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The phasic firing of dopamine neurons has been theorized to encode a
reward-prediction error as formalized by the temporal-difference (TD)
algorithm in reinforcement learning. Most TD models of dopamine have
assumed a stimulus representation, known as the complete serial com-
pound, in which each moment in a trial is distinctly represented. We
introduce a more realistic temporal stimulus representation for the TD
model. In our model, all external stimuli, including rewards, spawn a
series of internal microstimuli, which grow weaker and more diffuse
over time. These microstimuli are used by the TD learning algorithm
to generate predictions of future reward. This new stimulus represen-
tation injects temporal generalization into the TD model and enhances
correspondence between model and data in several experiments, includ-
ing those when rewards are omitted or received early. This improved
fit mostly derives from the absence of large negative errors in the new
model, suggesting that dopamine alone can encode the full range of TD
errors in these situations.

1 Introduction

For any organism, learning to find good things (rewards) while avoid-
ing bad things (punishers) is a key mechanism for survival. In the mam-
malian brain, much reward-related information passes through dopamin-
ergic pathways. For example, dopamine neurons produce response bursts
to unexpected rewards, as well as to cues that reliably predict upcoming
rewards. This pattern of phasic firing has been interpreted as encoding a
reward-prediction error corresponding to the temporal-difference (TD) er-
ror prominent in reinforcement-learning algorithms (Montague, Dayan, &
Sejnowski, 1996; Schultz, Dayan, & Montague, 1997). This error, in turn, is
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Figure 1: Summary of empirical data and simulation results. Empirical data
from monkey dopamine neurons (left column), simulation results from the TD
model with complete-serial-compound stimulus representation (middle col-
umn), and results from our new TD model with microstimuli (right column).
From top to bottom, data and simulations are presented for unpredicted re-
wards, predicted rewards, and the omission of predicted rewards. See text
for full simulation details. (Data are from Schultz et al., 1997. Reprinted with
permission.) In empirical data figures, CS = conditioned, reward-predicting
stimulus and R = reward; dots represent firing of individual neurons; and the
bars are a histogram of that firing.

important for learning predictions of future rewards and selecting appro-
priate responses. Though the exact role of dopamine in reward is still de-
bated (for an alternative viewpoint, see Berridge, 2007), the reinforcement-
learning model of dopaminergic function has helped yield numerous in-
sights into learning and decision making (Montague, 2006; Montague, Hy-
man, & Cohen, 2004) as well as disorders like Parkinson’s disease (Frank,
Seeberger, & O’Reilly, 2004; Shohamy, Myers, Grossman, Sage, & Gluck,
2005) and drug addiction (Redish, 2004; Redish, Jensen, Johnson, & Kurth-
Nelson, 2007). In this letter, we extend these TD models to include a more re-
alistic temporal stimulus representation. This new representation suggests
how temporal generalization should occur, thereby generating testable em-
pirical predictions as well as considerably improving the TD model’s fit
with existent dopamine data.

The hypothesis that midbrain dopamine neurons encode a reward-
prediction or TD error was inspired by three key properties of these
neurons. Figure 1 illustrates these properties of dopamine neurons along
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with corresponding simulations from the basic TD model and our new
microstimulus TD model. First, following unpredicted rewards, dopamine
neurons show a burst of responding, and there is a strong, positive
reward-prediction error in the models (top row). Second, when a neutral
cue reliably predicts the upcoming reward, the increased firing after the
now-expected reward gradually disappears, and instead, a response burst
begins to follow the earliest cue for that reward (middle row). Third, after
learning, if an expected reward is omitted, there is a decrease in the firing
rates of the dopamine neurons and a corresponding negative TD error
in the models around the time when reward would ordinarily have been
received (bottom row; data are from Schultz et al., 1997).

All TD models of dopamine work by assuming that the system learns
a value for each time step in a trial. These TD models attempt to learn an
estimate of the true value V∗, which is equal to the expected cumulative
sum of discounted future reward:

V∗
t = E

[ ∞
∑

k=1

γ k−1rt+k

]

, (1.1)

where rt is the reward at time step t and γ is a discount factor that weights
immediate rewards more heavily than distant rewards. This ideal value is
the cumulative sum of all future discounted rewards and thus serves as
a prediction of expected future reward at a given time point. With per-
fect knowledge of the environment, including state transition probabilities
and the reward function, the value could be calculated directly through
dynamic programming techniques (Sutton & Barto, 1998). In the absence
of such information, however, the value must be estimated. One method
for estimating the value is the TD algorithm, whereby an error term δt is
calculated based on the temporal difference of the current discounted value
(γ Vt) and the previous value (Vt−1), taking into account the reward received
along the way (rt):

δt = rt + γ Vt − Vt−1. (1.2)

A portion of this reward-prediction or TD error is used to update the weights
that determine the current estimated value. This TD error is the component
of the reinforcement-learning models that is thought to be encoded by the
phasic firing of dopamine neurons. In the basic TD model, the stimulus
is represented as a complete serial compound, which is a version of a
tapped delay line. This form of temporal representation assumes that each
cue initiates a cascade in which all subsequent time steps in a trial are
represented as completely distinct from neighboring time steps. That is,
the system is assumed to know exactly how many time steps ago the cue
started—an idea adapted from earlier attempts to model rabbit eyeblink
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conditioning using TD learning (Desmond & Moore, 1988; Sutton & Barto,
1981, 1990).

Though capturing a wide range of dopamine neuron behavior, these
reinforcement-learning models have not dealt adequately with situations
when reward timing is varied. The case of reward omission illustrates this
problem. After learning, if a reward is omitted, then there is a small but
extended reduction in firing rate around the time reward would ordinar-
ily have been delivered (see Figure 1). The complete-serial-compound TD
model indeed predicts a negative error at the time reward was expected, but
this error occurs exactly at that usual time of reward and is even larger than
the positive error earlier in the trial. In fact, the actual decrease in dopamin-
ergic firing covers a greater temporal extent and a smaller maximal decrease
than the corresponding TD error (Schultz et al., 1997). The durations of these
pauses in dopamine activity are modulated by the magnitude of negative
reward-prediction error, a recent observation that eludes the explanatory
net of all previous TD models (Bayer, Lau, & Glimcher, 2007). A similar
problem arises for this basic TD model when an expected reward is re-
ceived early (Hollerman & Schultz, 1998; see Figure 7 below). Under those
conditions, dopamine neurons burst following the early reward and show
little change in firing rates around the time reward is ordinarily received.
The basic TD model does generate a positive TD error at the time of early
reward, but also produces a large negative error exactly at the usual time
of reward.

These discrepancies between model and data can mostly be attributed
to the choice of the complete serial compound as the temporal stimulus
representation in the basic TD model. Given the noisy time perception ob-
served in animals during conditioning (Gibbon, 1977; Lejeune & Wearden,
2006; Smith, 1968; Staddon & Cerutti, 2003), this assumption of a perfect
clock is too strong. From the initial publications that discussed the relation-
ship between dopamine and TD learning (Montague et al., 1996; Schultz
et al., 1997), the complete serial compound was recognized as unrealistic
but has yet to be adequately replaced. Several attempts have been made
to extend or modify the TD model to contend with these problematic neu-
rophysiological data, including incorporating resets of the delay line (Suri
& Schultz, 1998, 1999), devising alternative learning rules (Brown, Bullock,
& Grossberg, 1999; O’Reilly, Frank, Hazy, & Watz, 2007), and switching to
partially observable, semi-Markov dynamics (Daw, Courville, & Touretzky,
2006).

In this letter, we explore the computational effects of relaxing certain
simplifying assumptions from the basic TD model. Most notably, we pro-
pose an alternative temporal stimulus representation that uses the same
learning rule as the basic TD model above, but replaces the complete serial
compound with a coarsely coded memory trace. In addition, the reward
is treated as a detectable stimulus, with properties similar to other cues
(cf. Daw et al., 2006). We show how these two simple refinements to the
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Figure 2: Stimulus encoding by the microstimuli. From left to right, the stimu-
lus trace, basis functions, and resulting microstimulus levels are displayed. The
decaying stimulus trace is approximated by a series of basis functions whose
receptive fields are evenly spread across the possible trace height. The decreas-
ing, nonlinear time course of the trace results in microstimuli that get shorter
and wider with time. For illustrative purposes, a single basis function (middle)
and approximately corresponding microstimulus (right) have been darkened.

basic TD model produce a more realistic computational framework that
accords better with the empirical data.

2 The Microstimulus TD Model

2.1 Stimulus Representation. The primary innovation of our model is
the introduction of a more sophisticated temporal stimulus representation
for use with the TD learning rule. Figure 2 depicts how this stimulus repre-
sentation is constructed. In the model, the onset of any stimulus, including
sensory cues and rewards, is assumed to leave behind a decaying memory
trace of that stimulus (left panel). The trace is then encoded by a series of
temporal basis functions or receptive fields evenly spaced along the trace
height (middle panel). Each basis function encodes how close the current
trace is to the center of that receptive field. This proximity measure be-
comes a feature or microstimulus, which is then input to the TD learning
algorithm. In effect, the memory trace is not a single, coherent whole, but
is made up of many separate elements with different temporal dynamics.

The right panel of Figure 2 depicts how these microstimulus levels vary
across time as the stimulus trace decays. Each subsequent microstimulus
becomes progressively wider in time and reaches a lower maximal level.
Intuitively, the microstimulus levels represent the degree of confidence that
the memory trace has decayed to a certain height, where those levels are
determined by the centers of the basis functions. As time elapses from
stimulus onset and the memory trace decays, different sets of microstimuli
become more or less active, providing a coarse coding of the trace height.
The number and width of these microstimuli influence the degree to which
discrimination and generalization across the state space (time) occur. The
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temporal stimulus representation in our model is, in effect, a relaxation of
the assumption of perfectly discrete and distinct temporal features in the
complete serial compound. By using overlapping basis functions, we create
more graded temporal features that allow for temporal generalization be-
tween neighboring time points. All stimuli, including rewards, are assumed
to be represented by separate stimulus traces, each with a corresponding
set of microstimuli.

For the basis functions, we chose simple gaussians:

f (y, µ, σ ) =
1

√
2π

exp

(

−
(y − µ)2

2σ 2

)

, (2.1)

where y is the input value (i.e., trace height) with µ the center and σ

the width of each basis function. The basis functions were uniformly dis-
tributed across the height of the memory trace. The selection of the gaussian
as the basis function was likely not strictly necessary for this type of model.
Other functions, including the traces in spectral timing theory (Grossberg
& Schmajuk, 1989) and the behavioral states in the learning to time theory
(LeT; Machado, 1997), may produce similar results. We chose this stimulus
representation for simplicity and ease of calculation. Given the basis func-
tions, the level of the ith microstimulus xt(i), at time t, is determined by the
corresponding trace heights:

xt(i) = f (yt, i/m, σ )yt, (2.2)

where f is the basis function defined above in equation 2.1 and m is the
total number of microstimuli per stimulus. The trace height yt was set to 1
at stimulus onset and decreased exponentially, controlled by a single decay
parameter, which was fixed at 0.985 per time step for all stimuli.

2.2 Learning Algorithm. The model learns through the linear TD(λ)
algorithm(Sutton, 1988). At each time step, the estimated value is deter-
mined by

Vt = wT
t xt =

n
∑

i=1

wt(i)xt(i), (2.3)

where xt is the vector of microstimulus levels xt(i), wt is a corresponding
vector of adjustable weights wt(i), and n is the total number of all micro-
stimuli. The estimated value is constrained to be nonnegative, with
negative values rectified to 0. As in earlier TD models, this estimated value
is compared to the reward received and the preceding estimated value to
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generate a TD error (δt) at each time step (see equation 1.2). This TD error is
then used to update the weight vector based on the following update rule,

wt+1 = wt + αδtet, (2.4)

where α is a step-size parameter and et is a vector of eligibility trace
levels (Sutton & Barto, 1998), which together help determine the speed of
learning. The eligibility traces represent a decaying window of plasticity
during which a microstimulus can be learned about (i.e., its weights can be
adjusted). Each microstimulus has its own corresponding eligibility trace,
which continuously decays, but accumulates whenever that microstimulus
is present,

et+1 = γ λet + xt, (2.5)

where γ is the discount factor as above and λ is a decay parameter that
determines the plasticity window. The earliest TD models of dopamine
all used implicit, one-step eligibility traces (Montague et al., 1996; Schultz
et al., 1997), whereby only weights on stimulus components active on the
previous time step were updated (i.e., effectively λ = 0), though more
recent work has occasionally incorporated multistep (nonzero) eligibility
traces (see Pan, Schmidt, Wickens, & Hyland, 2005).

Our model is completely defined by equations 1.2 and 2.1 to 2.5, the two
memory trace parameters (initial height and decay rate), and five additional
parameters, which were fixed at the following values for all simulations:
λ = 0.95, α = 0.01, γ = 0.98, n = 50, and σ = 0.08. We used this single
set of parameters in an attempt to establish a general correspondence with
available empirical findings rather than conducting a set of curve-fitting
exercises. In all simulations, 20 time steps were interpreted as a unit of
1 s, and an intertrial interval of 500 time steps separated the onsets of
all trials. Preliminary simulations in which we varied these parameters
revealed that the general pattern of simulated outcomes was consistent
across these manipulations.

3 Results

Five experiments were conducted with the model: simple acquisition, re-
ward omission, partial reinforcement, early reward, and multiple cues. All
previous TD models can accommodate the facts of simple acquisition and
partial reinforcement (as does ours; see Figures 1, 3, and 6), but the pre-
vious models have had varying degrees of success with the other three
experiments.
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Figure 3: Simple acquisition simulations. TD error (δ; left column) and value
(right column) at each time step on trials 1, 100, and 1000. A cue occurred at
time 0, and reward consistently followed exactly 1 s (20 time steps) later.

3.1 Simple Acquisition. During simple acquisition, monkeys are pre-
sented with a cue that reliably predicts reward a short time later. At first,
their midbrain dopamine neurons show a phasic burst of firing after the
reward. Once the cue-reward contingency is well learned, these neurons
fire after the earliest cue that predicts reward, but show no deviation from
baseline activity when reward is received. Intermediate stages of learning
show a mixture of these two end points with midsized responding at both
cue onset and reward.

Figure 3 illustrates the behavior of our microstimulus model during
simple acquisition (see also Figure 1). The three rows present different stages
of training, from the first trial (top row) to near-asymptotic performance
after 1000 trials (bottom row). The left column depicts the TD error (δ), and
the right column depicts the estimated value (V). In all simulations, the
cue was presented at time 0, and reward was delivered 1 s later, on time
step 20. At the onset of training, the estimated value was 0, and when the
(unexpected) reward was delivered, there was a large, positive TD error.
Notice how there was a small upward blip in the estimated value after the
reward was received, even on the first trial. This blip is quite informative
as to how our model learns: after the reward was received, there was a
large, positive TD error, and the weights on eligible microstimuli were duly
updated. These microstimuli, however, did not turn off immediately, and
thus, on the very next time step, there was an expectation of reward, and
the estimated value was no longer 0.

In the middle of training (middle row), there was a midsized error at
both cue onset and reward delivery as the model learned a better approxi-
mation to the correct value function (see also Pan et al., 2005, and Figure 8).
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Figure 4: Reward omission simulations. TD error (δ; left column) and value
(right column) at each time step for an omission trial after 1000 trials of training.
A cue occurred at time 0, and reward usually followed exactly 1 s (20 time
steps) later.

Notice how there was little TD error at intermediate time points or any
visible ramp—a point of contention in the literature for both the empirical
data and theoretical models (Fiorillo, Tobler, & Schultz, 2003, 2005; Niv,
Duff, & Dayan, 2005; O’Reilly et al., 2007; Pan et al., 2005). Finally, by the
end of training, the TD error at cue onset remained, but the error at re-
ward delivery had virtually disappeared, though not entirely, as the model
learned to correctly predict the occurrence of reward. This full pattern of
results roughly matches earlier TD models and corresponds nicely with the
empirical data (Schultz et al., 1997; see Figure 1).

3.2 Reward Omission. When a reward is unexpectedly omitted after
training, there is a relatively extended period of depressed dopamine neu-
ron firing on these omission trials around the time reward was ordinarily
received (e.g., Schultz et al., 1997; see Figure 1). Figure 4 depicts results
from the microstimulus TD model in such a reward omission experiment.
Training proceeded as in simple acquisition above, except that on the last
(1000th) trial, the reward was omitted. As before, there was a relatively
large TD error (left panel) at cue onset (time 0), but now there was also
a shallow, persistent negative TD error starting around the time reward
would ordinarily have been delivered (1 s). The maximal extent of this de-
pression was only about 10% as great as the positive TD error at stimulus
onset. This time course of the negative TD error differed considerably from
the complete-serial-compound TD model, in which there was a sharp de-
crease localized to the exact time step when the reward was omitted. In
the microstimulus model, the enhanced temporal stimulus representation
resulted in a shallow, nonlocalized, yet appropriately timed negative TD
error, matching more closely the empirical results from monkeys (Schultz
et al., 1997; see also Bayer et al., 2007). The exact quantitative extent (depth
and length) of this negative prediction error is parameter dependent with,
for example, more numerous or narrower microstimuli producing deeper
and shorter negative prediction errors. The qualitative improvement of the
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Figure 5: Net reward predictions. Estimated value generated individually by
the cue microstimuli (left column), the reward microstimuli (middle column),
and their combination (right column) after 1000 trials of training. Arrows indi-
cate the delivery of the cue or conditioned stimulus (CS) at time 0 and reward
(R) exactly 1 s (20 time steps) later. Note that the estimated value due to the cue
microstimuli is identical to an omission trial and the net estimated value due to
the combination of microstimuli is identical to a rewarded trial.

match to empirical data over the basic TD model, however, is independent
of particular parameter settings.

The value or reward prediction (see Figure 4, right panel, and see
Figure 5) helps explain why the microstimulus model produces this result.
Within a trial, at the moment when the reward was omitted, the estimated
value did not immediately disappear because the cue microstimuli re-
mained active even beyond the time of ordinary reward (cf. Figure 2). This
continued activity of the cue microstimuli resulted in a positive estimated
value on omission trials that persisted past the usual time of reward, and
thus a persistent negative error when no reward was received. Ordinarily,
on rewarded trials, these same cue microstimuli are also active past reward
delivery, but the positive reward prediction thereby generated is countered
by large, negative weights on the reward microstimuli, resulting in no net
value for the time points following reward.

Figure 5 displays this interaction between the values caused by the indi-
vidual stimuli (cues and rewards). After training, the cue alone (right panel)
produced a positive value that extended past the usual time of reward; the
reward alone (middle panel), however, produced a negative value that com-
bined with the cue-induced value to produce the net estimated value (right
panel) on rewarded trials. When reward was omitted (see Figure 4), how-
ever, the balancing force of the reward microstimuli was absent, and the
persistent cue microstimuli generated an unimpeded positive value, which
gradually declined as the cue microstimuli fell to 0. The decrease in esti-
mated value was small at each time step, repeatedly producing a small neg-
ative prediction error until the reward prediction for that trial disappeared.
With our microstimulus model, no large negative errors occurred with re-
ward omission, nor would any need to be encoded by dopamine neurons.

3.3 Partial Reinforcement. In an experiment with rewards omitted
more frequently, in a partial-reinforcement schedule, a similar pattern of
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Figure 6: Partial reinforcement simulations. Empirical data from a representa-
tive monkey dopamine neuron (left column) and simulation results from the
microstimulus TD model (right two columns). The empirical data and the first
column of simulation results (middle column) show rewarded trials, and the
final column shows simulation results for omission trials. Each row depicts a
different probability of reward; from top to bottom, these probabilities were
0.00, 0.25, 0.50, 0.75, and 1.00. In the simulations, a cue occurred at 0 s, and
reward sometimes followed exactly 1 s (20 time steps) later. Simulated results
show the TD error (δ) and are drawn from a single reward or omission trial pre-
sented after 500 trials of training with the corresponding probability of reward.
(Data are from Fiorillo et al., 2003. Reprinted with permission.)

results emerged (Fiorillo et al., 2003). Figure 6 illustrates the empirical
data and simulation results from five different probabilities of reward: 0.00,
0.25, 0.50, 0.75, and 1.00. The left column shows data from a representative
dopamine neuron (Fiorillo et al., 2003); as reward probability increased,
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there was an increase in dopamine neuron firing at cue onset and a corre-
sponding decrease in firing at reward delivery. After 500 trials of training,
the microstimulus model (middle column) showed a similar pattern of
results for rewarded trials. There was a TD error at cue onset that was pro-
portional to the probability of reward and a TD error at reward delivery
that was inversely proportional to that probability. On omission trials (right
column in Figure 6), the model showed a small, temporally extended nega-
tive TD error around the usual time of reward. This negative error was also
proportional to the probability of reward and covered a slightly smaller
time span (though still extended) with lower reward probabilities.

This pattern of results emerged mostly because the learned value (or
predicted future reward) was scaled by the probability of reward. With
higher probabilities of reward, the model expected more reward in the fu-
ture when the cue was present, leading to a larger jump in value (and TD
error) at cue onset, but a smaller reward-prediction error when the reward
was actually delivered. When reward was omitted, the value was lower
with the smaller probabilities, and the corresponding negative error was
shallower and also covered a shorter temporal extent (cf. Bayer et al., 2007).
These two facets of the negative error had different causes: the shallower
negative error occurred because the value was scaled by reward proba-
bility and therefore decreased more slowly. The shorter temporal extent
stemmed from the frequency of omission trials; with more frequent nonre-
warded trials, the temporal accuracy of the reward prediction on those trials
actually improved as the system relied less on the reward microstimuli (see
Figure 5) and more on the cue microstimuli alone, resulting in more tempo-
rally concentrated negative errors. Even with the repeated reward omission
(reward probabilities less than 1.00), our microstimulus model continued
to show small, extended negative errors because the chosen microstimulus
representation was not complete and a perfectly timed reward prediction
could not be learned even at asymptote. Here, too, there were no TD errors
at intermediate time points or any visible ramp in the error time course
(Fiorillo et al., 2003, 2005; Niv et al., 2005). As suggested by Fiorillo et al.
(2005), altering the temporal stimulus representation can indeed eliminate
the interim backpropagating TD errors noted by Niv et al. (2005).

3.4 Early Reward. When rewards were occasionally presented ear-
lier than usual, dopamine neurons responded immediately after the
unpredicted early reward, but showed little change from baseline firing
rates at the usual reward delivery time (Hollerman & Schultz, 1998).
Our microstimulus model better simulates this empirical outcome than
does the previous complete-serial-compound models. Figure 7 presents
results from the two TD models for early reward trials. We simulated
1000 trials with reward occurring at the usual time and then a further 15
probe trials containing an early reward. Contrary to the empirical data,
the complete-serial-compound model predicted a large negative error and
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Figure 7: Early reward simulations. TD error (δ) for the complete-serial-
compound TD model (left column) and both TD error (δ) and value for the
microstimulus TD model (right two columns) for 15 early reward probe trials
after 1000 trials of training. A cue occurred at time 0, and reward followed either
0.5 s (probe) or 1 s (nonprobe) later. Simulation results are displayed for the first
(top row) and last (bottom row) probes.

thus a depression in dopamine firing at the time that reward was usually
received. For the microstimulus model, however, on the first probe trial
(top row), there was indeed a small negative error around the usual time
of reward, the same as with reward omission. The maximum depth of this
negative error was only half the maximal depth of the negative error on
omission trials because the reward microstimuli gained negative weights
even during normal acquisition, depressing the estimated value during
the postreward period (as can be seen in the right panels in Figure 7; see
also Figure 5, middle panel). By the final probe trial (bottom row), the
microstimulus model had quickly learned to correct for the missing reward,
and the already small negative TD errors were virtually eliminated. The
available empirical data are inconclusive as to whether neural spiking at the
former time of reward reliably changes across these first few early-reward
trials (see Figure 6 in Hollerman & Schultz, 1998). In contrast, the complete-
serial-compound model predicts a large, sharp negative TD error at the
usual time of reward, even after repeated early-reward trials (bottom left).

In addition to determining neural activity at the former time of reward, a
novel, testable prediction from our model arises from the manner in which
the reward microstimuli limit negative prediction errors on early-reward
trials (see Figure 7, right panel). Even on the very first trials with early re-
ward, the reward microstimuli had negative weights and sharply reduced
the net value for the time steps following reward delivery. As the middle
panel of Figure 5 shows, the negative value attributable to the reward mi-
crostimuli was most pronounced on the time steps immediately following
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the reward and gradually tapered off. As a result, the reduction of the es-
timated value at the usual time of reward due to the reward microstimuli
should be correlated with how early that reward arrives: the earlier the
reward, the smaller the reduction in the estimated value. If the reward
comes only moderately early (approximately 90% of the usual interval),
there would be little net value at the usual time of reward because there
would be strong negative weights on the shortest reward microstimuli.
Thus, there would be virtually no TD error and, accordingly, no expected
dopamine response. In contrast, very early rewards (approximately 10% of
the usual interval) would produce large reward predictions at the usual
time of reward because the suppressive effects of the reward microstimuli
on the net value would have faded away. Thus, the model predicts an ex-
tended, negative TD error in this situation, similar to that expected for and
observed on omission trials (see Figure 4). The complete-serial-compound
TD model, however, would predict a large negative prediction error at the
exact time of reward for both these situations.

3.5 Multiple Cues. When multiple sequential cues precede reward dur-
ing conditioning, both the TD error and dopamine burst percolate back to
the earliest reliable predictor of the reward (Pan et al., 2005; Sutton & Barto,
1981, 1990; see also Kehoe, Schreurs & Graham, 1987). Figure 8 depicts this
finding in the empirical data (left column) from rat dopamine neurons (Pan
et al., 2005) as well as corresponding simulations from our microstimulus
TD model. The top rows present data from early in training (after 50 trials
in the simulations), and the bottom rows depict data from late in training
(after 1000 trials in the simulations). In the trials with both predictive cues
present (first and third rows), there were positive peaks and bursts at the
onsets of both cues as well as the reward (though the latter two were muted
late in training). Moreover, omitting the second cue (second and fourth rows
in Figure 8) produced a drastic increase in neural firing following reward
delivery. Finally, early in training (top row), there was response to both the
initial cue and the reward, a result taken as evidence for nonzero eligibility
traces in the complete-serial-compound TD model (Pan et al., 2005).

In agreement with these findings, our microstimulus model produced a
persistent, positive TD error at the time of the second cue as well as an en-
hanced positive TD error to the reward when that second cue was omitted
(see the middle column of Figure 8). Both results occurred because of the na-
ture of the temporal generalization in our model. The microstimulus repre-
sentation treats nearby time points similarly, and thus our model cannot per-
fectly predict the time of reward. Because the microstimuli grow wider over
time, the degree of that imperfection increases with the time between cue on-
set and reward. Thus, in the multiple cue experiment, the later cue allowed
for better prediction of reward timing because of its relative proximity to
the reward, leading to a distinct bump in the estimated value (right column)
and associated TD error (middle column) at cue onset. When the second cue
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Figure 8: Multiple cue simulations. Empirical data (left column) from rat
dopamine neurons and TD error (middle column) and value (right column)
from microstimulus TD model simulations in an experiment with multiple pre-
dictive cues. Two cues (double arrows) were presented in sequence before the
reward (single arrow/line); the first cue occurred at time 0 with the second cue
and reward usually following 2 and 3 s later, respectively. The top two rows
show results from early in training (50 trials in the simulations), and the bottom
two rows show results from late in training (1000 trials in the simulations).
The first and third rows show results when both cues and the reward were
presented. The second and fourth rows show results when the second cue was
omitted (indicated with an asterisk). (Data are reprinted from Figure 3 in Pan
et al., 2005. Reprinted with permission.)

was omitted, the reward prediction stemming from that cue’s microstimuli
was absent, leading to a smaller estimated value at the time of reward (right
column) and a larger TD error on reward delivery (middle column).

Pan et al. (2005) concluded that to be consistent with their results, the
complete-serial-compound model would require multistep eligibility traces
(λ > 0) and a low step size (α). In the microstimulus model, we found that
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neither of these parameter choices was necessary. The temporally extended
nature of the microstimuli allows the reward prediction to generalize to
the first few time points after only a handful of trials. Even with much
larger step sizes (α ≥ .5) and one-step eligibility traces (λ = 0), we found
qualitatively similar results (simulations not shown). Thus, as Pan et al.
(2005) originally suggested, their conclusion about the necessity of nonzero
eligibility traces is indeed contingent on the use of the complete-serial-
compound stimulus representation; other stimulus representations, such
as our microstimuli, provide an alternative mechanism for modeling their
data without requiring certain parameter settings.

Our microstimulus model makes a unique, testable prediction about a
similar multicue experiment if the training protocol is varied to resemble a
blocking experiment (Kamin, 1969; Waelti, Dickinson, & Schultz, 2001). In
such an experiment, as in Pan et al. (2005), multiple sequential cues precede
reward, but the second, later cue is inserted only after extensive training
with the early cue. Other TD models using the complete-serial-compound
stimulus representation, including the modified model of Pan et al. (2005),
predict blocking of the dopamine response to the second cue (cf. Waelti
et al., 2001). In these models, for the sequential two-cue experiment of
Pan et al. (2005; see Figure 8), the continued TD error to the second cue
occurs because the learning algorithm divides credit for the prediction
error equally between the two stimulus components (one from each cue)
active during their shared time steps following the onset of the second
cue. In the proposed experiment, in contrast, the first cue is pretrained,
so the reward is already perfectly predicted when the second cue is
introduced. The perfect prediction in the complete-serial-compound model
results in no prediction errors, and thus no learning about the second
cue and complete blocking. In our microstimulus model, the reward is
never perfectly predicted because of the limited temporal resolution of
the stimulus representation. The model learns about the second cue to the
extent that this second cue improves the temporal accuracy of the reward
prediction. Thus, we do not expect this sort of complete blocking effect
to exist, except when the cue onsets coincide (Waelti et al., 2001; see also
Barnet, Grahame, & Miller, 1993; Kehoe, Schreurs, & Amodei, 1981; Kehoe
et al., 1987). According to our model, a dopamine response to the onset
of the second cue should emerge, as occurred in the latter stages of the
experiment depicted in Figure 8 (Pan et al., 2005).

4 Discussion

In this letter, we provide a novel temporal stimulus representation for
use with TD models of the dopamine system. Our model makes more
realistic assumptions about stimulus representation and offers a better fit
to the extant empirical data on dopamine neuron firing. We also adduce
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several new testable predictions about the behavior of dopamine neurons
in experiments with early rewards or multiple sequential cues.

Our microstimulus TD model makes two related theoretical improve-
ments over earlier models that rely on the complete serial compound for
stimulus representation (e.g., Montague et al., 1996; Schultz et al., 1997).
Each of these changes represents a relaxation of certain assumptions from
the earlier TD models. Most prominently, we replace the perfect timing
of the complete serial compound with graded microstimuli that provide
temporal generalization across nearby time points. In addition, we accord
these microstimuli to all events in the environment, including rewards, not
only those preselected as conditioned stimuli. We have shown how these
refined assumptions improve the model’s correspondence to extant data in
a variety of experiments while retaining the simple explanatory power that
TD models provide.

The microstimuli in the model, though strictly deterministic, capture
one potential source of timing noise: that caused by generalization across
nearby time points within a single trial. This temporal generalization could
be regarded as a limitation of the sensory temporal perception or an effective
strategy for dealing with a noisy world (where perfectly fixed intervals of
the sort that dominate these experiments are quite rare). The microstimuli,
however, do not address the further question of how to model trial-to-trial
variability in timed responding, an issue of considerable importance in
the animal learning literature (see Gibbon, 1977; Lejeune & Wearden, 2006;
Staddon & Cerutti, 2003). The published literature on dopamine neuron
responding does not, to our knowledge, contain data that would adequately
constrain further assumptions about trial-to-trial timing stochasticity. We
expect that future theoretical and empirical efforts will shed further light
on this topic.

Throughout this work, our modeling approach has been to emphasize the
ideas and focus on qualitative matches with known experimental findings
rather than engage in a series of curve-fitting exercises to optimize the
parameters for each experiment. As a result, though dealing very well
with the qualitative features of the data, our microstimulus TD model as
presented does not produce a perfect match in all cases. For example, in the
multiple cue experiment (see Figure 8), the peak in TD error following the
second cue late in training is probably too small and not noticeably different
from the peak in TD error following reward. In this instance, the data were
collected in experiments with a different species (rats) from the monkey
experiments shown in Figures 1, 3, 4, 6, and 7. Given the large differences in
the experimental protocol between these studies, we could quite reasonably
have used a moderately higher discount rate (γ ), thereby increasing the
TD error at both cues and further increasing the correspondence with the
empirical data. Nonetheless, we would still not expect, nor desire, perfect
quantitative matches to individual data sets.
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Although the earliest TD models of dopamine relied on a complete serial
compound for the temporal stimulus representation (Montague et al., 1996;
Schultz et al., 1997; Sutton & Barto, 1990), several subsequent models have
also attempted to replace those early representational assumptions. For ex-
ample, Suri and Schultz (1998, 1999) present a model that uses a sequence of
broadening components to represent stimuli. On the surface, these stimu-
lus components resemble the microstimuli of our model but serve a wholly
different functional role. In their model, learning occurs only when a par-
ticular component is descending; the model is constrained so that only one
component can be descending on each time step, thus creating, in effect, a
complete serial compound and being bound by the limitations of that rep-
resentation. Our stimulus representation more closely resembles the traces
in spectral timing theory (Grossberg & Schmajuk, 1989) and the behavioral
states of the learning to time theory (LeT; Machado, 1997) than the stimulus
components in the Suri and Schultz (1998, 1999) model.

More recently, Daw et al. (2006) addressed many of the same empir-
ical lacunae in the reinforcement learning and dopamine story with a
computational model based on partial observability and semi-Markov dy-
namics. Their theory, though elegant and comprehensive, requires a full
world model for implementation, thereby losing much of the explanatory
force that comes from the simple, mechanistic, incremental account of the
dopaminergic system provided by TD models. Our microstimulus theory
sticks much more closely to the established TD models, but makes signifi-
cant changes in the stimulus representation.

Several recent discussions of the relationship between dopamine and
reward-prediction errors have emphasized that the low baseline levels of
dopaminergic firing do not allow dopamine to adequately code for negative
errors (Bayer & Glimcher, 2005; Bayer et al., 2007; Daw et al., 2006; Niv et al.,
2005; Pan et al., 2005). Consequently, dopamine may only encode a rectified
reward-prediction error with the negative portion of the error encoded by
another neurotransmitter, such as serotonin (Daw, Kakade, & Dayan, 2002).
Our results limit the necessity of this additional error-encoding scheme in
experiments where rewards are omitted or mistimed. As clearly depicted
in Figures 4, 6, and 7, there need be no large negative TD errors in these sit-
uations if a form of temporal generalization is introduced into the stimulus
representation, as in our model. In partial empirical support of this point,
Bayer et al. (2007) recently showed that the phasic pausing in dopamine
responding can indeed encode a range of negative reward-prediction er-
rors. Though there would still seem to be situations where large, punctate
negative reward-prediction errors should exist (perhaps punishment or con-
ditioned inhibition), our model limits the range of experimental conditions
for which a secondary error-encoding system is required.

Our microstimulus model makes two empirically testable predictions
about dopamine responding that test each of the two fundamental tenets
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of the model. First, the assumption that stimuli are represented as a set of
graded microstimuli leads directly to the prediction that strong blocking
should occur only when cue onsets coincide. If, after training, a second cue
is inserted between the initial cue and reward, this cue would also begin to
cause a TD error and should elicit a burst of dopamine responding. Second,
the assumption that rewards act like other cues and produce their own
microstimuli leads to the prediction that the degree of dopamine responding
should depend on the exact timing of an early reward. With a moderately
early reward, the model predicts no difference from baseline responding
at the usual time of reward, whereas with a very early reward, the model
predicts a shallow negative error—similar to that observed on omission
trials (see Figure 4). This latter prediction about the effects of very early
rewards also differs from that of newer extensions of the TD model; both
the models of Suri and Schultz (1999) and Daw et al. (2006) would expect
no negative prediction error at the usual time of reward regardless of how
early the reward arrives. In the Suri and Schultz (1999) model, the very
early reward would still reset the stimulus representation, eliminating all
subsequent value for that trial, and in the Daw et al. (2006) model, the very
early reward would still precipitate a transition to the ITI state.

Timing is a vital part of any organism’s environment and behavioral
repertoire. Predicting when a reward will happen and acting accordingly are
crucial for adaptive performance. Our microstimulus TD model provides
a solution to part of this temporal prediction problem and matches the
empirical data better than the basic, complete-serial-compound TD model.
In the future, we expect this temporal stimulus representation to be further
refined and used for action selection as part of a model for explaining the
conditioning behavior of an entire animal.
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