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Abstract

General obstacle detection is a key enabler for obstacle avoidance in mobile robotics

and autonomous driving. In this paper we address the task of detecting the closest obsta-

cle in each direction from a driving vehicle. As opposed to existing methods based on 3D

sensing we use a single color camera. The main novelty in our approach is the reduction

of the task to a column-wise regression problem. The regression is then solved using a

deep convolutional neural network (CNN). In addition, we introduce a new loss func-

tion based on a semi-discrete representation of the obstacle position probability to train

the network. The network is trained using ground truth automatically generated from

a laser-scanner point cloud. Using the KITTI dataset, we show that the our monocular-

based approach outperforms existing camera-based methods including ones using stereo.

We also apply the network on the related task of road segmentation achieving among the

best results on the KITTI road segmentation challenge.

1 Introduction

Obstacle detection is a fundamental technological enabler for autonomous driving and ve-

hicle active safety applications. While dense laser scanners are best suitable for the task

(e.g. Google’s self driving car), camera-based systems, which are significantly less expen-

sive, continue to improve. Stereo-based commercial solutions such as Daimler’s “intelligent

drive” are good at general obstacle detection while monocular-based systems such as Mo-

bileye’s are usually designed to detect specific categories of objects (cars, pedestrians, etc.).

The problem of general obstacle detection remains a difficult task for monocular camera

based systems. Such systems have clear advantages over stereo-based ones in terms of cost

and packaging size.

Another related task commonly performed by camera-based systems is scene labeling, in

which a label (e.g. road, car, sidewalk) is assigned to each pixel in the image. As a result full

detection and segmentation of all the obstacles and of the road is obtained, but scene labeling

is generally a difficult task. Instead, we propose in this paper to solve a more constrained

task: detecting in each image column the image contact point (pixel) between the closest
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Figure 1: (Left) Obstacle detection example. (Right) Input to StixelNet and output example

obstacle and the ground as depicted in Figure 1(Left). The idea is borrowed from the “Stixel-

World” obstacle representation [1] in which the obstacle in each column is represented by a

so called “Stixel”, and our goal is to find the bottom pixel of each such “Stixel”. Note that

since we don’t consider each non-road object (e.g. sidewalk, grass) as an obstacle, the task

of road segmentation is different from obstacle detection as is shown in figure 5(c). Notice

also that free-space detection task is ambiguously used in the literature to describe the above

mentioned obstacle detection task [1] and the road segmentation task [25].

We propose solving the obstacle detection task using a two stage approach. In the first

stage we divide the image into columns and solve the detection as a regression problem

using a convolutional neural network, which we call “StixelNet”. In the second stage we im-

prove the results using interactions between neighboring columns by imposing smoothness

constrains. To train the network we introduce a new loss function based on a semi-discrete

representation of the obstacle position probability.

It is well known that having large quantities of labeled data is crucial for training deep

CNNs. A major advantage of our unique task formulation is the ability to use laser-scanners,

which are excellent at the given task, for labeling, thus eliminating the need for manual

annotation. In addition, we further leverage this by fine-tuning StixelNet to the road seg-

mentation task using a smaller amount of hand labeled data. Our experiments use the KITTI

dataset [8]. On obstacle detection our approach is the state-of-the-art camera-based method

even when compared to the stereo-based “Stixel” approach [1]. On the KITTI road segmen-

tation challenge, our fine-tuned network, although not suitable to model all cases, is ranked

second among all methods.

1.1 Related Work

The Stixel representation was presented in [1] as a compact way to represent the 3D road

scene and in particularly for obstacle detection. This representation was further developed

in several studies [2, 10, 21, 22]. Other methods for obstacle detection include [6, 11]. All

of these methods use stereo vision while we use a single camera. A different approach for

monocular based obstacle detection relies the host vehicle motion and uses Structure-from-

Motion (SfM) from sequences of frames in the video [15, 20]. In contrast our method uses

a single image as input and therefore operates also when the host vehicle is stationary. In

addition, the SfM approach is orthogonal to ours and can therefore be later combined to

improve performance.

For the task of road segmentation, some works such as [24, 25] use stereo data while

others such as [17, 19] use a single camera. The work in [19] uses deconvolutional neural

networks and is, at this moment, the leading method on the KITTI dataset. These approaches
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Figure 2: StixelNet architecture.

use pixel or patch level classification as opposed to the proposed column-based regression

approach. Our method is novel in providing a unified framework for both the obstacle detec-

tion and road-segmentation tasks, and in using the first to facilitate the second in the training

phase. The remainder of the paper is organized as follows. In the next section we describe

the StixelNet, and in section 3 we describe the post-processing used to obtain the full image

obstacle detection and road segmentation. Section 4 describe our experimental results, and

in Section 5 we present the conclusions and future work.

2 StixelNet Architecture

The architecture of StixelNet is depicted in figure 2. The network gets as input a single RGB

image vertical stripe Is of dimensions (w,h,3). The problem we are trying to solve is the

following: find the pixel location y of the bottom point of the closest obstacle in the center

column of Is. Throughout the paper we will refer to this pixel row value as the “obstacle

position” in short. If 0 is the top row of the image and h the bottom row, we consider y to be a

real number in the relevant vertical domain [hmin,h], where hmin is the minimum possible row

of the horizon given a roughly known camera position. Figure 1(right) shows an example of

the input Is and output y. Accordingly, the output layer represents a probability distribution

P over [hmin,h]. P(y) is the probability that the obstacle position in Is is y. The distribution

P can then be used in an image holistic approach to determine the obstacle positions in

the entire image, as will be later shown. Experiments with other input types revealed that

color images significantly outperform gray ones, while temporal information (e.g. multiple-

subsequent frames, optical flow) did not show improvement in our implementation to date.

StixelNet is a multi-layer CNN, inheriting its structure from the famous LeNet [18], in

its version implemented in the Caffe framework [14], as the MNIST classification model. It

is a 5 layer network in which the first two layers are convolutional and the last three are fully

connected. The ReLU non-linearity is applied to the output of all layers except the last one,

and for the convolutional layers a Max-pooling layer follows the ReLU operation as well.

In our implementation w = 24,h = 370 and hmin = 140. The first layer convolves the

24×370×3 input image with 64 filters of size 11×5×3 at each pixel position (stride=1).

The second layer uses 200 kernels of size 5×3×64. The max-pooling stages compute the

maximum over disjoint regions (i.e. there is no overlap between pooled regions), of size

8×4 for the first layer and 4×3 for the second one. The hidden fully connected layers have
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1024 ,2048 neurons and the output layer has 50 neurons.

2.1 Loss function

The training examples are given as couples of image stripes and obstacle positions: (Is, ŷ).
Since this is a regression problem, the natural choice for the networks output is a single neu-

ron whose continuous output is the obstacle position, trained with the L2 loss function. We

refer to this configuration as L2-loss. The drawback of this approach lies in data ambiguities,

in which there are several possible choices, for example due to several obstacles, each with

some image support. In such cases this network is insufficient in its final layer complexity to

model the data.

One solution is to output not only the obstacle position but also a confidence measure.

We model this using two continuous network outputs, α,β . The loss function considers

these outputs as representing a sigmoid probability function, PFree(y)
1

1+e−α(y−β ) . PFree(y) is

interpreted as the probability of free space in each row y. Here we define the free space as

the area from image bottom to the obstacle position and non-free space the area above the

obstacle position. As PFree is defined there is a smooth transition between free space (proba-

bility 1) and non free space (probability 0), with β being the most probable transition point

and α the confidence level. The label ŷ is also transformed to a probability P̂Free as a step

function: P̂Free(y) = 1 for y ∈ [ŷ,h], and 0 for y ∈ [hmin, ŷ]). Finally, the loss function, named

KL-loss, is the Kullback-Leibler divergence between the two probabilities DKL(P̂Free‖PFree).
We show in our experiments (Section 4) that using the KL-loss is significantly better than

using the L2-loss. However, the multi-modal nature of the data continues to confuse the

network, which in many cases averages several probable y-position outcomes to one im-

probable result. Returning a few top locations is beneficial since we can pick the right one

later in post-processing.

A different approach is to treat the problem as a regular multi-class classification prob-

lem. We quantize the output range to N interval segments (bins) with equal lengths,
(h−hmin)

N
.

The label ŷ is similarly quantized to N values. The last layer is then composed of N neurons,

each representing a bin, trained with the standard Softmax-loss. The output of neuron i in the

last layer can then be interpreted as the probability of the obstacle position to be in the ith bin.

As a single prediction we take the center of the highest probability bin. In the experiments

we found that for predicting the correct position the Softmax-loss performs better then the

continuous versions previously described. The drawback in this representation is the loss of

information on the order between the bins and the proximity between neighboring bins. And

indeed in practice this loss is less successful at approximating the full probability distribution

which is used in post-processing to improve overall results in full images.

As a compromise between the continuous and discrete approaches we introduce a semi-

discrete approach, which has shown the best results in our experiments for both predicting the

correct obstacle position and for predicting the full probability distribution. In this approach

we model the probability P(y) of the obstacle position as a piecewise-linear probability dis-

tribution. The network’s output layer is a softmax layer of N neurons as in the Softmax-loss

version. We next define a smooth probability distribution over all the possible values in the

output range [hmin,h] using linear interpolation between bin centers. Given y between two

bin centers: ci < y < ci+1 the probability P(y) = ai ·
(ci+1−y)
ci+1−ci

+ ai+1 ·
(y−ci)

ci+1−ci
, where ai,ai+1

are the output of neurons i, i+1 respectively. The loss is defined as the log-probability loss

− logP(ŷ) and used in the final implementation of StixelNet. We refer to this configuration
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Figure 3: (Top) Obstacle detection algorithm flowchart. (Bottom) Road segmentation algo-

rithm flowchart.

based on the piecewise-linear probability loss in short as PL-loss.

2.2 Details of learning

We roughly follow the learning protocol of [16] to train StixelNet, using the Caffe frame-

work [14]. We use stochastic gradient descent with a batch size of 128, momentum 0.9, and

no weight decay. The initial learning rate was 0.01 for all experiments except for the ones

using the KL-loss which required a smaller learning rate of 0.001 to converge. The learning

rate is reduced by half every 10K learning iterations. To overcome over-fitting due to our

limited training set size we use the dropout technique [12] in the hidden fully connected

layers (layers 3 and 4) with the default 0.5 drop ratio parameter.

3 Obstacle detection

We solve the obstacle detection problem in two stages. In the first stage we find a local

prediction using StixelNet as described in section 2. In the second stage we use a Conditional

Random Field (CRF) in order to get a globally consistent estimation. The flowchart of the

obstacle detection algorithm is presented in Figure 3(top).
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In the CRF we optimize the following potential:

Y = argmin∑wuφu(xi,yi) + ∑wbφb(xi,yi,xi+1,yi+1). The unary potential φu(x,y) is the

probability that the obstacle position in column x is y as computed by StixelNet. The binary

potential between consecutive predictions φb(x1,y1,x2,y2) is min{max{|y1 − y2|−1,0},T}
where we penalize discontinuities but have zero penalty over small changes. Clipping the

potential at T is important to allow large discontinuities at objects boundaries.

The CRF is a chain model over consecutive columns, and therefore the inference can

be solved exactly and efficiently using the Viterbi algorithm [23]. Figure 4 shows the wide

variety of different scenes in which our obstacle detection operates. Notice the upper leftmost

in which green bushes which are upright obstacles are distinguished from the green grass, a

result which is difficult to obtain using a scene labeling approach.

3.1 Road segmentation

In road segmentation the challenge is to decide for each pixel if it is road or not. Applying the

previous framework, i.e. training StixelNet to find the road limit in each column, and then

using a global refinement, has some limitations. The main limitation is that, unlike detection

of the closest obstacle, the assumption that the image starts with road at the bottom and then

there is a single transition to non-road does not always hold. As an example observe the

scene in Figure 5(e) in which the opposite direction road is missed entirely by our method.

This is even more evident in junction scenes. Despite these limitations, we will show that we

can achieve competitive results with this approach.

The segmentation is done is three stages. The first two, StixelNet (trained on the road

segmentation task) followed by a CRF, are the same as in obstacle detection. The final stage

performs a graph-cut segmentation on the image to achieve higher accuracy by enforcing

road boundaries to coincide with image contours. The flowchart of the road segmentation

algorithm is presented in Figure 3(bottom). In the final segmentation the graph structure is a

grid over all pixels. The unary potentials are the road/non-road labels from the CRF, and the

binary potentials are α ·exp(−β |∇I|), where α,β are constants. This penalizes road to non-

road transitions, unless they coincide with a strong image gradient. Although the resulting

graph is loopy, as the potentials are sub-modular, and the task is binary segmentation, it can

be solved exactly and efficiently using graph-cuts [7].

4 Experimental Results

For the obstacle detection estimation experiments we use the raw data available in the KITTI

dataset [8]. The dataset we chose consists of the on-road sequences, 56 in total, each con-

taining several hundreds of video frames taken from two cameras and synced with additional

sensory data. For all our experiments we use a single color rectified image and the Velodyne

laser-scanner 3D point cloud for ground truth. For comparison with a stereo-based approach

we use the second camera image as well. The images used are rectified to a front view, such

that vertical objects in the world appear vertical in the image. We take 6 diverse sequences

(09_26_d_27, 09_26_d_35, 09_26_d_64, 09_29_d_71, 09_30_d_27, 10_03_d_47) for test-

ing and the remaining sequences for training. Both in training and testing we use every fifth

frame in each sequence. In total there are 6̃K training images and 800 testing. We next

describe our automatic ground truth method, applied both on the training and testing images.
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Figure 4: Obstacle detection results on test images (See section 4). the red dots mark the

ground contact points of the general obstacles as computed using StixelNet and CRF.

4.1 Automatic obstacle detection ground truth

Given the depth of each pixel in a column, the idea is to find where a vertical obstacle starts,

by traversing the column from its bottom looking for an abrupt decrease in depth drop rate.

We first create using the Velodyne points a dense inverse-depth map. The Velodyne output

is a 3D point cloud which is sparse relative to the image pixels. Each 3D point is projected

to a pixel in the image plane using the available calibration between the scanner and the

camera, and for each matching pixel (x,y) its depth value d(x,y) is obtained. We then use

natural neighbor interpolation [9] to extend the inverse-depth values (D(x,y) = d−1(x,y)) to

the entire image obtaining a value per pixel. In the next stage we look for the columns in

which the 3D data is reliable and create a ground truth obstacle position estimation for these

columns. Initially, a subset of columns is selected with a stride of 5 pixels on the horizontal

axis. For a given column x, we compute the derivative
∂D(x,y)

∂y
. We follow the derivative from

the bottom, looking for the row in which there is a change from a typical road value to about

zero. The row found is marked as the suspect obstacle position and a confidence value is

assigned based on the variations between the values of the derivative above and below the

point. Finally, several consecutive columns with similar obstacle position are either approved

or rejected according their confidence. While somewhat heuristic we found this ground truth

procedure highly reliable, although not complete: on average the ground truth covers about

a quarter of the columns (See example in figure 5(c)). In total 331K ground truth columns

are generated from the train set and 57K from the test set.

4.2 Obstacle detection

We implement several baseline obstacle detection methods for comparison. First and fore-

most, we use the stereo-based approach for obstacle detection based on the Stixels represen-

tation [1]. This approach uses the disparity map obtained from the stereo cameras to detect

the road area, and then finds obstacle position, which is equivalent to the bottom points of

the Stixels, by applying dynamic programming to a polar-coordinate occupancy grid. We

refer to our implementation of this method as the Stereo method in the results below.

Since no previous methods used a single camera for the obstacle detection task as we

defined it, we implemented two baselines. A naïve baseline, MaxGradient, finds in each

column the y-position with the maximal gradient. Our best attempt for a monocular baseline

method uses the HOG+SVM approach [5]. From the training data, patches are extracted to

train a classifier for detecting the obstacle position. The 40× 24× 3 color training patches
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(a) (d)

(b) (e)

(c) (f)

Figure 5: Example results. (a) StixelNet result: obstacle position probability. (b) Obstacle

detection (with CRF) overlayed on the image. (c) Obstacle position ground truth obtained

with Velodyne laser scanner (blue), and manually labeled road area (green overlay). (d) Road

segmentation StixelNet result. (e) Road segmentation (with CRF) (f) Road segmentation

(with CRF and graph cut).
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Figure 6: Obstacle detection evaluation (see Section 4 for details). (a) StixelNet vs. baseline

methods. (b) Comparison of different losses. (c) Average probability measure comparison

of losses. (d) Comparison of StixelNet with and without CRF.
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are represented by a HoG descriptor with the default parameters resulting in a 288-length

feature vector. Patches centered at the obstacle position are given as positive training exam-

ples and sampled patches below it as negative. The SVM is trained in two iterations using

hard example mining. Finally, the classifier is applied in a sliding window fashion from the

bottom to the top of each column. The first positive local maxima in the classification score

encountered is chosen as the obstacle position.

We train StixelNet as previously explained using the generated KITTI obstacle detection

training data, running ∼ 30 cycles of training. At test time we apply the network on the test

image columns with a horizontal stride of 5 pixels. As explained in section 2 the raw output

of the network on a particular column is a probability function P(y). As a single candidate

for the obstacle position we take argmaxP(y).

To evaluate the column-based obstacle detection we plot for each value ε of the absolute

error in pixels, the fraction of test examples with absolute error below ε . As a single error

measure we compute the area under the curve (AUC) for 0 ≤ ε ≤ 50. The evaluation results

are shown in figure 6(a). StixelNet with AUC=0.87 outperforms the stereo based-method

(AUC=0.82). The median error of StixelNet is less than 3 pixels. The monocular-based

baselines, HOG+SVM (0.65) and MaxGradient (0.33) show relatively poor performance,

emphasizing the difficulty of the problem and the superiority of the CNN approach.

Figure 6(b) shows a comparison of the loss schemes described in section 2. StixelNet us-

ing the PL-loss (AUC=0.87) shows an advantage over the Softmax-loss (AUC=0.86) and the

KL-loss (0.84) across all pixel error values. The L2-loss (AUC=0.51) is clearly not suitable

for the problem. The drawback of this evaluation is that it considers a single candidate, while

the postprocessing considers the full probability distribution over the possible row positions.

To quantify the entire distribution we introduce an additional measure, which is the average

probability within ε pixels from the ground truth. Formally, we average over all the test

columns ∑|y−ŷ|<ε P(y), where P(y) is the network output and ŷ the ground truth label. The

results of this evaluation shown in figure 6(c) show a significant advantage of the PL-loss

compared to the Softmax-loss. In addition the KL-loss becomes competitive at the right part

of the graph due to its ability to avoid large errors.

In figure 5(a) we show the probability distribution output of StixelNet, and below (fig-

ure 5(b)) the final result using the CRF. The evaluation in figure 6(d) shows a slight advantage

of applying the CRF postprocessing versus using StixelNet only, although the benefits of the

CRF in terms of result smoothness and completeness are not reflected this evaluation. The

full results on the test videos are provided as supplementary material.

4.3 Road Segmentation

The road segmentation StixelNet is trained and tested on the KITTI dataset. The dataset has

290 train images and 290 test images in which the ground truth road segmentation is man-

ually annotated. The training and testing are divided into three categories: urban unmarked

(UU), urban marked two-way road (UM) and urban marked multi-lane road (UMM).

We extracted ∼ 44000 stripes at strides of 4 pixels from the original images, and we

added the same number taken from their mirror image. We found that over-fitting was still

a serious concern, even when using dropout regularization and bagging [4] with 10 nets.

In order to get better results, we used a smaller model with 512 neurons in layer 4. The

first three layers where fine-tuned from the obstacle detection network. The graph-cut was

performed using the code of Boykov et el. [3].
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The evaluation scheme used for the KITTI road segmentation challenge is described in

[13] and includes transforming the image into a “bird-eye view” before performing pixel-

wise evaluation of the segmentation. The score used is the F1 score which is a harmonic

mean between precision and recall.

Method maxF AP PRE REC FPR FNR

ours (PL+bagging) 89.12 % 81.23 % 85.80 % 92.71 % 8.45 % 7.29%

ours (KL-Loss) 88.48 % 80.96 % 91.06 % 86.05 % 4.65 % 13.95 %

ours (PL-Loss) 88.40 % 77.55 % 86.90 % 89.97 % 7.47 % 10.03 %

DNN [19] 93.43 % 89.67 % 95.09 % 91.82 % 2.61 % 8.18 %

CB 88.97 % 79.69 % 89.50 % 88.44 % 5.71 % 11.56 %

FusedCRF 88.25 % 79.24 % 83.62 % 93.44 % 10.08 % 6.56 %

NNP 87.82 % 76.85 % 86.04 % 89.68 % 8.02 % 10.32 %

ProbBoost [25] 87.78 % 77.30 % 86.59 % 89.01 % 7.60 % 10.99 %

Table 1: The Maximum F1-measure (MaxF), Average Precision (AP), Precision (PRE), Re-

call (REC), False Positive Rate (FPR) and False Negative Rate (FNR) on the KITTI road

segmentation challenge [13].

Table 1 summarizes the results. From the compared methods, FusedCRF uses point

clouds from Velodyne and NNP and ProbBoost use stereo data while DNN, CB and our

method use monocular vision only. As can be seen, while the StixelNet approach has obvious

limitations when applied to road segmentation, it still ranks second best in this challenge.

We also found that there is a difference between the KL-loss results and the PL-loss

results. While overall results are quite similar, the performance on different categories is

significantly different. On the UMM task, the PL-loss has a maxF score of 93.24% while the

KL-Loss as a score of 90.3%. On the other hand, the KL-Loss outperforms the PL-loss with

88.16% vs 84.35% on the UM task.

5 Conclusions

We presented a new column-wise regression approach for obstacle detection and road seg-

mentation from a monocular camera, which uses CNNs, and reaches state-of-the-art results.

In the future we plan to increase our method’s capabilities by further exploring the interesting

possibilities of training with automatically generated ground truth.
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