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Abstract. In this paper we prove the existence and uniqueness of strong so-
lutions for the stochastic Navier-Stokes equation in bounded and unbounded
domains. These solutions are stochastic analogs of the classical Lions-Prodi
solutions to the deterministic Navier-Stokes equation. Local monotonicity
of the nonlinearity is exploited to obtain the solutions in a given probabil-
ity space and this significantly improves the earlier techniques for obtaining
strong solutions, which depended on pathwise solutions to the Navier-Stokes
martingale problem where the probability space is also obtained as a part of
the solution.
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1 Introduction

The mathematical theory of the Navier-Stokes equation is of fundamental impor-
tance to a deep understanding, prediction and control of turbulence in nature and
in technological applications such as combustion dynamics and manufacturing pro-
cesses. The incompressible Navier-Stokes equation is a well accepted model for
atmospheric and ocean dynamics. The stochastic Navier-Stokes equation has a long
history (e.g., Chandrasekhar [6], Novikov [17] for two of the earlier studies) as a
model to understand external random forces. In aeronautical applications random
forcing of the Navier-stokes equation models structural vibrations and, in atmo-
spheric dynamics, unknown external forces such as sun heating and industrial pol-
lution can be represented as random forces. In addition to the above reasons there
is a mathematical reason for studying stochastic Navier-Stokes equations. It is well
known that the invariant measure of the Navier-Stokes equation is not unique. A
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well known conjecture of Kolmogorov suggests that addition of noise would reduce
the number of physically meaningful invariant measures.

A rigorous theory of the stochastic Navier-Stokes equation has been a subject
of several papers. Several approaches have been proposed, from the classic paper
by Bensoussan and Temam [4] to some more recent results, e.g., Bensoussan [3],
Flandoli and Gatarek [10] and by Sritharan [19]. The reader is referred to the books
by Vishik and Fursikov [22] and Capinski and Cutland [5] for a comprehensive treat-
ment. Most papers rely on martingale type methods and a direct theory of strong
solutions providing the stochastic analog of the well known Lions and Prodi [14]
solvability theorem for the deterministic Navier-Stokes equation remained open in
the past. In this paper we prove exactly such a result exploiting a local monotonicity
property. Our method covers both bounded and unbounded domains since it does
not rely on compactness methods. The results of this paper have been very useful
in treating impulse and stopping time problems (cf. [15]) and also show promise
in obtaining local (stochastic) strong solutions to three dimensional bounded and
unbounded domains, which is currently an open problem.

In the rest of this Section 1 we formulate the abstract Navier-Stokes problem.
Throughout the paper we consider the case of bounded domains to enhance read-
ability and will indicate the appropriate modifications for unbounded domains. In
Section 2 we describe the local monotonicity property of the Navier-Stokes operators.
The required interpolation theorems (all valid for arbitrary unbounded domains) are
provided for completeness. We then establish certain new a-priori estimates involv-
ing exponential weight for the deterministic Navier-Stokes equation. In Section 3
we imitate these exponentially weighted estimates for the stochastic case. These
estimates play a fundamental role in the proof of the existence and uniqueness of
strong solutions proved in the second half of Section 3. The monotonicity argument
used here is a generalization of the classical Minty-Browder method for dealing with
local monotoniticity. Finally we also prove the Feller property of the stochastic
process.

Let O be a bounded domain in R2 with smooth boundary ∂O. Denote by u and
p the velocity and the pressure fields. The Navier-Stokes problem (with Newtonian
constitutive relationship) is as follows:

∂tu− ν△u+ u · ∇u+∇p = f in O × (0, T ), (1.1)

with the conditions
∇ · u = 0 in O × (0, T ),

u = 0 in ∂O × (0, T ),

u = u0 in O × {0},
(1.2)

where f is a given forcing field. It is well known (e.g., Constantin and Foias [7], Li-
ons [13] Ladyzhenskaya [12], Temam [21], von Wahl [23]) that by means of divergent
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free Hilbert spaces H, V, (and its dual V′) and the Helmhotz-Hodge orthogonal pro-
jection PH , the above classical form of the Navier-Stokes equation can be re-written
in the following abstract form

∂tu+ Au+B(u) = f in L2(0, T ;V′), (1.3)

with the initial condition

u(0) = u0 in H, (1.4)

where now u0 belong to H and the field f is in L2(0, T ;H). The standard spaces
used are as follows

V = {v ∈ H1
0(O,R2) : ∇ · v = 0 a.e. in O}, (1.5)

with the norm

∥v∥V :=

(∫
O
|∇v|2dx

)1/2

= ∥v∥, (1.6)

and H is the closure of V in the L2-norm

∥v∥H :=

(∫
O
|v|2dx

)1/2

= |v|. (1.7)

The linear operators PH (Helmhotz-Hodge projection) and A (Stokes operator) are
defined by{

PH : L2(O,R2) −→ H, orthogonal projection, and

A : H2(O,R2) ∩ V −→ H, Au = −νPH △ u,
(1.8)

and the nonlinear operator

B : DB ⊂ H× V −→ H, B(u,v) = PH(u · ∇v), (1.9)

with the notation B(u) = B(u,u), and clearly, the domain of B requires that
(u · ∇v) belongs to the Lebesgue space L2(O,R2).

Using the Gelfand triple (duality) V ⊂ H = H′ ⊂ V′ we may consider A as
mapping V into its dual V′. The inner product in the Hilbert space H (i.e., L2-
scalar product) is denoted by (·, ·) and the induced duality by ⟨·, ·⟩. It is convenient
to notice that for u = (ui), v = (vi) and w = (wi) we have

⟨Au,w⟩ = ν
∑
i,j

∫
O
∂iuj∂iwjdx (1.10)
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and

⟨B(u,v),w⟩ =
∑
i,j

∫
O
ui∂ivjwjdx. (1.11)

An integration by part and Hölder inequality yields

⟨B(u,v),w⟩ = −⟨B(u,w),v⟩, (1.12)

|⟨B(u,v),w⟩| ≤
∑
i,j

∥uiwj∥L2(O,R2)
∥∂ivj∥L2(O,R2)

, (1.13)

and in each term of the right-hand side we can use L4-norms to estimate the product
uivj. Notice that in getting equality (1.12) we use the fact that u is divergent free
(i.e., ∇ · u = 0), but v and w are not necessarily divergent free. Hence, we have
⟨B(u,v),v⟩ = 0 and ⟨B(u,v),v3⟩ = 0, where v3 is defined by components, i.e.,
v3(x, t) := [v3i (x, t)].

2 Some Estimates

Before setting the stochastic PDE, we give some elementary estimates.

Lemma 2.1. If φ and ψ are smooth functions with compact support in R2 then

∥φψ∥2
L2

≤ 4∥φ∂1φ∥L1∥ψ ∂2ψ∥L1 , (2.1)

∥φ∥4
L4

≤ 2∥φ∥2
L2
∥∇φ∥2

L2
, (2.2)

Moreover, if CO denotes the diameter of the domain O, and φ, ψ have support in
O then we have

∥φψ∥
L2 ≤ CO∥∂1φ∥L2∥∂2ψ∥L2 , (2.3)

∥φψ∥2
L2

≤ CO∥∂1φ∥2
L2
∥ψ ∂2ψ∥L1 . (2.4)

Clearly, all estimates remain true for functions in H1
0 (O).

Proof. Actually, the result (2.2) is well known. We give a proof only for the sake of
completeness. First, use the equality

φ(x, y) =

∫ x

−∞
∂1φ(s, y)ds =

∫ y

−∞
∂2φ(x, t)dt,

to obtain

∥φψ∥
L1 ≤ ∥∂1φ∥L1∥∂2ψ∥L1 ,
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for any φ and ψ. Hence, applying the above estimate for φ2 and ψ2 instead of φ and
ψ, we get

∥φψ∥2
L2

≤ 4∥φ∂1φ∥L1∥ψ ∂2ψ∥L1 ,

which implies the first part. Similarly, starting with

|φ(x, y)|2 ≤
∣∣∣∣∫ x

−∞
∂1φ(s, y)ds

∣∣∣∣2 ≤ CO

∫ +∞

−∞
|∂1φ(s, y)|2ds

we prove the desired estimates.

Notice that in 3-D, we can use estimate (2.3) to get∫
R2

|φ(x, y, z)|4dxdy ≤ 2
( ∫

R2

u2(x, y, z)dxdy
)( ∫

R2

|∇u|2(x, y, z)dxdy
)
,

where we bound u2(x, y, z) by
∫
R |u(x, y, z)∂zu(x, y, z)|dz to deduce

∥φ∥4
L4(R3)

≤ 4∥φ∥
L2(R3)

∥∇φ∥3
L2(R3)

, (2.5)

which is similar to (2.3).
The previous Lemma implies that H∩L4(O,R2) contains V as a dense subspace

(even in 3-D). Moreover, L2(0, T ;V)∩L∞(0, T ;H) is contained in L4((0, T )×O,R2)
in 2-D, but not in 3-D. Notice that the proof of estimates (2.1) and (2.2) is very
similar to that by Ladyzhenskaya [12, pp. 8-11], where it is also proved that the
remarkable estimate

∥φ∥6
L6(R3)

≤ 48 ∥∇φ∥6
L2(R3)

, (2.6)

is valid for any φ with compact support. On the other hand, estimates (2.3) and
(2.4) can be viewed as particular cases of Sobolev embedding (or interpolation)
inequality, see for example Adams [1].

Lemma 2.2. Let v and w be in the spaces L4(O,R2) and V, respectively. Then the
following estimate

|⟨B(w),v⟩| ≤ 2 ∥w∥3/2 |w|1/2 ∥v∥
L4(O,R2)

(2.7)

holds.

Proof. In terms of the trilinear form, we have ⟨B(w),v⟩ = b(w,w,v). From estimate
(1.13) we deduce

|⟨B(w),v⟩| ≤
√
2 ∥w∥V ∥w∥

L4(O,R2)
∥v∥

L4(O,R2)
.

By means of Lemma 2.1 we get

∥w∥
L4(O,R2)

≤ 4
√
2 ∥w∥1/2

V
∥w∥1/2

H

which completes the proof.
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Notice that in 3-D, we deduce by means of estimate (2.5)

|⟨B(w),v⟩| ≤ 2 ∥w∥7/4 |w|1/4 ∥v∥
L4(O,R3)

, (2.8)

instead of (2.7). Actually, it may be better to use the estimate

|⟨B(w),v⟩| ≤ 2 ∥w∥3/2 |w|1/2 ∥v∥
L6(O,R3)

, (2.9)

which follows from (2.6) and the interpolation inequality

∥φ∥
L3(O,R3)

≤ ∥φ∥1/2
L2(O,R3)

∥φ∥1/2
L6(O,R3)

. (2.10)

The above Lemma shows that the nonlinear operator u 7→ B(u) can be consid-
ered as mapping the space V into its dual space V′, so that the compact form of the
Navier-Stokes equation (1.3) is meaningful.

Lemma 2.3. Let u and v be in the space V. Then the following estimates hold

|⟨B(u)−B(v),u− v⟩| ≤ ν

2
∥u− v∥2 + 16

ν3
|u− v|2 ∥v∥4

L4(O,R2)
. (2.11)

Proof. For given u and v, set w = u− v. Starting with equality (1.12) we get

⟨B(u),w⟩ = ⟨B(u,u),w⟩ = −⟨B(u,w),u⟩ =

= −⟨B(u,w),w⟩ − ⟨B(u,w),v⟩ = −⟨B(u,w),v⟩

and

⟨B(v),w⟩ = −⟨B(v,w),v⟩

which give

⟨B(u)−B(v),w⟩ = −⟨B(u,w),v⟩+ ⟨B(v,w),v⟩ = −⟨B(w),v⟩.

Next, by means of Lemma 2.2 we have

|⟨B(u)−B(v),w⟩| ≤ 2 ∥w∥3/2 |w|1/2 ∥v∥
L4(O,R2)

,

and recalling that

ab ≤ 3

4
a4/3 +

1

4
b4, ∀ a, b ≥ 0,

we obtain estimate (2.11).
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At this point, it is clear that the nonlinear operator u 7→ Au + B(u) is hemi-
continuous (actually, continuous) from the Hilbert space V into its dual V′ since{

⟨B(u+ λv),w⟩ = ⟨B(u),w⟩+
+ λ⟨B(u,v) +B(v,u),w⟩+ λ2⟨B(v),w⟩

(2.12)

which is continuous in λ. Also, the nonlinear operator B(·) can be considered as
a map from V (respectively, H) into the dual space V′ ∩ L4/3(O,R2) (respectively,
V′ ∩ W1,∞(O,R2). However, A + B(·) is not monotone, but a combination of the
previous Lemmas lets us deduce the following result.

Lemma 2.4. For a given r > 0 we consider the following (closed) L4-ball Br in the
space V,

Br := {v ∈ V : ∥v∥
L4(O,R2)

≤ r}. (2.13)

Then the nonlinear operator u 7→ Au+B(u) is monotone in the convex ball Br i.e.,
for any u in V, v in Br and w = u− v we have

⟨Aw,w⟩+ ⟨B(u)−B(v),w⟩+ 16r4

ν3
|w|2 ≥ ν

2
∥w∥2. (2.14)

Similarly, if r(t) is a positive and measurable real function and Br(t) is the following
(closed) time-variable L4-ball of L2(0, T ;V),

Br(t) := {v(·) ∈ L2(0, T ;V) : ∥v(t)∥
L4(O,R2)

≤ r(t)}, (2.15)

then for any u(·) in L2(0, T ;V), v(t) in Br(t), w(·) = u(·)−v(·) and any measurable
real function ρ(t), we have

∫ T

0

[
⟨Aw,w⟩+ ⟨B(u)−B(v),w⟩

]
eρ(t)dt+

+
16

ν3

∫ T

0

|w(t)|2r4(t)eρ(t)dt ≥ ν

2

∫ T

0

∥w∥2eρ(t)dt.
(2.16)

Proof. This follows from previous results.

Remark 2.5 (monotone quantization). Notice that in Barbu [2] a similar type of
monotonicity (in a ball of stronger norm) was observed. Actually, if the nonlinearity
is modified as follows, Br(·) : V → V′,

Br(v) =


B(v) if ∥v∥

L4
≤ r,( r

∥v∥
L4

)4

B(v) if ∥v∥
L4

≥ r,
(2.17)
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then for any r > 0 there exists a constant λ = 212r4/ν3 such that the mapping
v 7→ Av + Br(v + λv) is monotone. Indeed, consider u and v in V and denote by
Br the (closed) L4-ball centered at the origin with radius r > 0. If both u and v do
not belong to Br then for w = u− v we have

⟨Br(u)−Br(v),w⟩ =
( r4

∥v∥4
L4

)
⟨B(u)−B(v),w⟩+

+
( r4

∥u∥4
L4

− r4

∥v∥4
L4

)
⟨B(u),w⟩.

Since

⟨B(u)−B(v),w⟩ = −⟨B(w),v⟩,
⟨B(u),w⟩ = −⟨B(u,w),v⟩,
r4

∥u∥4
L4

− r4

∥v∥4
L4

= r4
( 1

∥u∥4
L4
∥v∥

L4

+
1

∥u∥3
L4
∥v∥2

L4

+
1

∥u∥2
L4
∥v∥3

L4

+

+
1

∥u∥
L4
∥v∥4

L4

) (
∥v∥

L4
− ∥u∥

L4

)
,

we get

|⟨Br(u)−Br(v),w⟩| ≤ 8r∥w∥3/2 ||w|1/2, (2.18)

after using estimates (1.13) and (2.2). Similarly, if u belongs to Br, but v does not
belong to Br, then we have

⟨Br(u)−Br(v),w⟩ =
( r4

∥v∥4
L4

)
⟨B(u)−B(v),w⟩+

(
1− r4

∥v∥4
L4

)
⟨B(u),w⟩,

and as above, we deduce estimate (2.18). The case when both u and v belong to
Br is part of the previous Lemma. This implies that A + Br + λI is then maximal
monotone in H, while the Lp-accretivity of A + Br + λI, for p ̸= 2, is an open
problem. �

Now we can prove the following estimate.

Lemma 2.6. Let u(t) be a function in L2(0, T ;V) such that ∂tu(t) belongs to
L2(0, T ;V′) and satisfies the Navier-Stokes equation (1.3) with f(t) in L2(0, T ;H).
Then we have the energy equality

|u(T )|2 + 2ν

∫ T

0

∥u(t)∥2dt = |u(0)|2 + 2

∫ T

0

(f(t),u(t))dt, (2.19)

which yields the following a priori estimate for any ε > 0
sup

0≤t≤T
|u(t)|2e−εt+2 ν

∫ T

0

∥u(t)∥2e−εtdt ≤

≤ |u(0)|2 + 1

ε

(∫ T

0

|f(t)|2e−εtdt

)
.

(2.20)
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Moreover, if f(t) is in L4(0, T ;H) then
sup

0≤t≤T
|u(t)|4e−εt+4 ν

∫ T

0

∥u(t)∥2 |u(t)|2e−εtdt ≤

≤ |u(0)|4 + 27

ε3

(∫ T

0

|f(t)|4e−εtdt

)
,

(2.21)

and if f(t) belongs L4(0, T ;H) ∩ L4(O × (0, T )) then
sup

0≤t≤T
∥u(t)∥4

L4(O)
e−εt + 12 ν

∑
i

∫ T

0

|ui(t)∇ui(t)|2e−εtdt ≤

≤ ∥u(0)∥4
L4(O)

+
27

ε3

(∫ T

0

∥f(t)−∇p(t)∥4
L4(O)

e−εtdt

)
,

(2.22)

where p(t) = p(x, t) is the pressure (scalar) field as in (1.1)

Proof. Indeed, in view of equality (1.12), the elementary inequality

2ab ≤ εa2 +
1

ε
b2

and the Navier-Stokes equation (1.3), the function

F (t) := |u(t)|2e−εt

satisfies

F ′(t) = 2(∂tu(t),u(t))e
−εt − ε|u(t)|2e−εt =

= −2ν∥u(t)∥2e−εt + 2⟨f(t),u(t)⟩e−εt − ε|u(t)|2e−εt ≤

≤ −2ν∥u(t)∥2e−εt +
1

ε
|f(t)|2e−εt.

Hence, an integration in [0, T ] yields (2.20). Similarly, by considering the functions

G(t) := |u(t)|4e−εt and H(t) := |u(t)|4
L4(O)

e−εt,

and remarking that for u3(x, t) := [u3i (x, t)] we have

4(∂tu(t),u
3(t)) = ∂t∥u(t)∥4L4(O)

, ⟨Au(t),u3(t)⟩ = 3
∑
i

|ui(t)∇ui|2,

and

⟨B(u(t)),u3(t)⟩ = 0, |(f(t),u3(t))| ≤ ∥f(t)∥
L4(O)

∥u(t)∥3/4
L4(O)

,

we deduce (2.21) and (2.22).
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Notice that in estimate (2.22), the pressure is unknown, but by combining Lem-
mas 2.1 and 2.6 we obtain an estimate for the norm L4(0, T ;L4(O;R2)), without
using (2.22), which is valid only in dimension 2. In fact it is well known that the
pressure term can be estimated by solving an appropriate Poisson problem obtained
by applying divergence to the Navier-Stokes equation, e.g., Da Veiga [9]. Essen-
tially, if one can estimate the projection of u(t) ·∇u(t) on H⊥, then (2.22) yields an
estimate on the whole term u(t) · ∇u(t). Moreover, it is possible to use the duality
map |u|2u instead of the expression u3 to multiply the Navier-Stokes equation.

On the other hand, we can relax the assumption on f by requesting only that
f(t) belongs to L2(0, T ;V′). In this case, we check that the function F (t) can also
be bounded as follows,

F ′(t) = −2ν∥u(t)∥2e−εt + 2⟨f(t),u(t)⟩e−εt − ε|u(t)|2e−εt ≤

≤ −ν∥u(t)∥2e−εt +
1

ν
∥f(t)∥2

L2(0,T ;V′)
e−εt,

which holds even for ε = 0. This yields the estimate
sup

0≤t≤T
|u(t)|2+ν

∫ T

0

∥u(t)∥2dt ≤

≤ |u(0)|2 + 1

ν

(∫ T

0

∥f(t)∥2
L2(0,T ;V′)

dt

)
.

(2.23)

Similarly, if f(t) is in L4(0, T ;V′) then
sup

0≤t≤T
|u(t)|4e−εt + 2 ν

∫ T

0

∥u(t)∥2 |u(t)|2e−εtdt ≤

≤ |u(0)|4 + 2

ν2ε

(∫ T

0

∥f(t)∥4
L2(0,T ;V′)

e−εtdt

)
,

(2.24)

for any ε > 0.
By means of estimate (2.8) we check that the above estimate (2.11) and Lem-

mas 2.4, 2.6 remain true in 3-D. However, estimate (2.21) is not sufficient to ensure
a bound in the space L4(Ω×(0, T )), since we need to bound the V–norm in L3(0, T ),
cf. estimate (2.5).

Remark 2.7. In general, if u(t) belongs to H∩H2(O,R2) then △u(t) (∇u(t), respec-
tively) does not necessarily belong to H (V, respectively). However, the norms |△ · |
(|∇ · |, respectively) and |A · | (|A1/2 · |, respectively) are equivalent (for instance, we
refer to Temam [21] for details and more comments). Let u(t) satisfy the Navier-
Stokes equation (1.3) with f(t) in L2(0, T ;H). If u(t) belongs to L2(0, T ;H2(O,R2))
and ∂tu(t) belongs to L

2(0, T ;H), then multiplying equation (1.3) by −PH△u(t) we
have

1

2
∂t|∇u(t)|2 + ν|PH△u(t)|2 = ⟨B(u(t)),△u(t)⟩ − (f(t),△u(t)), (2.25)
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after recalling that here PHf(t) = f(t). Since |PH△u| is equivalent to |△u|, there is
a constant c > 0 such that

|⟨B(u),△u⟩| ≤ 2|△u| |∇u|L4 |u|L4 ≤ c|△u|3/2 |∇u|1/2 |u|L4 (2.26)

and we obtain

∂t|∇u(t)|2 + ν|PH△u(t)|2 ≤ cν |u(t)|4L4 |∇u(t)|2 + |f(t)| |△u(t)|, (2.27)

for some constant cν . Then, an estimate on u(t) in the spaces L∞(0, T ;V) and
L2(0, T ;H2(O,R2)) is established. �

3 Stochastic PDE

Here we look at the compact formulation (1.3) of the Navier-Stokes equation subject
to a random (Gaussian) term, i.e., the forcing field f has a mean value still denoted by
f and a noise denoted by Ġ.We can write f(t) = f(t, x) and the noise process Ġ(t) =
Ġ(t, x) as a series dGk =

∑
k gkdwk, where g = (g1,g2, · · · ) and w = (w1, w2, · · · )

are regarded as ℓ2-valued functions. The stochastic noise process represented by
gdw(t) =

∑
k gk(t, x)dwk(t, ω) (notice that most of the time we omit the variable ω)

is normal distributed in H with a trace-class co-variance operator denoted by g∗g(t)
and given by

(g∗g(t)u,v) :=
∑
k

(gk(t),u) (gk(t),v)

Tr(g∗g(t)) :=
∑
k

|gk(t)|2 <∞,
(3.1)

i.e., the mapping (stochastic integral) induced by the noise

v 7→
∫ T

0

(g(t)dw(t),v) :=
∑
k

∫ T

0

(gk(t),v) dwk(t) (3.2)

is a continuous linear functional on H with probability 1 and the noise is the formal
time-derivative of the Gaussian process G(t) =

∫ t

0
g(t)dw(t).

We interpret the stochastic Navier-Stokes equation as an Itô stochastic equation
in variational form

d(u(t),v) + ⟨Au(t) +B(u(t)),v⟩ dt =

= (f(t),v) dt+
∑
k

(gk(t),v) dwk(t),
(3.3)

in (0, T ), with the initial condition

(u(0),v) = (u0,v), (3.4)
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for any v in the space V. This requires the following assumption on the data

f ∈ L2(0, T ;V), g ∈ L2(0, T ; ℓ2(H)), u0 ∈ H (3.5)

and we expect a solution as an adapted (and measurable) stochastic process u =
u(t, x, ω) satisfying

u ∈ L2(Ω;C0(0, T ;H)) ∩ L2(Ω;L2(0, T ;V)) (3.6)

and the (linear) energy equality
d|u(t)|2 + 2ν |∇u(t)|2dt =

= Tr(g∗g(t)dt+ 2 (f(t),u(t)) dt+ 2
∑
k

(gk(t),u(t)) dwk(t),
(3.7)

where we have used the estimate

E{|
∫ T

0

(g(t)dw(t),v(t))|2} ≤
(∫ T

0

Tr(g∗g(t))dt
)(

sup
0≤t≤T

E|v(t)|2
)

(3.8)

for any adapted process v with values in L∞(0, T ;H), to make the stochastic integral
meaningful. Actually, a more general martingale estimate holds, namely

E
{

sup
0≤t≤T

∣∣ ∫ t

0

(gdw(s),v(s))
∣∣p} ≤

≤ CpE
{(∫ T

0

∑
k

(gk(t),v(t))
2dt

)p/2}
,

(3.9)

for any 1 ≤ p < ∞ and some constant Cp depending only on p, e.g., we may take
C2 = 2 and C1 = 3.

Moreover, if we also assume that

f ∈ L4(0, T ;L4(O)), g ∈ L4(0, T ; ℓ2(L4(O))), u0 ∈ L4(O) (3.10)

then we have the (linear) L4–energy equality
d∥u(t)∥4

L4(O)
+ 12 ν

∑
i

|ui(t)∇ui(t)|2dt =
∑
k

(gk(t),u(t))
2 dt

+ 4 (f(t)−∇p(t),u3(t)) dt+ 4
∑
k

(gk(t),u
3(t)) dwk(t),

(3.11)

where u3(x, t, ω) := [u3i (x, t, ω)] and p = p(x, t, ω) is the pressure. As mentioned
before, the pressure (scalar) field p is unknown, so that equality (3.11) is of limited
help.

A finite-dimensional (Galerkin) approximation of the stochastic Navier-Stokes
equation (3.3) can be defined as follows. Let {e1, e2, . . .} be a complete orthonormal
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system (i.e., a basis) in the Hilbert space H belonging to the space V (and L4).
Denote by Hn the n-dimensional subspace of H and V of all linear combinations of
the first n elements {e1, e2, . . . , en}. Consider the following stochastic ODE in Hn

(i.e., essentially in Rn)
d(un(t),v) + ⟨Aun(t) + B(un(t)),v⟩ dt =

= (f(t),v) dt+
∑
k

(gk(t),v) dwk(t),
(3.12)

in (0, T ), with the initial condition

(u(0),v) = (u0,v), (3.13)

for any v in the space Hn. The coefficients involved are locally Lipschitz, so that we
need some a priori estimate to show the global existence of a solution un(t) as an
adapted process in the space C0(0, T,Hn).

Proposition 3.1 (energy estimate). Assume the data f , g and u0 satisfying condi-
tion (3.5). Let un(t) be an adapted process in the space C0(0, T,Hn) solution of the
stochastic ODE (3.12). Then we have the energy equality

d|un(t)|2 + 2ν |∇un(t)|2dt =

=
[
2 (f(t),un(t)) + Tr(g∗g(t))

]
dt+ 2

∑
k

(gk(t),u
n(t)) dwk(t),

(3.14)

which yields the following a priori estimate for any ε > 0
E
{
|un(t)|2

}
e−εt + 2 ν

∫ T

0

E
{
|∇un(t)|2

}
e−εtdt ≤

≤ |u(0)|2 +
∫ T

0

[1
ε
|f(t)|2 + Tr(g∗g(t))

]
e−εtdt,

(3.15)

for any 0 ≤ t ≤ T. Moreover, if we suppose

f ∈ Lp(0, T ;H), g ∈ Lp(0, T ; ℓ2(H)), (3.16)

then we also have
E
{

sup
0≤t≤T

|un(t)|pe−εt + p ν

∫ T

0

|∇un(t)|2|un(t)|p−2e−εtdt
}
≤

≤ |u(0)|p + Cε,p,T

∫ T

0

[
|f(t)|p + Tr(g∗g(t))p/2

]
e−εtdt,

(3.17)

for some constant Cε,p,T depending only on ε > 0, 1 ≤ p <∞, and T > 0.
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Proof. Indeed, we notice first that equation (3.12) implies that

dun(t) + [Anun(t) +Bn(un(t)] dt = fn(t) dt+
∑
k

gn
k (t) dwk(t), (3.18)

where An, Bn(·), fn(t) and gn
k (t) are the orthogonal projection on the finite dimen-

sional subspace H′
n, the dual space of Hn. Hence, by using Itô’s formula with the

process un(t) and the function u 7→ |u|2, we obtain the energy equality (3.14) after
noticing that (Bn(un(t)),un(t)) = (B(un(t)),un(t)) = 0.

Next, as in Lemma 2.6 we calculate the stochastic differential of the process
F (t) := |un(t)|2e−εt to get

dF (t) = e−εtd|un(t)|2 − ε|un(t)|2e−εtdt = −2ν∥un(t)∥2e−εtdt+

+
[
2 (f(t),un(t)) + Tr(g∗g(t))

]
e−εtdt+ 2

∑
k

(gk(t),u
n(t))e−εtdwk(t),

which yields the a priori estimate (3.15).
Similarly, consider G(t) := |un(t)|pe−εt and use Itô calculus based on the energy

process |un(t)|2. As in Lemma 2.6, we check that its stochastic differential satisfies

dG(t) + p ν∥un(t)∥2|un(t)|p−2e−εtdt+ ε|un(t)|pe−εtdt =

=
[
p (f(t),un(t)) +

p

2
Tr(g∗g(t))

]
|un(t)|p−2e−εtdt+

+
p(p− 2)

8

∑
k

(gk(t),u
n(t))2|un(t)|p−4e−εtdt+

+ p
∑
k

(gk(t),u
n(t))|un(t)|p−2e−εtdwk(t).

Hence, by means of the elementary inequality

ab ≤ ap

p
+
aq

q
,

1

p
+

1

q
= 1, ab > 0,

there is a constant Cε,p depending only on ε > 0 and 1 ≤ p <∞ such that
dG(t) + p ν∥un(t)∥2|un(t)|p−2e−εtdt+

ε

2
|un(t)|pe−εtdt ≤

≤ Cε,p

[
|f(t)|p + Tr(g∗g(t))p/2

]
e−εtdt+

+ p
∑
k

(gk(t),u
n(t))|un(t)|p−2e−εtdwk(t).

(3.19)

This yields the p-bound
E
{
|un(t)|p

}
e−εt + p ν

∫ T

0

E
{
∥un(t)∥2|un(t)|p−2

}
e−εtdt ≤

≤ |u(0)|p + Cε,p

∫ T

0

[
|f(t)|p + Tr(g∗g(t))p/2

]
e−εtdt,

(3.20)
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for any 0 ≤ t ≤ T.
On the other hand, if after integrating the stochastic differential (3.19) but before

taking the mathematical expectation we calculate the sup norm in [0, T ], then we
have to deal with a term of the form

A := E
{

sup
0≤t≤T

∣∣∣ ∫ t

0

∑
k

(gk(s),u
n(s))|un(s)|p−2e−εsdwk(s)

∣∣∣}.
By means of the martingale inequality (3.9) for p = 1, we deduce

A ≤ C1E
{(∫ T

0

∑
k

(gk(t),u
n(t))2|un(t)|2p−4e−2εtdt

)1/2} ≤

≤ C1E
{(∫ T

0

Tr(g∗g(t))|un(t)|2p−2e−2εtdt
)1/2} ≤

≤ C1E
{

sup
0≤t≤T

(
|un(t)|p−1e−εt/p′

) ( ∫ T

0

Tr(g∗g(t))e−(2/p)εtdt
)1/2} ≤

≤ ε

2
E
{

sup
0≤t≤T

(
|un(t)|pe−εt

)}
+ Cε,p,TE

{∫ T

0

Tr(g∗g(t))p/2e−εtdt
}
,

where the constant Cε,p,T depends only on ε > 0, 1 ≤ p < ∞ and T > 0. This
provides the estimate (3.17).

Similarly, we may relax the assumption on the data by requesting only that f
belongs to L2(0, T ;V′). In this case we have the estimate

E
{
|un(t)|2

}
+ ν

∫ T

0

E
{
∥un(t)∥2

}
dt ≤

≤ |u(0)|2 +
∫ T

0

[1
ν
∥f(t)∥2

V′
+ Tr(g∗g(t))

]
dt

(3.21)

for any 0 ≤ t ≤ T. Moreover, if we suppose

f ∈ Lp(0, T ;V′), g ∈ Lp(0, T ; ℓ2(H)), (3.22)

then we also have
E
{

sup
0≤t≤T

|un(t)|pe−εt +
p

2
ν

∫ T

0

|∇un(t)|2|un(t)|p−2e−εtdt
}
≤

≤ |u(0)|p + Cε,p,T,ν

∫ T

0

[
∥f(t)∥p

V′
+ Tr(g∗g(t))p/2

]
e−εtdt,

(3.23)

for some constant Cε,p,T,ν depending only on ε > 0, 1 ≤ p < ∞, T > 0 and ν > 0.
Actually, because the domain O is bounded, the above estimate remains true for
ε = 0.
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Under condition (3.5), the stochastic Navier-Stokes equation (3.3) or its finite-
dimensional approximation (3.12) is meaningful for adapted processes u(t, x, ω) sat-
isfying

u ∈ L2(0, T ;V), B(u) ∈ L2(0, T ;V′), (3.24)

with probability 1.As mentioned before, for 2-D we actually haveB(u) in L2(0, T ;V′)
if u belongs to L2(0, T ;V). In general, if we only have u(·) in L2(0, T ;V) then we are
allowed to evaluate equation (3.3) for v in a dense subspace of V where ⟨B(w),v⟩
is defined for any w in V, e.g., for v a test function in O.

Now we deal with the uniqueness of the SPDE (3.3) and, in particular, with the
finite-dimensional approximation (3.12).

Proposition 3.2 (uniqueness). Let u be a solution of the SPDE (3.3), i.e., an
adapted stochastic process u(t, x, ω) satisfying (3.3), (3.4) with the regularity

u ∈ L2(Ω;C0(0, T ;H) ∩ L2(0, T ;V)), u ∈ L4(O × (0, T )× Ω) (3.25)

and where the data f , g and u0 satisfy condition

f ∈ L2(0, T ;V′), g ∈ L2(0, T ; ℓ2(H)), u0 ∈ H. (3.26)

If v is another solution of the stochastic Navier-Stokes equation (3.3) as an adapted
stochastic process in the space C0(0, T,H) ∩ L2(0, T,V), then

|u(t)− v(t)|2 exp
[
− 32

ν3

∫ t

0

∥u(s)∥4
L4(O)

ds
]
≤ |u(0)− v(0)|2, (3.27)

with probability 1, for any 0 ≤ t ≤ T. In particular u = v, if v satisfies the initial
condition (3.4).

Proof. Indeed, we notice that if u and v are two solutions then w = v − u solves
the deterministic equation

∂tw + Aw = B(u)−B(v) in L2(0, T ;V′).

Setting

r(t) :=
32

ν3

∫ t

0

∥u(s)∥4
L4(O)

ds

and using Lemma 2.4 we have

d
(
e−r(t)|w(t)|2

)
+ νe−r(t)∥w(t)∥2dt = −ṙ(t)e−r(t)|w(t)|2dt−

− νe−r(t)∥w(t)∥2dt− 2e−r(t)⟨B(v(t))−B(u(t)),w(t)⟩ dt ≤ 0.

Hence, integrating in t, we deduce (3.27), with probability 1.
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Notice that a solution u of the stochastic Navier-Stokes equation (3.3) in the
space L2(Ω;L∞(0, T ;H) ∩ L2(0, T ;V)) actually belongs to a better space, namely
L2(Ω;C0(0, T ;H)∩L4(O×(0, T ))), with O ⊂ R2. Thus in 2-D, the uniqueness holds
in the space L2(Ω;L2(0, T ;V)). Clearly, this also applies to the finite-dimensional
approximation (3.12) in the space L2(Ω;L2(0, T ;Hn)), but it is not needed there
since the coefficients are locally Lipschitz in Hn. We also note that an argument
similar to the above was used in Schmalfuss [20] for the uniqueness of solutions with
multiplicative noise.

Let r(t, ω) be the integral on [0, t] of an adapted, non negative and integrable
stochastic process ṙ(t, ω). It is clear that for any (adapted process) solution u of the
stochastic Navier-Stokes equation (3.3) such that

u ∈ L2(Ω;L∞(0, T ;H) ∩ L2(0, T ;V)), (3.28)

the new process ū := ue−r satisfies
d(ū(t),v)+⟨Aū(t) + e−r(t)B(ū(t)) + ṙ(t)ū(t),v⟩ dt =

= (e−r(t)f(t),v) dt+
∑
k

(e−r(t)gk(t),v) dwk(t),
(3.29)

for any function v in V∩L∞(O). Conversely, if ū(t) is any (adapted process) solution
of (3.29), such that u := ūer satisfies (3.28), then u is indeed a solution of the
stochastic Navier-Stokes equation (3.3).

Regarding the energy equality, we remark that for a given adapted process
u(x, t, ω) in L2(Ω;L∞(0, T ;H) ∩ L2(0, T ;V)) satisfying

d(u(t),v) = ⟨h(t),v⟩ dt+ (g(t),v) dw(t), (3.30)

for any function v in V and some h in L2(0, T ;V′) and g in L2(0, T ; ℓ2(H)), we
can find a version of u (still denoted by u) in the space L2(Ω;C0(0, T ;H)), and the
energy equality

d|u(t)|2 =
[
2⟨h(t),u(t)⟩+ Tr(g∗g(t)

]
dt+ 2(g(t),u(t)) dw(t) (3.31)

holds, for instance see Gyongy and Krylov [11]. In our context, any solution of the
stochastic Navier-Stokes equation (3.3) satisfying (3.28) has a continuous version,
i.e., in the space L2(Ω, C0([0, T ],H)) such that the energy equality

d|u(t)|2 + 2ν |∇u(t)|2dt =

= Tr(g∗g(t)dt+ 2 (f(t),u(t)) dt+ 2
∑
k

(gk(t),u(t)) dwk(t),
(3.32)

i.e., (3.7), holds
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Proposition 3.3 (2-D existence). Let f , g and u0 be such that

f ∈ Lp(0, T ;V′), g ∈ Lp(0, T ; ℓ2(H)), u0 ∈ H, (3.33)

for some p ≥ 4. Then there exists an adapted process u(t, x, ω) with the regularity

u ∈ Lp(Ω;C0(0, T ;H)) ∩ L2(Ω;L2(0, T ;V)) ∩ L4(O×(0, T )×Ω) (3.34)

and satisfying (3.3), (3.4).

Proof. Indeed, denoting by F (u) the operator νAu+B(u)− f we have

dun(t) + F (un(t))dt = gdw(t), in H′
n,

and based on the a priori estimates (3.23) we can extract a subsequence such that

un −→ u weakly-star in Lp(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V))
F (un) −→ F0 weakly in L2(Ω;L2(0, T ;V′)),

where u has the Itô differential

du(t) + F0(t)dt = g(t)dw(t),

in L2(Ω;L2(0, T ;V′)), and the energy equality holds, i.e.,

d|u(t)|2 + 2⟨F0(t),u(t)⟩dt = Tr(g∗g(t))dt+ 2(g(t),u(t))dw(t).

Notice that we also have |un(0)−u(0)| goes to 0 in L2(Ω) and that un converges to u
weakly-star in the Banach space Lp(Ω;C0(0, T ;H)) so that t 7→ u(t) is a continuous
function from [0, T ] into H with probability 1.

Now, for any adapted process v(t, x, ω) in L∞((0, T ) × Ω;Hm), with m ≤ n we
define

r(t, ω) :=
32

ν3

∫ t

0

∥v(s, ·, ω)∥4
L4(O)

ds

as an adapted, continuous (and bounded in ω) real valued process in [0, T ]. From
the energy equality

E
{
de−r(t)|un(t)|2 + e−r(t)⟨2F (un(t)) + ṙ(t)un(t),un(t)⟩dt

}
=

= E
{
e−r(t)Tr(gn

∗gn(t)dt
}
,

the fact that the initial condition un(0) converges in L2, and the lower-semi-continuity
of the L2-norm, we deduce

lim inf
n

E
{
−
∫ T

0

e−r(t)⟨2F (un(t)) + ṙ(t)un(t),un(t)⟩dt
}
=

= lim inf
n

E
{
e−r(T )|un(T )|2 − |un(0)|2 −

∫ T

0

e−r(t)Tr(gn
∗gn(t))dt

}
≥

≥ E
{
e−r(T )|u(T )|2 − |u(0)|2 −

∫ T

0

e−r(t)Tr(g∗g(t))dt
}
=

= E
{
−
∫ T

0

e−r(t)⟨2F0(t) + ṙ(t)u(t),u(t)⟩dt
}
.
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Next, in view of Lemma 2.4 (monotonicity on L4–balls) we have

E
{∫ T

0

e−r(t)⟨2F (v(t)) + ṙ(t)v(t),v(t)− un(t)⟩dt
}
≥

≥ E
{∫ T

0

e−r(t)⟨2F (un(t)) + ṙ(t)un(t),v(t)− un(t)⟩dt
}
,

and taking limit in n we obtain
E
{∫ T

0

e−r(t)⟨2F (v(t)) + ṙ(t)v(t),v(t)− u(t)⟩dt
}
≥

≥ E
{∫ T

0

e−r(t)⟨2F0(t) + ṙ(t)u(t),v(t)− u(t)⟩dt
}
.

(3.35)

Since this last inequality holds for every v in L∞((0, T ) × Ω;Hm) and any m,
a density argument show that (3.35) remains true for any adapted process v in
L4(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V)) such that

E{
∫ T

0

∥v(t, ·, ω)∥4
L4(O)

|v(t, ·, ω)− u(t, ·, ω)|2dt} <∞.

In 2-D, we can control the L4(O × (0, T ))–norm with the norms in the spaces
L∞(0, T ;H) and L2(0, T ;V), cf. (2.2) of Lemma 2.1, so that the process u sat-
isfies the above condition. In 3-D, we may compare (2.2) with estimate (2.5), where
only the L3(0, T ;L4(O)) can be bounded.

Hence, first we take v := u + λw, with λ > 0 and w an adapted process in
L4(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V)). Next we divide by λ and finally we let λ
vanish in (3.35) to deduce

E
{∫ T

0

e−r(t)⟨F (u(t))− F0(t),w(t)⟩dt
}
≥ 0,

and because w is arbitrary, we conclude that F0(t) = F (u(t)). This proves that u
is a solution of the stochastic Navier-Stokes equation (3.3).

The technique to identify the limiting drift F0(t) in (3.35) is a variant of the
classic argument used for the monotone operator, cf. Minty [16], Pardoux [18].
The semigroup technique, as in Da Prato and Zabczyk [8, Chapter 15], provides a
pathwise (or mild) solution by means of a stochastic convolution and the change of
unknown function u := ũ+WA, where

WA(t) :=
∑
k

∫ t

0

exp[(t− s)A]gk(s)dwk(s). (3.36)
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The (deterministic, with random data) mild equation is as follows:

∂tũ+ Aũ+B(ũ+WA) = f in L2(0, T ;H) ∩ L4(O×(0, T )), (3.37)

with an initial condition in H. The technique of Proposition 3.3 can be used with
the pathwise equation (3.37) to give another proof of the existence of a pathwise
(mild) solution.

When the domain O in R2 is unbounded, we need to use the norm

∥v∥V :=

(∫
O
|v|2 + |∇v|2dx

)1/2

, (3.38)

instead of (1.6) for the space V, so that it will be continuously embedded in H. In
this case, the a priori estimates (3.17) in Proposition 3.1 and (3.23) remains the
same, namely

E
{

sup
0≤t≤T

|un(t)|pe−εt +
p

2
ν

∫ T

0

|∇un(t)|2|un(t)|p−2e−εtdt
}
≤

≤ |u(0)|p + Cε,p,T,ν

∫ T

0

[
∥f(t)∥p

V′
+ Tr(g∗g(t))p/2

]
e−εtdt,

(3.39)

for some constant Cε,p,T,ν depending only on ε > 0, 1 ≤ p < ∞, T > 0 and
ν > 0. Here we need ε > 0 to compensate the seminorm |∇ · | with the norm
(3.38) in the space V. Since we can still control the L4(O)–norm in term of L2(O)–
norms, cf estimate (2.2) in Lemma 2.1, the existence and uniqueness results hold for
unbounded 2-D domains. On the contrary, in 3-D, estimates in the spaces L2(0, T,V)
and L∞(0, T,H) are not enough to ensure a bound in L4(Ω× (0, T ))) and the above
results are not longer valid.

We may use as initial time τ a stopping time (random variable) with respect to
the natural filtration (Ft, t ≥ 0) (right-continuous and completed) associated with
the Wiener process, and initial value u0 = uτ (x, ω) which is an Fτ–measurable ran-
dom variable. Similarly, we may allow random forcing terms f(x, t, ω) and g(x, t, ω)
or even having a smooth dependency on the solution u. For the random initial con-
ditions we have to write the stochastic Navier-Stokes equation (3.3), (3.4) in its
integral (variational) form, namely

(u(θ),v) +

∫ θ

τ

⟨Au(t) +B(u(t)),v⟩ dt = (uτ ,v)+

+

∫ θ

τ

(f(t),v) dt+
∑
k

∫ θ

τ

(gk(t),v) dwk(t),

(3.40)

for any stopping time τ ≤ θ ≤ T and any v in the space V. Actually, by a density
argument we may allow any adapted process v(t) in L2(Ω;L2(τ, T ;V)) ∩ L4(O ×
(τ, T ) × Ω). We state the following result valid for smooth domains O in R2 not
necessarily bounded.
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Proposition 3.4 (2-D). Let τ and uτ be a stopping time with respect to (Ft, t ≥ 0)
and a Fτ–measurable random variable such that

0 ≤ τ ≤ T, uτ ∈ L4(Ω;H). (3.41)

Suppose f(x, t, ω) and g(x, t, ω) are adapted processes such that

f ∈ L4((τ, T )× Ω;V′), g ∈ L4((τ, T )× Ω; ℓ2(H)). (3.42)

Then there exists an adapted process u(t, x, ω) with the regularity

u ∈ L4(Ω;C0(τ, T ;H)) ∩ L2((τ, T )× Ω;V)) (3.43)

and satisfying (3.40) and the following a priori bound holds for p ≥ 2,
E
{

sup
τ≤t≤T

|u(t)|pe−εt +
p

2
ν

∫ T

τ

|∇u(t)|2|u(t)|p−2e−εtdt
}
≤

≤ E
{
|u(τ)|p + Cε,T,ν

∫ T

τ

[
∥f(t)∥p

V′
+ Tr(g∗g(t))p/2

]
e−εtdt

}
,

(3.44)

for some constant Cε,T,ν depending only on ε > 0, T > 0 and ν > 0. Moreover, if
ū(t, x, ω) is the solution with another initial data, we have

|u(θ)− ū(θ)|2 exp
[
− 32

ν3

∫ θ

τ

∥u(t)∥4
L4(O)

dt
]
≤ |uτ − ū(τ)|2, (3.45)

with probability 1, for any τ ≤ θ ≤ T.

Proof. This is a consequence of previous propositions and the above comments.
Notice that we set u(t) := uτ for any 0 ≤ t ≤ τ.

This proposition is the stochastic analogous to the classic results in Lions and
Prodi [14].

Notice that we have

∥u(t)∥4
L4(O)

≤ 2|u(t)|2 |∇u(t)|2, (3.46)

so that a priori estimate (3.44) contains the regularity conditions

u ∈ L4(O × (0, T )× Ω). (3.47)

Moreover, the (linear) energy equality (3.7) and estimate
E
{
|u(θ)|2

}
e−εθ + νE

{∫ θ

τ

∥u(t)∥2e−εtdt
}
≤ E

{
|uτ |2e−ετ

}
+

+ E
{∫ θ

τ

[ 1

min{ν, ε}
∥f(t)∥2

V′
+ Tr(g∗g(t))

]
e−εtdt

} (3.48)
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hold. Furthermore, if the domain O is bounded or forcing term f(t) is such that for
some constant C = Cf we have

E
{∫ T

0

sup
|∇v|≤1

|⟨f(t),v⟩|4dt
}
≤ Cf , (3.49)

then we may replace the min{ν, ε} with ν in estimate (3.48) and set ε = 0.
For additive noise, a key point used in Bensoussan and Temam [4] and Flandoli

and Gatarek [10] is the comparison of the stochastic Navier-Stokes solution (3.3)
with the solution of the linear equation

dv(t) + Av(t)dt =
∑
k

gk(t)dwk(t),

which yields the deterministic Navier-Stokes type equation

ẇ + Aw +B(w + v) = f,

for the unknown w = u− v, and therefore, the existence of a strong solution can be
deduced. However, our technique can also be used with multiplicative noise. Indeed
if the noise takes the form g(t, u)dw(t) =

∑
k gk(t, x, u)dwk(t), where g(t, u) is a

continuous operator from V into L2(0, T ; ℓ2(H)), we can modify the calculations in
the above propositions under the assumption: there is a λ > 0 such that for some
0 < ν ′ < ν we have∑

k

|gk(t, u)− gk(t, v)|2H + λ|u− v|2H ≤ ν ′|∇u−∇v|2H, ∀u, v ∈ V.

Thus the existence and uniqueness of a strong solution holds even for multiplicative
noise.

Remark 3.5 (V –regularity). It is clear that if the adapted processes f and g satisfy

f ∈ L2((0, T )× Ω;H), g ∈ L2((0, T )× Ω; ℓ2(V)) (3.50)

then the arguments of Remark 2.7 show that the solution of the 2-D stochastic
Navier-Stokes equation (3.3) satisfies

u ∈ C0(0, T ;V) ∩ L2(0, T ;H2(O,R2)), (3.51)

with probability 1, provided the initial data uτ is in V. More details are needed to
obtain an estimate similar to (3.44). Notice that the above assumption (3.50) on the
Hilbert-Schmidt operator g(t) means that

∑
k ∥gk(t)∥2 is integrable in (0, T ) × Ω.

Hence, if O is bounded, we can follow the arguments in Da Prato and Zabczyk [8,
Chapter 15] to deduce the existence of an invariant measure. �
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Let us consider the space C0
p(H) of real continuous functions h on H with a

p–growth, 0 ≤ p <∞, i.e.,

|h(v)| ≤ Ch

(
1 + |v|p

)
, ∀v ∈ H. (3.52)

When p = 0, we have all continuous and bounded real functions on the Hilbert space
H. We define the (linear) Navier-Stokes semigroup (Φ(t, s), t ≥ s ≥ 0) as follows

Φ(t, s) : C0
p(H) −→ C0

p(H), Φ(t, s)h(v) := E{h(u(t, s;v))}, (3.53)

where u(t, s;v) denotes the solution u(x, t, ω) of the stochastic Navier-Stokes equa-
tion (3.3) with initial (deterministic) value u(x, s, ω) = v(x). We have

Proposition 3.6 (Markov-Feller). Suppose we are given two adapted processes
f(x, t, ω) and g(x, t, ω) satisfying condition (3.42) of the previous proposition. Then
(Φ(t, s), t ≥ s ≥ 0) is a Markov-Feller semigroup on the space C0

p(H), for any
0 ≤ p < 6.

Proof. The uniqueness of solutions yields the semigroup property. Next, by defini-
tion we have that h(v) ≥ 0 for all v implies Φ(t, s)h(v) ≥ 0 for all v. Thus we need
only to check the Feller property and the pointwise convergence at t = s, i.e., for
any function h in C0

p(H){
vn → v in H implies Φ(t, s)h(vn) → Φ(t, s)h(v),

tn → s in R+ implies Φ(tn, s)h(v) → h(v),
(3.54)

for any v in H. Indeed, to show (3.54) we notice that from estimate (3.45) and
the continuity of h we deduce that h(vn) converges to h(v) in R with probability
1, and because the solution u(t, s;v) belongs to L2(Ω;C0(s, T ;H)) we have that
h(u(tn, s;v)) converges to h(v) in R with probability 1. Hence, the a priori estimate
(3.44) lets us take the limits inside the integral for any p < 4.

It is clear that if we need to work in a space C0
p(H) for some p ≥ 4 we need to

require conditions (3.41) and (3.42) for some q > p instead of just 4.
A realization in the canonical space C0(0, T ;H) of the Markov-Feller process

associated with the above semigroup is given by the random field u(t, s;v), t > s >
0, v in H, i.e., the solution of stochastic PDE (3.40) with initial value τ = s and
vτ = v.
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