
REVIEW ARTICLE OPEN

STING palmitoylation as a therapeutic target
Anne Louise Hansen1, Kojiro Mukai2, Francisco J. Schopfer3, Tomohiko Taguchi 2 and Christian K. Holm1

Gain-of-function mutations in the STING-encoding gene TMEM173 are central to the pathology of the autoinflammatory disorder

STING-associated vasculopathy with onset in infancy (SAVI). Furthermore, excessive activity of the STING signaling pathway is

associated with autoinflammatory diseases, including systemic lupus erythematosus and Aicardi–Goutières syndrome (AGS). Two

independent studies recently identified pharmacological inhibitors of STING. Strikingly, both types of compounds are reactive nitro-

containing electrophiles that target STING palmitoylation, a posttranslational modification necessary for STING signaling. As a

consequence, the activation of downstream signaling molecules and the induction of type I interferons were inhibited. The

compounds were effective at ameliorating inflammation in a mouse model of AGS and in blocking the production of type I

interferons in primary fibroblasts from SAVI patients. This mini-review focuses on the roles of palmitoylation in STING activation and

signaling and as a pharmaceutical target for drug development.
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INTRODUCTION
The intracellular molecule STING (Stimulator of interferon genes,
also known as MPYS, ERIS, MITA, and TMEM173) is indispensable
for the induction of type I interferons (IFNs, e.g., IFNα/β) in
response to infection with DNA-based viruses1–3 and with bacteria
such as Listeria monocytogenes,4 as demonstrated using both
in vitro and in vivo experimental approaches. In these cases, STING
acts as a sensor of cyclic dinucleotides (CDNs) that are either
released into the cytosol by the bacterial pathogens4–8 or
synthesized by the cytosolic DNA sensor cyclic GMP-AMP synthase
(cGAS).9–13 Furthermore, STING has been demonstrated to be
necessary for the optimal induction of type I IFNs by enveloped
viruses through the sensing of virus-cell fusion and by RNA-based
viruses through mechanisms that have not been fully eluci-
dated.1,14–17

Although most reports on the function of STING center around
responses to infection, the strongest links between the STING-
dependent impacts on immunity and human disease have
originated from the study of chronic inflammation. Inherited
loss-of-function mutations in genes encoding cytosolic nucleases
are strongly correlated with the development of systemic
inflammatory conditions. One of the best-studied examples is
the association of loss-of-function mutations in the gene TREX1
with autoimmune diseases, including Aicardi–Goutières syndrome
(ASG)18–20 and systemic lupus erythematosus.21,22 TREX1 encodes
the enzyme 3′ repair exonuclease 1 (TREX1), a 3′-5′ DNA
exonuclease, which degrades cytosolic dsDNA and ssDNA.23–25 It
has been proven difficult to directly assess the concentration of
cytosolic DNA in both wild-type and TREX1-deficient cells.
However, it is assumed that the loss of TREX1 activity leads to
increased levels of cytosolic DNA, which then triggers the cGAS-
STING pathway to release pro-inflammatory cytokines, including

type I IFNs. This assumption is supported by the increased
expression of type I IFNs and IFN-stimulated genes (ISGs) in both
SLE26,27 and AGS28 patients. This is further supported by animal
experiments, in which Trex1-deficient mice developed an
autoimmune-like disease dependent on STING-induced type I
IFN,29,30 which could be rescued by the knockdown of cGAS.19,20

Furthermore, cGAS knockdown in Trex1-deficient murine cells
appears to rescue the increased ISG expression profile.31

The role of STING as a direct driver of systemic inflammation
was confirmed in 2014, when both de novo32 and inherited21

gain-of-function mutations in the STING-encoding gene TMEM173
were reported. These mutations cause STING hyperactivation,
resulting in a persistent “IFN signature”. The initial finding of de
novo mutations in TMEM173, leading to the variants V147 L,
N154S, V155M, was made in six patients. The mutations cause
devastating inflammatory conditions in the patients, and the
disease was named STING-associated vasculopathy with onset in
infancy (SAVI). The list of clinical symptoms can be grouped into
symptoms of systemic inflammation, symptoms of peripheral
vascular and skin inflammation, and pulmonary manifestations.32

The patients exhibit hyperactivation of STING, resulting in elevated
expression of IFNβ, constitutive phosphorylation of STAT1 and a
strong transcriptional ISG signature in addition to elevated levels
of interferon-induced cytokines.32 Since then, several additional
SAVI patients have been identified with both the initially
described SAVI STING variants33,34 and recently identified variants
including S102P-F279L35 V147M,36 C206Y,37 R281Q,37 R284G37 and
R284S.38,39

To better investigate STING hyperactivation in vivo and to
model SAVI disease, the variants N154S and V155M were
introduced into mouse models using knock-in of the murine
orthologs N153S and V154M.40,41 Similar to SAVI patients, these
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“SAVI” mice spontaneously develop a skin and lung disease and
suffer premature death. Surprisingly, the pathology induced by
constitutive STING activation seems to be independent of type I
IFN because the skin and lung manifestations persisted when the
mice were crossed with Irf3-deficient mice (for the N153S STING
variant)40 and with Ifnar-deficient mice that were deficient in the
IFN-α/β receptor (for the V154M STING variant).41 Interestingly, the
N153S SAVI mouse model presented with T and NK cytopenia and
impaired T cell proliferation.40 The V154M SAVI mouse model
developed broad lymphocyte developmental defects involving T,
B, and NK cells in addition to impaired T cell proliferation and
hypogammaglobulinemia.41 Thus, the V154M mouse model
experiences hyperactivation of STING that seems to cause a
severe combined immunodeficiency (SCID)-like phenotype. In
addition, the N153S SAVI mouse model has recently been shown
to develop a combined innate and adaptive immunodeficiency
that leads to pulmonary fibrosis upon viral infection.42 Although
STING hyperactivation is difficult to study in humans, a recent
report supports that at least the T cell imbalance is caused by
impaired proliferation observed in V155M SAVI patient cells.43

Furthermore, STING activation affected T cell proliferation
independent of TBK1, IRF3, and type I IFNs.
Modulation of the cGAS-STING pathway has attracted attention

in recent years with the discovery of cGAS inhibitors44,45 in
addition to several STING agonists that are used in cancer
therapy.46,47 Despite the currently limited understanding of how
STING hyperactivation leads to inflammation, it remains highly
desirable to identify compounds that can directly target and
inhibit STING signaling. Thus, STING signaling as an important
contributor to inflammatory diseases motivated us48 and the
laboratory of Andrea Ablasser49 to discover novel STING inhibitors.
Interestingly, the independently described compounds are
remarkably similar in reactivity and target the same STING
residues to exert their inhibitory effects.
This mini-review describes recent advances in the under-

standing of STING signaling and the mechanistic background for
the mechanisms by which these novel inhibitors block STING
signaling.

STING ACTIVATION AND TRANSLOCATION FROM ER-TO-GOLGI
A full decade has passed since STING was first described as an
important innate signaling molecule.1,50,51 STING was identified as
a strong inducer of type I IFNs through the activation of TANK-
binding kinase 1 (TBK1) and, subsequently, of the transcription
factor IFN regulatory factor 3 (IRF3) and nuclear factor kappa B
(NF-κB).1,2,52,53 Interestingly, STING was demonstrated to be
important for resistance to infection by both RNA and DNA
viruses. However, whereas STING was indispensable to the
induction of IFNβ in response to cytosolic DNA, it was not
involved in responses to cytosolic RNA, as shown by the direct
delivery of RNA into the cytosol.1,2 Although activation of the
cGAS-STING pathway has been implicated during infection by RNA
viruses, such as with the Dengue virus,54,55 the importance of
STING in the resistance to RNA viruses remains unclear.
In sharp contrast, the current understanding of the molecular

mechanism that underlies the activation of STING downstream of
cytosolic DNA sensing has progressed significantly. First, cyclic
dinucleotides (CDNs) were identified as powerful STING-activating
agents.5 Then, cGAMP (cyclic GMP-AMP) was identified as the
mammalian CDN formed in response to cytosolic DNA and to
infection by a DNA virus.9,12 These discoveries were followed by
several independent reports that demonstrated that the enzyme
cGAS (cyclic GMP-AMP synthase) was a cytosolic DNA sensor and
was responsible for DNA-induced cGAMP production upstream of
STING activation.10,11,56 The cytosolic DNA being sensed by cGAS
can originate from various sources, including the nucleus57,58

and the mitochondria.59

In essence, although other sensor molecules have been
demonstrated to be important for its function,60 cGAS is now
recognized as the primary sensor of cytosolic DNA and thus as
being indispensable for the downstream STING-dependent
induction of type I IFNs. However, STING activation can also occur
independently of cGAS sensing, i.e., during virus-cell fusion,14

direct sensing of bacterial CDNs5 or DNA damage.61

After CDN binding, STING translocates from the endoplasmic
reticulum (ER) to perinuclear compartments including the Golgi
body, endosomes, and autophagy-related compartments.2,62

Interestingly, blocking ER-to-Golgi membrane traffic with brefeldin
A or ER-to-ER-Golgi-intermediate-compartment (ERGIC) with Shi-
gella effector protein IpaJ, abolishes the STING-dependent
signaling events that include the phosphorylation of TBK1 and
the transcription factor IRF3 for the subsequent type I IFN
induction.2,63,64 The requirement for translocation has recently
gained additional support as the knockdown of Sar1, a small
GTPase that regulates coat protein complex II (COP-II)-mediated
ER-to-Golgi traffic, was demonstrated to inhibit the translocation
of STING from the ER, as well as the binding of TBK1 to STING.65 It
is therefore intriguing that some SAVI STING variants localize to
the perinuclear compartments, including the Golgi body, even
without DNA stimulation or STING-activating ligands.63 Likewise,
the variants of the murine equivalent of SAVI C205Y, R280Q, and
R283G (corresponding to the human SAVI variants C206Y, R281Q,
and R284G),37 also localize to the perinuclear compartments and
Golgi body.65 Consequently, the perinuclear localization of STING
in the absence of STING ligands appears to be a common feature
of all hyperactive SAVI variants.63,65 Furthermore, even for the
hyperactivated SAVI variants, the binding of TBK1 was inhibited
when STING was trapped in the ER.65 Together, these results imply
that post-ER compartments contribute to the activation of STING.
The molecular mechanism underlying the translocation of

STING from the ER has not been clarified. One possible mechanism
could involve conformational changes induced in STING upon
binding to CDNs, enabling the COP-II components to recognize
the tentative export-signal sequences of STING. These changes
may create binding sites for the COP-II components and/or release
STING from a tethering protein that localizes it to the ER. Recently,
the Ca2+ sensor STIM1 has been implicated in maintaining the
resting state of the STING pathway by retaining STING at the ER
membrane.66 It could be speculated that Ca2+ release from the ER
upon virus-cell membrane fusion14 activates STING via STIM1. In
summary, the translocation of STING seems to be essential for its
activation.

PALMITOYLATION IS NECESSARY FOR STING SIGNALING
The translocation of proteins between cellular membranes is often
accompanied by lipid-based posttranslational modifications.67 In
particular, the presence of palmitate on a protein can affect how
the protein interacts with lipids and other proteins in a membrane
compartment.68 The ER-associated member of the palmitoyltrans-
ferase family, ZDHHC1, has previously been identified as a positive
regulator of STING-dependent signaling,69 although its enzymatic
activity was not required for STING activation. Along the same
lines, it was more recently demonstrated that STING requires
palmitoylation for its activation and subsequent type I IFN
responses.70 Cysteine (Cys) residues in proteins are the main
targets for the covalent attachment of the 16-carbon palmitic acid,
and mammalian STINGs have several conserved Cys residues that
are localized either in the cytoplasmic region or in the
transmembrane region.71 Through the analysis of STING cysteine
mutants, the sites of STING palmitoylation were identified as being
cysteines 88 and 91. Furthermore, it was suggested that the
protein palmitoyltransferases DHHC3, DHHC7, and DHHC15
contribute to the palmitoylation of Cys88/91 of STING in the
Golgi body.70 Interestingly, the introduction of Cys88/91
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mutations in the gain-of-function STING variants was sufficient to
inhibit the activation of IRF3, IFNβ or NF-κB in reporter assays,
indicating that the SAVI variants, as well as wild-type STING,
require palmitoylation for their activity.70 Depalmitoylation is
carried out by the acylprotein thioesteraser;68 nevertheless, the
depalmitoylation of STING was not observed during its transport
from the Golgi body to the degradation compartments.70 This
highlights the potential for STING palmitoylation to be pharma-
ceutical target.

TARGETING STING PALMITOYLATION INVOLVES CYSTEINE
ALKYLATION
The central role of STING in the pathology of several inflammatory
diseases has initiated an intense search for potential inhibitors of
STING. Recently, our group identified nitro-fatty acids (NO2-FAs) as
potent inhibitors of STING signaling.48 Simultaneously, the
laboratory of Andrea Ablasser identified nitrofurans as small-
molecule inhibitors of STING signaling.49 Remarkably, the NO2-FAs
and the nitrofuran compounds seem to inhibit STING through
closely related mechanisms involving cysteine alkylation.
The reactivity of both types of compounds is centered around

reactive nitro-groups (Fig. 1). The strong electron withdrawing
properties of the nitro-groups in the nitroalkenes and nitrofurans
make them excellent Michael acceptors and reactive with thiols
such as those present in cysteines. It is important to consider that
the concentration of the main intracellular thiol-containing
biomolecule is glutathione (2–17mM) and that the total reduced
protein thiol content is ~10–50mM.72,73 As both series of
inhibitors directly react with cysteine 91 and NO2-FA reacts with
cysteine 88, the mechanism by which STING becomes targeted
under these highly reducing and thiol-abundant conditions
remains unknown. In this regard, the thiol pKa is a strong
determinant of the target cysteine reactivity toward electrophiles,
and it is modulated by structural determinants. Basic neighboring
amino acids can stabilize the ionized state of the cysteine, which is
the reactive state, greatly increasing its reactivity by lowering its
pKa. In addition to determining the pKa, protein pocket structural
properties establish the kinetics of inhibitor docking, adduct
formation, and reversibility; the latter is only observed in the case
of NO2-FA. The structural influence and the relevance of the
electrophilic reactivity on the inhibition of STING is highlighted by
the selectivity displayed by the nitrofuran compound C-176 when
compared to that of other reactive nitrofuran molecules that have
different sidechain substituents or related unreactive structures49

(Fig. 2). One of the particular characteristics of nitrofuran is that
the initial Michael adduct formed undergoes a rearrangement
followed by dehydration to yield an irreversible adduct. This is in
strong contrast with NO2-FAs, the other group of selective
inhibitors, which undergo reversible Michael additions with

cysteines. One exception of the strong reactivity is exemplified
by compound H-151.49 Using click chemistry approaches and
whole protein mass spectrometry, the authors have shown that
this compound covalently interacts with STING, despite containing
functional groups that would indicate a lower reactivity with thiols
when compared to nitroalkenes and nitrofurans.
NO2-FAs are a recently discovered group of bioactive lipids with

anti-inflammatory and tissue protective functions.74 The NO2-FAs
are constantly formed in the gastrointestinal tract during
digestion, and they are absorbed into and distributed through
the systemic circulation.75,76 In addition, they can be formed
locally at sites of inflammation and during ischemia-reperfusion
events. Their levels were found to be increased in the peritoneum
during lipopolysaccharide-induced sepsis77,78 and in heart tissue
during ischemic conditions in rodents.79 More recently, we
reported the formation of NO2-FAs in response to HSV-2 infection
in addition to their role as novel inhibitors of STING signaling.48

Fatty acids containing conjugated double bonds are the main
targets of nitration, showing several orders of magnitude higher
yields of formation than monounsaturated or bis-allylic poly-
unsaturated fatty acids.80 Thus, a limited number of endogenous
NO2-FAs have been identified, and this is closely related to the
availability of conjugated fatty acids these reactions use as
substrates.
In general, the NO2-FAs posttranslationally modify their target

molecules through Michael addition reactions, resulting in S-nitro-
alkylation.74,81 In the case of STING, the NO2-FAs nitro-alkylate the
thiol groups of cysteines at positions 88 and 91 in STING.48

Interestingly, the cysteine at position 91 is also targeted by the
nitrofuran molecules.49 Both cysteines are located in the N-
terminal region of STING in close proximity to the proposed
transmembrane domains. The location of Cys88 and Cys91 may
favor a specific contact with the electrophilic NO2-FAs.
As described above, STING Cys88/91 are targets of palmitoyla-

tion, which is a modification that is required for STING activation
and important for STING clustering in the trans-Golgi body
network.70 Palmitoylation also seems to be important for the
recruitment and phosphorylation of TBK1 and, subsequently, the
phosphorylation of IRF3.70 Indeed, the treatment of cells with NO2-
FAs or nitrofuran molecules abolishes STING palmitoylation and,
subsequently, the phosphorylation of TBK1 and IRF3 in response
to stimulation with STING agonists.48,49 Thus, targeting STING
palmitoylation with NO2-FAs or nitrofuran molecules inhibits
STING signaling (Fig. 3).
Gain-of-function mutations in STING drive devastating inflam-

matory diseases, such as SAVI, and it was therefore reasonable to
test whether NO2-FA-induced inhibition of STING could override
the genome-encoded hyperactivity of STING in patient-derived
cells. Intriguingly, NO2-FA treatment of immortalized SAVI patient-
derived fibroblasts inhibits STING signaling by abolishing TBK1

Fig. 1 NO2-FAs and nitrofuran derivatives that inhibit STING signaling. The red arrows indicate the sites that can participate in a Michaels
addition reaction with STING cysteines

STING palmitoylation as a therapeutic target

AL Hansen et al.

238

Cellular & Molecular Immunology (2019) 16:236 – 241



phosphorylation and ultimately suppresses the release of type I
IFNs.48 Furthermore, treatment of Trex1-deficient mice with the
nitrofuran compounds reduced the serum levels of type I IFNs and
impacted inflammatory markers in the heart.49 Together, these
two independent studies come to the following conclusion: STING
palmitoylation is a valid pharmacological target for the inhibition
of STING signaling and thus for the treatment of STING-dependent
pathologies.

SUMMARY AND CONCLUSIONS
A growing number of reports place STING as a central driver of
pathology in a series of autoinflammatory and autoimmune
disorders, such as SAVI, SLE, and AGS. In addition, STING has
recently been reported to play a role in neuro-inflammation.82 The
contribution of STING is either direct or indirect, depending on the
type of disease. Mutations in genes important for diminishing
cytosolic DNA loads, such as TREX1, play an indirect role in disease

Fig. 3 Alkylation of STING cysteines 88/91 inhibits STING palmitoylation and signaling

Fig. 2 Proposed chemical reaction between the electrophilic nitrofuran (left), nitroalkene-containing inhibitors (right) and STING Cys 88 and
91
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because rising levels of cytosolic DNA can activate STING via cGAS.
However, gain-of-function mutations in the STING-encoding gene
are the direct driving force establishing the pathological condition
in SAVI. Collectively, the use of inhibitors of STING signaling may
present a new and effective treatment strategy for inflammatory
diseases. Interestingly, the efficacy of STING inhibitors in such
conditions will not depend on which downstream effectors are
causing the symptoms. The NO2-FAs and nitrofuran compounds
seem to broadly inhibit STING signaling; hence, they potentially
suppress the broad range of symptoms experienced by the
patients. Five Phase I clinical trials successfully concluded that
NO2-FAs are well tolerated. Furthermore, the lead compound, 10-
nitro oleic acid (CXA-10), is currently being assessed in two phase
II clinical trials for the treatment of focal segmental glomerulo-
sclerosis (clinicaltrials.gov: NCT03422510) and pulmonary arterial
hypertension (clinicaltrials.gov: NCT03449524). To date, most of
the anti-inflammatory activities of NO2-FA have been attributed to
the inhibition of NF-κB signaling.83,84 However, the novel targeting
of STING by NO2-FAs suggests a new mechanism of inhibition.
Thus, these anti-inflammatory lipids represent a novel strategy for
the treatment of patients with STING-derived inflammatory
conditions.
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