig. 3 Approximating the

STRF with the SVD. A: An

STRF that looks separable. (Top

row) The original measurement,

and the corresponding singular

values (bars) of the separable

matrices of the SVD, and the

error-derived threshold (dashed

line). (Bottom row) The rank-1

approximation and the

remainder. B: An STRF that

does not look separable. (Top

row) The original STRF and its

corresponding singular values

(bars) and threshold (dashed

line). (Middle row). The rank-1

approximation and

second-separable matrix (or

remainder). (Bottom row) The

rank-2 approximation, and the

remainder. A common color

scale is shared by all panels

within A, and a different color

scale is shared by all panels

within B.

Fig. 4 Approximating the H

with the SVD. A: (Top panel)

The original STRF measurement

and (Middle panel) the

corresponding H magnitude

(first two quadrants). (Bottom

panel) The singular values (bars)

and thresholds (dashed lines) of

the first two quadrants of the H.

B: The quadrant-separable

approximation of the STRF in A

and the remainder. C: The H

magnitude from the

quadrant-separable

approximation, and the Fourier

Transform of the remainder. D:

The H magnitude from the

rank-2 approximation (from

Fig. 3), and the Fourier

Transform of the remainder

(from 3) A common color scale

is shared by B and the top panel

of A. A different color scale is

shared by C, D, and the middle

panel of A.
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mate the STRF in this manner. This principle is examined

in Fig. 4, using the non-separable STRF from Fig. 3B. The

SVD of each of the upper two quadrants of the H shown

in 4A (middle panel) yields the two sets of singular val-

ues (bottom panel). In each quadrant, only the first singu-

lar value is pronounced and exceeds the threshold. This

indication that the quadrants are indeed separable is sup-

ported upon comparison of the original STRF (top panel)

with the quadrant-separable approximation (for which βSVD

= 6.6%) and the remainder, shown in B. Intriguingly, the

result is markedly similar to the rank-2 approximation of

the STRF from Fig. 3B. By implication, the H from the

rank-2 approximation (shown in D) is very similar that from

the quadrant-separable approximation (in C). The Fourier

Transforms of the corresponding remainders are also very

similar.

In summary, we have demonstrated the use of the SVD for

producing relatively error-free approximations of the STRF

or H measurements. Later, in Section 3.4, we will examine

how well these three types of approximations—the rank-1,

rank-2, and quadrant-separable approximations—apply to

the whole of the neuronal population, as a function of the

error level and the type of stimulation.

3.2. Direct comparisons of STRFs measured with

different stimulus types.

In 45 out of 308 neurons whose STRFs we measured, we

obtained multiple STRF measurements using two or all three

stimulus types. The resemblance between the first 125 ms of

each pair of measurements was quantified by the correlation

coefficient (see Methods), which was computed under four

conditions: for the raw (pre-SVD) measurements, and for

the quadrant-separable, rank-2, and rank-1 approximations

of the measurements.

The correlation coefficients from the raw comparisons are

plotted in Fig. 5A versus the limiting (minimum) SNRcor of

the two measurements. The squares, triangles, and circles

correspond to the three possible pairs of stimulus types com-

pared. The trends followed by all stimulus comparisons are

similar. When SNRcor is above 1, the correlation coefficients

are high and are weakly affected by SNRcor. The correlation

coefficients are only small when SNRcor is small; as SNRcor

descends to 0, so do the correlation coefficients. This mirrors

the relationship expected from two identical STRFs that are

corrupted by independent errors, as indicated by the solid-

black Curve 1. In other words, it the relationship produced

when the STRFs of the system, summarized by the (error-

free) STRF, is impervious to changes in stimulus type, but

the STRF measurement is error-prone.

Since the SVD approximations act to reduce errors, they

should result in higher correlation coefficients, provided the

STRF measurements have similar signal components. These

properties are evident in the three dashed curves in 5A, which

summarize the correlation coefficients obtained from the

quadrant-separable (Curve 2), rank-2 (Curve 3), and rank-1

(Curve 4) approximations of each pair of measurements (the

data points are not shown, for clarity). The curves fit the

combined data from all three types of stimulus comparisons.

The fits were produced by modeling the error reduction as

a multiplicative gain g in SNRcor (see Methods). The values

of g used for Curves 2–4 are 1.7, 1.9, and 2.9, respectively;

these values minimized the number of data points deviating

more than 0.1 units away from the curves (providing the

most visually pleasing fits).

For all data points exceeding the critical SNRcor = 1

level, Fig. 5B shows the complete range and the average

of the correlation coefficients. Again, similar results are ob-

tained no matter which two stimulus types are compared. For

the raw measurements, correlation coefficients fall between

0.5 and 0.8, with an average of 0.64. The average rises to

0.73 and 0.75 for the quadrant-separable and rank-2 approx-

imations, respectively. For the rank-l approximations, the

correlation is 0.85 on average, is as high as 0.97, and does

not fall below 0.74. The average correlations are still higher

(0.71, 0.78, 0.80, and 0.88, respectively) when the com-

parisons are further restricted to the half-sized rectangular

region containing the most power (e.g., the dashed box in

the top row of 5C), as indicated by the x’s. Least affected

are the rank-1 comparisons, suggesting that they are already

relatively error free. Note that these values far surpass those

typically produced by comparing the STRFs of different neu-

rons; for example, if the rank-1 approximation of a neuron’s

STRFTORC was compared to the rank-1 approximation of the

subsequent neuron’s STRFSTWN , the average correlation was

0.03.

Some visual comparisons of STRF measurements are

available in Columns C through E of Fig. 5. For each compar-

ison, either the rank-1 or rank-2 approximations are shown,

depending on what was optimal for the STRF with the highest

SNRcor. In C are results from three neurons that were tested

with all three stimulus types. A typical rank-1 result is shown

in the top row. The STRFs match in many details, including

the suppressive areas and the multiple excitatory areas. In

the middle row is a rank-2 example with somewhat lower-

than-average correlation coefficients. While some features

match well across stimuli, there is an increase in background

fluctuations between STRFDR and STRFSTWN that limits the

comparisons. The rank-1 approximations may have been

more appropriate here (and these yielded correlation coeffi-

cients over 0.8). In the bottom row is an unusual rank-2 exam-

ple, where the STRF peak shifts to a higher frequency, thus

diminishing the correlation coefficients. However, SNRcor of

the STRFSTWN was only 0.8, so it is difficult to make definite
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Fig. 5 Similarity between STRFs measured with different stimulus

types: Dynamic ripple (DR), TORC (TC) and STWN (WN). DR-TC,

e.g., denotes comparisons between DR and TORC STRFs. Correlation

coefficients were computed between the original (raw) measurements,

and between the quadrant-separable (q-sep), rank-2 and rank-1 approxi-

mations of each measurement. A: Correlation coefficients plotted versus

minimum SNRcor of the two original measurements. Squares, triangles,

and circles correspond to the raw comparisons; different symbols cor-

respond to the different pairs of stimulus types compared (see legend).

Curve 1 (solid black) is the relationship expected from two identical

STRFs with independent errors. Curves 2, 3, and 4 (dashed curves)

are fits to the correlation coefficients obtained from the quadrant-

separable, rank-2, and rank-1 approximations of each measurement,

respectively (see text). B: The complete range (vertical lines) and the

average (squares, triangles, and circles) of the correlation coefficients

are shown for all comparisons where the minimum SNRcor was above

1. Also shown (black x’s) are the average correlation coefficients, for

all pairs of stimulus comparisons combined, obtained when the com-

parison is further limited to the half-sized rectangular region of the

STRF containing the most power (see, e.g., dashed box on the top left

STRF of Column C). Columns C–E: In each row, the STRF of the same

neuron measured with different stimulus types are shown side by side.

Shown are either the rank-1 or rank-2 approximations of the STRFs,

depending on what was optimal for the measurement with the highest

SNRcor . To the left are correlation coefficients obtained from each pair

of comparisons and the SNRcor of the original measurements.
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claims about its structure. Results from additional neurons

that were tested with two of the three stimulus types are pro-

vided in D and E. Overall, a wide variety of STRFs shapes,

including unusual “offset” types (E, top row), are well pre-

served across stimulus type. To be sure, there is much less

variation in STRF shape across stimulus type than there is

across neurons.

In summary, both visual and quantitative comparisons

reveal a close resemblance between the STRFs measured

with different stimulus types. The resemblance predictably

increases as the limiting SNRcor of the measurements in-

creases; similarly, using the SVD to reduce the error level

only serves to increase their resemblance. The highest cor-

relation coefficients result from the rank-1 approximations,

indicating that they are the most error-tolerant. Similar re-

sults are obtained no matter which of the three possible pairs

of stimulus types are compared. By the same token, a wide

variety of STRFs are observed across neurons.

Together, these observations indicate that linear spec-

trotemporal processing is a robust property of AI that takes

diverse forms in individual neurons.

3.3. The sources and stimulus dependence

of measurement error

In Section 3.2, it was shown that the signal component of

the STRF measurement, seen through the corrective lens of

the SVD, is not crucially dependent on the stimulus type.

Instead, the ability of the SVD to separate this signal from

the measurement errors is crucially dependent on SNRcor,

which may depend on the stimulus type. In this section, we

examine the sources contributing to SNRcor and their stimulus

dependence.

3.3.1. Systematic error.

The capacity of systematic errors to limit the quality of the

measurements is evident in the relationship between SNR

and SNRcor. This relationship, observed over all measure-

ments for each stimulus type, is plotted in Fig. 6 (with

second-degree polynomial fits where appropriate). For both

the TORC (A; F, Curve 1) and the STWN (D; F, Curve 4)

measurements, SNRcor shows a clear saturating characteris-

tic as SNR increases. Recall that SNRcor incorporates both

the non-systematic and systematic errors, while the SNR in-

corporates only the non-systematic errors. Therefore, as the

measurements become more reliable (SNR increases), the

saturation of SNRcor evinces the systematic error that domi-

nates when the non-systematic errors are sufficiently small.

The relative significance of the systematic error component

is revealed in the level to which SNRcor is limited in the high

SNR measurements.

Recall that for the TORC measurements (A; F, Curve

1), the inverse-repeat method was employed in order to

remove systematic errors due to even-order nonlinearities.

Therefore, the saturation of SNRcor in the TORC measure-

ments should be worsened if the inverse-repeat method

is not used. Indeed, bypassing the inverse-repeat method

did further limit SNRcor (B; F, Curve 2), by a factor of

about 2.5. Note that this is not simply a side effect of

SNR reductions caused by discarding half of the data, for

it is not observed if half of the stimulus presentations

are discarded but inverse-repeat is still employed (C; F,

Curve 3).

In the STWN measurements (D; F, Curve 4), the system-

atic errors are much more severe than in the TORC measure-

ments; the limiting value of SNRcor is at least 4 times lower,

and so SNRcor is much less likely to exceed usable values.

SNRcor is also less variable across the high-SNR measure-

ments; when the measurements are reliable, which is fairly

often, SNRcor reliably reaches its limited potential. This po-

tential is further cut in half by discarding half of the stimuli

(F, Curve 5), but not by discarding half of the presentations

of each stimulus (Curve 6). In sum, these observations sug-

gest that the errors are dominated by the nonideality of the

STWN stimuli (i.e., ε̃), to which all neurons were exposed.

Our simulations also supported this view. Therefore, at least

4 times as many STWN stimuli would have to be used in

order to raise the SNRcor potential to the level of the TORC

method.

Finally, note that the relationship between SNR and SNRcor

is less clearly defined in the dynamic-ripple measurements

(E) (although both SNRcor and SNR often surpass the values

achieved by the other two stimulus types). In our experience,

this is largely because the errors are not uniformly distributed

over the dynamic-ripple STRFs (Depireux et al., 2001), due

to the outer-product operation in the construction of the H.

As a result, SNRcor is a less reliable gauge of the overall error

level in the dynamic-ripple measurements.

3.3.2. Non-systematic error.

In Section 3.3.1, it was shown how the potential accuracy of

the STRF measurements is limited by the level of systematic

error, which depended on the stimulation method. However,

if a method is to achieve a given level of accuracy within

its potential, it is evident in Fig. 6 that the SNR (which

reflects the level of non-systematic error) must be at least

minimally adequate. In this section, we explore how the

SNR is determined from the interplay between the stimulus,

the STRF, and the neuronal response.

To set the stage, recall from Eq. (5) that a single stimulus-

response pair results in the measurement of a set of one

or more points on H[w, �], which is given by the spec-
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Fig. 6 The relationship between SNR and SNRcor across all measure-

ments for each stimulus type, and second-degree polynomial fits (black

curves) when appropriate. The level of saturation of these curves in-

dicates the relative levels of systematic errors in the measurements.

A: TORC. B: TORC without inverse-repeat, thus retaining systematic

errors due to even-order nonlinearities. C: TORC control, discarding

half of the stimulus presentations, D: STWN. E: Dynamic ripple. F:

Comparison of polynomial fits: Curves 1–4 are from Fig.A –D. Curve

5: STWN, discarding half of the stimuli, thus increasing systematic

errors induced by the stimulus (ε̃). Curve 6: STWN control, discarding

half of the stimulus presentations.

trotemporal modulation frequencies content of the stimulus.

By Eq. (6), the variance of each point (w, �) is a fixed

proportion, namely 1/a2, of the variance of the response’s

Fourier Transform at the corresponding (temporal) frequency

w (a2 is the power of each of the spectrotemporal modula-

tion frequencies in the stimulus). Now, consider the whole

of the H measurement, built stimulus-by-stimulus. To sim-

plify matters, we will first consider the situation in which

every point of the measurement has resulted from a single

stimulus-response pair—that is, prior to the TORC inverse-

repeat procedure, the STWN phase-averaging procedure, or

the dynamic-ripple outer-product operation. In that case, to

find the variance of any point on the H, one needs only to find

the variance of the appropriate response at the appropriate

frequency, and weight it by 1/a2. Consequently, the average

variance of the entire H (and STRF) measurement, 〈σ 2〉, is

simply 1/a2 times the average variance at all of the relevant

frequencies of all responses. The SNR is then the ratio of P

(the STRF signal power) to this number.

What determines the variance of a response’s Fourier

Transform? Two observations lead to a simple answer. First,

as middle panels in Figs. 2A, B, and C typify, the variance

of R[w] is nearly frequency-invariant (deviations from this

could reflect refractoriness, bursti-ness, or oscillations in the

response (Bair and Koch, 1996)). Therefore, the average vari-

ance over the relevant frequencies is closely related to the

average variance over all frequencies. Now, the average vari-

ance over all frequencies equals the average variance over

all times (Papoulis, 1962; Oppenheim and Schafer, 1989),

which ties in the second observation: The variance of r[t]

is proportional to r[t]/n (where n is the number of stimulus

periods). This originates from a linear relationship between

the sample mean and the sample variance of the binned spike

train responses (y[t]), which is a widely reported observation

(Shadlen and Newsome, 1998). Consequently, the average

variance over time is proportional to the average spike rate

over time, r̄ . So finally, all else being equal across stimuli,r̄

(over all responses) can be treated as the lone variable deter-

mining the average variance of the responses over the rele-

vant frequencies. The relationship observed across all STRF

measurements is shown in Fig. 7A, where the variance has

been transformed into the variance of a single response pe-

riod by multiplying by n (thus correcting for differences in n

across measurements). The trend across all neurons is indeed

linear (on this log-log plot, the slopes of the linear fits to the

data were very close to 1), and is only weakly influenced by

stimulus type.

In contrast, the choice of stimulus type effects order-of-

magnitude differences in a2 (due to differences in the number

of spectrotemporal modulation frequencies per stimulus; re-

call Fig. 1). This in turn strongly effects the STRF variance

〈σ 2〉 for a given average spike rate r̄ . Given the relationship

observed between r̄ and average response variance in 7A, the

predicted relationship between r̄ and 〈σ 2〉 (again scaled by
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Fig. 7 The sources and stimulus dependence of SNR, for the dynamic

ripple stimuli (blue dots), TORCs (red circles), and STWN (black dia-

monds). A: The linear relationship between the average spike rate r̄ and

the average variance of the response’s Fourier Transform. r̄ is averaged

over all responses. The variance is averaged over all responses, but only

those temporal frequencies of each response relevant to the H measure-

ment (where the corresponding S magnitude was nonzero, e.g., w = 4, 8,

24 Hz). The variance is scaled by n (the number of stimulus periods) to

correct for differences n across the measurements, and thus represents

the variance of a single response period. B: (dashed lines) The expected

relationships between r̄ and 〈σ 2〉 (scaled by n) in the case where each

point of the H’s is obtained from a single stimulus-response pair. The

actual relationships observed (plotted points) differ from the dashed

lines by an amount predicted by the number of stimulus-response pairs

whose results are averaged to obtain the final H (see text). C: The lower

bound of r̄ is proportional to the square-root of the STRF signal power P

(the diagonal line’s slope is 1/2). The square-root law is expected from

a linear-plus-rectification response model, but the scatterin r̄ suggests

additional sources of variability.

n) for each of stimulus type is indicated by the dashed lines

in B. Note, however, that for a given neuron, the actual effect

of stimulus type on 〈σ 2〉 depends on how r̄ is also affected.

Curiously, we have seen little evidence for a significant ef-

fect of stimulus type on r̄ . From one type to the next, up to

factor-of-two increases or reductions in r̄ were typical, but

this variation is not systematic and is small compared that of

a2.

The actual relationship between the average spike rate and

the STRF variance observed across all STRF measurements

is indicated by the data points plotted in B. The discrep-

ancies between these trends and the dashed lines, where

they exist, are easily explained by the fact that every point

of the actual H measurements is not the result of just one

stimulus-response pair, as we have so far assumed. For the

STWN stimuli, H[w, �] was the average result from 30

stimulus-response pairs; therefore, its actual variance 〈σ 2〉
(black diamonds) was lower than the black (upper-most)

dashed line by a factor of 30. This largely compensated for

the difference in a2 between the STWN and TORC stimuli.

Similarly, the inverse-repeat method effectively averages the

results from two sets of stimuli, and so the 〈σ 2〉 of the final

TORC result (red circles), was cut in half with respect to

the red (middle) dashed line. Finally, we observed that the

〈σ 2〉 of the final dynamic-ripple H (blue dots), each point of

which results from the normalized product of two individual

measurements, was typically similar to that of the measured

cross-sections alone. Therefore, its relation to r̄ was similar

to the black (lower-most) dashed line, albeit with quite a

bit of scatter. Overall, these properties conspired to produce

SNR’s that were, on average, a factor of 5 lower in the TORC

measurements than in the dynamic-ripple measurements, and

an additional factor of 2 lower in the STWN measurements.

For each stimulus type, the average spike rate r̄ observed

across neurons ranged over roughly two orders of magnitude.

Fig. 7C shows that the value of r̄ is partially predicted by the

STRF power P, in that r̄ , and more strictly its lower bound,

tends to grow by the square-root of P (the black line on this
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log-log plot has a slope of 1/2). A square-root relationship

is expected from the linear response model followed by rec-

tification: Generally speaking, STRFs (and H’s) with higher

magnitudes result in spike rates with proportionally stronger

modulations, which, since the spike rate must be positive, re-

sult in proportionally higher r̄ ′s; meanwhile, P grows as the

square of the STRF magnitudes. Since r̄ translates linearly

into variance, this implies that STRFs with higher average

power P, although associated with higher absolute levels of

variability, have the potential to achieve higher SNRs; and

this potential is realized in those neurons with the lowest r̄

allowed for a given P. Note that the data from all stimulus

types overlap, reinforcing the idea that r̄ is not significantly

affected by stimulus type.

In summary, the ingredients of SNR are of two largely

independent varieties: properties of the stimulus and proper-

ties of the auditory system. The key stimulus properties boil

down to the power in each spectrotemporal modulation fre-

quency a2, to which the SNR is inversely proportional, and

the number of stimulus-response pairs used to measure each

point of the H (including n, the number of periods of each

stimulus), to which SNR is proportional. The system proper-

ties reduce to the STRF power P and the average spike rate

r̄ , to which the SNR is proportional and inversely propor-

tional, respectively. Furthermore, r̄ can be seen as the sum of

two positive-valued components. One is proportional to the

square-root of P, as predicted by a linear-plus-rectification

response model. The other not obviously related to the STRF,

and represents an additional source of variability that varies

in strength from neuron to neuron. The net result is that an

increase in P serves to increase the SNR, while, for a given

P, an increase r̄ counteracts this effect.

3.3.3. Sufficiency and error dependence of the

SVD-based approximations.

In Section 3.2, the SVD approximations of STRFs measured

with different stimulus types were found to be highly similar

when SNRcor (which reflects the level of measurement error)

was adequate in both measurements. The stimulus depen-

dence of SNRcor was then analyzed in detail in Section 3.3.1.

In this section, we further examine how the SVD approxima-

tions are influenced by SNRcor. Primarily, we are concerned

with the extent to which measurement errors may prevent

the SVD from resolving features of the “true” (error-free)

STRF.

For this purpose, it would be useful to know the proportion

of the true STRF’s power lost from an SVD approximation of

the measurement. Unfortunately, in the presence of measure-

ment error, this quantity is not precisely knowable. One way

to estimate it is to compute the proportion of the STRF mea-

surement’s power lost from an SVD approximation, which

we call αSVD (Depireux et al., 2001). In total, we will con-

sider α
(1)
SVD, α

(2)
SVD, and α

(QS)
SVD , which speak to the sufficiency

of the rank-1, rank-2, and quadrant-separable approxima-

tions, respectively. One obvious disadvantage of αSVD is that

it is inflated in the presence of measurement errors (which

comprise much of the measurement’s lost power). This is

evident in Fig. 8A through C, where α
(1)
SVD (A), α

(2)
SVD (B), and

α
(QS)
SVD (C) are plotted versus SNRcor for all TORC and STWN

STRFs (recall that SNRcor is unreliable for the dynamic-

ripple STRFs). The influence of SNRcor on αSVD clearly

persists up to high SNRcor’s.

We reduced the dependence of αSVD on the error level

by removing the effect of the non-systematic errors (see

Methods). The improved measure, βSVD is a more accu-

rate gauge of the proportion of lost STRF power, especially

when the systematic errors are small (e.g., in the TORC mea-

surements). In theory, βSVD should be more tolerant than a

αSVD to changes in SNR, and αSVD should converge down to

βSVD with increasing SNR. These properties are verified in

Fig. 8D through F, where βSVD (red circles) and αSVD (back

dots) are plotted versus SNR for the TORC measurements

(the only caveat is that at very low SNRs, βSVD becomes

unstable). It is concluded (with additional support from our

simulations) that at moderate to high SNRs, the effect of

non-systematic error is accurately removed in the computa-

tion of βSVD Therefore, βSVD estimates the proportion of the

systematic part of the STRF measurement relegated to the

SVD remainder, and better reflects the true STRF’s struc-

ture. To be conservative, we will consider βSVD only in those

measurements with SNR’s over 1.5.

The relationship between βSVD and SNRcor for the 82

TORC measurements meeting this criterion is plotted in

Fig. 8G through I. The blue +’s and red x’s denote the

50 and 31 measurements optimally approximated by rank-1

and rank-2 matrices, respectively (the lone rank-3 approx-

imation is not shown). At moderate to high SNRcor’s (e.g.,

above 2), the βSVD distributions are only weakly dependent

on SNRcor. In other words, the SVD approximations are only

weakly affected by measurement errors, and therefore βSVD

should more accurately reflect the structure of the true STRF.

Therefore, the typical range of β
(1)
SVD (8G), roughly from 3%

to 25%, indicates many STRFs are poorly described by rank-

1 approximations. It is reassuring that the lower and upper

portions of this range are dominated by the measurements

optimally approximated by rank-1 and rank-2 matrices, re-

spectively. However, the boundary between the two popu-

lations progressively shifts from about 5% at the highest

SNRcor to nearly 15% at the lowest SNRcor. This reflects the

fact that the optimal trade-off between error reduction and

signal loss afforded by the SVD approximations gets worse

as SNRcor decreases; at higher error levels, the true STRF

must be further from being rank-1 before the second sepa-
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Fig. 8 Sufficiency of the SVD

approximations as a function of

the error level. A–C: αSVD, the

proportion of the STRF

measurement’s power lost from

the SVD approximations, for all

TORC (black o’s) and STWN

(red x’s) measurements. D–F:

βSVD (red o’s) and αSVD (back

dots) versus SNR for all TORC

measurements. βSVD estimates

the proportion of the systematic

part of the STRF measurement

relegated to the SVD remainder,

and therefore better reflects the

true STRF’s structure. At very

low SNRs, βSVD is unstable

(some points lay beyond the axis

limits). G–I: βSVD versus

SNRcor for all TORC

measurements with SNR above

1.5. Black +’s and red x’s

denote those measurements

optimally approximated by

rank-1 (separable) and rank-2

(non-separable) matrices,

respectively. With β
(1)
SVD (G)

typically as high as 25%, many

STRFs are not well described by

the rank-1 approximations. In

contrast, β
(2)
SVD (H) and β

(QS)
SVD (I)

are typically well below 10%,

indicating that all STRFs are

well described by both the

rank-2 and quadrant-separable

approximations. The unusually

high βSVD’s at the lowest

SNRcor’s indicates that the SVD

is unable to resolve the structure

of some non-separable STRFs

with high error levels. J–L:

α̂SVD, computed as αSVD but

from the quadrant-separable (J,

K) and the rank-2 (L)

approximations of the TORC

(black o’s) and STWN (red x’s)

measurements. M–O: As

expected, the α̂SVD’s are well

matched to the corresponding to

βSVD’s in those TORC

measurements with SNRcor

above 2
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rable matrix of the SVD becomes dominantly signal and is

included in the approximation.

Over this same range of suitably high SNRcor’s, β
(2)
SVD (H)

and β
(QS)
SVD (I) are universally bound below 10%, with averages

of 3.1% and 3.6%, respectively. That is, the true STRFs

are almost completely contained within both the rank-2 and

quadrant-separable approximations of TORC measurements

with suitably low error levels. Indeed, as was illustrated in

Section 3.1.4, the two approximations were usually very

similar.

When SNRcor is low, a handful of measurements have con-

spicuously high values of β
(1)
SVD (G), β

(2)
SVD (H), or β

(QS)
SVD (I).

There are three plausible reasons for this: (1) The systematic

errors in these measurements are unusually large (thus inflat-

ing βSVD); (2) The true STRFs are actually poorly described

by these SVD approximations, and coincidentally the mea-

surements have a high error level; (3) Because of the high

error level, the SVD of these STRFs shapes is being dis-

rupted, and more STRF power is being lost than otherwise

would be. We favor the last reason, since (despite the error

level) most of these STRFs appear to have non-separable

shapes. Such STRFs are are also found at higher SNRcor’s,

but these high values of β
(2)
SVD and β

(QS)
SVD are not found at

higher SNRcor’s.

Although they are needed to fully describe many STRFs,

the trade-off to using the rank-2 or quadrant-separable ap-

proximations instead of the rank-1 approximations is that

they retain a higher proportion of the measurement error.

This was earlier indicated in Fig. 5A and B. Similarly, for

the TORC measurements, we estimated (using the bootstrap

method) that the SNR of the rank-1 approximation is on

average 3.4±0.6 times higher than that of the raw measure-

ment, while for the rank-2 and quadrant-separable approx-

imations, the average gain in SNR is reduced to 2.0 ± 0.6

and 1.9 ± 0.6, respectively. Note that these values are com-

parable to the SNRcor gain values g employed in Section

3.2. Although the rank-1 approximations have higher SNRs,

which means that they remove proportionally more noise

than signal from the measurements, the proportion of signal

removed (as gauged by βSVD) is unacceptably high for many

STRFs.

In order to cross-check the results obtained from βSVD,

we recomputed αSVD from the SVD approximations (de-

noted by α̂SVD), rather than from the raw measurements.

For example, if the quadrant-separable approximation is in-

deed a complete and relatively error-free version of the true

STRF, then computing α̂(1)
SVD

and α̂
(2)
SVD from it should yield

results close to the corresponding β
(1)
SVD and β

(2)
SVD (from the

raw STRF measurement). Similarly, computing α̂
(QS)
SVD from

the the rank-2 approximation should yield a result close

to β
(QS)
SVD . These α̂SVD′s are plotted in Fig. 8J through L

versus SNRcor for both the TORC and STWN measure-

ments. With respect to the original αSVD’s in 8A through

C, they are more tolerant to changes in SNRcor over a wider

range of SNRcor’s. When SNRcor is above 2, these α̂SVD′s
are indeed closely matched to the corresponding βSVD′s,

as Fig. 8M through O attest. When SNRcor. drops below I,

the α̂SVD′s rapidly increase and lose their correspondence

with βSVD presumably because the assumption that the SVD

approximations are complete and error-free rapidly breaks

down.

In this section, we have concentrated on the TORC

measurements. They are ideal in that they produced low

levels of systematic error and a wide range of SNRcor’s. The

STWN measurements were less than ideal in that SNRcor

was limited below 2. In Section 3.3.1, this was found to be

chiefly due to high levels of stimulus-induced systematic

error; indeed βSVD was grossly inflated in these measure-

ments, rendering it no more illuminating than αSVD (not

shown). Nevertheless, over the range of SNRcor that they can

be compared, the distributions of αSVD in Fig. 8A through C

and α̂SVD in J through L were very similar for the STWN and

TORC measurements. Moreover, from Section 3.2, the SVD

approximations of STWN and TORC measurements were

increasingly well matched as the error level dropped. There-

fore, the available evidence supports the hypothesis that, for

a given level of measurement error, the STWN results and

TORC results are equivalent, but the STWN results are much

more error prone. The dynamic-ripple results were less than

ideal in that STRFDR is quadrant-separable by construction.

Additionally, it contains non-uniformly distributed errors

(Depireux et al., 2001 ), which complicates both the SVD

(Stewart, 1993) and the interpretation of SNRcor. With this

caveat, we note that the distribution (although not the range)

of β
(1)
SVD was skewed toward somewhat higher values in the

dynamic-ripple measurements. For instance, β
(1)
SVD exceeded

10% in 61% of STRFDR versus 45% of STRFTORC’s. Still,

β
(2)
SVD was below 5% in 91% of STRFDR’s; the indications

were that most STRFDR’s were still well described by rank-2

approximations.

In summary, the optimal SVD approximation of an STRF

measurement with a sufficiently low error level (e.g., SNRcor

above 2) does well describe the STRF, in that it preserves at

least 90% of the STRF’s power. Therefore, we can be confi-

dent that if the SVD approximations of two STRF measure-

ments are well matched, so are the corresponding STRFs.

However, when there exist higher levels of measurement

error, this is no longer guaranteed to be the case, partic-

ularly for STRFs that contain a significant non-separable

component. Overall, around 60% of the TORC measure-

ments were well described as being separable. The rest were

better served by both rank-2 and quadrant-separable approx-

imations, which were essentially identical. To the extent that
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they could be compared, the STWN and dynamic-ripple mea-

surements produced similar results.

4. Discussion

A pseudo-random exploration of the space of spectrotem-

poral patterns, fostered by the traditional methodology of

reverse correlation, has been the basis of most previous STRF

measurements. Instead, we applied a deterministic and an-

alytical reformulation of reverse correlation, which is based

upon the Fourier-series description of dynamic spectra. One

advantage of this approach concerns experimental optimiza-

tion: It enables us to restrict the stimulus space to a minimal,

discrete set of spectrotemporal patterns (the spectrotemporal

modulation frequencies, presented simultaneously or indi-

vidually). It also facilitates our understanding of measure-

ment errors and their various stimulus- and response-induced

components. In sum, it enables us to design stimuli that are

efficient and effective, while taking into account general

knowledge of the STRF structure, response nonlinearity and

variability, and specific laboratory constraints. A second

advantage concerns experimental evaluation: Since any

given dynamic spectrum can be described by its Fourier

series, we can understand and quantify the performance of

different stimulation methods, even if they were devised

within different frameworks. Both of these advantages have

been demonstrated in this study, where we have measured

STRFs of AI neurons with three very different types of

stimuli.

We now discuss the major empirical results of this study.

4.1. Linearity

The most striking finding is that when the STRF of an AI neu-

ron is successfully measured with different types of stimuli,

the results are very similar. The STRFs themselves exhibit

a high degree of richness and diversity across neurons. The

three types of stimuli used, Dynamic Ripples, TORCs, and

STWN differ greatly in their spectrotemporal characteris-

tics and statistics (c.f. Fig. 1, and top panels in 2A, B, C),

and indeed they sound quite distinct from one another. Great

differences even exist between stimuli of a given type (ex-

cept for STWNs, which all sound noise-like). That STRFs

measured from such widely different stimuli are so simi-

lar speaks to the significance and robustness of the linearity

of neurons’ responses with respect to the dynamic spectra

of stimuli. Strong nonlinear system behavior would almost

surely interfere with the STRF measurements, not allowing

the STRFs generated from such different stimuli to have

such large correlation coefficients (except trivial cases such

as static nonlinearities, e.g., rectification). The correlation

coefficients are especially large considering that the STRF

measurements contain large low-power regions (error-prone

even after the SVD), and furthermore compared measure-

ments were often made over an hour apart.

4.2. Efficacy of the stimuli

Although, when successful, they lead to very similar STRF

measurements, the three types of stimuli differ in their rates

of success. Success is achieved when the STRF measurement

contains sufficiently low levels of both non-systematic and

systematic errors, reflected by the measures of SNR (using

only non-systematic error) and SNRcor (including systematic

error). Non-systematic errors, caused by response variability,

are reduced when the modulations in the stimulus are more

powerful (evoking stronger modulations in the response rel-

ative to the average spike rate), and also by averaging the

results from stimuli with identical spectrotemporal statistics.

Systematic errors, caused when multiple stimulus compo-

nents evoke interfering response components (either linearly

or nonlinearly), are reduced by careful stimulus design, or by

averaging the results from stimuli with identical spectrotem-

poral statistics (but different individual characteristics). Note

that all of the stimulus types used had approximately the same

total presentation duration.

On balance, the stimuli that gave the best results were

TORCs, which benefitted from careful stimulus design and

relatively strong responses, due to the restricted number of

spectrotemporal modulation frequencies in each stimulus.

As a result, we have noted that usable STRF measurements

could have been obtained after presenting one sweep of each

TORC stimulus (taking about 3 min), a fact that we intend

to exploit in the future. STWN, while strongly motivated by

the traditional reverse correlation methodology, gave STRFs

with substantially more systematic error than TORCs. While

both stimuli are capable of giving STRFs with high SNR, the

STWN results in substantially poorer SNRcor. This is most

cleanly seen by comparing figure panels 6A and 6D: both

stimulus types give STRFs with SNR as high as 30, but

STWN generated STRFs have SNRcor that saturate below

2, while TORC generated STRFs have SNRcor saturating at

substantially higher values.

Although the dynamic-ripple stimuli produce the most

reliable results (highest SNR), they suffered a fundamental

flaw: Too many stimuli were required to measure the full H

(and hence its STRF), and so measurements were restricted

a subset of stimuli required assuming the H is quadrant-

separable. This is problematic for two main reasons. First,

it makes it impossible to assess the quadrant-separability

assumption directly. Although quadrant-separability holds

in (ketamine-anesthetized) AI, there may be other neuronal

populations or experimental conditions for which it doesn’t.

Second, the full H measurement is a more complex (non-
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linear) function of the individual stimulus-response relation-

ships. This complicates the evaluation of measurement er-

rors, and thus blurs the distinction between neural function-

ality and methodological artifact. Indeed, the dynamic-ripple

results had a few subtle idiosyncrasies, including more non-

separable STRFs, and SNRcor’s poorly correlated with other

assays of measurement errors (SNR) and STRF structure

(αSVD, βSVD). However, since the measurements are so reli-

able, it may be feasible to sacrifice some SNR by reducing

the number stimulus repetitions in order to present all stimuli

required to directly measure the full H (Versnel et al., 2002).

Finally, we note that the TORC approach is not limited

to the particular stimuli used in this study. Any combination

of spectrotemporal modulation frequencies could exist in

each stimulus, provided that they are temporally orthogonal.

Therefore one can produce “super” TORCs, using fewer

(but longer-duration) stimuli, each of which contains many

spectrotemporal modulation frequencies (Klein et al., 2000).

These stimuli are more noise like, but benefit from a lack of

stimulus-induced systematic measurement errors in contrast

to the STWN stimuli. We are currently investigating the

effectiveness of such stimuli.

4.3. The SVD: Error reduction and signal loss

In this paper, we used the SVD to reduce errors in the STRF

measurements. The SVD is ideally suited for use with the

STRFs measured here, because their SVD is strongly dom-

inated by the lowest order terms; that is, they are well ap-

proximated by a small number of fully separable (rank-1)

matrices. When such STRFs are perturbed by unstructured

errors, the SVD is still strongly dominated by the lowest order

terms, and has a well-understood contribution from higher

order terms. The boundary between the low order (high sig-

nal, low error) and high order (low signal, high error) terms

is not known a priori, but is well understood from signal de-

tection theory. The upshot is that truncating the SVD series

of an STRF at low order is an efficient and well-understood

way of increasing SNR while minimizing loss of signal.

Of the STRF measurements that were suitably error-free,

more than half were not only optimally approximated but

well approximated (as reflected by βSVD) by fully separable

(rank-1) matrices. These approximations reduced the error

power by at least a factor of 3 while sacrificing less than a

tenth of the signal power. The rest of the STRFs required

two SVD terms (rank-2 approximations); using only one

SVD term (rank-1) would give an incomplete view of the

system functionality due to excessive signal loss. The rank-2

approximations have somewhat diminished error reduction,

down to a factor of 2. Alternatively, the quadrants of the

H could be approximated by fully separable matrices, pro-

ducing results very similar to the rank-2 approximations.

However, if the error level was too high (e.g., SNRcor be-

low 1), the optimal SVD approximations no longer reliably

achieved both significant error reduction and adequate signal

retention. The error level should always be considered when

interpreting the results of the SVD.

4.4. The SVD: Functional implications

It is intriguing that STRFs are equally well described by

rank-2 and quadrant-separable approximations (see Fig. 8H

and I). These properties, each special in their own right, do

not necessarily imply one another. It turns out that if an

STRF is both rank-2 and quadrant-separable, special phase

relationships must exist, in either the temporal or spectral

dimensions (or both), between the separable matrices of the

SVD or equivalently the quadrants of the H. It has been

demonstrated (Simon et al., subm) that AI STRFs possess

this property in the temporal dimension (but not necessarily

the spectral). This itself has strong theoretical implications

for the network connectivity of those neurons.

4.5. The error measures

We found that incorporating systematic errors (otherwise

known as bias) into our consideration of the total measure-

ment error level is absolutely crucial for aligning the results

from different types of stimuli, and thus understanding the

structure of an STRF measurement (and the resulting SVD

approximations, correlation coefficients, etc.) independent of

stimulus type. We used and analyzed two different measures

of error: SNR and SNRcor. SNR is the more classical but more

limited of the two; SNR is the ratio of the measured STRF

power to the measured STRF variance (square of the standard

error). This definition of SNR (and its associated measure of

error) is not able to incorporate systematic error, however. In

contrast, SNRcor does incorporate systematic error. SNRcor is

the ratio of measured STRF power to measured non-STRF

power (e.g., the power in the spectrotemporal region where

the underlying STRF is expected to have near-zero power).

One problem with SNRcor is that it requires assumptions

about the structure of the errors and the STRF, which may

not apply to all STRFs and stimuli. In particular, we assumed

(based primarily on observations) that errors are evenly dis-

tributed over the measurements, and that the STRF power is

near zero for τ above 125 ms (using negative τ ’s is no dif-

ferent since the stimuli were periodic). The usefulness and

predictability of SNRcor demonstrated that these assumptions

largely held for the TORC and STWN measurements. This

was not the case for the dynamic-ripple measurements, how-

ever, likely due to a combination of response nonlinearity

and the nonlinearity of the STRF measurement itself, which

distributes the errors non-uniformly in the spectrotemporal

(and modulation frequency) domain. It will be even more

useful in the future to devise measures of the systematic er-
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rors that are less dependent on the structure of the STRF

measurement.

4.6. Response variability

In our investigation of non-systematic errors in the STRF

measurements, several observations concerning the variabil-

ity of AI responses have interesting functional implications.

For example, the fact that the response variance could be

linearly predicted from the average spike rate in a nearly

stimulus-independent manner points to a Poisson-like spike

generation mechanism, which has been vigorously investi-

gated in the visual system (Shadlen and Newsome, 1998).

Additionally, we found (see Fig. 7C) that while neurons

with higher-power STRFs (higher P) tended to fire more

spikes (higher r̄ , as might be expected from a linear-plus-

rectification response model), a range of average spike rates

were still observed for any given STRF power. Neurons

with the lowest spike rates (for a given P) corresponded to

the highest-SNR STRFs, and had the sharpest, most phase-

locked responses of the population (not shown). Neurons

with the highest spike rates often had seemingly random

responses and poor-quality STRF measurements. We will

consider the origins and implications of such behavior more

carefully in future studies.

4.7. Related studies

Other recent studies have also addressed the similarity of

STRF measurements with different types of stimuli, albeit

in different auditory loci. Escabı́ and Schreiner (Escabı́ and

Schreiner, 2002) measured STRFs in cat inferior colliculus

(IC) with stochastic stimuli that in some respects resem-

ble the dynamic-ripple stimuli and STWN used here. While

their results largely agree with ours, they singled out a small

group of neurons that either exhibited extremely selective

and phase-locked responses to the dynamic-ripple-like stim-

uli but were unresponsive to the STNW-like stimuli (type-II

neurons), or exhibited non-phase-locked nonlinear responses

to both stimuli (type-III neurons). As discussed above, in AI

we also find that neurons’ responses can be extremely sparse

and yet yield significant STRFs (like their type-II neurons).

However, we did not observe two distinct populations of

neurons; rather, the degree of phase locking in response to

all stimuli ranged over a continuum. In addition, some AI

neurons exhibited significant spike rates but poor STRF mea-

surements (like their type-III neurons). Although we have not

yet found a nonlinear relationship between these responses

and the dynamic spectra of the stimuli, we can not yet rule out

that possibility. In another study, Theunissen et. al. (Theunis-

sen et al., 2000) measured STRFs in the zebra finch auditory

forebrain in response to random tone sequences and bird

songs, and used the STRF from one stimulus to predict the

responses to the other. They found small but significant dif-

ferences in the cross-predictability of the responses, which

was poor overall. These differences either reflect differences

in the STRF-measurement method (which was implemented

as a nonlinear function of the responses), or more probably

reflect a higher degree of nonlinearity in the responses of

neurons in the avian auditory forebrain with respect to mam-

malian AI (but see (Schafer et al., 1992), who reported a

higher degree of linearity and predictability).

4.8. Nonlinearity

This article has been concerned with nonlinearities only in-

sofar as they interfere with the STRF measurement, and

methods were invoked to reduce this interference (e.g., the

inverse-repeat method). Other methods are also available,

such as more carefully choosing the temporal modulation

frequencies in the TORCs, so that the nonlinear distortion

products are also orthogonal to the linear response (a la (Vic-

tor and Shapley, 1980)). That is not so say that nonlinearities

form an insignificant part of the AI response, merely that lin-

earity is important, strong, and robust to changing stimulus

conditions, and therefore forms an sturdy foundation upon

which the study of auditory cortical processing can be based,

even in its nonlinear aspects.

We are currently investigating several anticipated nonlin-

earities. These include the nonlinear transformation of re-

sponses occurs at the thalamo-cortical depressing synapse,

which contributes a rapid adaptation of onset responses to-

wards a steady state within a few tens of milliseconds (Den-

ham, 2001; Kowalski et al., 1996a; Phillips et al., 2002;

Heil, 1997) (we considered only the steady-state response in

this study). Additionally, we have observed that when stim-

uli contain both low and high modulation frequencies, Al

responses can phase lock to much higher frequencies than

previously expected (e.g., 100–200 Hz) (Elhilali et al., 2004).

Similar effects have been observed in the visual system (Bair

and Koch, 1996; Reid et al., 1992; Chance et al., 1998). In

our stimuli, these high modulation frequencies result from

interactions between unresolved AM tones (that fall within

the bandwidth of the same cochlear filter), even though they

were not part of the target dynamic spectrum (and therefore

did not contribute to the STRF measurement). A third nonlin-

earity is the potential dependence of responses on the band-

width of the stimulus. Broadband sustained stimuli (such as

the ripples, TORCs, and STWN) likely bias cortical cells

in a manner different from that of narrowband or transient

stimuli such as tones and clicks. Consequently, predicting de-

tails of tone and click responses from the STRF may prove

sometimes problematic (Kowalski et al., 1996b; Theunissen

et al., 2000). However, this nonlinearity is irrelevant when

the focus is on comparing STRFs derived from similarly

broadband and sustained stimuli, as is the case in this paper.

Springer



J Comput Neurosci () :

Yet another important source of nonlinear effects are static

nonlinearities (e.g., rectification, response saturation) with

respect to stimulus level and contrast. By fixing stimulus

contrast at near maximum (90%), and the absolute level at

an intermediate value (e.g., based on the rate-level function

Kowalski et al., 1996b we have managed to obtain reliable

reproducible results from a sizable proportion of cells in Al.

Finally, there are fundamental nonlinearities that we have

not yet convincingly observed in Al responses, such as units

analogous to the complex cells of the visual cortex (Valois

and Valois, 1990). Nevertheless, it is likely that a significant

proportion of the very low SNR STRFs observed in this study

belong to cells that would be classified as nonlinear in that

they either phase-lock poorly to our stimuli or respond to

more complex patterns that we have not been able to probe

(e.g., see Escabı́ and Schreiner, 2002.
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