STIRLING BEHAVIOR IS ASYMPTOTICALLY NORMAL'
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0. Summary. The Stirling numbers {c,’} of the second kind are asymptotically
normal. This result is similar to results achieved by Feller [1] and Gonéarov [2]
for other combinatorial distributions. Here the technique of proof is different;
one of the most general forms of the central limit theorem is used.

Interesting qualitative information about the Stirling numbers is also obtained
from this result. Asymptotic estimates on the value of max; {,’} are given.

1. Introduction. Mathematicians have been aware for quite a while that prob-
ability theory has combinatorial applications. The classical De Moivre-Laplace
theorem, for example, can be interpreted as a theorem about binomial coefficients,
the binomial coefficients being the solution to the difference equation

Anj = Ana; + An1j
with the boundary conditions
Aoj = 1, ] = O,
=0, j#0.

Feller ([1], p. 241) uses more general versions of the central limit theorem to
show that the distributions given by B.;, the number of permutations of »
elements with j inversions, and Cn;, the number of permutations of n elements
with j eycles, are asymptoticlly normal. There he defines random variables on
the set of all permutations to count either inversions or cycles. He shows that
these random variables are independent and satisfy the ‘“Lindeberg condition”

(1], p. 239), and thus have asymptotically normal distributions.
It can be verified that B,; and Cn;are the solutions of the difference equations

Buj=4-mBuax, M =max(0,j—mn+1)
and
Coj = (n — 1)Cr1; + Crnja
respectively, with boundary conditions
B;=1 j=0,
=0, j#0,
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1 This paper presents the results of one phase of research carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under Contract No. NAS 7-100, sponsored
by the National Aeronautics and Space Administration.
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and
C=1 j=0,
=0, j#=0.

In view of the similarity of these three results, it seems appropriate to call any
“generalized Pascal’s triangle” on the lattice points of the positive quadrant, de-
fined by a difference equation with the common boundary condition above, a
combinatorial distribution.

V. Gondarov [2] has shown asymptotic normality for B,; , Cn; and other com-
binatorial distributions by a different and less elegant method. By brute force he
tortuously manipulates the characteristic functions of the distributions until they
approach exp (—z*/c), ¢ a positive constant. His attack is certainly the most
general conceptually, but hardly the most efficient, and not even feasible in cases
where there is lack of knowledge about the characteristic functions involved.

This paper presents a program for showing asymptotic normality of com-
binatorial distributions, much like Feller’s in that it gives the problem a proba-
bilistic interpretation, and uses the central limit theorem in an essential way.

2. The Stirling numbers of the second kind. The Stirling numbers of the
second kind are combinatorially distributed by the following difference equa-
tion:

o’ = joh_1 4+ aily.
Several preliminary lemmas are needed.

LeMMA 1. If Po(z) = D 7=00.’%’, then the roots of P, are real, distinct, and non-
positive foralln = 1,2, -+ - .

Proor. By induction Py(z) = 1, so the statement is vacuously true for n = 0;
for other values of n,

Pu(z) = im0z’ = 2o’ + Diooiw’
= 2[D ;=0 johr™™ + DS o]
2[dPnpa(z)/dx + Pna(x)].

Therefore Py(z) = z, and Py(z) =.2(1 4+ z) = x + 27, so the statement still holds
forn = 1, 2. Now suppose n > 2. By hypothesis, P,_1 has n — 1 distinct real

non-positive roots.
If we define

H.(z) = P.(z)e,

then H, has exactly the same finite zeroes that P, does, and the identity for
P, above becomes

H.(x) = z-dH,4(x)/dx.

H.,_; also has a zero at — », and by Rolle’s theorem between any two zeroes of
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H, 1, dH,_1/dx will have a zero. This places n — 1 distinct zeroes of H, on the
negative axis; x = 0 is obviously another one making » altogether. Since P, is of
degree n by induction, we have found all roots and the lemma is proved.

A curious property of the Stirling numbers appears as a consequence of Lemma
1: A combinatorial distribution is called unimodal if all local maxima are con-
secutive. It is easily seen that the product of the generating functions for a
unimodal distribution and a distribution concentrated on two consecutive in-
tegers is the generating function of a unimodal distribution. By repeated applica-
tion of this the Stirling numbers are unimodal and in fact have either one or two
maximum points. By the same analysis the second difference of the Stirling
numbers changes sign just twice.

3. Bell numbers. The sum B, = D7 a,’ is called the Bell number of order
n. We now show
LeEmMma 2.

Bn+2/Bn _— (B,H_l/Bn)z —> o0 as mn —> 0,
Proor. Actually®
Bots/Bn — (Bp1/Bn)" = n/R(R + 1) + o(1)

where R is the unique, real solution of Re” = n.This is straight forward to estab-
lish from a formula due to Moser and Wyman [4]:

B~ R+1 " expln(R+R*—1) — 1]
(1 — R*(2R’ + 7R + 10)/24n(R + 1)).

4. Main theorem. We are now in a position to prove the main theorem.
TuEOREM. The Stirling numbers of the second kind are asymptotically normal
in the sense that

B Y mad — (2m)7 7. At as n—o o
where
Tn = {Bny2/Bn — (Bup/Bn)’ — 1)’z + {Bay/Ba — 1}.

Proor. The result is. an application of the ‘“bounded variance normal con-
vergence criterion’ in [3], p. 295. It is stated: “Let the independent summands
{Xni}imy , centered at expectations, be such that Y, Var (X,:) = 1 for all n. Let
F ., be the distribution function of X,; . Then S, = D X converges normally
with mean zero, unit variance and (max; Var (X)) — 0, if and only if: for all

e > 0,
limn_,w gn(e) = limn—»o zk f]z|;e tz ank = 0

In order to use this theorem, we need a ‘“hat” from which to pull a double

2 ] am indebted to J. Haigh for bringing this improvement to my attention.
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sequence of independent (for fixed n) random variables. The hat is Lemma 1.
That the roots of the polynomial P, are real and non-positive is equivalent to the
fact that P, can be factored into linear terms with real non-negative coefficients.
If we normalize each of these terms suitably, we see that the distribution whose
density function is {¢,’/ B} 7-o is the distribution of a sum of independent random
variables taking on only the values zero and one. If —z,; is a root of P, , then

define the random variable X by
PriXo =yl = ou/(1+2u) if y
= (1 + zm)”’ if y
Letting S, = Zk X ;k we have
E(84) = Xi-0jou’/Ba = Bua/Bu — 1

0,
1.

and
Var (84) = 2.7~05°04"/Bn — (Bu1/Bn — 1)’
= Bn+2/Bn - (Bn+1/Bn)2 - ].

Thus, by Lemma 2, Var (8,’) — ® asn — .
Now we normalize and let

S, = (Var (8.))74(8." — E(S.))
> (Var (8 ) N Xk — E(Xui)) = 2o Xk -

Since0 < X, < land —1 < X;k - E(X;k) < 1, and since given ¢ > 0 there
exists N such that |X,i| < efor alln = N, we conclude:

gn(€) = >k [larsea®dFp = 0, forall n = N.

Thus, the hypotheses of the normal convergence criterion are fulfilled. This
finally proves the main theorem.

5. Corollaries. Since the Stirling numbers are unimodal, the maximum must lie
near E(S,'). With a bit more effort we can gain more qualitative information
from the theorem.

CoRroLLARY 1.

By *(BuBai2 — Bii — B2l — (2n) e

where [, s the greatest integer <z, .
COROLLARY 2. Given ¢ > 0, there exists N such that n = N tmplies

|Jo — (Buis/Ba — 1)| < e(Buya/Ba — (Buia/Ba)* — 1)}

where J, is defined as that integer j for which o, = max; oa’. Thus Jn ~ Bny1/Bn
— 1~n/elnn. Also

max; on’ ~ B2/ (21)}(BuBnyz — Bii — Bab).
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These corollaries follow from the fact that the convergence of the Stirling
numbers to the Gaussian function is actually uniform. Given that the integrals
converge as in Theorem 1, they can escape from uniform convergence only by
wild local oscillations, but this is ruled out by the fact that the second differences
only change sign twice.
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