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Abstract

Cells employ multiple levels of regulation, including transcriptional and translational regulation, that drive core biological
processes and enable cells to respond to genetic and environmental changes. Small-molecule metabolites are one category
of critical cellular intermediates that can influence as well as be a target of cellular regulations. Because metabolites
represent the direct output of protein-mediated cellular processes, endogenous metabolite concentrations can closely
reflect cellular physiological states, especially when integrated with other molecular-profiling data. Here we develop and
apply a network reconstruction approach that simultaneously integrates six different types of data: endogenous metabolite
concentration, RNA expression, DNA variation, DNA–protein binding, protein–metabolite interaction, and protein–protein
interaction data, to construct probabilistic causal networks that elucidate the complexity of cell regulation in a segregating
yeast population. Because many of the metabolites are found to be under strong genetic control, we were able to employ a
causal regulator detection algorithm to identify causal regulators of the resulting network that elucidated the mechanisms
by which variations in their sequence affect gene expression and metabolite concentrations. We examined all four
expression quantitative trait loci (eQTL) hot spots with colocalized metabolite QTLs, two of which recapitulated known
biological processes, while the other two elucidated novel putative biological mechanisms for the eQTL hot spots.
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Introduction

Cells are complex molecular machines that employ multiple

levels of regulation that enable them to respond to genetic and

environmental perturbations. Advances in biology over the past

several years to elucidate the complexity of this regulation have

been truly astonishing. However, despite transformative advances

in technology, it remains difficult to assess where we are in our

understanding of cell regulation, relative to a complete compre-

hension of such a process. One of the primary difficulties in our

making such an assessment is that the suite of research tools

available to us seldom provides insights into aspects of the overall

picture of the system that are not directly measured. While

different technologies provide information that our analytical

tools, both algorithmic and intellectual, seek to combine into a

coherent picture, one of the primary limitations of the majority of

analytical tools in use today is a focus on single dimensions of data,

rather than on maximally integrating data across many different

dimensions simultaneously to view processes more completely,

thereby achieving a greater understanding of these processes.

The full suite of interacting parts in a cell over time, if they

could be viewed collectively, would enable our achieving a more

complete understanding of cellular processes, much in the same

way we achieve understanding by watching a movie. The

continuous flow of information in a movie enables our minds to

exercise an array of priors that provide context and constrain the

possible relationships (structures), while our internal network

reconstruction engine pieces all of the information together

regarding the highly complex and nonlinear relationships

represented in the movie, so that in the end we are able to

achieve an understanding of what is depicted at a hierarchy of

levels. If instead of viewing a movie as a continuous stream of

frames of coherent pixels and sound, we viewed single dimensions

of the information independently, understanding would be difficult

if not impossible to achieve. For example, consider viewing a

movie as independent, one dimensional slices through the frames
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of the movie, where each slice is viewed as pixel intensities across

that one dimension changing over time (like a dynamic mass spec

trace). In this way it would be very difficult to understand the

meaning of the movie by looking at all of the one dimensional

traces independently.

Despite the complexity of biological systems, even at the cellular

level, research in the context of large-scale high dimensional -

omics data has tended to focus on single data dimensions, whether

constructing coexpression networks on the basis of gene expression

data, carrying out genome-wide association analyses on the basis

of DNA variation information, or constructing protein interaction

networks on the basis of protein–protein interaction data. While

we achieve some understanding in this way, progress is limited

because none of the dimensions on their own provide a complete

enough context within which to interpret results fully. This type of

limitation has become apparent in genome-wide association

studies (GWAS), where many hundreds of highly replicated loci

have been identified and highly replicated as associated with

disease; but our understanding of disease is still limited because the

genetic loci do not necessarily inform on the gene affected, on how

gene function is altered, or more generally, how the biological

processes involving a given gene are altered [1–4]. It is apparent

that if different biological data dimensions could be formally

considered simultaneously, we would achieve a more complete

understanding of biological systems [2,3,5–7]. (See the documen-

tary film The New Biology at http://www.youtube.com/

watch?v = sjTQD6E3lH4.)

Therefore, to form a more complete understanding of biological

systems, we must not only evolve technologies to sample systems at

ever higher rates and with ever greater breadth, we must innovate

methods that consider many different dimensions of information

to produce more descriptive models (movies) of the system.

Methods are emerging that integrate pairs of data dimensions. For

example, we recently developed methods that simultaneously

integrate DNA variation and RNA expression data generated in a

population context to identify coherent modules of interconnected

gene expression traits driven by common genetic factors [2,8]. In

addition, many groups have begun incorporating a time dimension

in the context of high-dimensional molecular-profiling data to

elucidate how networks can transform over time [9,10].

Here we develop and apply a network reconstruction approach

that simultaneously integrates six different types of data:

endogenous metabolite concentration, RNA expression, DNA

variation, DNA–protein binding, protein–metabolite interaction,

and protein–protein interaction data, to construct probabilistic

causal networks that elucidate the complexity of cell regulation

(Figure 1). The goals of our integrative analysis are not only to find

causal regulators underlying expression quantitative trait loci

(eQTL) hot spots, but to uncover mechanisms by which these

predicted causal regulators affect genes and metabolites whose

transcriptional profiles or metabolite profiles are linked to the

eQTL hot spots. We leveraged a previously described cross

between laboratory (BY) and wild (RM) yeast strains (referred to

here as the BXR cross) for which DNA variation and RNA

expression had been assessed [11,12], to carry out a quantitative

metabolite profiling using quantitative NMR (qNMR) under the

same experimental conditions as the gene expression study [12–

14]. We demonstrate that, like transcript and protein levels,

concentrations of many metabolites are strongly linked to

metabolite QTLs (metQTLs). Several of the metQTLs are seen

to colocalize with expression quantitative trait loci (eQTLs)

previously identified in the same yeast population [13], enabling

us to infer causal relationships between metabolites and expression

traits [13,14]. Then, by extending a previously described Bayesian

network (BN) reconstruction algorithm [13], we constructed a

probabilistic causal network by integrating metabolite levels,

genotype, gene expression, transcription factor (TF) binding, and

protein–protein interaction data. The resulting network not only

validates the functional importance of eQTL hot spots in the BXR

cross, but elucidates the mechanisms by which variation in DNA

at eQTL hot spots affect gene expression. By systematically using

the networks to elucidate the regulators of these eQTL hot spots,

we are not only able to recapitulate known regulatory mecha-

nisms, we are able to provide a number of novel and

experimentally supported causal relationships predicted by our

network, including that cellular amino acid concentrations are

related to both amino acid biosynthesis pathways and amino acid

degradation pathways, with VPS9 predicted and prospectively

validated as a key driver of a previously identified eQTL hot spot

that could not previously be well characterized. In addition, we

further experimentally demonstrated that PHM7, a previously

predicted and validated causal regulator for stress response genes

whose expression variations are linked to the PHM7 locus on

Chromosome XV, affected trehalose, a yeast metabolite product

of the stress response pathway. These results combined not only

help uncover the mechanisms by which gene expression profiles

are regulated by metabolite profiles, but they also confirm the

importance of gene expression in understanding system-wide

variation linked to genetic perturbations.

Results

Characterizing Metabolite Levels in a Segregating Yeast
Population

Experimental context matters for inferring causal

relationships. Two classes of data were employed to

reconstruct probabilistic causal networks: (1) DNA variation,

gene expression, and metabolite data measured in the BXR cross

(referred to here as BXR data), and (2) protein–DNA binding,

protein–protein interaction, and metabolite–protein interaction

data available from public data sources and generated

independently of the BXR cross (referred to here as non-BXR

Author Summary

It is now possible to score variations in DNA across whole
genomes, RNA levels and alternative isoforms, metabolite
levels, protein levels and protein state information,
protein–protein interactions, and protein–DNA interac-
tions, in a comprehensive fashion in populations of
individuals. Interactions among these molecular entities
define the complex web of biological processes that give
rise to all higher order phenotypes, including disease. The
development of analytical approaches that simultaneously
integrate different dimensions of data is essential if we are
to extract the meaning from large-scale data to elucidate
the complexity of living systems. Here, we use a novel
Bayesian network reconstruction algorithm that simulta-
neously integrates DNA variation, RNA levels, metabolite
levels, protein–protein interaction data, protein–DNA
binding data, and protein–small-molecule interaction data
to construct molecular networks in yeast. We demonstrate
that these networks can be used to infer causal
relationships among genes, enabling the identification of
novel genes that modulate cellular regulation. We show
that our network predictions either recapitulate known
biology or can be prospectively validated, demonstrating a
high degree of accuracy in the predicted network.

Constructing Predictive Regulatory Networks
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data). The BXR data are reflected as nodes in the network, where

edges in the network reflect statistically inferred causal

relationships among the expression and metabolite traits

(Methods) [13]. The non-BXR interaction data from public

sources are used to derive structure priors on the network to both

constrain the size of the search space in finding the best network

and enhance the ability to infer causal relationships between the

network nodes [13].

The BXR data in particular, directly representing the nodes and

associations in the network, require special consideration given

that relationships among genes and between genes and metabolites

may be condition specific, requiring that the expression and

metabolite data be generated under identical experimental

conditions to maximize the power to identify causal relationships.

In fact, others have shown that there are widespread interactions

between genetic and environmental factors [15]. Just as genetic

factors may predispose some populations to certain human

diseases, environmental factors like diet can also increase or

decrease the risk of disease [16–18]. Both F2 mouse [19] and rat

[20] studies demonstrate that cholesterol QTLs are dependent on

diet, and similarly for obesity-related traits [21,22].

Therefore, before profiling metabolite levels in the BXR cross,

we explored the importance of context in identifying associations

between different molecular phenotypes by examining the

expression profiles of the yeast segregants in this cross and

corresponding QTLs under glucose and ethanol growth conditions

[23]. Genetic variations (such as SNPs) give rise to variations in

phenotypes, including quantitative traits such as gene expression

and clinical traits [13,14,24]. Cis-acting (or proximal) eQTLs are

special because they represent associations between DNA

variation at a given locus where the corresponding gene physically

resides and the expression levels of the corresponding gene,

reflecting in most causes allelic differences in transcript levels

[13,24,25]. For the yeast segregants comprising the BXR cross,

expression data have been generated under glucose and ethanol

growth conditions [23]. For both expression sets the underlying

genetic perturbations in the BXR cross are identical. We identified

548 and 569 cis-eQTLs for the glucose and ethanol data,

respectively, at the p-value cutoff where less than 1 false positive

is expected genome wide. However, when the two sets of cis-

eQTLs were compared, we found that only two-thirds of the cis-

eQTLs were common, where half of the total cis-eQTLs were

unique to one of the two conditions (Figure S1a). It is worth noting

that for cis-eQTL detected in one condition, the corresponding

LOD scores in the other condition are approximately uniformly

distributed over the entire LOD score range (Figure S1b and S1c).

Figure 1. Overview of the experimental design. A cross between laboratory (BY) and wild (RM) strains of S. cerevisiae [11] was gene expression
profiled. Metabolites were profiled under the same conditions. These data were then integrated with genotype data along with information from
public databases to derive a BN. The derived network was used to analyze how cells are regulated.
doi:10.1371/journal.pbio.1001301.g001

Constructing Predictive Regulatory Networks
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This result suggests that nonoverlapping cis-eQTLs across the

different conditions are not due to a lack of power to replicate a

given eQTL in the second condition, but to condition-specific

effects (medium conditions in this instance).

Even under highly similar growth conditions, we can see that

slight differences in amino acid concentrations lead to significant

changes in gene expression. For example, in the original screen of

the BXR cross [11], there were 203 gene expression traits linked to

the LEU2 locus at a 5% false discovery rate (FDR) (in this instance

the leucine concentration in the medium was 80 mg/l). In a

follow-up screen of this same cross [23], the leucine concentration

in an otherwise identical growth medium was 100 mg/l; only 57

genes with expression levels linked to the LEU2 locus were

detected in this case at a 5% FDR. Greater than 60% (36) of these

57 genes overlapped the set of 203 genes, a very significant overlap

(p= 1:7|10{35) indicating common biological processes were

affected (Table S1). The smaller number of genes linked to the

LEU2 locus in the follow up dataset is consistent with the known

relationship between leucine concentrations in growth medium

and leucine biosynthesis: high levels of leucine in growth medium

represses leucine biosynthesis [26]. This result implies that

considerable differences may exist in the regulatory networks

between different growth conditions. Therefore, to reliably infer

causal relationships between variations in gene expression and

metabolite levels, it is critical to measure them under identical

conditions.

Measuring metabolite levels in the BXR cross. To

maximize the power to detect relationships between metabolite

and gene expression traits in the BXR cross, we measured

metabolite levels in cell extracts from the 120 yeast segregants

composing the cross after culturing the segregants using growth

conditions that were identical to the growth conditions used to

generate the gene expression data (Methods). Cellular metabolite

concentrations can be measured by mass spectrometry (MS) [27]

technologies or qNMR [28,29]. While MS technologies are more

sensitive and can detect low-abundance metabolites, accurate

quantification requires the addition of an internal standard for

each metabolite to be measured. This can be accomplished by

generating isotope-enriched metabolite extracts (repetitively

growing cells in medium containing isotope-enriched nutrients

such as 13C6-glucose) [27]. Quantitative LCXMS/MS analyses

are then based on isotope ratios constructed by adding unlabeled

endogenous metabolites of known amounts as internal controls,

enabling an accurate quantification of metabolite levels [27,30]. In

contrast to MS-based metabolite profiling, qNMR requires no

special sample preparation procedures, although it is less sensitive

than MS techniques. With qNMR, a single internal reference

standard in an NMR sample is sufficient to quantify all detectable

endogenous metabolites. Therefore, we generated metabolite

profiling data using qNMR in the BXR cross under the same

growth condition as the gene expression profiles were generated

(Figure 1).

Metabolite abundances are under genetic control. Each

cell extract was analyzed on a 700-MHz NMR spectrometer by

acquiring one-dimensional proton spectra. The appearance and

density of peaks in these scans (Figure S2) were in keeping with

previously reported yeast NMR spectra [31]. Metabolites were

identified on the basis of NMR reference spectra encompassing

more than 700 endogenous compounds. Quantities of metabolites

in each sample were calculated on the basis of integrated peak

areas with respect to the concentration of the internal reference

standard DSS-d6. From the NMR reference spectra, we were able

to identify and accurately quantify 56 yeast endogenous

metabolites excluding ethanol and methanol (see Methods). We

reported the amount of each metabolite as nanomoles per yeast

cell.

The averaged metabolite concentrations for all segregants are

listed in Table S2. Concentrations of a number of amino acids,

including lysine, glycine, and isoleucine, were consistent with

previous measurements of intracellular concentrations [32,33].

The average intracellular concentration of leucine was lower than

previously reported values [32,33], an expected result if synthetic

media were not a fully sufficient source of this amino acid. Such

activity would be consistent with reports of the activity of the

leucine biosynthesis pathway from gene expression [12] and

proteomic [34] measurements of yeast grown under similar

conditions. Arginine, AMP, ADP, and ATP concentrations were

also low relative to previous measurements [32,33], but the

average energy charge was 0.833, and the average NAD/NADH

ratio is 20.022, both within expected normal ranges [35,36].

To assess the variation of metabolite concentrations across

biological replicates of independent yeast cultures, we collected ten

replicate cell extracts for each parental strain at two time points

separated by 2 mo. A comparison between the two parental strains

identified 23 metabolites with significantly different concentrations

(Wilcoxon test p,0.005) (Table S3), indicating that intersample

variation for the different strains was significantly smaller than

interstrain variation for these metabolites.

We next sought to identify genetic loci that were segregating in

the BXR cross with metabolite levels. We used more than 2,000

SNP markers uniformly spaced throughout the yeast genome [11]

to map genetic loci for the 56 reliably scored metabolites. The

peak LOD scores for 16 metabolites (29%) exceeded the genome-

wide significance LOD score threshold of 3.9 (FDR=0.05)

(Table 1). This percentage is similar to the percentage of gene

expression traits that give rise to a similarly significant linkage

signal. Eleven of the 16 metabolite traits with significant metQTLs

(Table 1) were also found to have significantly different

concentrations in the parental strains (Figure 2). We examined

these metQTL results in the context of QTLs controlling gene

expression (eQTL) previously detected in the same BXR cross

[24]. Twelve of the 16 metQTLs were coincident with four

previously identified eQTL hot spot regions to which many more

gene expression traits linked in trans than would be expected by

chance [13,24]. Phenylpyruvate, 2-isopropylmalate, alanine,

arginine, and NAc-glutamate levels were linked to position

100,000 bp on Chromosome III, which was associated with

eQTL hot spot 1; orotic acid and dihydroorotic acid levels were

linked to position 130,000 bp on Chromosome V, which was

associated with eQTL hot spot 2; isoleucine, threonine, and valine

levels were linked to position 70,000 bp on Chromosome XIII,

which was associated with eQTL hot spot 3; trehalose and glycerol

levels were linked to position 180,000 bp on Chromosome XV,

which was associated with eQTL hot spot 4 (Table 1).

Integrating Metabolite and Other -Omics Data to
Construct Networks That Elucidate eQTL Hot Spots
Given the strong genetic signal detected in the metabolite data

and the coincidence of metQTL and eQTL hot spot regions, we

set out to explore an integrated network analysis strategy using the

gene expression profiles [11] as well as the metabolite data

described above. Gene expression and metabolite traits were

treated equivalently as nodes in our BN reconstruction process. As

such, we modified our previously reported BN reconstruction

method [13] to accommodate metabolite data, in addition to

genotype, gene expression, protein interaction, and TF–DNA

binding data. The KEGG biochemical pathway database [37] was

used to generate structure priors between metabolites and genes

Constructing Predictive Regulatory Networks
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encoding enzymes known to be involved in biochemical reactions

in canonical pathways. Intuitively, genes encoding enzymes that

directly catalyze biochemical reactions for the metabolites were

assigned stronger prior probabilities of being related during

network reconstruction, whereas genes that encode enzymes

catalyzing downstream or upstream biochemical reactions of the

metabolites were assigned weaker priors (see Methods for details).

Differentially regulated genes and the structure priors for

genotype, TF–DNA, and protein–protein interaction data were

defined as previously described [13].

The 56 reliably quantified metabolites were included as input

into the BN reconstruction program. From this probabilistic causal

network we can identify subnetworks for all of the metabolites or

any set of genes (see Methods for details). To assess the predictive

power of this network, we examined how metabolites and gene

expression traits relate to one another at the four eQTL hot spots

in Table 1, providing for the possibility of elucidating regulatory

mechanisms and generating testable hypotheses about novel

regulatory relationships.

Subnetwork linked to eQTL hot spot 1. We [13,24] and

others [38] have previously inferred the identity of multiple causal

variants affecting the expression levels of many genes at eQTL hot

spot 1 (the engineered deletion at LEU2 and natural variation at

ILV6). We previously hypothesized that LEU2 affected many gene

expression traits linked to this hot spot by regulating genes that

bind the Leu3p TF. We demonstrated that genes in the LEU2

subnetwork and genes with Leu3p binding sites were

overrepresented among the set of genes making up the LEU2

transcriptional knockout signature [13]. However, despite the

strong statistical and empirical evidence implicating LEU3, we

found that LEU3 expression levels did not significantly vary in the

BXR cross (Figure S3), suggesting a missing link between the

LEU2 genotype and Leu3p activity resulting in widespread effects

on transcription. In addition to Leu3p concentration and LEU3

gene expression, Leu3p activity is known to be regulated by 2-

isoprolylmalate, an intermediate product in leucine biosynthesis

[39]. By incorporating the metabolite data into the network

reconstruction procedure, we found that levels of 2-

isopropylmalate were strongly linked to the LEU2 locus, and

that LEU2 expression was strongly supported as causal for the

abundance levels of 2-isopropylmalate (Figure 3B). Our integrated

BN indicates that variation in levels of this metabolite are a

consequence of changes in LEU2 expression (Figure 3C and 3D),

and changes in 2-isopropylmalate levels are causal for expression

levels of genes with Leu3p binding sites (Figure 3C and 3D). 2-

isopropylmalate is a key intermediate in the leucine biosynthesis

pathway (Figure 3A), which activates Leu3p and results in

upregulation of its target genes [39]. Therefore, our integrated

view of the data suggests that the metabolite 2-isopropylmalate is

the missing link between LEU2 and Leu3p regulated genes. In fact,

the subnetwork associated with this eQTL hot spot (Figure 3D)

suggests a regulatory mechanism: 2-isopropylmalate mediates the

effect of LEU2 genotype on mRNA expression of Leu3p targets

and metabolites, including alanine, glutathione, phenylpyruvate,

valine, phenylananine, and leucine (Figure 3D). Such regulatory

mechanism is consistent with known regulatory mechanisms of

Leu3p and leucine biosynthesis.

Arginine and N-acetyl-glutamate (NAc-glutamate) are metabo-

lites in the arginine biosynthesis pathway (Figure S4A). Variations

in arginine and NAc-glutamate levels in the BXR cross were also

linked to eQTL hot spot 1 (Figure S4B). The metQTLs for

arginine and NAc-glutamate at this locus were close to genes

encoding arginine biosynthesis enzymes and TFs in our BN

(Figure S4C), consistent with the known role of NAc-glutamate as

Table 1. Metabolite concentrations that are under significant genetic control in the BXR cross (LOD score.3.9 corresponds to FDR
0.05), where the metabolite QTL are coincident with eQTL hot spots.

Metabolite QTL

metQTL eQTL

Chromosome Position LOD Score

n Genes Linked to the

Locus eQTL Hot Spot

Phenylpyruvate III 91287 4.05074 203 1

2-isopropylmalatea III 91496 15.4214 203 1

Alaninea III 76127 8.399 203 1

Argininea III 91977 5.67128 203 1

NAc-glutamatea III 91977 5.86485 203 1

Orotic acida V 116812 15.4214 41 2

Dihydroorotic acida V 117705 4.47374 41 2

SAHa VIII 167506 13.4212 14 NA

SAMa VIII 167506 10.3425 14 NA

Isoleucinea XIII 49894 11.1032 41 3

Threoninea XIII 49903 10.728 41 3

Valine XIII 46070 4.00333 41 3

Glycerol XV 175594 4.38217 343 4

Lysinea XV 59733 8.71851 343 4

Trehalose XV 174364 6.03112 343 4

Tyrosine XV 89229 4.48397 343 4

aOf the metabolites listed, 11 are significantly different between the BXR parental strains as well.
doi:10.1371/journal.pbio.1001301.t001
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an arginine biosynthetic intermediate. In this subnetwork,

transcript levels of CPA2, a gene involved in the biosynthesis of

the arginine precursor citrulline, regulate concentrations of

arginine and, further downstream, NAc-glutamate. These results

combined with the inference from our network that ARG4 is a key

node in the eQTL hot spot 1 subnetwork (Figure S4C),

recapitulate the known arginine biosynthesis pathway. Interest-

ingly, we detected a negative correlation between NAc-glutamate

and arginine concentrations across the panel of BXR strains,

suggesting that feedback control points in this pathway lie between

these two metabolites. Our network suggested that sequence

variation in ILV6 was causal for gene expression variation in

GCN4, a master transcriptional regulator of amino acid biosyn-

thesis genes, which in turn is causal for expression variation in TFs

RTG3 and GLN3, and then changes in the arginine biosynthesis

subnetwork more generally in the BXR cross. Such a model is

consistent with the overlaps we observed between the transcrip-

tional profiles of the ILV6 and LEU2 knockouts [13] and this

subnetwork (Fisher exact test p= 8:04|10{12 and 9:06|10{15,

respectively). Taken together, our results indicate that the

constructed network in many cases not only recapitulates known

biology in general, but elucidates regulatory mechanisms, such as

networks governing amino acid biosynthesis.

Subnetwork linked to eQTL hot spot 2. The expression

traits linked to this eQTL hot spot include URA3, a gene that is

physically located in this hot spot region. From the BN, URA3 is

predicted as a causal regulator of this eQTL hot spot. A deletion of

URA3 was engineered in the parental strain RM11-1a as a

selectable marker, and segregation of this locus among the BXR

progeny is likely causal for expression variation of uracil

biosynthesis genes linked to this eQTL hot spot [12]. Variation

of two metabolites linked to this locus: dihydroorotic acid, which is

converted to orotic acid by the enzyme Ura1p, and orotic acid

itself, reflects the functional consequence of transcriptional

variation in genes involved in de novo pyrimidine base

biosynthetic processes on metabolite levels. The causal

relationships between URA1, orotic acid, and dihydroorotic acid

as well as the subnetwork for this eQTL hot spot recapitulate the

known pyrimidine base biosynthesis pathway (Figure 4). This

subnetwork not only captures the coregulation of gene expression

Figure 2. Distributions of metabolite concentrations between parental strains and among 120 segregants of a cross between
laboratory (BY) and wild (RM) strains of S. cerevisiae [11]. The y-axis is metabolite concentrations (nanomoles per yeast cell). The genotypes for
segregants are reported at the loci to which the metabolite concentrations were linked. Represented are the metabolites (A) 2-isopropylmalate; (B)
orotic acid; (C) SAH; and (D) threonine.
doi:10.1371/journal.pbio.1001301.g002

Constructing Predictive Regulatory Networks
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and metabolite abundance, but also elucidates the mechanism of

how genetic variation in URA3 affects orotic acid and

dihydroorotic acid levels.

Subnetwork linked to eQTL hot spot 3. Variations in the

levels of isoleucine, threonine, and valine were linked to eQTL hot

spot 3, along with the subnetwork in which these three metabolites

reside. Little is known about the biological processes associated with

this locus [13,24]. However, we noted surprisingly that while the

expression levels of six of seven genes in the isoleucine biosynthesis

pathway were linked to eQTL hot spot 1 on Chromosome III, the

concentrations of isoleucine and threonine linked to eQTL hot spot

3 (Table 1 and Figure 5a). We had previously shown that genes

whose transcript levels linked to eQTL hot spot 1 on Chromosome

III were enriched for amino acid biosynthesis pathways [13], with

five amino acid and intermediate metabolites also linked to this

locus (Table 1). These linked biomolecules included several

regulators of branched-chain amino acid biosynthesis and the

amino acids themselves. Interestingly, valine concentrations linked

both to eQTL hot spots 1 and 3 (Figure 6A) along with valine

associated metabolites (Figure 6B), suggesting that both loci may

ultimately prove to be key regulators for a majority of amino acid

levels in the BXR cross.

Two subnetworks were associated with eQTL hot spot 3

(Figure 5B). In the larger subnetwork, the metabolites isoleucine,

valine, and threonine were inferred to connect through threonine

to the expression levels of CHA1 (Figure 5B), consistent with the

known function of Cha1p as a catabolic serine/threonine

deaminase, which is transcriptionally regulated by serine and

threonine [40]. Expression levels of other amino acid catabolism

genes (BAT2, ILV5, and GCV1-3) were also placed in this

subnetwork, and the set of genes comprising this subnetwork

was enriched for genes in the gene ontology (GO) Biological

Process category ‘‘nitrogen compound metabolism’’ (Fisher exact

test p= 3:54|10{6). By contrast, the smaller subnetwork was

enriched for genes in the GO Biological Process de novo inosine

monophosphate (IMP) biosynthetic process category (Fisher exact

test p= 7:77|10{14
). The known relationship between amino

acid and purine nucleotide biosynthesis [41,42] suggests a model

in which a master regulator at eQTL hot spot 3 controls

expression of both subnetworks of genes and metabolites.

Given that our network approach did not predict a causal

regulator for eQTL hot spot 3, we examined whether cis-
regulatory sequence variations in the BXR cross affected the

expression of a gene located in this region and then whether such a

Figure 3. Relationship between 2-isoproplymalate and genes linked to eQTL hot spot 1 on Chromosome III. (A) 2-isopropylmalate is an
intermediate metabolite in the leucine biosynthesis pathway and LEU2 is a key enzyme in this pathway; (B) 2-isopropylmalate concentrations are
linked to the LEU2 locus and is reactive to LEU2 expression; (C) 2-isopropylmalate is reactive to LEU2 and causal for genes with Leu3p binding sites
(red nodes); (D) a zoomed-in view of the subnetwork highlighted in (C) (around 2-isopropylmalate). Hexagon-shaped nodes represent metabolites,
circular nodes represent genes, and diamond-shaped nodes represent genes with cis-eQTLs.
doi:10.1371/journal.pbio.1001301.g003
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gene was supported as causal for downstream targets also linked to

this locus. TAF13 was the only gene located in the eQTL hot spot

3 locus with cis-regulatory expression variation, but this gene was

not connected to any of the inferred subnetworks associated with

this hot spot.

Reasoning that TAF13 was unlikely to be the causal regulator of

the eQTL hot spot, we hypothesized instead that the underlying

causal variant might lead directly to a protein activity change

rather than to a change in transcript levels. To identify such

protein-coding variants, we compared the genomes of BY and RM

at this locus and found nonsynonymous changes in YML096W,

VPS9, ARG81, TSL1, CAC2, and NUP188. We considered each of

these genes as a candidate regulator for the eQTL hot spot 3 locus.

To evaluate these candidates, we anticipated that for any true

causal gene at the locus, the protein product of the gene would be

necessary for maintaining wild-type metabolite levels in a single

tester strain. As such, we experimentally tested knockout strains for

each candidate gene in the BY background, comparing in each

case the concentrations of metabolites with those of the wild type.

The results, listed in Table S4 and Figure S5, revealed dramatic

changes in metabolite levels for the knockout of the vacuolar

transport regulator VPS9, compared to the other candidate genes,

where the corresponding knockouts had modest to insignificant

metabolite changes. Loss of VPS9 was associated with changes in

threonine, isoleucine, valine, and serine concentrations, something

we would expect if VPS9 was the causal regulator for this linkage

hot spot, given amino acids linked to this hot spot reside in the

corresponding subnetwork (Figure 6C). The VPS9 deletion also

affected ADP and ATP concentrations, consistent with the de

novo IMP and purine nucleotide biosynthetic process associated

with this locus, as discussed above. Many metabolites are

interconnected in the network (Figure 6B) so that VPS9 deletion

has a broad effect on metabolite concentrations (Figure 6C).

We further profiled the effects the VPS9 deletion had on the

expression levels of the 16 genes in the small eQTL hot spot 3

subnetwork. We observed significant expression changes in the

knockout relative to wild-type in eight of the 16 genes tested

(p,2:2|10{16) (Figure 5C; Tables S5 and S6), including those

genes annotated in amino acid catabolism and nucleotide

biosynthesis. Taken together, our results implicate VPS9 as a

major determinant of amino acid levels and expression of amino

acid catabolism genes, with strong experimental support for

sequence variation in VPS9 serving as the causal factor underlying

the changes in these biomolecules in the BXR cross.

Figure 4. Relationship between metabolites and genes linked to eQTL hot spot 2 on Chromosome V. (A) De novo biosynthesis of
pyrimidine pathway; (B) orotic acid and dihydroorotic acid concentrations are linked to the URA3 locus; (C) URA3 is predicted as the causal regulator
for genes and metabolites linked to the eQTL hot spot. Red nodes are genes or metabolites whose variations are linked the Chromosome V locus. The
shapes of the nodes follow the convention described in Figure 3.
doi:10.1371/journal.pbio.1001301.g004
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Subnetwork linked to eQTL hot spot 4. eQTL hot spot 4

has been identified by us and others as a major driver of expression

differences in the BXR cross for genes involved in stress response

[13,24]. Previous work has investigated the role of sequence

variation in IRA2 [23] and PHM7 [13] as causal regulators at this

locus. Interestingly, though the levels of hundreds of transcripts

coinherited with sequence variants at the Chromosome XV eQTL

hot spot locus, the levels of proteins encoded by such transcripts

did not generally show linkage to the locus [34], leading to

speculation that the mRNA variation may not have appreciable

downstream consequences. In our metabolite data, abundances of

trehalose and glycerol, both implicated in the yeast stress response

[43], were significantly linked to this locus (Figure 7A and 7B).

Our network predicted HOR2 expression as a determinant of

glycerol levels, consistent with the known function of Hor2p in

glycerol synthesis and its regulation by the stress response TF

complex Msn2/4. In our network the metabolite trehalose was

located in a subnetwork with TPS2, TPS1, and TSL1 (Figure 7C),

consistent with the known function of these genes as trehalose

synthase components. MSN2 was predicted by the network as an

upstream regulator of trehalose synthesis (where MSN2 activity

was represented by CTT1 in the network), recapitulating the

known stress response function of Msn2p. Further upstream of this

process, our network predicted PHM7 as the major causal

regulator of the entire subnetwork. Little is known about the

function of Phm7p, but in support of a causal role for variation at

this gene in control of stress response, we previously showed that a

knockout of PHM7 affects expression of many genes with linkage

to the Chromosome XV eQTL hot spot 4 locus [13].

To validate our prediction that PHM7 affects the abundance of

stress response metabolites such as trehalose and glycerol in

addition to stress response genes linked to the eQTL hot spot, we

profiled metabolite levels in the PHM7 knockout and wild-type

strains (Methods). The abundance of trehalose in the PHM7

knockout strain was 2.46higher compared to the wild-type strain

(p=0.03), which was the largest fold change among all

metabolites. However, the abundance of glycerol in the PHM7

knockout strain did not significantly change. PHM7 has a stronger

effect on trehalose abundance than on glycerol abundance, which

is consistent with the metQTL results that the metQTL LOD

score of trehalose at the eQTL hot spot 4 locus is 6.03, while the

metQTL LOD score of glycerol is 4.38.

Figure 5. Genes and metabolites linked to eQTL hot spot 3 on Chromosome XIII. (A) Variations of the metabolites isoleucine and threonine
are linked to this locus. (B) These two subnetworks comprise genes and metabolites enriched for linking to the Chromosome XIII locus. The larger
network consists of both gene expression and metabolite nodes enriched for the GO biological process nitrogen compound metabolism. The smaller
network is enriched for the GO biological process de novo IMP biosynthetic process. Red nodes are genes with eQTLs linked to the Chromosome 13
locus. (C) Expression levels of eight genes (in red) are different between VPS9 knockout and the wild-type strains. The shapes of the nodes follow the
convention described in Figure 3.
doi:10.1371/journal.pbio.1001301.g005
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In addition to trehalose, there were a total of 27 (out of 56)

metabolites whose abundance levels were significantly different

(p,0.05) between the knockout and wild-type strains (Table S7),

including phosphoenolpyruvate (a key intermediate metabolite in

glucolysis and gluconeogenesis) and a number of amino acids and

their intermediates. These metabolites are closely associated with

the metabolites whose abundance levels are linked to eQTL hot

spots 1 and 3 (Figure 8A). Using a Bayesian partition method, we

previously predicted a module of 83 genes including ILV6 is

modulated by eQTL hot spots 1, 3, and 4 on Chromosomes III,

XIII, and XV, respectively, with eQTL hot spot 1 also enriched

for genes involved in amino acid metabolism [44]. Genes whose

expression levels are linked to both eQTL hot spots 1 and 4,

including HIS7, YMC2, and HCM1, are colocalized to the same

subnetwork associated with eQTL hot spot 4 (Figure 8B). HIS7, an

enzyme involved in histidine, purine, and pyramidine biosynthesis,

is linked to the rest of the subnetwork through the amino acid

biosynthesis regulator GCN4 (Figure 8C). That the PHM7

knockout metabolite signature contains amino acids and their

intermediate metabolites linked to eQTL hot spots 1, 3, and 4

(Figure 8A), not only confirms the biological consequence of

transcriptional changes and validates our prediction of the

biological function of the eQTL hot spot 4 subnetwork, but it

also validates our predictions of interconnectivity of eQTL hot

spots 1, 3 and 4 [8].

Given the known cis-acting regulatory changes between BY and

RM at the PHM7 gene [45], together with the gene expression and

metabolite profiles of the PHM7 knockout and wild-type strains,

one interpretation of our identification of PHM7 as the causal

regulator of this stress response network is that its expression

variation creates a stress condition that activates Msn2/4, which in

turn activates stress response genes. Our network suggests

regulatory relationships among stress response genes and metab-

olites, and enables emergent hypotheses about novel genes in the

stress response pathway.

Discussion

By integrating six different fundamental types of data, including

RNA expression, DNA variation, DNA–protein binding, protein–

metabolite interaction, and protein–protein interaction data, with

metabolite data, we constructed a BN using an approach that

Figure 6. Metabolite subnetwork. (A) Variations in valine concentrations are linked to two eQTL hot spots; Chromosome III:100,000 and
Chromosome XIII:70,000. (B) Most metabolites are connected. Valine connects to metabolites linked to eQTL hot spots at Chromosome III:100,000
(nodes in blue) and Chromosome XIII:70,000 (nodes in green). (C) 25 metabolites (in red) whose concentrations are different between VPS9 knockout
and the wild-type strains are in this subnetwork. This structure suggests that VPS9 is causal for the variations of these metabolites. The shapes of the
nodes follow the convention described in Figure 3.
doi:10.1371/journal.pbio.1001301.g006
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simultaneously considers all of these data, with the resulting

network providing a number of novel insights into the mechanisms

of the eQTL hot spots in a segregating yeast population (the BXR

cross). Importantly, we validated the biological consequences of

the transcriptional variation linked to each of the four eQTL hot

spots identified in the BXR cross to which metabolite levels were

also linked. Our results indicate that the incorporation of

metabolite levels into the network reconstruction process signifi-

cantly enhanced the utility of the network-based models [46,47].

While the integration of metabolite abundance and gene

expression traits in a genetic context have been attempted in

plants [48] and mouse [49], the main distinguishing characteristic

of our study is the de novo construction of a global molecular

network that simultaneously incorporates many different types of

information (DNA, RNA, protein, and metabolite), along with

known biochemical pathways as prior information. To aid in

further understanding how we integrate these data to construct

probabilistic causal networks, and to enhance the ability to repeat

our results, we provide as Text S1 results of an in-depth

description of the construction of the URA3 subnetwork

(Figure 4), using different types of data to assess the contributions

of different data types to the predictive power of the network and

to the identification of key modulators of important biological

processes. We examined in detail all 4 eQTL hot spots that

coincided with metQTLs. Our findings for eQTL hot spots 1 and

2 recapitulated well-known biological processes, and for eQTL hot

spots 3 and 4 our predictions implicated novel genes as modulators

of established biological processes, which we subsequently

validated prospectively. Among the many predictions made by

our network, we uncovered novel insights into the biological

processes that in the BXR cross are responsible for variations in

amino acid levels. While amino acid concentrations are known to

be regulated by multiple processes (e.g., synthesis, degradation,

recycle, and storage), our approach objectively identified that

variations in concentrations of a number of amino acids in the

BXR cross were affected by both the amino acid biosynthesis and

degradation pathways. We predicted and prospectively validated

VPS9 as a major driver of amino acid concentrations via the amino

acid degradation pathway. These results open novel and

interesting questions about the mechanism by which sequence

Figure 7. Genes and metabolites linked to eQTL hot spot 4 on Chromosome XV. (A) Variations in the metabolites glycerol and (B) trehalose
are linked to this eQTL hot spot. (C) The part of the subnetwork associated with this eQTL hot spot consists of the causal regulator PHM7 at the top,
key TFs MSN4 and MSN2 (represented by CTT1), and the genes that encode for the trehalose synthesase complex. Red nodes are genes or
metabolites with QTL linked to the Chromosome XV locus.
doi:10.1371/journal.pbio.1001301.g007
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variation at this locus affects phenotype. VPS9 is involved in

vesicle-mediated vacuolar protein transport, and in Saccharomyces

cerevisiae, the vacuole is the main compartment for amino acid

storage, recycling, and cytosolic amino acid concentration

maintenance [50]. The cellular effects of variation in VPS9 are

likely mediated by differential regulation of amino acid storage in

the vacuole; we speculate that such storage changes may affect

cytosolic amino acid pools that in turn have downstream

consequences on transcript and protein levels of amino acid

pathways, as has been shown for CHA1 [40] and GCV3 [51].

However, only with enhanced screening of all molecular states of

the systems can we achieve a complete understanding of these

processes. Thus, while the integrated BN elucidated some of the

mechanistic underpinnings of the eQTL hot spots in the BXR

cross, additional information will be required to more fully

understand how processes perturbed in the BXR cross lead to

phenotypic changes.

Despite lacking an exhaustive assessment of all molecular traits

in the BXR cross, it is of particular note that the strong

correlations we observed between gene expression and metabolite

data may help resolve an ongoing debate regarding the functional

consequences of gene expression regulation. While some reports

indicate that gene expression levels and protein abundances are

not well correlated [52], other reports indicate a high degree of

correlation [53]. A recent proteomic study in the BXR cross

demonstrated that a large number of protein levels are linked to

eQTL hot spots [34], two of which (the eQTL hot spots 1 and 3)

were highlighted in our present work. Metabolites are the final

functional products of protein activity regulation. We showed that

PHM7 not only alters expression levels of stress response genes

linked to eQTL hot spot 4, but also alters the abundance of

trehalose, a metabolite product of the stress response genes. Our

results demonstrate that gene expression and metabolite levels are

not only strongly correlated, but that a significant proportion of

that covariation can be explained by common genetic control.

Given that variations in protein levels can result from sequence-

specific transcriptional and translational regulation or from

nonsequence-specific protein degradation, the integration of gene

expression and metabolic traits can help dissect the complex

processes that regulate protein levels.

The yeast growth conditions for metabolite profiling were the

same as previously used to generate the gene expression data in the

BXR cross [12]. Both gene expression and metabolite abundances

are under strong genetic regulation and are linked to common

eQTL hot spots (Table 1). When metabolite data were integrated

with gene expression data, our resulting integrated network was

able to recapitulate the mechanism of multiple known biological

processes that in turn explained the connection between genes

linked to the LEU2 locus and genes with Leu3 binding sites, with

the metabolite 2-isopropylmalate objectively identified as the key

intermediate. These results also confirmed that changes in

expression of stress response genes lead to changes in stress

response metabolites such as trehalose. Therefore, the integration

of the gene expression and metabolite data has provided new

insight into common biological processes that are perturbed by

genetic variation segregating in the BXR cross.

Going forward, as more technologies emerge that can generate

large-scale data in different dimensions for low cost, we will

achieve a more complete understanding of biological systems only

if we integrate all of the information together to consider all of the

different cellular components and how they interact with one

another at the population level. For example, comprehensive

proteomic data and protein phosphorylation data are needed and

should be further integrated with other high throughput genomic

and genetic data. For metabolites, their cellular abundances are

not only affected by specific enzymes in related biochemical

reactions, but they are also affected by proteins that bind them or

transport them into different cellular compartments. Further

research on how to integrate these data into networks is needed. In

addition, there is an abundance of existing knowledge, such as

genetic interactions and regulatory cascades, which can be

converted into prior information and integrated with other data

and priors. Further efforts in developing methods to integrate these

diverse data and information are warranted. In more complex

systems, we will need to consider the fundamental building blocks

of a cell in the context of cell–cell interactions that lead to tissue-

based networks, the interactions of tissues that lead to organ-based

networks, and the interactions of organs in a given system to

understand the physiological states of that system associated with

complex phenotypes of interest, given these phenotypes emerge

from this complex web of interacting networks [54]. Only by

taking the full complement of raw data available on living systems

can we move from the accumulation of knowledge to actual

understanding, and from understanding, wisdom.

Methods

Strains in the Yeast BXR Cross and Growth Conditions
Yeast parental strains BY4716 (MATa lys2D0) and RM11-1a

(MATa leu2D0 ura3D0 HO:kan) and 111 segregants of BXR cross

[11] were provided by R. Brem. Auxotrophies, mating type, and

G418 resistance were confirmed for all strains to be as previously

reported [12]. Cells were grown under identical conditions as

previously described [12]. Strains were freshly started from freezer

stocks and stored at room temperature on synthetic complete

medium plates for no longer than 1 wk before each experimental

run. For each run, cells from the plates were precultured in 10 ml

of synthetic complete media (Table S8) at 30uC with shaking for

24 h. These cultures were then diluted into 25 ml fresh synthetic

complete media to an optical density of 0.005 to 0.02. This starting

density was determined from previous growth rate measurements

and empirical observations such that after overnight growth at

30uC, the cultures would be exponentially growing, i.e., at a cell

density of less than 26107 cells/ml. Overnight cultures were

diluted into 52 ml fresh synthetic complete medium to an optical

density of 0.1, and incubated with shaking for approximately 5 h

at 30uC. Starting at 3 h after dilution, optical density was

monitored every 60 min. Cell suspensions were counted in a

hemocytometer to obtain cell count per OD values and an

Figure 8. The PHM7 knockout metabolite signature suggests interconnectivity of multiple eQTL hot spots. (A) The metabolite
subnetwork is the same as the subnetwork depicted in Figure 6A. 27 metabolites (in red) whose concentrations differ between the PHM7 knockout
and the wild-type strains are in this subnetwork. In addition to trehalose, which is linked to the eQTL hot spot 4, the PHM7 knockout metabolite
signature includes metabolites whose concentrations are linked to eQTL hot spots 1 and 3 (on Chromosomes III and XIII, respectively), suggesting
interactions among eQTL hot spots 1, 3 and 4, as we have previously predicted [44]. (B) The subnetworks for eQTL hot spot 4 (extracted using genes
linked to eQTL hot spot 4) suggests that part of this network is regulated by both eQTL hot spots 2 and 4. Red nodes are genes whose expression
values are linked to eQTL hot spot 2. (C) A zoomed-in view of the part of the network regulated by eQTL hot spots 2 and 4. The gene that links this
part of the network to the rest of the subnetwork associated with eQTL hot spot 4 is GCN4, a master TF regulating amino acid biosynthesis.
doi:10.1371/journal.pbio.1001301.g008
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estimate of cell-doubling time. Since some of the yeast strains

produced flocculent cultures under these growth conditions, all

cultures were diluted 56 into 0.25 ml PBS and sonicated three

times on ice for 45 s using a Misonix sonicator 3000 equipped with

a microprobe before optical density was determined and/or cells

were counted. At an optical density of approximately 1.0, each

exponentially growing culture was concentrated 10-fold by rapid

centrifugation at room temperature and suspension of the cells in

5 ml of synthetic complete medium prewarmed to 30uC. These

concentrated cell suspensions were then incubated at 30uC with

shaking for 1 h. Metabolites were then immediately extracted

from the cells in these concentrated suspensions.

Yeast Knockout Strains and Growth Conditions
Yeast parental strain BY4742 (MATa his3D1 leu2D0 met15D0

ura3D0) and six deletion strains derived from it (Dtsl1::kanMX,

Dnup188::kanMX, Dcac2::kanMX, Dyml096w::kanMX, Dvps9::kanMX,
and Darg81::kanMX) were provided by Elton Young’s lab,

Department of Biochemistry, University of Washington, from a

copy of the Yeast Deletion Consortium knockout collection

prepared in Stanley Fields’ lab, Department of Genome Sciences,

University of Washington. Cells were grown under identical

conditions as the BXR cross strains in synthetic complete medium,

and metabolite extracts were also obtained and further processed

in identical fashion (see below). Each experiment was repeated on

three different days.

Yeast parental strain BY4743 (MATa/MATa his3D1/his3D1

leu2D0/leu2D0 lys2D0/+ met15D0/+ ura3D0/ura30) was ob-

tained from ATCC (Manassas, Virginia), and the derived PHM7

knockout strain 31775 (phm7::KanMX/phm7::KanMX) con-

structed by the Yeast Deletion Project [55] was obtained from

Open Biosystems (Huntsville, Alabama). Cells were grown under

identical condition as the PHM7 knockout gene expression

experiment [13], and metabolites were extracted as described

below. Each experiment was repeated on three different days.

Quantitative PCR
BY4742 and Dvps9 strains (both MATa) were grown as

described above and harvested by centrifugation in crushed ice

when cells reached optical density of approximately 1.0. Total

RNA was extracted using RNeasy mini-columns, transcribed with

SMARTScribe Reverse Transcriptase (Clontech) from oligo(dT),

and diluted 1,0006. Real-time PCR was run for 17 genes

(including VPS9) associated with the Chromosome XIII eQTL hot

spot subnetworks and ACT1 internal standard gene (Table S6) on

an ABI 7900HT instrument with 26 Sensimix dT (Quantance),

primers at 0.2 mmol/l, and SYBR Green reagent. Relative

expression was calculated using the DDCt method with ACT1
internal standards [56]. TAF9 was used to estimate the false

positive rate as 0.033.

Metabolite Extraction
Intracellular metabolites were extracted using a modification of

previously described methods [31,57]. First, all intracellular

metabolic processes were rapidly quenched by pipetting each

concentrated cell suspension into 20 ml of rapidly mixing 60% (v/

v) methanol at 240uC. Cells were rapidly (5 min) sedimented in a

centrifuge precooled to 28uC and washed twice with 20 ml of the

240uC methanol. Metabolites were then extracted with boiling

75% (v/v) ethanol at 80uC and 0.25 ml dry volume of acid-washed

glass beads (Sigma G1277), by vigorous vortexing for 30 s. The

cell-glass bead slurry was incubated 3 min at 80uC, vortexed 30 s,

and then placed on ice for 5 min. Large cellular debris and glass

beads were removed by centrifugation at 2,000 g for 5 min. The

resulting ethanolic extracts were clarified by three rounds of

centrifugation at 14,000 g in a microcentrifuge. The clarified

metabolite extracts were stored at 280uC until drying. Extracts

were dried in a Savant Speed Vac under 150 mtorr vacuum in low

retention microcentrifuge tubes. Dried metabolite extracts were

stored at 280uC until preparation for NMR analysis.

NMR Spectrum Acquisition and Metabolite Identification
and Quantification
The process of NMR spectra acquisition and quantification

follows the previously outlined procedure [29]. Dry metabolite

extracts were dissolved in 0.7 ml deuterated 80 mM potassium

phosphate buffer (containing 2 mM DSS-d6 as an internal

reference standard), and transferred to 100-mm 5-ml NMR tubes.

NMR samples were stored in Varian 768AS auto-sampler at 8uC

before and after NMR analyses. NMR data were acquired on the

Varian 700 MHz NMR spectrometer at 25uC with one-dimen-

sional proton pulse sequence. The water peak was suppressed by

the WET pulse sequences [58]. For each sample, 512 acquisitions

were acquired with 3 s of acquisition and 15 s of delay between

pulses.

Analyses of NMR spectra were carried out using DataChord

Spectrum Miner (One Moon Scientific, Inc.). Stacked NMR

spectra were referenced to DSS-d6 as 0 ppm, and peaks of each

endogenous metabolite were checked against their reference

spectra (about 700 common endogenous metabolites). Each

metabolite usually displays multiple peaks, for example trehalose,

shown in Figure S6. Overlapping peaks were quantified by peak

area correction according to stoichiometric peak ratios for each

metabolite.

Genetic Variations as Anchors of Causal/Reactive
Relationships in F2 Crosses
For three correlated variables T1, T2, andL, there are three

groups of causal/reactive relationships among them as the

following:

G1 : L?T1?T2,L/T1?T2,L/T1/T2

G2 : L?T2?T1,L/T2?T1,L/T2/T1

G3 : T1?L?T2,T1/L?T2,T1/L/T2

8

>

<

>

:

:

For example, the three graphs in the group G1,

L?T1?T2,L/T1?T2,L/T1/T2, describe the same set of

condition independent relationship that L and T2 are independent

conditioning on T1. The three graphsL?T1?T2,L/T1?T2,

L/T1/T2 have the same probabilities and are called Markov

equivalent. In an F2 cross, we can represent quantitative traits as

T1 and T2, and the genetic locus as L. In an F2 cross experimental

design, all F2 strains are under the same experimental condition.

Therefore, the only source of variation in the quantitative traits T1

and T2 are genetic differences in L, so that the relationships

L?T1 and L?T2 are plausible. On the other hand, the genetic

variation in L is stable and does not change during an F2 cross

experiment, so that L/T1 and L/T2 are not plausible. Thus in

an F2 cross, only one graph in each of the three Markov

equivalent groups above is plausible. We can simplify the above

three groups as follows:

G1 : L?T1?T2

G2 : L?T2?T1

G3 : T1/L?T2
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,
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where the genetic locus L is the anchor in each causal/reactive

relationship in a F2 cross.

Inferring Causal Relationships between Quantitative
Traits
For two quantitative traits T1 and T2 linked to the same locus L

in the yeast cross, there are three basic relationships that are

possible between the two traits relative to the DNA locus L as

described above. Either DNA variations at the locus L lead to

changes in trait T1 that in turn lead to changes in trait T2, or

variations at locus L lead to changes in trait T2 that in turn lead to

changes in trait T1, or variations at locus L independently lead to

changes in traits T1 and T2, as previously described [14].

Assuming standard Markov properties for these basic relation-

ships, the joint probability distributions corresponding to these

three models, respectively, are:

1. P L,T1,T2ð Þ~P Lð ÞP T1DLð ÞP T2DT1ð Þ

2. P L,T1,T2ð Þ~P Lð ÞP T2DLð ÞP T1DT2ð Þ

3. P L,T1,T2ð Þ~P Lð ÞP T2DLð ÞP T1DT2,Lð Þ,

where the final term on the right-hand side of equation M3 reflects

that the correlation between T1 and T2 may be explained by other

shared loci or common environmental influences, in addition to

locus L. We assume Markov equivalence between T1 and T2 for

model M3 so that P T2DLð ÞP T1DT2,Lð Þ~P T1DLð ÞP T2DT1,Lð Þ.
P Lð Þ is the genotype probability distribution for locus L and is

based on a previously described recombination model [59]. The

random variables T1 and T2 are taken to be normally distributed

about each genotypic mean at the common locus L, so that the

likelihoods corresponding to each of the joint probability

distributions are then based on the normal probability density

function, with mean and variance for each component given by:

(1) for P T1DLð Þ the mean and variance are E T1DLð Þ~mT1L
and

Var T1DLð Þ~s2T1
, (2) for P T2DLð Þ the mean and variance are

E T2DLð Þ~mT2L
and Var T2DLð Þ~s2T2

, and (3) for P T1DT2ð Þ the

mean and variance are E T1DT2ð Þ~mT1
zr

sT1
sT2

T2{mT2

� �

and

Var T1DT2ð Þ~ 1{r2
� �

s2
T1
, where r represents the correlation

between T1 and T2, and mT1L
and mT2L

are the genotypic specific

means for T1 and T2, respectively. The mean and variance for

P T2DT1ð Þ follow similarly from that given for P T1DT2ð Þ. From
these component pieces, the likelihoods for each model are formed

by multiplying the densities for each of the component pieces

across all of the individuals in the population [14]. The likelihoods

are then compared among the different models in order to infer

the most likely of the three. Because the number of model

parameters among the models differs, a penalized function of the

likelihood was used to avoid the bias against parsimony. The

model with the smallest value of the penalized statistic

{2log Li(ĥhi DL,R,C)zk|pi

was chosen. Here, Li(ĥhi DL,R,C) is the maximum likelihood for the

ith model, pi is the number of parameters in the ith model, and k is

a constant. In this instance we took the penalized statistic to be the

Bayesian Information Criteria (BIC) where k is set to log nð Þ, with n

denoting the number of observations.

Reconstructing Bayesian Network
BNs are directed acyclic graphs in which the edges of the graph

are defined by conditional probabilities that characterize the

distribution of states of each node given the state of its parents

[60]. The network topology defines a partitioned joint probability

distribution over all nodes in a network, such that the probability

distribution of states of a node depends only on the states of its

parent nodes: formally, a joint probability distribution p(X ) on a

set of nodes X can be decomposed as p(X )~P
i
p(X i DPa(X i)),

where Pa(X i) represents the parent set of X i. In our networks,

each node represents a quantitative trait that can be a gene or a

metabolite. These conditional probabilities reflect not only

relationships between genes, but also the stochastic nature of

these relationships, as well as noise in the data used to reconstruct

the network.

Bayes formula allows us to determine the likelihood of a

network model M given observed data D as a function of our prior

belief that the model is correct and the probability of the observed

data given the model: P(M DD)~P(DDM) � P(M). The number of

possible network structures grows super-exponentially with the

number of nodes, so an exhaustive search of all possible structures

to find the one best supported by the data is not feasible, even for a

relatively small number of nodes. We employed Monte Carlo

Markov Chain (MCMC) [61] simulation to identify potentially

thousands of different plausible networks, which are then

combined to obtain a consensus network (see below). Each

reconstruction begins with a null network. Small random changes

are then made to the network by flipping, adding, or deleting

individual edges, ultimately accepting those changes that lead to

an overall improvement in the fit of the network to the data. We

assess whether a change improves the network model using the

BIC [62], which avoids overfitting by imposing a cost on the

addition of new parameters. This is equivalent to imposing a lower

prior probability P(M) on models with larger numbers of

parameters.

Even though edges in BNs are directed, we can’t in general

infer causal relationships from the structure directly. For

example, in a network with two nodes, X1 and X2, the two

models X1?X2 and X2?X1 have equal probability distributions

as p(X1,X2)~p(X2DX1)p(X1)~p(X1DX2)p(X2). Thus, with corre-

lation data itself, we can’t infer whether X1 is causal for X2 or vise

versa. In the more general case, for a network with three nodes,

X1, X2, and X3, there are multiple groups of structures that are

mathematically equivalent. For example, the following three

different models, M1 : X1?X2,X2?X3, M2 : X2?X1,X2?X3,

and M3 : X2?

X1,X3?X2, are Markov equivalent (which means that they all

encode for the same conditional independent relationships). In

the above case, all three structures encode the same conditional

independent relationship, X1\= X3DX2, X1 and X3 are indepen-

dent conditioning on X2, and they are mathematically equal

p(X )~p(M1DD)~p(X2DX1)p(X1)p(X3DX2)

~p(M2DD)~p(X1DX2)p(X2)p(X3DX2)

~p(M3DD)~p(X2DX3)p(X3)p(X1DX2):

Thus, we can’t infer whether X1 is causal for X2 or visa-versa

from these types of structures. However, there is a class of

structures, V-shape structures (e.g., Mv : X1?X2,X3?X2),

which have no Markov equivalent structure. In this case, we

can infer causal relationships. There are more parameters to

estimate in the Mv model than M1, M2, or M3, which means a

large penalty in the BIC score for the Mv model. In practice, a

large sample size is needed to differentiate the Mv model from

the M1, M2, or M3 models.

Incorporating genetic data as a structure prior in the BN

reconstruction process. In general, BNs can only be solved to

Markov equivalent structures, so that it is often not possible to

Constructing Predictive Regulatory Networks
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determine the causal direction of a link between two nodes even

through BNs are directed graphs. However, the BN reconstruction

algorithm can take advantage of the experimental cross design (or

segregating populations more generally) by incorporating genetic

data to break the symmetry among nodes in the network that lead

to Markov equivalent structures, thereby providing a way to infer

causal directions in the network in an unambiguous fashion [63].

We modified the reconstruction algorithm to incorporate genetic

data as prior evidence that two quantitative traits may be causally

related based on previously described causality test [63]. The

genetic priors are constructed from three basic sources: (1) genes

with cis-eQTLs [64] are allowed to be parent nodes of genes with

coincident trans-eQTLs, p(cis{wtrans)~1, but genes with

trans-eQTLs are not allowed to be parents of genes with cis-

eQTLs, p(trans{wcis)~0. (2) The eQTL analysis described

above was carried out to identify suggestive eQTLs for all

expression traits [65] (LOD scores greater than 2.8, corresponding

to less than 1 QTL expected by random across genome). Genes

from this analysis with cis- or trans-eQTL were then tested

individually for pleiotropic effects at each of their eQTL to

determine whether any other genes in the set were driven by the

same eQTL [59,66]. If such pleiotropic effects were detected, the

corresponding gene pair and locus giving rise to the pleiotropic

effect were used to infer a causal/reactive or independent

relationship based on a formal causality test [14]. The

reliabilities of the inferred relationship between genes A and B

at a given locus li , p(A{wBDA,B,li), p(B{wADA,B,li), and

p(A\BDA,B,li), were then estimated by a standard bootstrapping

procedure [67]. If an independent relationship is inferred

(p(A\BDA,B,li)w0:5), then the prior probability that gene A is

a parent of gene B is scaled as p(A{wB)~1{
X

i

p(A\BDA,B,li)

X

i

1
, where the sums are taken over all loci used

to infer the relationship. If a causal or reactive relationship is

inferred (p(A{wBDA,B,li) or p(B{wADA,B,li) is greater than

0.5) then the prior probability is scaled as p(A{wB)~

2�

X

i

p(A{wBDA,B,li)

X

i

p(A{wBDA,B,li)zp(B{wADA,B,li)
. (3) If the causal/

reactive relationship between genes A and B could not be

determined by sources (1) or (2), then the complexity of the eQTL

signature for each gene was taken into consideration. Genes with a

simpler, albeit stronger eQTL signature (i.e., a small number of

eQTLs that explains the genetic variance component for the gene,

with a significant proportion of the overall variance explained by

the genetic effects) were taken to be more likely to be causal

compared to genes with more complex and possibly weaker eQTL

signatures (i.e., a larger number of eQTLs explaining the genetic

variance component for the gene, with less of the overall

variance explained by the genetic effects). The structure prior

that gene A is a parent of gene B was then taken to be

p(A{wB)~2 �
1zn(B)

2zn(A)zn(B)
, where n(A) and n(B) are the

number of eQTLs with LOD scores greater than 2.8 for A and B,

respectively. We have found that both information on cis-acting

eQTLs (excluding edges into certain nodes) and information on

trans-acting eQTLs (increasing the likelihood of some edges over

others) improve the quality of the network reconstruction [68]. We

note that in applying this particular version of the BN

reconstruction algorithm (incorporating genetic information as a

prior), if genetic information is not available or is ignored, the

population is simply treated as a population with random genetic

perturbations.

Incorporating TFBS and PPI data as network priors in the

BN reconstruction process. Just as genetic data can be

incorporated as a network prior in the BN reconstruction

algorithm, we can similarly incorporate TFBS and protein

complex data to establish prior evidence of a causal relationship

between any gene pair. The PPI data were used to infer protein

complexes to enhance the set of manually curated protein complex

data [69]. Protein complexes were identified from the PPI data

using the clique community analysis described above. The PPI-

inferred protein complexes were then combined with the manually

curated set, and each protein complex in this combined set was

examined for common TF binding sites. If at least half of the genes

in a protein complex carried a given TFBS, then all genes in the

complex were included in the TFBS gene set as being under the

control of the corresponding TF.

There are 119 TFs in the TFBS prediction set considered for

this study [70], and 75 of these were included in the network

because they met the criteria defined above for a gene to be

included in the network (the others did not meet these criteria).

Because TF activity can be regulated at the protein level (e.g., by

phosphorylation), absence of detectable differential expression

does not necessarily imply TF activity is not being actively

regulated. Therefore, to account for the impact the 44 TFs that

did not meet the criteria for inclusion in the network, may have on

the expression of other genes, instead of introducing latent

variables to represent activity of these TFs, we selected a gene

from the set of genes predicted to respond to each of these TFs to

represent the activity of the TF in the following way: (1) select the

top five genes within the TF’s responding gene set that were

included in the network and that were supported as causal for the

most genes in the set; and (2) select the gene with the highest LOD

score at the common locus shared by the top five genes to

represent the QTL signature of the TF. This same procedure was

carried out for those protein complexes that were included in the

TFBS set, as described above.

Given that the scale-free property is a general property of

biological networks as shown in the main text and by others [71],

we incorporated the enhanced TFBS set into the network

reconstruction process by constructing scale-free priors, in a

manner similar to the scale-free priors others have constructed to

integrate expression and genetic data [72]. Given a TF T , and a

set of genes, G, that contain the binding site of T , we define the TF

prior, ptf , so that it is proportional to the number of expression

traits correlated with the TF expression levels, for genes carrying

the corresponding TFBS:

log(ptf (T{wg))!log(
X

gi [ G

pqtl(T{wgi)d),

where pqtl(T{wg) is the prior for the QTL and

d~
1, if corr(T ,gi)§rcutoff
0, if corr(T ,gi)vrcutoff

�

. The correlation cutoff rcutoff was

determined by permuting the data and then selecting the

maximum correlation values in the permuted datasets (corre-

sponding to a FDRv1:5|10{5). This form of the structure prior

favors TFs that have a large number of correlated responding

genes.

From this set of priors computed from the extended TFBS set,

only non-negative priors were used to reconstruct the BN. This

resulted in scale-free priors from 18 TFs and five protein

complexes being incorporated in the network reconstruction
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process as previously described [13]. It is of note that the five

protein complexes incorporated into the network reconstruction

process were all large, with one representing the spliceosome and

the other four representing the cytoplasmic and mitochondria

ribosomes. For those protein complexes that could not be

integrated into the network reconstruction process using scale-free

priors, uniform priors were used for pairs of genes in these

complexes (i.e., ppc(gi{wgj)~ppc(gj{wgi)~c).

Deriving structure priors from KEGG chemical

reactions. 81 XML files describing biochemical pathways in

yeast were downloaded from ftp://ftp.genome.jp/pub/kegg/xml/

organisms/sce/. 1,061 chemical reactions and associated catalyz-

ing enzymes were parsed out, which were converted to 2,252 pairs

of metabolite–enzyme relationships (shown in Figure S7). These

relationships are stored in an adjacency matrix where a 1 in a cell

represents a direct connection between the metabolite and the

enzyme. The shortest distance dm,e from an enzyme e to a

metabolite m is calculated using the repeated matrix multiplication

algorithm. The structure prior for the gene expression of an

enzyme e affecting a metabolite concentration is related to their

shortest distance dm,e as p(m{we)!e{ldm,e . The shorter the

distance, the stronger the prior.

Averaging network models. Searching optimal BN

structures given a dataset is an NP-hard problem. We employed

an MCMC method to do local search of optimal structures. As the

method is stochastic, the resulting structure will be different for

each run. In our process, 1,000 BNs were reconstructed using

different random seeds to start the stochastic reconstruction

process. From the resulting set of 1,000 networks generated by this

process, edges that appeared in greater than 30% of the networks

were used to define a consensus network. A 30% cutoff threshold

for edge inclusion was based on our simulation study [68], where a

30% cutoff yields the best tradeoff between recall rate and

precision. The consensus network resulting from the averaging

process may not be a BN (a directed acyclic graph). To ensure the

consensus network structure is a directed acyclic graph, edges in

this consensus network were removed if and only if (1) the edge

was involved in a loop, and (2) the edge was the most weakly

supported of all edges making up the loop.

Bayesian Network for the Yeast F2 Cross
The same 3,662 informative genes used previously [13] and 56

metabolites were included in the network reconstruction process

using a BN reconstruction software program based on a previously

described algorithm [63,68] as outlined above. One thousand BNs

were reconstructed using different random seeds to start the

reconstruction process. From the resulting set of 1,000 networks

generated by this process, edges that appeared in greater than

30% of the networks were used to define a consensus network. Our

previous simulation study shows that the 30% inclusion threshold

results in a stable structure and achieves the best tradeoff between

precision and recall [68]. The histogram of percentage of

occurrences of all potential edges shows that 30% is a reasonable

cutoff threshold for inclusion (Figure S8). Edges in this consensus

network were removed if (1) the edge was involved in a loop, and

(2) the edge was the most weakly supported of all edges making up

the loop. The genetic, TFBS, and PPI data were used to derive

structure priors as previously described (details described above in

Methods) [13]. Structure priors for metabolites and genes are

derived from KEGG chemical reactions as described above.

All data and software used to construct the BNs described

herein are available at http://www.mssm.edu/research/

institutes/genomics-institute/rimbanet.

Extracting a Subnetwork from Bayesian Network
Subnetworks for sets of genes were constructed as follows.

Genes in the input set were used as seeds and the direct neighbors

of seeds were identified. Seeds and their direct neighbors define

the nodes of a given subnetwork. Links between nodes in the

subnetworks are the same as in the complete BN.
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