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Abstract

Return-oriented programming (ROP) offers a robust at-
tack technique that has, not surprisingly, been exten-
sively used to exploit bugs in modern software programs
(e.g., web browsers and PDF readers). ROP attacks re-
quire no code injection, and have already been shown
to be powerful enough to bypass fine-grained memory
randomization (ASLR) defenses. To counter this in-
genious attack strategy, several proposals for enforce-
ment of (coarse-grained) control-flow integrity (CFI)
have emerged. The key argument put forth by these
works is that coarse-grained CFI policies are sufficient to
prevent ROP attacks. As this reasoning has gained trac-
tion, ideas put forth in these proposals have even been
incorporated into coarse-grained CFI defenses in widely
adopted tools (e.g., Microsoft’s EMET framework).

In this paper, we provide the first comprehensive
security analysis of various CFI solutions (covering
kBouncer, ROPecker, CFI for COTS binaries, ROP-
Guard, and Microsoft EMET 4.1). A key contribution
is in demonstrating that these techniques can be effec-
tively undermined, even under weak adversarial assump-
tions. More specifically, we show that with bare mini-
mum assumptions, turing-complete and real-world ROP
attacks can still be launched even when the strictest of
enforcement policies is in use. To do so, we intro-
duce several new ROP attack primitives, and demonstrate
the practicality of our approach by transforming existing
real-world exploits into more stealthy attacks that bypass
coarse-grained CFI defenses.

1 Introduction
Today, runtime attacks remain one of the most prevalent
attack vectors against software programs. The continued
success of these attacks can be attributed to the fact that
large portions of software programs are implemented in
type-unsafe languages (C, C++, or Objective-C) that do
not enforce bounds checking on data inputs. Moreover,
even type-safe languages (e.g., Java) rely on interpreters

(e.g., the Java virtual machine) that are in turn imple-
mented in type-unsafe languages.

Sadly, as modern compilers and applications become
more and more complex, memory errors and vulnera-
bilities will likely continue to persist, with little end in
sight [41]. The most prominent example of a memory
error is the stack overflow vulnerability, where the adver-
sary overflows a local buffer on the stack and overwrites
a function’s return address [4]. While today’s defenses
protect against this attack strategy (e.g., by using stack
canaries [15]), other avenues for exploitation exists, in-
cluding those that leverage heap [33], format string [21],
or integer overflow [6] vulnerabilities.

Regardless of the attacker’s method of choice, exploit-
ing a vulnerability and gaining control over an applica-
tion’s control-flow is only the first step of a runtime at-
tack. The second step is to launch malicious program
actions. Traditionally, this has been realized by inject-
ing malicious code into the application’s address space,
and later executing the injected code. However, with the
wide-spread enforcement of the non-executable memory
principle (called data execution prevention in Windows)
such attacks are more difficult to do today [28]. Unfortu-
nately, the long-held assumption that only new injected
code bared risks was shattered with the introduction of
code reuse attacks, such as return-into-libc [30, 37] and
return-oriented programming (ROP) [35]. As the name
implies, code reuse attacks do not require any code injec-
tion and instead use code already resident in memory.

One of the most promising defense mechanisms
against such runtime attacks is the enforcement of
control-flow integrity (CFI) [1, 3]. The main idea of CFI
is to derive an application’s control-flow graph (CFG)
prior to execution, and then monitor its runtime behavior
to ensure that the control-flow follows a legitimate path
of the CFG. Any deviation from the CFG leads to a CFI
exception and subsequent termination of the application.

Although CFI requires no source code of an appli-
cation, it suffers from practical limitations that impede
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its deployment in practice, including significant perfor-
mance overhead of 21%, on average [3, Section 5.4],
when function returns are validated based on a return ad-
dress (shadow) stack. To date, several CFI frameworks
have been proposed that tackle the practical shortcom-
ings of the original CFI approach. ROPecker [13] and
kBouncer [31], for example, leverage the branch history
table of modern x86 processors to perform a CFI check
on a short history of executed branches. More recently,
Zhang and Sekar [46] demonstrate a new CFI binary in-
strumentation approach that can be applied to commer-
cial off-the-shelf binaries.

However, the benefits of these state-of-the-art solu-
tions comes at the price of relaxing the original CFI pol-
icy. Abstractly speaking, coarse-grained CFI allows for
CFG relaxations that contains dozens of more legal exe-
cution paths than would be allowed under the approach
first suggested by Abadi et al. [3]. The most notable dif-
ference is that the coarse-grained CFI policy for return
instructions only validates if the return address points to
an instruction that follows after a call instruction. In con-
trast, Abadi et al. [3]’s policy for fine-grained CFI en-
sures that the return address points to the original caller
of a function (based on a shadow stack). That is, a func-
tion return is only allowed to return to its original caller.

Surprisingly, even given these relaxed assumptions,
all recent coarse-grained CFI solutions we are aware of
claim that their relaxed policies are sufficient to thwart
ROP attacks1. In particular, they claim that the property
of Turing-completeness is lost due to the fact that the
code base which an adversary can exploit is significantly
reduced. Yet, to date, no evidence substantiating these
assertions has been given, raising questions with regards
to the true effectiveness of these solutions.

Contribution. We revisit the assumption that coarse-
grained CFI offers an effective defense against ROP.
For this, we conduct a security analysis of the re-
cently proposed CFI solutions including kBouncer [31],
ROPecker [13], CFI for COTS binaries [46], ROP-
Guard [20], and Microsofts’ EMET tool [29]. In particu-
lar, we derived a combined CFI policy that takes for each
indirect branch class (i.e., return, indirect jump, indirect
call) and behavioral-based heuristics (e.g., the number
of instruction executed between two indirect branches),
the most restrictive setting among these policies. After-
wards, we use our combined CFI policy and a weak ad-
versary having access to only a single — and common
used system library — to realize a Turing-complete gad-
get set. The reduced code base mandated that we develop
several new return-oriented programming attack gadgets
to facilitate our attacks. To demonstrate the power of our
attacks, we show how to harden existing real-world ex-
ploits against the Windows version of Adobe Reader [26]
and mPlayer [10] so that they bypass coarse-grain CFI

protections. We also demonstrate a proof-of-concept at-
tack against a Linux-based system.

2 Background
2.1 Return-Oriented Programming

Return-oriented programming (ROP) belongs to the class
of runtime attacks that require no code injection. The ba-
sic idea is to combine short code sequences already re-
siding in the address space of an application (e.g., shared
libraries and the executable itself) to perform malicious
actions. Like any other runtime attack, it first exploits a
vulnerability in the software running on the targeted sys-
tem. Relevant vulnerabilities are memory errors (e.g.,
stack, heap, or integer overflows [33]) which can be
discovered by reverse-engineering the target program.
Once a vulnerability has been discovered, the adversary
needs to exploit it by providing a malicious input to the
program, the so-called ROP payload. The applicability
of ROP has been shown on many platforms including
x86 [35], SPARC [7], and ARM [27].

RET ADDR 1
RET ADDR 2

DATA WORD 1
DATA WORD 2

RET ADDR 3

asm_ins
asm_ins
RET

ROP Sequence 1

POP REG1
POP REG2
RET

ROP Sequence 2

asm_ins
asm_ins
RET

ROP Sequence 3

Memory Layout
for ROP Attack

Stack
Pointer
(SP) 

Figure 1: Memory snapshot of a ROP Attack

An example ROP payload and a typical memory lay-
out for a ROP attack is shown in Figure 1. Basically, the
ROP payload consists of a number of return addresses
each pointing to a short code sequence. These sequences
consist of a small number of assembler instructions (de-
noted in Figure 1 as asm ins), and traditionally termi-
nate in a return [35] instruction2. The indirect branches
are responsible for chaining and executing one ROP se-
quence after the other.

In addition to return addresses, the adversary writes
several data-words in memory that are used by the in-
voked code sequences (usually via stack POP instruc-
tions as shown in ROP Sequence 2). At the beginning of
the attack, the stack pointer (SP) points to the first return
address of the payload. Once the first sequence has been
executed, its final return instruction (RET) advances the
stack pointer by one memory word, loads the next return
address from the stack, and transfers the control-flow to
the next code sequence.

The combination of the invoked ROP sequences in-
duce the malicious operations. Typically, these se-
quences are identified within an (offline) static analy-
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sis phase on the target program binary and its linked
shared libraries. Furthermore, one or multiple ROP se-
quences can form a gadget, where a gadget accomplishes
a specific task such as adding two values or storing a
data word into memory. These gadgets typically form
a Turing-complete language meaning that an adversary
can perform arbitrary (malicious) computation.

A well-known defense against ROP is address space
layout randomization (ASLR) which randomizes the
base address of libraries and executables, thereby ran-
domizing the start addresses of code sequences needed
by the adversary in her ROP attack. However, ASLR is
vulnerable to memory disclosure attacks, which reveal
runtime addresses to the adversary. Memory disclosure
can even be exploited to circumvent fine-grained ASLR
schemes, where the location of each code block is ran-
domized in memory by identifying ROP gadgets on-the-
fly and generating a ROP payload at runtime [36].

2.2 Control-Flow Integrity

Although W⊕X, ASLR and other protection mecha-
nisms have been widely adopted, their security bene-
fits remain open to debate [1]. The main critique is
the lack of a clear attack model and formal reasoning.
To address this, Abadi et al. [3] proposed a new secu-
rity property called control-flow integrity (CFI). A pro-
gram maintains CFI if its path of execution adheres to a
certain pre-defined control-flow graph (CFG). This CFG
consists of basic blocks (BBLs) as nodes, where a BBL
is a sequence of assembler instructions. Edges connect
two nodes, whenever the program may legally transfer
control-flow from one to the next BBL. A control-flow
transfer may be either a direct or indirect branch instruc-
tion (e.g., call, jump, or return). To ensure that a program
follows a valid path in the CFG, CFI inserts labels at the
beginning of basic blocks. Whenever there is a control-
flow transfer at runtime, CFI validates whether the indi-
rect branch targets a BBL with a valid label.

main(): function1():printf():

function2():

…
RET

…
CALL printf

label fn1
…
RET

…
asm_instr
asm_instr
RET

Intended control flow

Non-Intended (malicious) control flow

label ra1
…
CALL [REG]

label ra2
…
RET

B
BL

 1
B
BL

 2
B
BL

 3

target = ra1?

target = fn1?

target = ra2?

Figure 2: The CFG shepherds control-flow transfers

An example for CFI enforcement is shown in Figure 2.
It shows a program consisting of a main function that
invokes directly the library function printf(), and indi-
rectly the local subroutine function1(). The indirect call
to function1() in BBL 2 is critical, since an adversary
may load an arbitrary address into the register by means
of a buffer overflow attack. However, the CFG states
that this indirect call is only allowed to target function1().
Hence, at runtime, CFI validates whether the indirect call
in BBL 2 is targeting label fn1. If an adversary aims
to redirect the call to a code sequence residing in func-
tion2(), CFI will prevent this malicious control-flow, be-
cause label fn1 is not defined for function2(). Similarly,
CFI protects the return instructions of printf() and func-
tion1(), which an adversary could both exploit by over-
writing a return address on the stack. The specific CFI
checks in Figure 2 validate if the returns address label
ra1 or ra2, respectively.

It is also prudent to note that CFI has been studied in
many domains. For instance, it has been used as an en-
abling technology for software fault isolation by Abadi
et al. [2] and Yee et al. [43]. CFI enforcement has also
been shown for hypervisors [42], commodity operating
system kernels [16] and mobile devices [18]. In other
communities, Zeng et al. [44] and Pewny and Holz [32],
for example, have shown how to instrument a compiler to
generate CFI-protected applications. Lastly, Budiu et al.
[8] have explored architectural support to tackle the per-
formance overheads of software-only based solutions.

2.3 Control-Flow Integrity Challenges

There are several factors that impede the deployment of
control-flow integrity (CFI) in practice, including those
related to control-flow graph (CFG) coverage, perfor-
mance, robustness, and ease of deployment.

Before proceeding further, we note that besides pre-
senting the design of CFI, Abadi et al. [3] also included
a formal security proof for the soundness of their solu-
tion. A key observation noted in that work is that “de-
spite attack steps, the program counter always follows
the CFG.” [3, p. 4:34]. In other words, in Abadi et al.
[3], every control-flow is permitted as long as the CFG
allows it. Consequently, the quality of protection from
control-flow attacks rests squarely on the level of CFG
coverage. And that is exactly where recent CFI solutions
have deviated (substantially) from the original work, pri-
marily as a means to address performance issues.

Recall that in the original proposal, the CFG was
obtained a priori using binary analysis techniques sup-
ported by a proprietary framework called Vulcan. Since
the CFG is created ahead of time, it is not capable of cap-
turing the dynamic nature of the call stack. That is, with
only the CFG at hand, one can not enforce that functions
return to their most recent call site, but only that they re-
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turn to any of the possible call sites. This limitation is
tackled by adding a shadow stack to the statically cre-
ated CFG. Intuitively, upon each call, the return address
is placed in a safe location in memory, so that an instru-
mented return is able to compare the return address on
the stack with one on a shadow stack, and the program is
terminated if a deviation is detected [3, 14, 18]. In this
way, many control-flow transfers are prohibited, largely
reducing the gadget space available for a return-oriented
programming attack.

Given the power of CFI, it is surprising that it has
not yet received widespread adoption. The reason lies
in the fact that extracting the CFG is not as simple as
it may appear. To see why, notice that (1) source code
is not readily available (thereby limiting compiler-based
approaches), (2) binaries typically lack the necessary de-
bug or relocation information, as was needed for exam-
ple, in the Vulcan framework, and (3) the approach in-
duces high performance overhead due to dynamic rewrit-
ing and runtime checks. Much of the academic research
on CFI in the last few years has focused on techniques
for tackling these drawbacks.

3 Categorizing Coarse-Grained Control-
Flow Integrity Approaches

As noted above, a number of new control-flow integrity
(CFI) solutions have been recently proposed to address
the challenges of good runtime performance, high ro-
bustness and ease of deployment. The most prominent
examples include kBouncer [31], ROPecker [13], CFI for
COTS binaries [46], and ROPGuard [20]. To aide in bet-
ter understanding the strenghts and limitations of these
proposals, we first provide a taxonomy of the various CFI
policies embodied in these works. Later, to strengthen
our own analyses, we also derive a combined CFI policy
that takes into account the most restrictive CFI policy.

3.1 CFI Policies

Table 1 summarizes the five CFI policies we use through-
out this paper to analyze the effectiveness of coarse-
grained CFI solutions. Specifically, we distinguish be-
tween three types of policies, namely � policies used
for indirect branch instructions, � general CFI heuristics
that do not provide well-founded control-flow checks but
instead try to capture general machine state patterns of
ROP attacks and � a policy class that covers the time
CFI checks are enforced.

We believe this categorization covers the most impor-
tant aspects of CFI-based defenses suggested to date. In
particular, they cover polices for each indirect branch
the processor supports since all control-flow attacks (in-
cluding ROP) require exploiting indirect branches. Sec-
ond, heuristics are used by several coarse-grained CFI
approaches (e.g., [20, 31]) to allow more relaxed CFI

Category Policy x86 Example Description
CFIRET ret returns

� CFIJMP jmp reg|mem indirect jumps
CFICALL call reg|mem indirect calls

� CFIHEU heuristics
� CFITOC time of CFI check

Table 1: Our CFI policies

policies for indirect branches. Finally, the time-of-check
policy is an important aspect, because it states at which
execution state ROP attacks can be detected. We elabo-
rate further on each of these categories below.

1 – Indirect Branches. Recall that the goal of CFI is to
validate the control-flow path taken at indirect branches,
i.e., at those control-flow instructions that take the target
address from either a processor register or from a data
memory area3. The indirect branch instructions present
on an Intel x86 platform are indirect calls, indirect jumps,
and returns. Since CFI solutions apply different poli-
cies for each type of indirect branch, it is only natural
that there are three CFI policies in this category, denoted
as CFICALL (indirect function calls), CFIJMP (indirect
jumps), CFIRET (function returns).

2 – Behavior-Based Heuristics (HEU). Apart from
enforcing specific policies on indirect branch instruc-
tions, CFI solutions can also validate other program be-
havior to detect ROP attacks. One prominent example
is the number of instructions executed between two con-
secutive indirect branches. The expectation is that the
number of such instructions will be low (compared to
ordinary execution) because ROP attacks invoke a chain
of short code sequences each terminating in an indirect
branch instruction.

3 – Time of CFI Check (TOC). Abadi et al. argued
that a CFI validation routine should be invoked whenever
the program issues an indirect branch instruction [3]. In
practice, however, doing so induces significant perfor-
mance overhead. For that reason, some of the more
recent CFI approaches reduce the number of runtime
checks, and only enforce CFI validation at critical pro-
gram states, e.g., before a system or API call.

3.2 Instantiation in Recent Proposals

Next, we turn our attention to the specifics of how these
policies are implemented in recent CFI mechanisms.

3.2.1 kBouncer

The approach of Pappas et al. [31], called kBouncer, de-
ploys techniques that fall in each of the aforementioned
categories. Under category �, Pappas et al. [31] lever-
age the x86-model register set called last branch record
(LBR). The LBR provides a register set that holds the
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last 16 branches the processor has executed. Each branch
is stored as a pair consisting of its source and target ad-
dress. kBouncer performs CFI validation on the LBR
entries whenever a Windows API call is invoked. Its
promise resides in the fact that these checks induce al-
most no performance overhead, and can be directly ap-
plied to existing software programs.

With respect to its policy for returns, kBouncer iden-
tifies those LBR entries whose source address belong to
a return instruction. For these entries, kBouncer checks
whether the target address (i.e., the return address) points
to a call-preceded instruction. A call-preceded instruc-
tion is any instruction in the address space of the applica-
tion that follows a call instruction. Internally, kBouncer
disassembles a few bytes before the target address and
terminates the process if it fails to find a call instruction.

While kBouncer does not enforce any CFI check
on indirect calls and jumps, Pappas et al. [31] pro-
pose behavioral-based heuristics (category �) to mitigate
ROP attacks. In particular, the number of instructions ex-
ecuted between consecutive indirect branches (i.e., “the
sequence length”) is checked, and a limit is placed on the
number of sequences that can be executed in a row.4

A key observation by Pappas et al. [31] is that even
though pure ROP payloads can perform Turing-complete
computation, in actual exploits they will ultimately need
to interact with the operating system to perform a mean-
ingful task. Hence, as a time-of-CFI check policy (cate-
gory �) kBouncer instruments and places hooks at the
entry of a WinAPI function. Additionally, it writes a
checkpoint after CFI validation to prohibit an adversary
from simply jumping over the hook in userspace.

3.2.2 ROPGuard and Microsoft EMET

Similar to Pappas et al. [31], the approach suggested by
Fratric [20] (called ROPGuard) performs CFI validation
when a critical Windows function is called. However, its
policies differ from that of Pappas et al. [31].

First, with respect to policies under category �, upon
entering a critical function, ROPGuard validates whether
the return address of that critical function points to a
call-preceded instruction. Hence, it prevents an adver-
sary from using a ROP sequence terminating in a return
instruction to invoke the critical Windows function. In
addition, ROPGuard checks if the memory word before
the return address is the start address of the critical func-
tion. This would indicate that the function has been en-
tered via a return instruction. ROPGuard also inspects
the stack and predicts future execution to identify ROP
gadgets. Specifically, it walks the stack to find return ad-
dresses. If any of these return addresses points to a non
call-preceded instruction, the program is terminated.

Interestingly, there is no CFI policy for indirect calls or
indirect jumps. Furthermore, ROPGuard’s only heuristic

under category � is for validating that the stack pointer
does not point to a memory location beyond the stack
boundaries. While doing so prevents ROP payload exe-
cution on the heap, it does not prevent traditional stack-
based ROP attacks; thus the adversary could easily reset
the stack pointer before a critical function is called.

Remarks: ROPGuard and its implementation in
Microsoft EMET [5] use similar CFI policies as in
kBouncer. One difference is that kBouncer checks the
indirect branches executed in the past, while ROPGuard
only checks the current return address of the critical
function, and for future execution of ROP gadgets. ROP-
Guard is vulnerable to ROP attacks that are capable of
jumping over the CFI policy hooks, and cannot prevent
ROP attacks that do not attempt to call any critical Win-
dows function. To tackle the former problem (i.e., by-
passing the policy hook), EMET adds some randomness
in the length and structure of the policy hook instruc-
tions. Hence, the adversary has to guess the right offset
to successfully deploy her attack. However, recent mem-
ory disclosure attacks show that such randomization ap-
proaches can be easily circumvented [36].

3.2.3 ROPecker

ROPecker is a linux-based approach suggested by Cheng
et al. [13] that also leverages the last branch record reg-
ister set to detect past execution of ROP gadgets. More-
over, it speculatively emulates the future program exe-
cution to detect ROP gadgets that will be invoked in the
near future. To accomplish this, a static offline phase is
required to generate a database of all possible ROP code
sequences. To limit false positives, Cheng et al. [13] sug-
gest that only code sequences that terminate after at most
n instructions in an indirect branch should be recorded.

For its policies in category �, ROPecker inspects each
LBR entry to identify indirect branches that have redi-
rected the control-flow to a ROP gadget. This decision
is based on the gadget database that ROPecker derived in
the static analysis phase. ROPecker also inspects the pro-
gram stack to predict future execution of ROP gadgets.
There is no direct policy check for indirect branches,
but instead, possible gadgets are detected via a heuristic.
More specifically, the robustness of its behavioral-based
heuristic (category �) completely hinges on the assump-
tion that ROP code sequences will be short and that there
will always be a chain of at least some threshold number
of consecutive ROP sequences.

Lastly, its time of CFI check policy (category �) is
triggered whenever the program execution leaves a slid-
ing window of two memory pages.

Remarks: Clearly, ROPecker performs more fre-
quently CFI checks than both kBouncer and ROPGuard.
Hence, it can detect ROP attacks that do not necessar-
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ily invoke critical functions. However, as we shall show
later, the fact that there is no policy for the target of indi-
rect branches is a significant limitation.

3.2.4 CFI for COTS Binaries

Most closely related to the original CFI work by Abadi
et al. [3] is the proposal of Zhang and Sekar [46]
which suggest an approach for commercial-off-the-shelf
(COTS) binaries based on a static binary rewriting ap-
proach, but without requiring debug symbols or reloca-
tion information of the target application. In contrast to
all the other approaches we are aware of, the CFI checks
are directly incorporated into the application binary. To
do so, the binary is disassembled using the Linux dis-
assembler objdump. However, since that disassembler
uses a simple linear sweep disassembly algorithm, Zhang
and Sekar [46] suggest several error correction meth-
ods to ensure correct disassembly. Moreover, potential
candidates of indirect control-flow target addresses are
collected and recorded. These addresses comprise pos-
sible return addresses (i.e., call-preceded instructions),
constant code pointers (including memory locations of
pointers to external library calls), and computed code
pointers (used for instance in switch-case statements).
Afterwards, all indirect branch instructions are instru-
mented by means of a jump to a CFI validation routine.

Like the aforementioned works, the approach of
Zhang and Sekar [46] checks whether a return or an in-
direct jump targets a call-preceded instruction. Further-
more, it also allows returns and indirect jumps to target
any of the constant and computed code pointers, as well
as exception handling addresses. Hence, the CFI policy
for returns is not as strict as in kBouncer, where only call-
preceded instructions are allowed. On the other hand,
their approach deploys a CFI policy for indirect jumps,
which is largely unmonitored in the other approaches.
However, it does not deploy any behavioral-based heuris-
tics (category �).

Lastly, CFI validation (category �) is performed
whenever an indirect branch instruction is executed.
Hence, it has the highest frequency of CFI validation in-
vocation among all discussed CFI approaches.

Similar CFI policies are also enforced by CCFIR
(compact CFI and randomization) [45]. In contrast to
CFI for COTS binaries, all control-flow targets for in-
direct branches are collected and randomly allocated on
a so-called springboard section. Indirect branches are
only allowed to use control-flow targets contained in that
springboard section. Specifically, CCFIR enforces that
returns target a call-preceded instruction, and indirect
calls and jumps target a previously collected function
pointer. Although the randomization of control-flow tar-
gets in the springboard section adds an additional layer
of security, it is not directly relevant for our analysis,

since memory disclosure attacks can reveal the content
of the entire springboard section [36]. The CFI policies
enforced by CCFIR are in principle covered by CFI for
COTS binaries. However, there is one noteworthy policy
addition: CCFIR denies indirect calls and jumps to target
pre-defined sensitive functions (e.g., VirtualProtect). We
do not consider this policy for two reasons: first, this pol-
icy violates the default external library call dispatching
mechanism in Linux systems. Any application linking
to such a sensitive (external) function will use an indi-
rect jump to invoke it.5 Second, as shown in detail by
Göktas et al. [22] there are sufficient direct calls to sen-
sitive functions in Windows libraries which an adversary
can exploit to legitimately transfer control to a sensitive
function.

Remarks: The approach of Zhang and Sekar [46] is
most similar to Abadi et al. [3]’s original proposal in that
it enforces CFI policies each time an indirect branch is
invoked. However, to achieve better performance and
to support COTS binaries, it deploys less fine-grained
CFI policies. Alas, its coarse-grain policies allow one
to bypass the restrictions for indirect call instructions
(CFICALL). The main problem is caused by the fact
that the integrity of indirect call pointers is not vali-
dated. Instead, it is only enforced that an indirect call
takes a pointer from a memory location that is expected
to hold indirect call targets. A typical example is the
Linux global offset table (GOT) which holds the target
addresses for library calls. This leaves the solution vul-
nerable to so-called GOT-overwrite attacks [9] that over-
write pointers (in the GOT) to external library calls. We
return to this vulnerability in §5. Moreover, even if one
would ensure the integrity of these pointers, we are still
allowed to use a valid code pointer defined in the exter-
nal symbols. Hence, the adversary can invoke dangerous
functions such as VirtualAlloc() and memcpy() that are
frequently used in applications and libraries.

3.3 Deriving a Combined CFI Policy

In our analysis that follows, we endeavor to have the best
possible protections offered by the aforementioned CFI
mechanisms in place at the time of our evaluation. There-
fore, our combined CFI policy (see Table 2) selects the
most restrictive setting for each policy. Nevertheless, de-
spite this combined CFI policy, we then show that one
can still circumvent these coarse-grained CFI solutions,
construct Turing-complete ROP attacks (under realistic
assumptions) and launch real-world exploits.

At this point, we believe it is prudent to comment on
the parameter choices in these prior works — and that
adopted in Table 2. In particular, one might argue that the
prerequisite thresholds could be adjusted to make ROP
attacks more difficult. To that end, we note that Pappas
et al. [31] performed an extensive analysis to arrive at the



USENIX Association  23rd USENIX Security Symposium 407

Control-Flow Integrity (CFI) Policies CFI for
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4.1
[29

]

Com
bin

ed
Poli

cy

CFIRET : destination has to be call-preceded � � © � � �

CFIRET : destination can be taken from a code pointer � � © � � �

CFIJMP : destination has to be call-preceded � © © © © �

CFIJMP : destination can be taken from a code pointer � © © © © �

CFICALL : destination can be taken from an exported symbol � © © © © �

CFICALL : destination can be taken from a code pointer � © © © © �

CFIHEU : allow only s consecutive short sequences, © s <= 7 s <= 10 © © s <= 7
CFIHEU : where short is defined as n instructions © n <= 20 n <= 6 © © n <= 20

CFITOC : check at every indirect branch � © © © ©
Always
observed

CFITOC : check at critical API functions or system calls © � � � �

CFITOC : check when leaving sliding code window © © � © ©

Table 2: Policy comparison of coarse-grained CFI solutions: � indicates that the CFI policy is applied and enforced. � means that
the CFI policy is prohibited (corresponding execution flows would lead to an attack alarm) . © indicates that the CFI policy is not
applied/enforced. The combined policy takes the most restrictive setting for each CFI policy.

best range of thresholds for the recommended number of
consecutive short sequences (s) with a given sequence
length of n <= 20. Their analysis reveals that adjusting
the thresholds for s beyond their recommended values
is hardly realistic: when every function call was instru-
mented, 975 false positives were recorded for s <= 8.

An alternative is to increase the sequence length n
(e.g., setting it to n <= 40). Doing so would require an
adversary to find a long sequence of 40 instructions after
each seventh short sequence (for s <= 7). However, in-
creasing the threshold for the sequence length will only
exacerbate the false positive issue. For this reason, Pap-
pas et al. [31] did not consider sequences consisting of
more than 20 instructions as a gadget in their analyses.
We provide our own assessment in §5.3.

The approach of Cheng et al. [13], on the other hand,
uses different thresholds for s and n than in kBouncer.
Making the thresholds in ROPecker more conservative
(e.g., reducing s and increasing n) will lead to the same
false positives problems as in kBouncer. Moreover, the
problem would be worse, since ROPecker performs CFI
validation more frequently than kBouncer. Nevertheless,
we show that regardless of the specific choice of parame-
ter chosen in the recommended ranges, our attacks render
these defenses ineffective in practice (see Section 5).

4 Turing-Complete ROP Gadget Set
We now explore whether or not it is possible to derive a
Turing-complete gadget set even when all state-of-the-art

coarse-grained CFI protections are enforced. In particu-
lar, we desire a gadget set that still allows an adversary
to undermine the combined CFI policy (see Table 2).

Assumptions. To be as pragmatic as possible, we as-
sume that the adversary can only leverage the presence
of a single shared library to derive the gadget set. This
is a very stringent requirement placed on ourselves since
modern programs typically link to dozens of libraries.

Note also that we are not concerned with circumvent-
ing other runtime protection mechanisms such as ASLR
or stack canaries. The reasons are twofold: first, coarse-
grained CFI protection approaches do not rely on the
presence of other defenses to mitigate against code reuse
attacks. Second, in contrast to CFI, ASLR and protection
mechanisms that defend against code pointer overwrites
(e.g., stack canaries, bounds checkers, pointer encryp-
tion) do not offer a general defense, and moreover, are
typically bypassed in practice. In particular, ASLR is
vulnerable to memory disclosure attacks [36, 38]. That
said, the attacks and return-oriented programming gad-
gets we present in the following can be also leveraged to
mount memory disclosure attacks in the first stage.

Methodology and Outline. Our analysis is performed
primarily on Windows as it is the most widely deployed
desktop operating system today. Specifically, we inspect
kernel32.dll (on x86 Windows 7 SP1), a 848kb sys-
tem library that exposes Windows API functions and is
by default linked to nearly every major Windows pro-
cess (e.g., Adober Reader, IE, Firefox, MS Office). It
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is also noteworthy to mention that our results do not
only apply to Windows; Although we did not perform
a Turing-complete gadget analysis for Linux’s default li-
brary (libc.so), to demonstrate the generality of our
approach, we provide a shellcode exploit that uses gad-
gets from libc (see §5.2). To facilitate the gadget find-
ing process, we developed a static analysis python mod-
ule in IDA Pro that outputs all call-preceded sequences
ending in an indirect branch. We also developed a se-
quence filter in the general purpose D programming lan-
guage that allows us to check for sequences containing a
specific register, instruction, or memory operand. Note
that in the subsequent discussions, we use the Intel as-
sembler syntax, e.g., mov destination, source, and
use a semicolon to separate two consecutive instructions.

We first review in §4.1 the basic gadgets that form a
Turing-complete language [12, 35]. To achieve Turing-
completeness, we require gadgets to realize memory
load and store operations, as well as a gadget to real-
ize a conditional branch. Afterwards, we present two
new gadget types called the Call-Ret-Pair gadget (§4.2.1)
and the Long-NOP gadget (§4.2.2). Constructing the
latter was a non-trivial engineering task and the out-
come played an important role in “stitching” gadgets to-
gether, thereby bypassing coarse-grained CFI defenses.
It should also be noted that we only present a subset of
the available sequences. Eliminating the specific few se-
quences presented here will not prevent our attack, since
kernel32.dll (and many other libraries) provides a
multitude of other sequences we could have leveraged.

4.1 Basic Gadget Arsenal

Loading Registers. Load gadgets are leveraged in
nearly every ROP exploit to load a value from the stack
into a CPU register. Recall that x86 provides six general
registers (eax, ebx, ecx, edx, esi, edi), a base/frame
pointer register (ebp), the stack pointer (esp), and the
instruction pointer (eip). All registers can be directly ac-
cessed (read and write) by assembler instructions except
the eip which is only indirectly influenced by dedicated
branch instructions such as ret, call, and jmp.

Typically, stack loading is achieved on x86 via the POP
instruction. The call-preceded load gadgets we identi-
fied in kernel32.dll are summarized in Table 3. Ex-
cept for the ebp register, we are not able to load any
other register without inducing a side-effect, i.e., with-
out affecting other registers. That said, notice that the
sequence for esi, edi, and ecx only modifies the base
pointer (ebp). Because traditionally ebp holds the base
pointer and no data, and ordinary programs can be com-
piled without using a base pointer, we consider ebp as an
intermediate register in our gadget set. The astute reader
would have noticed that the sequences for edi and ecx

modify the stack pointer as well through the leave in-

struction, where leave behaves as mov esp,ebp; pop

ebp. However, we can handle this side-effect, since the
stack pointer receives the value from our intermediate
register ebp. Hence, we first invoke the load gadget for
ebp and load the desired stack pointer value, and after-
wards call the sequence for edi/ecx.

More challenges arise when loading the general-
purpose registers eax, ebx, and edx. While ebx can be
loaded with side-effects, we were not able to find any
useful stack pop sequence for eax and edx. This is not
surprising given the fact that we must use call-preceded
sequences. Typically, these sequences are found in func-
tion epilogues, where a function epilogue is responsible
for resetting the caller-saved registers (esi, edi, epb).
We alleviate the side-effects for ebx by loading all the
caller-saved registers from the stack.

Register Call-Preceded Sequence (ending in ret)
EBP pop ebp

ESI pop esi; pop ebp

EDI pop edi; leave

ECX pop ecx; leave

EBX pop edi; pop esi; pop ebx; pop ebp

EAX mov eax,edi; pop edi; leave

EDX mov eax,[ebp-8]; mov edx,[ebp-4];
pop edi; leave

Table 3: Register Load Gadgets

For eax and edx, data movement gadgets can be used.
As can be seen in Table 3, eax can be loaded using the
edi load gadget in advance. The situation is more com-
plicated for edx, especially given our choice to only use
kernel32.dll. In particular, while there is a sequence
that allows one to load edx by using the ebp load gadget
beforehand, it is challenging to do so since the adversary
would need to save the state of some registers. That said,
other default Windows libraries (such as shell32.dll)
offer several more convenient gadgets to load edx (e.g.,
a common sequence we observed was pop edx; pop

ecx; jmp eax), and so this limitation should not be a
major obstacle in practice.

Loading and Storing from Memory. In general, soft-
ware programs can only accomplish their tasks if the
underlying processor architecture provides instructions
for loading from memory and storing values to memory.
Similarly, ROP attacks require memory load and store
gadgets. Although we have found several load and store
gadgets, we focus on the gadgets listed in Table 4.

In particular, we discovered load gadgets that use eax
as the destination register. The specific load gadget
shown in Table 4 loads a value from memory pointed to
by ebp+8. Hence, the adversary is required to correctly
set the target address of the memory load operation in
ebp via the register load gadget shown in Table 3.
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Type Call-Preceded Sequence (ending in ret)
LOAD (eax) mov eax, [ebp+8]; pop ebp

STORE (eax) mov [esi],eax; xor eax,eax;

pop esi; pop ebp

STORE (esi) mov [ebp-20h],esi

STORE (edi) mov [ebp-20h],edi

Table 4: Selected Memory Load and Store Gadgets

We also identified a corresponding memory store gad-
get on eax. The shown gadget stores eax at the address
provided by register esi, which needs to be initialized
by a load register gadget beforehand. The gadget has no
side-effects, since it resets eax (which was stored earlier)
and loads new values from the stack into esi (which held
the target address) and ebp (our intermediate register).

Given a memory store gadget for eax and the fact that
we have already identified register load gadgets for each
register, it is sufficient to use the same memory load on
eax to load any other register. This is possible because
we use the eax load gadget to load the desired value from
memory, store it afterwards on the stack, and finally use
one of the register load gadgets to load the value into the
desired register. Finally, we also identified some conve-
nient memory store gadgets for esi and edi only requir-
ing ebp to hold the target address of the store operation.

Arithmetic and Logical Gadgets. For arithmetic op-
erations we utilize the sequence containing the x86 sub

instruction shown in Table 5. This instruction takes the
operands from eax and esi and stores the result of the
subtraction into eax. Both operands can be loaded by us-
ing the register load gadgets (see Table 3). The same gad-
get can be used to perform an addition: one only needs
to load the two’s complement into esi. Based on addi-
tion and subtraction, we can realize multiplication and
division as well. Unfortunately, logical gadgets are not
as commonplace. There is, however, a XOR gadget that
takes its operands from eax and edi (see Table 3).

Type Call-Preceded Sequence (ending in ret)
ADD/SUB sub eax,esi; pop esi; pop ebp

XOR xor eax,edi; pop edi; pop esi;

pop ebp

Table 5: Arithmetic and Logical Gadgets

Branching Gadgets. We remind the reader that
branching in ROP attacks is realized by modifying the
stack pointer rather than the instruction pointer [35].
In general, we can distinguish two different types
of branches: unconditional and conditional branches.
kernel32.dll, for example, offers two variants for a
unconditional branch gadget (see Table 6). The first uses
the leave instruction to load the stack pointer (esp) with

Type Call-Preceded Sequence
(ending in ret)

unconditional branch 1 leave

unconditional branch 2 add esp,0Ch; pop ebp

conditional LOAD(eax) neg eax; sbb eax,eax;

and eax,[ebp-4];leave

Table 6: Branching Gadgets

a new address that has been loaded before into our in-
termediate register ebp. The second variant realizes the
unconditional branch by adding a constant offset to esp.
Either one suffices for our purposes.

Conditional branch gadgets change the stack pointer
iff a particular condition holds. Because load, store, and
arithmetic/logic computation can be conveniently done
for eax, we could place the conditional in this regis-
ter. Unfortunately, because a direct load of esp (that de-
pended on the value of eax) was not readily available, we
realized the conditional branch in three steps requiring
the invocation of only four ROP sequences. That said,
our gadget is still within the constraints for the number of
allowable consecutive sequences in the Combined CFI-
enforcement Policy (see n = 8 for CFIHEU in Table 2).

First, we use the conditional branch gadget (see Ta-
ble 6) to either load 0 or a prepared value into eax. In
this sequence neg eax computes the two’s complement
and, more importantly, sets the carry flag to zero if and
only if eax was zero beforehand. This is nicely used by
the subsequent sbb instruction, which subtracts the reg-
ister from itself, always yielding zero, but additionally
subtracting an extra one if the carry flag is set. Because
subtracting one from zero gives 0xFFFFFFFF, the next
and masks either none or all the bits. Hence, the re-
sult in eax will be exactly the contents of [ebp-4] if
eax was zero, or zero otherwise. One might think that
it is very unlikely to find sequences that follow the pat-
tern neg-sbb-and. However, we found 16 sequences in
kernel32.dll that follow the same pattern and could
have been leveraged for a conditional branch gadget.

We then use the ADD/SUB gadget (see Table 5) to
subtract esi from eax so that the latter holds the branch
offset for esp. Finally, we move eax into esp using
the stack as temporary storage. The STORE(eax) gad-
get (see Table 4) will store the branch offset on the stack,
where pop ebp followed by the unconditional branch 1
gadget loads it into esp.

4.2 Extended Gadget Set

For those readers who have either written or analyzed
real-world ROP exploits before, it would be clear to them
that several other gadgets are useful in practice. For ex-
ample, modern exploits usually invoke several WinAPI
functions to perform malicious actions, e.g., launching
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Type Call-Preceded Sequence
Call 1 lea eax,[ebp-34h]; push eax;

call esi; ret

Call 2 call eax

Call 3 push eax; call [ebp+0Ch]

Table 7: Function Call Gadgets

a malicious executable by invoking WinExec(). Calling
such functions within a ROP attack requires a function
call gadget (§4.2.1). It is also useful to have gadgets that
allow one to conveniently write a NULL word to mem-
ory (the Null-Byte gadget) or the Stack-pivot gadget [17]
which is used by attacks exploiting heap overflows. Our
instantiations of the Null-Byte and Stack-pivot gadgets
are given in the Appendix as they are not vital to under-
standing the discussion that follows.

Additionally, to provide a generic method for circum-
venting the behavioral heuristics of the Combined CFI
Policy, we present a new gadget type, coined Long-NOP,
containing long sequences of instructions which do not
break the semantics of an arbitrary ROP chain (§4.2.2).

4.2.1 Call-Ret-Pair Gadget

CFI policies raise several challenges with respect to
calling WinAPI functions within a ROP attack. First,
one cannot simply exploit a ret instruction because the
CFIRET policy states that only a call-preceded sequence
is allowed — clearly, the beginning of a function is not
call-preceded. Second, the adversary must regain control
when the function returns. Hence, the return address of
the function to be called must point to a call-preceded
sequence that allows the ROP attack to continue.

To overcome these restrictions, we utilize what we
coined a Call-Ret-Pair gadget. The basic idea is to use a
sequence that terminates in an indirect call but provides a
short instruction sequence afterwards that terminates in a
ret instruction. Among our possible choices, the Call 1
sequence shown in Table 7 was selected.

POP esi
POP ebp
RET

ROP Sequence 1

LEA eax,[ebp-34h] 
PUSH eax
CALL esi
RET

ROP Sequence 2 (Call-Ret-Pair)

Memory Layout for 
Call-Ret-Pair Gadget

ROP Gadget 3 (RET 3)
ROP Gadget 2 (RET 2)

&VirtualAlloc
ADDR + 34h

ROP Gadget 1 (RET 1)

ADDR

Alloc Mem.
...
RET

VirtualAlloc()

Figure 3: Example for Call-Ret-Pair Gadget

To better understand the intracies of this gadget, we
provide an example in Figure 3. This example depicts
how we can leverage our gadget to call VirtualAlloc().
We start with a load register gadget which first loads the

start address of VirtualAlloc() into esi. Further, it loads
into ebp an address denoted as ADDR. At this address is
stored RET 3, the pointer to the ROP sequence we desire
to call after VirtualAlloc() has returned. The next ROP
sequence is our Call-Ret-Pair gadget, where the first in-
struction effectively loads RET 3 pointed to by ebp-34h

into eax. Next, RET 3 is stored at ADDR onto the stack
using a push instruction before the function call occurs.
The push instruction also decrements the stack pointer
so that it points to RET 2. The subsequent indirect call
invokes VirtualAlloc() and automatically pushes the re-
turn address onto the stack, i.e, it will overwrite RET 2
with the return address. This ensures that the control-
flow will be redirected to the ret instruction in our Call-
Ret-Pair gadget when VirtualAlloc() returns. Lastly, the
return will use RET 3 to invoke the next ROP sequence.

Note that this Call-Ret-Pair gadget works for subrou-
tines following the stdcall calling convention. Such func-
tion remove their arguments from the stack upon function
return. For functions using cdecl, we use a Call-Ret-Pair
gadget that pops after the function call, the arguments of
the subroutine from the stack. The details of the gadget
we use for cdecl function can be found in the Appendix
of our technical report [19].

For ROP attacks that terminate in a function call, we
leverage the Call 2 and Call 3 gadgets in Table 7. The
difference resides in the fact that Call 2 requires the target
address to be loaded into eax, whereas Call 3 loads the
branch address from memory.

Recall that the CFI policy for indirect calls (CFICALL
in Table 2) only permits the use of branch addresses taken
from an exported symbol or a valid code pointer place.
However, as we already described in §3.2.4, the integrity
of code pointers is not guaranteed. Hence, we can lever-
age GOT overwrite-like attacks to change the address at a
given code pointer location. Alternatively, since modern
applications typically make use of many WinAPI func-
tions by default, we can indirectly call one of these func-
tions using the external symbols.

4.2.2 Long-NOP Gadget

Our final gadget is needed to thwart the restriction that
after s = 7 short sequences in a row is used, another se-
quence of at least n = 20 instructions must follow (see
CFIHEU in Table 2). For this task, we developed a new
gadget type that we refer to as the long no-operation
(long-NOP) gadget. Constructing long-NOP in a way
that does not break the semantics of an arbitrary ROP
chain was a non-trivial task that required painstaking
analyses and a stroke of luck.

To identify possible sequences for this gadget type,
we let our sequence finder filter those call-preceded se-
quences that contain more than n = 20 instructions. To
ensure that the long sequence does not break the seman-
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tics of the ROP chain, we further reduced the set of se-
quences to those that (i) contain many memory-write in-
structions, and (ii) make use of only a small set of regis-
ters. While the latter requirement is obvious, the former
seems counter-intuitive as it can potentially change the
memory state of the process. However, if we are able to
control the destination address of these memory writes,
we can write arbitrary values into the data area of the
process outside the memory used by our ROP attack.

New Value (ebp)

POP esi
POP edi
POP ebp
RET 8

ROP Sequence 7 (Pre-LNOP)

PUSH 3
POP eax
13 Memory Writes 
(esi,edi)
XOR eax,eax
MOV eax,ebx
POP edi
POP esi
POP ebx
POP ebp
RET

ROP Sequence 8 (LNOP)

Memory Layout
for ROP Attack

Pre-LNOP (RET 7)

DATA_ADDR (esi)

DATA_ADDR (edi)

Pattern (ebp)

LNOP (RET 8)

Pattern

Pattern

Saved edi (edi)

Saved esi (esi)

Saved eax (ebx) 36 Bytes 
Memory

STORE EAX (RET 6)

STORE EDI (RET 5)

POP ESI,EBP (RET 4)

EAX_ADDR (esi)

STORE ESI (RET 3)

POP EBP (RET 2)

ESI_ADDR (ebp)

EDI_ADDR (ebp)

ROP Gadget 1 (RET 1)

O
P
T
I
O
N
A
L

ROP Gadget 2 (RET 1) DATA AREA
DATA_ADDR

Figure 4: Flow of Long-NOP gadget

Among the sequences that fulfill these requirements,
we chose a sequence that is (abstractly)6 shown in Fig-
ure 4. It contains 13 memory write instructions using
only the registers esi and edi. We stress that the en-
tire gadget chain for long-NOP does not induce any side-
effects, i.e., the content of all registers and memory area
used by the ROP attack is preserved.

We distinguish between mandatory and optional se-
quences used for long-NOP. The latter sequences are
only required if the content of all registers needs to be
preserved. We classify them as optional, since it is very
unlikely that ROP attacks need to operate on all registers
during the entire ROP execution phase. If all registers
need to be preserved (worst-case scenario), we require 6
ROP sequences before the long-NOP gadget sequence is
invoked. Since all registers are preserved, we can issue in
each round another ROP sequence until all desired ROP
sequences have been executed.

Mandatory Sequences. The mandatory sequences are
those labeled Sequence 7 and 8 (in Figure 4). Sequence 7
is used to set three registers: esi, edi, and ebp. We load

in esi and edi the same address, namely DATA ADDR,
which points to an arbitrary data memory area in the ad-
dress space of the application, e.g., stack, heap, or any
other data segment of an executable module. Due to the
ret 8 instruction, the stack pointer will be incremented
by 8 more bytes leaving space for pattern values. Af-
terwards, our long-NOP sequence uses esi and edi to
issue 13 memory writes in a small window of 36 bytes.
In each round, we use the same address for DATA ADDR,
and hence, we always write the same arbitrary values in
a 36 byte memory space not affecting memory used by
our ROP attack. The long-NOP sequence also destroys
the value of eax and loads new values via pop instruc-
tions in other registers. However, these register changes
are resolved by our optional sequences discussed next.

Optional Sequences. ROP Sequence 2 to 6 are the op-
tional sequences, and are responsible for preserving the
state of all registers. The optional sequences shown in
Figure 4 represent those already presented in our basic
gadget arsenal in §4.1. Depending on the specific goals
and gadgets of a ROP attack, the adversary can choose
among the optional sequences as required.

ROP Sequence 2 and 3 store the value of esi on the
stack in such a way that the pop esi instruction in long-
NOP resets the value accordingly. ROP Sequence 4 to 6
store the content of eax and edi on the stack. Similar
to the store for esi, the content is again re-loaded into
these registers via pop instructions at the end of the long-
NOP sequence. However, the content of register eax and
ebx is exchanged after the long-NOP sequence since mov
eax,ebx stores ebx to eax, and the former value of eax
is loaded via pop into ebx. However, we can compensate
this switch by invoking the Long-NOP gadget twice so
that eax and ebx are exchanged again.

5 Hardening Real-World Exploits
We now elaborate on the hardening of two real-world ex-
ploits against 32-bit Windows 7 SP1 and a Linux proof-
of-concept exploit. Specifically, we transform publicly
available ROP attacks against Adobe PDF reader [26]
and the GNU mediaplayer mPlayer [10]. We used the
gadget set derived in §4 to perform the transformation.
Furthermore, our attacks are executed with the Caller,
SimExecFlow, StackPivot, LoadLib, and MemProt op-
tion for ROP detection in Microsoft EMET 4.1 enabled.
The source code for both attacks is given in our technical
report [19].

5.1 Windows Exploits

The Adobe PDF attack used in this paper exploits the
integer vulnerability CVE-2010-0188 in the TIFF image
processing library libtiff. The vulnerability originally
targeted Adobe PDF versions 9.1-9.3 running on Win-
dows XP SP2/SP3. Likewise, the mPlayer attack ex-
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ploited a buffer overflow vulnerability that allows the ad-
versary to overwrite an exception handler pointer. Since
we perform our analyses on Windows 7, we ported both
exploits from Windows XP to Windows 7.

Exploit Requirements: For both exploits, we need
to (1) allocate a new read-write-execute (RWX) memory
page with VirtualAlloc(), (2) copy malicious shellcode
into the newly allocated page by using memcpy(), and
(3) redirect the control-flow to the shellcode. Originally,
the exploits made use of non-call-preceded gadgets, and
used a long chain of short instruction sequences. For
mPlayer 18 consecutive short sequences are executed,
while for Adobe PDF 11 sequences are executed until the
first system call is issued. Hence, both exploits clearly
violate CFIRET and CFIHEU of the combined CFI pol-
icy. These exploits are prevented by Microsoft EMET
because of CFIRET , and are detected by both kBouncer
and ROPecker due to violation of the CFIHEU policy.

Replacing ROP Sequences: A simplified view of the
gadget chain we use for our hardened exploits in the PDF
exploit is shown in Figure 5. We first replaced all non-
call-preceded sequences with one of our call-preceded
sequences in our ROP gadget set identified in Section 4.
Both exploits mainly use load register and memory gad-
gets to set the arguments for VirtualAlloc() and mem-
cpy(), and function call gadgets to invoke both functions.
By leveraging only call-preceded sequences, our attacks
comply to the CFI policy for returns (CFIRET ).

LOAD esi 

LNOP Sequence
LOAD esi,ebp

Memory Layout
for ROP Exploit

(Adobe PDF)

M_Args
DATA_ADDR

ROP Gadget 4 (RET 4)

DATA_ADDR
ROP Gadget 5 (RET 5)

36 Bytes 
Memory

ROP Gadget 3 (RET 3)
Arg4 = RWX

Arg1 = NULL
Arg2 = size

ROP Gadget 2 (RET 2)

&VirtualAlloc

Arg3 = MEM_COMMIT

ROP Gadget 1 (RET 1)

&memcpy

DATA AREA
DATA_ADDR

Call-Ret-Pair
VirtualAlloc()

LOAD esi,edi

STORE eax at [esi]
LOAD esi

ROP Gadget 6 (RET 1) Call-Ret-Pair 2
memcpy()

RWX Memory

SHELLCODE

ROP Gadget 7 (RET 2)

Arg1 = NEW_PAGE
Arg2 = &SHELLCODE

Arg3 = size
NEW_PAGE

Execute SHELLCODE

Figure 5: Simplified view of our hardened PDF exploit.
See [19] for the full source code.

Since both exploits make use of WinAPI calls, we uti-
lized our Call-Ret-Pair gadget to invoke VirtualAlloc()
and memcpy(). As both functions are default routines
used in a benign execution of Adobe PDF and mPlayer,

we are allowed to leverage indirect calls to invoke these
functions (addressing CFICALL). Note that even if this
were not the case, we could still call these functions by
overwriting valid code pointer locations. A demonstra-
tion of this weakness — particularly for the approach
of Zhang and Sekar [46] — is provided in Section 5.2.
Lastly, we need to tackle the CFI policies for behav-
ioral heuristics (addressing CFIHEU ) by ensuring that we
never execute more than 7 short sequences in a row be-
fore calling our long-NOP gadget.

Putting-It-All-Together: Gadget � in Figure 5 loads
the target address of VirtualAlloc() into esi. The argu-
ments to this function (Arg1-Arg4) are set on the stack.
They are chosen in such a way that VirtualAlloc() allo-
cates a new RWX memory page. Gadget � leverages
our Call-Ret-Pair gadget to call VirtualAlloc(). The start
address of the page is placed by VirtualAlloc() into eax.

ROP Gadgets � and � facilitate two goals: first they
store the start address of the new RWX page on the stack.
Second, they prepare the execution of the long-NOP gad-
get. In particular, they set esi and edi to DATA ADDR.
This address points to an arbitrary data section of one
of the linked libraries. Our long-NOP sequence (ROP
Gadget �) will later perform 13 memory writes on this
data region, thereafter setting esi to the start address of
memcpy(). ROP Gadget � invokes memcpy() to copy the
malicious shellcode onto the newly allocated RWX page.
Lastly, our ROP chain transfers the control-flow to the
copied shellcode via Gadget �, which in both exploits
opens the Windows calculator.

For the Adobe PDF attack, we used 7 ROP sequences
with 52 instructions executed. In the hardened version
of the mPlayer exploit, we used 49 ROP sequences with
380 instructions executed. Note that the 49 sequences
include the interspersed long-NOP sequences to adhere
to the CFI policy CFIHEU . We used a writable memory
area of 36 Bytes for the long-NOP gadget. The require-
ment of more sequences for the mPlayer attack can be
attributed to the fact that this exploit did not allow for
the use of any NULL bytes in the payload and so we
needed to leverage a NULL-Byte gadget (Appendix A)
in this exploit. The mPlayer exploit also required a
stack pivot gadget (Appendix B). This attack also re-
quired a specific stack pivot gadget adding a large con-
stant to esp. Unfortunately, our stack pivot sequences in
kernel32.dll did not use large enough constants, and
the original sequence exploited a non call-preceded one
in avformat-52.dll. However, we identified another
useful call-preceded stack pivot sequence in the same li-
brary which allowed us to instantiate the exploit.

The above strategies can be used to easily transform
other ROP attacks to bypass current coarse-grained CFI
defenses. Furthermore, given our routines for finding and
filtering useful call-preceded ROP sequences, the process
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of transforming exploits could be fully automated. We
leave that as an exercise for future work.

A final remark concerns the control transfer to the
injected shellcode. In both exploits, we invoke a call-
preceded sequence terminating in an indirect jump.
While this approach works for kBouncer, ROPecker, and
ROPGuard, it might raise an alarm for CFI for COTS
binaries if the shellcode is placed at an address that is
not within the set of valid function pointers (i.e., indirect
jump targets). However, there are several ways to tackle
this issue. A very effective approach has been shown by
Göktas et al. [22], where the code section is simply set to
be writable, the shellcode copied to an address which re-
sembles a valid function pointer, and after which the code
section is reset back to be executable. Alternatively, one
can overwrite the location of a valid function pointer with
the start address of the shellcode. We provide a detailed
example how this can be realized in the next subsection.

5.2 Linux Shellcode Exploit

Since the approach of Zhang and Sekar [46] targets
Linux specifically, we also developed a proof-of-concept
exploit that shows how our attack bypasses the CFI poli-
cies for indirect calls. To do so, we use a sample program
that suffers from a buffer overflow vulnerability allowing
an adversary to overwrite a return address on the stack.
The goal of our attack is to call execve(), which is a stan-
dard system function defined in libc.so to execute a
new program. The challenge, however, is that the ex-
ample program does not include execve() in its external
symbols, and consequently, we are not allowed to redi-
rect the control-flow to execve() using an indirect call.

LOAD edx,eax Stack layout for
GOT overwrite

Arg1 = /bin/sh

ROP Gadget 3 (RET 3)

ROP Gadget 2 (RET 2)

&printf@plt

&execve
&printf@got.plt

ROP Gadget 1 (RET 1)

STORE eax at [edx]

Call-Ret-Pair
printf@plt

LOAD esi

&execve

JMP
[&printf@got.plt]
...

printf@plt

printf@got.plt

...

Code Layout of
module

ROP Gadget 4 (RET 4)

Figure 6: GOT overwrite attack

To overcome this restriction, we make use of an old
(but seemingly forgotten) attack technique called global
offset table (GOT) overwrite [9]. The basic idea is to
write the address of execve() at a valid code pointer loca-
tion. A well-known location for doing so is the GOT
table, which contains pointers to library calls such as
printf(). We reiterate that the weakness here is that CFI
for COTS binaries does not validate the integrity of these
pointers — a very difficult, if not unsurmountable task, in
the current design of Linux since the GOT is initialized at
runtime of an application. Hence, we can invoke gadgets

to overwrite the pointers placed in the GOT. Specifically,
we first find useful sequences from the Linux standard
library libc.so and use gadgets that perform the GOT
overwrite while using only call-preceded sequences.

Putting-It-All-Together: An example on how we by-
pass the CFI policy for indirect calls is shown in Figure 6.
The approach is as follows: first, Gadget � loads the ad-
dress of the GOT entry we want to modify into edx, and
loads eax with the address of execve(). Next, Gadget �

overwrites the address of printf() with the address of ex-
ecve() in the GOT. Finally, Gadget � loads the address of
the printf() stub into esi, and Gadget � uses a Call-Ret-
Pair gadget to invoke execve(). At this point, the attack
succeeds without violating any of the CFI policies.

5.3 On Parameter Adjustment

As alluded to in §3.3, adjusting the parameters for the
CFIHEU policy beyond the recommended settings will
negatively impact the false positive rate. To assess that,
we extended the analysis beyond what Pappas et al. [31]
originally performed in order to analyze the impact of
increasing n to 30 or 40 instructions — thereby render-
ing our Long-NOP gadget (which is only 23 instruc-
tions long) stitching ineffective. Specifically, we per-
formed an experiment using three benchmarks of the
SPEC CPU 2006 benchmark suite: bzip2, perlbench,
and xalancbmk. The first two are programmed in C,
while the latter in C++. We developed an Intel Pintool
that counts the number of instructions issued between
two indirect branches, and the number of consecutive
short instruction sequences. Whenever a function call oc-
curs, we check how many short sequences (s) have been
executed since the last function call.
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Figure 7: Potential false positives when the parameters for the
consecutive sequences (s) and sequence length (n) are adjusted.

As Figure 7 shows, increasing the thresholds for n
induces many potential false positives (y-axis). In par-
ticular, for each benchmark (x-axis), observe that for
s > 10 there are about 20,000 potential false positives,
i.e., 20,000 times we detected a function call that was
preceded by more than 10 short sequences7.
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6 Related Work
Concurrent and independent to our work, several re-
search groups have investigated the security of coarse-
grained CFI solutions [11, 22–24, 34]. However, our
analysis differs from these works as we examine the
security of a combination of coarse-grained CFI poli-
cies irrespective of when the CFI check occurs. For in-
stance, the attacks shown in [11, 22, 34] are prevented by
our combined CFI policy which monitors the sequence
length at any time in program execution. Furthermore,
unlike these works, we systematically show the construc-
tion of a Turing-complete gadget set based on a weak ad-
versary that has only access to one standard shared Win-
dows library. On the other hand, concurrent work also in-
vestigates some other interesting attack aspects: Göktas
et al. [22] demonstrate attacks against CCFIR [45] using
call-preceded gadgets to invoke sensitive functions via
direct calls; Carlini and Wagner [11] and Schuster et al.
[34] show flushing attacks that eliminate return-oriented
programming traces before a critical function is invoked.

Lastly, new CFI-based solutions have also been pro-
posed. For instance, the approaches of Tice et al. [40]
and Jang et al. [25] focus on protecting indirect calls
to virtual methods in C++. Both approaches have been
implemented as a compiler extension and ensure that
an adversary cannot manipulate a virtual table (vtable)
pointer so that it points to an adversary-controlled (mali-
cious) vtable. Unfortunately, these schemes do not pro-
tect against classical ROP attacks which exploit return
instructions, and map malicious code to a memory area
reserved for a valid virtual method.

7 Summary
Without question, control-flow integrity offers a strong
defense against runtime attacks. Its promise lies in the
fact that it provides a general defense mechanism to
thwart such attacks. Rather than focusing on patching
program vulnerabilities one by one, CFI’s power stems
from focusing on the integrity of the program’s control
flow regardless of how many bugs and errors it may suf-
fer from. Unfortunately, several pragmatic issues (most
notably, its relatively high performance overhead), have
limited its widespread adoption.

To better tackle the performance trade-off between se-
curity and performance, several coarse-grained CFI so-
lutions have been proposed to date [13, 20, 31, 45, 46].
Additionally, it has been recently shown that such coarse-
grained CFI policies can be applied to operating system
kernels [16]. These proposals all use relaxed policies,
e.g., allowing returns to target any instruction following
a call instruction.

While many advancements have been made along the
way, all to often the relaxed enforcement policies signifi-
cantly diminish the security afforded by Abadi et al. [3]’s

seminal work. This realization is a bit troubling, and
calls for a broader acceptance that we should not sacrifice
security for small performance gains. Doing so simply
does not raise the bar high enough to deter skillful adver-
saries. Indeed, our own work shows that even if coarse-
grained CFI solutions are combined, there is still enough
leeway to mount reasonable and Turing-complete ROP
attacks. Our hope is that our findings will raise better
awareness of some of the critical issues when designing
robust CFI mechanisms, all-the-while re-energizing the
community to explore more efficient solutions for em-
powering CFI.
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A NULL-Byte Write Gadget

In real-world exploits it is useful to have gadgets that al-
low one to conveniently write a NULL word to memory.
This is important as real-world vulnerabilities typically
do not allow an adversary to write a NULL byte in the
payload, but such functionality is indeed needed to write
a 32-bit NULL word on the stack when required as a pa-
rameter to function calls.

A prominent example is the traditional strcpy(dest,src)
vulnerability, which can be exploited to write data be-
yond the boundaries of the src variable. However,
strcpy() stops copying input data after encountering a
NULL byte.

POP ebp
RET

ROP Sequence 1

AND [ebp-20h],0
RET

ROP Sequence 2 (NULL)

Memory Layout for 
NULL Gadget

NULL

ROP Gadget 2 (RET 2)
ADDR + 20h

ROP Gadget 1 (RET 1)

ADDR

Figure 8: Details of NULL Gadget

Our choice for such a gadget is shown in Figure 8.
This gadget first loads the target address into ebp with
the first ROP sequence. The next sequence exploits the
and instruction to generate a NULL word at the memory
location pointed to by ebp-20h.

B Stack Pivot Gadgets

We take advantage of two distinct stack pivot gadgets
shown in Table 8. The first one is our unconditional
branch gadget, which moves ebp via the leave instruc-
tion to esp. The other sequence takes the value of esi
and loads it into esp. In both sequences, the adversary
must control the source register ebp and esi, respec-
tively. This is achieved by invoking a load register gadget
beforehand. Note also that several vulnerabilities allow
an adversary to load these registers with the correct val-
ues at the time the buffer overflow occurs, which would
make the ROP attack easier.

Type Call-Preceded Sequence (ending in ret)
Pivot 1 leave

Pivot 2 mov esp, esi; pop ebx; pop edi;

pop esi; pop ebp

Table 8: Stack Pivot Gadgets

C Details of Long-NOP Gadget
pop esi ; ptr to writable mem for NOP
pop edi ; ptr to writable mem for NOP
pop ebp ; unused in NOP
retn 8 ; -> insert 8 bytes junk after

next gadget

Listing 1: Pre-Seuence for LNOP

movzx eax , ax
mov [esi+4], eax ; 5 writes to
mov [esi+8], 1F4Bh ; a 20 byte
mov [esi +14h], 5 ; memory region
mov [esi +10h], 1Fh
mov [esi+0Ch], 0Ch
push 3Bh
pop eax
mov [esi+1Ch], eax ; 2 writes to
mov [esi +20h], eax ; 8 byte region
xor eax , eax
mov [esi +18h], 17h ; another 8 bytes
mov [esi +24h], 98967Fh
mov [edi +18h], eax ; if edi == esi
mov [edi+1Ch], eax ; these writes
mov [edi +20h], eax ; goto the same
mov [edi +24h], eax ; region as before
pop edi ; (optional :) restore edi
pop esi ; (optional :) restore esi
mov eax , ebx
pop ebx ; (optional :) load former eax
pop ebp
retn 0Ch

Listing 2: Long sequence used for LNOP gadget

Notes
1Some of the mechanisms used in kBouncer and ROPGuard (both

awarded by Microsoft’s BlueHat Prize [39]) have already been inte-
grated in Microsoft’s defense tool called EMET [29].

2Sequences that end in indirect jumps or calls can also be used [12].
3Typically, CFI does not validate direct branches because these ad-

dresses are hard-coded in the code of an executable and cannot be
changed by an adversary when W⊕X is enforced.

4Specifically, kBouncer reports a ROP attack when a chain of 8
short sequences has been executed, where a sequence is referred to as
“short” whenever the sequence length is less than 20 instructions.

5The target address of an external function is dynamically allocated
in the global offset table (GOT) which is loaded by an indirect memory
jump in the procedure linkage table (PLT).

6For the interested reader, we have placed the specific assembler
implementation of the long-NOP sequence in Appendix C.

7We also simulated the analysis performed in [31] by setting n= 20.
However, we arrive at a significantly higher false positive rate than
in [31]. This is likely due to the fact that we perform our analysis on
industry benchmark programs, while their analysis is based on open-
ing web-browsers or document readers. Furthermore, their focus is on
WinAPI calls, whereas in Figure 7 we instrument every call.


