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Abstract

This article discusses the stochastic actor-oriented model for analyzing panel

data of networks. The model is defined as a continuous-time Markov chain,

observed at two or more discrete time moments. It can be regarded as a gen-

eralized linear model with a large amount of missing data. Several estimation

methods are discussed. After presenting the model for evolution of networks,

attention is given to coevolution models. These use the same approach of a

continuous-time Markov chain observed at a small number of time points,

but now with an extended state space. The state space can be, for example, the

combination of a network and nodal variables, or a combination of several

networks. This leads to models for the dynamics of multivariate networks.

The article emphasizes the approach to modeling and algorithmic issues for

estimation; some attention is given to comparison with other models.
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1. INTRODUCTION

Social phenomena are increasingly viewed from a network perspective, and social networks accord-

ingly receive more and more attention in various domains of science. Graphs and their dynamics

have been studied in probability theory for more than half a century (Erdős & Rényi 1960, Bollobas̀

1985). Network analysis has long been an interdisciplinary empirical field rooted in sociology, an-

thropology, discrete mathematics, and visualization; one significant date in its early development

was the creation of its own journal in 1978 (Freeman 2004). From around the turn of the millen-

nium, there has been growing interest in networks from physicists and computer scientists also

(Watts & Strogatz 1998). This widened interdisciplinary field became further established in 2013

with the creation of the journal Network Science (Brandes et al. 2013).

Statistical modeling of networks has played an important role in these developments, and has

grown in scope as networks have received increasing scientific attention (Goldenberg et al. 2009,

Kolaczyk 2009). This review presents a statistical methodology for the analysis of longitudinal

network data collected in a panel design, in which repeated observations are available of a network

on a constant node set. Development of this model was inspired by applications in sociology and

other social sciences (e.g., Snijders & Doreian 2010, 2012), and therefore the terminology will

have a social science flavor. For example, the nodes of the network will be referred to as social

actors—which could be humans, but also organizations, et cetera.

2. MODEL DEFINITION

We assume that repeated observations x(t1), . . . , x(tM ) on a directed graph (digraph), referred to

as a network, are available for some M ≥ 2. The node set N = {1, . . . , n} is constant, whereas the

ties are variable. The network x is identified with its n ×n adjacency matrix x = (xi j ), of which the

elements denote whether there is a tie from node i to node j (xi j = 1) or not (xi j = 0). Self-ties are

not allowed, so that the diagonal is structurally zero. Random variables are denoted by capitals.

Various models have been proposed for network dynamics, most of them being Markov pro-

cesses of some kind. The basic heuristic idea of actor-oriented models (Snijders 2001) is that the

nodes of the graph are social actors having the potential to change their outgoing ties, and the

observed network dynamics is the result of the sequences of choices by these actors. The digraph

develops as a continuous-time Markov process X (t) even though it is observed only at M discrete

time points. The stochastic process X (t) is modeled as being right-continuous. The constraints are

that ties may change only one by one, and actors do not coordinate their changes of ties. Thus, at

any given moment, at most one tie variable Xi j can be changed. This constraint was proposed by

Holland & Leinhardt (1977), and it has the virtue of splitting the change process into its smallest

possible constituents, reducing the model definition to the specification of rates of creating and

terminating single ties.

The actor-oriented model is specified as follows; further discussion and motivation are given

by Snijders (2001).

2.1. Opportunities for Change

Each actor i gets, at stochastically determined moments, the opportunity to change one of the

outgoing tie variables Xi j (t) ( j ∈ N , j �= i ). Because the process is assumed to be Markovian,

waiting times between opportunities have exponential distributions. Each of the actors i has a

rate function λi (α, x) which defines how quickly this actor gets an opportunity to change a tie

variable, when the current value of the digraph is x, where α is a parameter. At any time point t
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with X (t) = x, the waiting time until the next opportunity for change by any actor is exponentially

distributed with parameter

λ(α, x) =
∑

i

λi (α, x). (1)

Given that an opportunity for change occurs, the probability that it is actor i who gets the oppor-

tunity is given by

πi (α, x) =
λi (α, x)

λ(α, x)
. (2)

The rate functions can be constant between observation moments, or they can depend on functions

uik(x), which may be covariates or positional characteristics of the actors, such as outdegrees
∑

j xi j . The time points of observation are arbitrary, not necessarily equidistant, and observation

is assumed not to affect the random process. Arbitrary time spans between observations can be

represented by multiplicative parameters ρm. Actor-dependent rate functions can be modeled, for

example, by an exponential link function,

λi (ρ, α, x) = ρm exp

(

∑

k

αkuik(x)

)

, (3)

valid between the moments of observing x(tm) and x(tm+1).

2.2. Options for Change

When actor i gets the opportunity to make a change, this actor has a permitted set Ai (x0) of values

to which the digraph may be changed, where x0 is the current value of the digraph. The idea that

actors may change their outgoing ties, but only one tie variable at the time, is reflected by

Ai (x
0) ⊂ {x0} ∪ Ar

i (x
0), (4a)

where Ar
i (x

0) is the set of adjacency matrices differing from x in exactly one element,

Ar
i (x

0) = {x | xi j = 1 − x0
i j for one j �= i , and x j ′k = x0

j ′k for all other ( j ′, k)}. (4b)

Including x0 in Ai (x0) can be important for expressing the property that actors who are satisfied

with the current network will prefer to keep it unchanged. Therefore, the usual model is Ai (x0) =

{x0} ∪ Ar
i (x

0).

It is assumed that the network dynamics is driven by a so-called objective function fi (β, x0, x)

that can be interpreted as the relative attractiveness for actor i of moving from the network

represented by x0 to the network x, where β is a parameter. The conditional probability that the

next digraph is x, given that the current digraph is x0 and actor i gets the opportunity to make a

change, is assumed to be given by the multinomial model

pi (β, x0, x) =

⎧

⎨

⎩

exp( fi (β, x0, x))
∑

x̃ exp( fi (β, x0, x̃))
x ∈ Ai (x0)

0 x �∈ Ai (x0),

(5)

where the summation extends over x̃ ∈ Ai (x0). This formula can be motivated by a random utility

argument as used in econometrics (e.g., Maddala 1983), where it is assumed that the actor maxi-

mizes fi (β, x0, x) plus a random disturbance with a standard Gumbel distribution. Expressions 4a,b

imply that instead of pi (β, x0, x) we can also write pi j (β, x0) where the correspondence between

x and j is defined as follows: If x �= x0, j is the unique element of N for which xi j �= x0
i j ; the

arbitrary definition is made that j = i if x = x0. This less redundant notation will be used in the
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following. Thus, for j �= i , pi j (β, x0) is the probability that, under the condition that actor i has the

opportunity to make a change and the current digraph is x0, the change will be to xi j = 1−x0
i j with

the rest unchanged, and pi i (β, x0) is the probability that, under the same condition, the digraph

will not be changed.

The most usual models are based on objective functions that depend on x only. This has the

possible interpretation that actors wish to maximize a function fi (β, x) (plus a random residual)

that itself is independent of the previous state, although the previous state does determine the

set of possible next states. The greater generality of Equation 5, where the objective function can

depend also on the previous state x0, makes it possible to model path dependencies, or hysteresis,

where the loss suffered from withdrawing a given tie differs from the gain from creating this tie,

even if the rest of the network has remained unchanged. When the objective function does not

depend on the previous state, it is also called an evaluation function.

Various ingredients for specifying the objective function were proposed by Snijders (2001). A

linear form is convenient,

fi (β, x0, x) =

L
∑

k=1

βk s ik(x0, x), (6)

where the functions s ik(x0, x), called effects, are determined by subject-matter knowledge, available

scientific theory, and formulation of research questions. The effects should represent essential

aspects of the network structure, assessed from the point of view of actor i , such as

s ik(x0, x) =
∑

j

xi j (outdegree), (7)

∑

j

xi j x j i (reciprocated ties), (8)

∑

j ,k

xi j x j k xik (transitive triplets), and (9)

∑

j

x0
i j x0

j i xi j x j i (persistent reciprocity). (10)

They can also depend on covariates—such as resources and preferences of the actors, or costs

of exchange between pairs of actors—or combinations of network structure and covariates. The

reader is directed to Snijders et al. (2010b) for a basic list of effects and Ripley et al. (2016) for an

extensive list.

2.3. Intensity Matrix and Time Homogeneity

The model description given above defines X (t) as a continuous-time Markov process with a

Q-matrix or intensity matrix (e.g., Norris 1997) for x �= x0 given by

q (x0, x) =

{

λi (α, x0) pi (β, x0, x) if x ∈ Ai (x0), i ∈ N

0 if x �∈ ∪iAi (x0).
(11)

The assumptions do not imply that the distribution of X (t) is stationary. The transition distri-

bution, however, is time-homogeneous, except for time dependence reflected by time-varying

components in the functions s ik(x0, x), and except for multiplicative constants as explained in the

next paragraph.
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The time points t1, . . . , tM of the observations can be used for marking time-heterogeneity of

the transition distribution. For example, covariates may be included with values that are allowed

to change at the observation moments. A special role is played here by the time durations tm − tm−1

between successive observations. Standard theory for continuous-time Markov chains (e.g., Norris

1997) shows that the matrix of transition probabilities from X (tm) to X (tm−1) is e (tm−tm−1)Q , where

Q is the matrix with elements as given in Equation 11. Thus, changing the duration tm − tm−1 can

be compensated for by multiplication of the rate function λi (α, x) by a constant. The connection

between an externally defined real-valued time variable tm and the rapidity of network change is

tenuous at best, and the parameter ρm in Equation 3 absorbs the effects of the durations tm − tm−1.

This makes the numerical values tm unimportant.

2.4. Simulation Algorithm

The following steps can be used for simulating the process for the time period from tm to tm+1.

1. Set t = tm and x = x(tm).

2. Generate �T according to the exponential distribution with parameter λ(α, x).

3. If t + �T > tm+1, set t = tm+1 and stop.

4. Randomly select i ∈ {1, . . . , n} using probabilities

λi (α, x)

λ(α, x)
.

5. Randomly select x′ ∈ Ai (x) using probabilities pi (β, x, x′) (see Equation 5).

6. Set t = t + �T .

7. Set x = x′.

8. Return to step 2.

If the continuous-time stochastic process X (t) were observed for t1 ≤ t ≤ tM including all the

time increments �T generated in the above simulation steps, the model would be a generalized

linear model with two parts, Equations 3 and 6. Given that the stochastic process X (t) is observed

only for t = t1, t2, . . . , tM , the model can be regarded as a generalized linear model with a large

amount of missing data.

3. ESTIMATION

Exact calculations for this model are infeasible, except for uninterestingly simple special cases.

Because the model can be simulated in a straightforward manner, it lends itself to simulation-

based estimation procedures.

3.1. Method of Moments

The estimation method that is used most in practice is the Method of Moments procedure proposed

by Snijders (2001). Denote the estimated parameter by θ = (ρ, α, β). The statistics used for

estimation are heuristically derived as follows. For each element of θ there is a one-dimensional

statistic that is sensitive to this parameter. For ρm, influencing the total amount of change, the

statistic used is the Hamming distance,

D(X (tm+1), X (tm)) =
∑

i , j

| X i j (tm + 1) − X i j (tm) | . (12)
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For parameter αk, determining how strongly the rate of change for actor i is influenced by uik(X ),

a sensitive statistic is

Ak(X (tm+1), X (tm)) =
∑

i , j

uik(X (tm)) | X i j (tm + 1) − X i j (tm) | . (13)

For linear predictors (Equation 6) where s ik(x0, x) does not depend on x0, higher values of βk will

tend to lead to networks x for which the value of s ik(x) is higher, for all i . Therefore, for estimating

βk, sensitive statistics are given by

sk(X (tm)) =
∑

i

s ik(X (tm)). (14)

Combining these statistics and employing the Markov chain assumption for the observed data

x(t1), . . . , x(tM ), the estimating equations are

D(x(tm+1), x(tm)) = Eθ {D(X (tm+1), x(tm)) | X (tm) = x(tm)}

(m = 1, . . . , M − 1),
(15a)

M −1
∑

m=1

Ak(x(tm+1), x(tm)) =

M −1
∑

m=1

Eθ {Ak(X (tm+1), x(tm)) | X (tm) = x(tm)}

(k = 1, . . . , Kα),

(15b)

M −1
∑

m=1

sk(x(tm+1)) =

M −1
∑

m=1

Eθ {sk(X (tm+1)) | X (tm) = x(tm)}

(k = 1, . . . , Kβ ),

(15c)

where Kα and Kβ are the number of elements of α and β.

To find the solution of the set of Equations 15a–c, stochastic optimization can be used. Snijders

(2001) uses a multivariate version of the Robbins-Monro algorithm (Robbins & Monro 1951,

Ruppert 1991, Kushner & Yin 2003) with the improvements proposed by Polyak (1990) and

Ruppert (1988). The double averaging technique of Bather (1989) and Schwabe & Walk (1996)

turns out to give further improvement. The R package RSiena (Ripley et al. 2016, Snijders 2016a)

implements this in a three-phase algorithm, where the first phase is for roughly determining

the sensitivity of expected statistics to parameters, the second phase conducts Robbins-Monro

parameter updates based on simulations of the network dynamics for the current parameter value,

and the third is for determining how well the set of Equations 15a–c is indeed approximated, and

for determining standard errors. For the latter purpose the derivatives of the expected values with

respect to the parameters are needed, and these can be estimated by the score function method

(Rubinstein 1986, Schweinberger & Snijders 2007); this is elaborated on below. This algorithm

is quite robust, although rather time consuming.

3.2. Generalized Method of Moments

The statistics (Equation 14) used for the Method of Moments depend only on the networks

observed at the end of each period (tm−1, tm]. It might be possible to obtain greater efficiency by

utilizing more statistics, for instance, the function of the networks observed at both the beginning

and the end of each period. For example, for estimating the parameter βk for the reciprocity effect
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sk(x) =
∑

j xi j x j i , Equation 14 leads to

∑

i , j

Xi j (tm) X j i (tm),

a measure for the amount of reciprocity observed at tm. Another relevant statistic would be
∑

i , j

(1 − Xi j (tm−1))X j i (tm−1) Xi j (tm) X j i (tm),

measuring the amount of observed reciprocation from tm−1 to tm. Utilizing more statistics than

parameters is possible with the generalized Method of Moments (Burguete et al. 1982, Hansen

1982). The principle is, for a q-dimensional statistic S with an outcome denoted s and a p-

dimensional parameter θ with q > p , to estimate θ such that

(s − Eθ S)′W (s − Eθ S) (16)

is minimal as a function of θ . When W−1 = covθ (S) this estimator will be at least as efficient as

the Method of Moments estimator for any subvector of S. The further elaboration and numerical

implementation of a simulated generalized Method of Moments for this model are presented by

Amati et al. (2015).

3.3. Likelihood-Based Methods

Bayesian and frequentist likelihood-based estimators were developed by Koskinen & Snijders

(2007) and Snijders et al. (2010a). These estimators use data augmentation (Tanner & Wong 1987).

The procedure is explained here only for the case of constant rate functions, that is, λi (α, x) ≡ ρm

between tm and tm+1.

The observed data x(t1), . . . , x(tM ) are augmented by the chain of all choosing actors i and

intermediate states x′ in the simulation algorithm; the time delays �T can be integrated out.

The intermediate states are the results of the choices by the actors described above; recall that

the outcome of the choice may be that the state stays the same. The formulae are given for

M = 2 waves; generalization to more waves is obtained by concatenating the chains from wave

to wave. Denote the sequence of subsequent intermediate states, resulting from these choices, by

x1 = x(t1), x2, . . . , xR = x(t2), the actor making the choice for xh by ih , and the time delay between

xh and xh+1 by �Th . Then R is determined by the requirement

R−1
∑

h=1

�Th < t2 − t1 ≤

R
∑

h=1

�Th . (17)

The model assumptions imply that

P{Xh = xh , ih = i | Xh−1 = xh−1} =
exp

(
∑

k βks ik(xh)
)

n
∑

x∈Ai (xh−1) exp
(
∑

k βks ik(x)
) , (18)

provided that the sequences (ih) and (xh) are compatible in the sense that for each h the difference

(if any) between xh−1 and xh is in row ih of the adjacency matrix. Further, the continuous Markov

chain assumption implies that the number R − 1 of choices made between t1 and t2 has a Poisson

distribution

P

{

R−1
∑

h=1

�Th < t2 − t1 ≤

R
∑

h=1

�Th

}

= e−nρ(t2−t1) (nρ(t2 − t1))R−1

(R − 1)!
. (19)
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Using the Markov assumption, the likelihood of the augmented data therefore is given by

P{R = r , X2 = x2, . . . , XR−1 = xr−1, I2 = i2, . . . , IR = ir | X (t1) = x1, X (t2) = xR}

= exp(−nρ(t2 − t1))
(ρ(t2 − t1))r−1

(r − 1)!
×

r
∏

h=2

exp(
∑

k βks ih k(xh))
∑

x∈Ai (xh−1) exp(
∑

k βks ih k(x))

(20)

provided that sequences (ih) and (xh) are compatible. In the data augmentation method, be it

frequentist or Bayesian, the crucial step is to obtain a sample from the conditional distribution

of the augmented data, here X2, . . . , XR−1, I2, . . . , IR, given the observed data, here (x(t1), x(t2)).

This is done in Snijders et al. (2010a) by a Metropolis-Hastings scheme consisting of a mix of the

following proposals. The proposals are formulated in terms of toggles, because effectively each

change in the network dynamics is a change of some Xi j to (1 − Xi j ), called a toggle of (i , j ).

1. Paired deletions: Two toggles of the same element (i , j ) are randomly selected and both

deleted

2. Paired insertions: For a random pair (i , j ) (i �= j ), two toggles are inserted at random

positions in the chain

3. Single insertions: For a random node i , a choice by i resulting in a nonchange is inserted at

a random position

4. Single deletions: A random choice resulting in a nonchange is deleted from the chain

5. Permutations: A section of the chain is randomly permuted

This collection of proposals leads to a communicating random process on the space of all possible

chains connecting x(t1) to x(t2). Using acceptance ratios determined by the proposal probabilities

and the likelihood (Equation 20), the Metropolis-Hastings procedure converges to the conditional

distribution given the observations.

This is used to estimate the posterior distribution in a Bayesian approach by Koskinen &

Snijders (2007). To find the maximum likelihood (ML) estimate, Snijders et al. (2010a) employ the

missing data principle of Orchard & Woodbury (1972) and Louis (1982). Denoting the parameter

by θ , observed data by X , and augmented data by V, let the observed data score function be

JX (θ ; x) and the total data score function be JX V (θ ; x, v). Then

Eθ {JX V (θ ; x, V ) | X = x} = JX (θ ; x), (21)

so that the likelihood equation can be expressed as

Eθ {JX V (θ ; x, V ) | X = x} = 0. (22)

Snijders et al. (2010a) presented a method for solving this equation by a Robbins-Monro stochastic

approximation procedure, similar to the one sketched above for the Method of Moments.

3.3.1. Data augmentation and the score function. For the calculation of standard errors by

the delta method, derivatives of the type

∂ Eθ S(X )

∂θ

are needed for various statistics S(X ) (see Schweinberger & Snijders 2007). Under regularity

conditions satisfied here, this is equal to

∂ Eθ S(X )

∂θ
= EθJX (θ ; X ) S(X ) = EθJX V (θ ; X , V ) S(X ) (23)

for any data augmentation V . This is a very convenient equation, because in our case X is easily

simulated but JX (θ ; X ) is incalculable; this equation allows us to choose a data augmentation by
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unobserved statistics V that is computed anyway for the simulation of V and for which

JX V (θ ; X , V ) is easy to calculate.

This is used for the standard errors of the Method of Moments estimates (regular as well

as generalized), with the data augmentation being the i and x′ of each step of the simulation

algorithm for the process described in Section 2.4. These are the same statistics as in the data

augmentation for the ML estimation, but computed in a different process. This is elaborated on

by Schweinberger & Snijders (2007), who also discuss the fact that the derivatives can also be

approximated by ratios of finite differences, but this has various disadvantages.

4. COEVOLUTION MODELS

The principle of a continuous-time discrete-state Markov chain can be extended from a changing

network to a more complicated outcome space consisting of the Cartesian product of several

spaces.

4.1. Networks and Behavior

The interest in networks is based in large part on their important consequences for nodal vari-

ables of actors—behavioral tendencies, attitudes, performance, et cetera. These will often not

only be influenced by networks, but also themselves exert influence on networks. This leads to

scientific interest in the interdependent dynamics of networks and actor variables, for example,

friendships and health-related lifestyle behaviors of adolescents, or collaboration and performance

of organizations.

Let X (t) be a changing network (directed graph) on n nodes, as above, and let Z(t) =

(Z1(t), . . . , Zn(t)) be a vector of nodal variables for the same nodes. To keep the treatment in

the discrete realm, assume that Zi (t) is an ordinal discrete variable with values 1, 2, . . . , K for some

integer K ≥ 2. The model presented above can then be duplicated for these two as joint dependent

variables: For X and also for Z, there are rate functions λX
i and λZ

i , and objective functions f X
i

and f Z
i . Parameters in f X

i are denoted βX , and those in f Z
i are βZ. It is assumed that at any

moment t, not more than one variable Xi j (t) or Zi (t) can change, so that opportunities for change

are for either the network, X , or the behavior, Z. Network changes are modeled as above, except

that now the objective function f X can also depend on the current state of the behavior. Given

that actor i has an opportunity for change in behavior, for the current value zi (t) = z0 the options

for the next possible state are z0 − 1, z0, z0 + 1. The probabilities are

p Z
i (β, x, z0, z) =

⎧

⎪

⎨

⎪

⎩

exp( f Z
i (β, x, z0, z))

∑1
δ=−1 exp( f Z

i (β, x, z0, z0 + δ))
if z = z0 + δ; δ ∈ {−1, 0, 1}

0 otherwise.

(24)

If this would mean an excursion out of the permitted range {1, . . . , K }, z stays the same.

The network-and-behavior dynamics can be simulated from tm to tm+1 by the following steps.

1. Set t = tm, x = x(tm), z = z(tm).

2. Generate �T according to the exponential distribution with parameter

λ+ =
∑

i (λ
X
i (α, x, z) + λZ

i (α, x, z)).

3. If t + �T ≥ tm+1, set t = tm+1 and stop.

4. Select variable V ∈ {X , Z} with probabilities

P{V } =
∑

i λV
i (α, x, z)/λ+.
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5. Randomly select i ∈ {1, . . . , n} using probabilities

λV
i (α, x, z)

∑

i ′ λ
V
i ′ (α, x, z)

.

6. If V = X , randomly select x′ ∈ Ai (x) using probabilities pi (β, x, x′) (see Equation 5); set

x = x′.

If V = Z, randomly select z′ ∈ {z − 1, z, z + 1} using probabilities p Z
i (β, x, z, z′) (see

Equation 24); if 1 ≤ z′ ≤ K , set z = z′.
7. Set t = t + �T .
8. Return to step 2.

By letting the objective function f X
i for the network depend on the network x as well as the

behavior z, and doing the same for the objective function f Z
i for the behavior, a dynamic

interdependence between the network and the behavior can be modeled, so that the model

represents social selection (where network changes depend on network as well as behavior)

together with social influence (where behavior changes depend on behavior as well as network).

The possibilities for jointly analyzing social selection and social influence are discussed extensively

by Steglich et al. (2010).

Estimation of these models by the Method of Moments was discussed by Snijders et al. (2007).

We limit ourselves here to the case that the objective functions can be expressed without a depen-

dence on the previous state; the mentioned reference also treats the general case. The objective

function for the network then has the form

f X
i (x, z) =

∑

k

βX
k s X

ik(x, z) (25)

and the objective function for behavior

f Z
i (x, z) =

∑

k

βZ
k s Z

ik(x, z). (26)

Estimation by the Method of Moments works as explained above, but the statistics still have to be

specified. For the dependencies across the two variables, cross-lagged statistics are used, expressing

the causal arrow pointing from the earlier, explanatory variable to the later, dependent variable.

Define the functions

s X
k (x, z) =

∑

i

s X
ik(x, z)

and

s Z
k (x, z) =

∑

i

s Z
ik(x, z).

For parameters βX and βZ, respectively, the moment equations are

M −1
∑

m=1

Eθ {s
X
k (X (tm+1), z(tm)) | X (tm) = x(tm), Z(tm) = z(tm)}

=

M −1
∑

m=1

s X
k (x(tm+1), z(tm)) (k = 1, . . . , Kβ ), (27)

M −1
∑

m=1

Eθ {s
Z
k (x(tm), Z(tm+1)) | X (tm) = x(tm), Z(tm) = z(tm)}

=

M −1
∑

m=1

s Z
k (x(tm), z(tm+1)) (k = 1, . . . , Kβ ). (28)
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These estimators perform quite well, but improved performance is expected from the generalized

Method of Moments. This is the basis of current work, extending that of Amati et al. (2015).

An algorithm for maximum likelihood is also implemented in the R package RSiena and

explained by Snijders (2016a). The principles are the same as for the networks-only model, but

there are more details because the changes have more aspects.

4.2. Multivariate Networks

A quite similar approach can be used to model coevolution of several networks. Examples

are friendship and advice in task-oriented environments, or like and dislike. Multivariate

actor-oriented network models were proposed by Snijders et al. (2013). Each network is a de-

pendent variable with its own rate function, objective function, and parameter vector; the objec-

tive functions for each will depend on all networks to represent their dynamic interdependence.

Denote the networks by X1 = (X1i j ) and X2 = (X2i j ). Here the dependence has a multilevel as-

pect (see Snijders 2016b). We give here several dependencies at different levels with illustrative

components of the objective function for X2.

� The level of ties or dyads

– Direct entrainment:
∑

j x1i j x2i j

– Mixed reciprocity:
∑

j x1 j i x2i j

� The level of actors: Degrees in one network affect degrees in the other network

– Outdegree associations: (
∑

j x1i j )(
∑

j x2i j )

– Indegree associations: (
∑

j X1 j i ) (
∑

j x2 j i )

� The level of triads, which is also related to composition of relations and algebraic network

models. Two examples are, with an interpretation for X1 = friendship, X2 = advice,

– Mixed closure, composition X1 ◦ X1 ⇒ X2 :
∑

j ,h x1ih x1h j x2i j ;

friends of friends tend to become advisors

– Mixed closure, composition X1 ◦ X2 ⇒ X2 :
∑

j ,h x1ih x2h j x2i j

advisors of friends tend to become advisors

4.3. Other Extensions

The use of a simulation model as a model for data, with simulation-based estimates and tests,

gives considerable freedom to define details of the model and extend or adapt it for particular data

structures. This section gives some of these extensions.

4.3.1. Changing composition. In many situations it may occur that the actor set is not constant

throughout, but changes between the start and end of the observation period. Students may leave

or enter school, companies can go broke, organizations may be established. Provided such changes

are exogenous, this can be straightforwardly specified in the simulation design, as discussed by

Huisman & Snijders (2003). The researcher will have to specify the initial ties and what happens

to the ties after an actor leaves the network.

4.3.2. Structurally determined values. Some ties may be impossible. For example, in the net-

work of advice between judges in Tubaro et al. (2017) some of the actors were available as advisors

but could not make any advice choices themselves. It is also possible that some ties are prescribed,
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such as advice from a superior to a direct subordinate. This implies that some tie variables Xi j may

be structural zeros or structural ones. Such restrictions can be implemented as specifications of

the set Ai (x) of permitted values of the adjacency matrix for the next step in the simulations.

4.3.3. Ordered tie values. Networks with ordinal discrete tie values can be represented by

multivariate networks, using transformation to the level networks, defined as follows. Let x = (xi j )

be the adjacency matrix of a network with possible tie values xi j = 0 for no tie, and xi j = 1, . . . , K

for some K ≥ 2, for increasingly stronger ties. This can be represented by K level networks

x(1), . . . , x(K ) defined by

x(k)
i j =

{

0 xi j < k

1 xi j ≥ k.
(29)

Often an acceptable requirement for the underlying continuous-time process is that at any given

time point t, xi j (t) = k can change to the values k − 1 or k + 1—to the extent that these are

within the range [0, K ]—but not make larger instantaneous jumps. An example with K = 2 is

for weak (k = 1) and strong (k = 2) ties, and the requirement means that to go from no tie to a

strong tie, or vice versa, it is necessary to pass through the intermediate state of a weak tie. This

can be implemented by modeling the multivariate network (X (1)(t), . . . , x(K )(t)) with restrictions

(depending on x, t and k) to the sets A(k)
i (x), enforcing this requirement. This is elaborated on by

Snijders & Steglich (2017b).

4.3.4. Duration analysis. Analysis of survival times dependent on a network where the network

itself evolves in dependence on the set of survivors can be applied, for example, to diffusion of

innovations coevolving with a network. This can be represented, by the model of Section 4.1, with

a binary behavior variable that cannot decrease, implemented as a restriction on the permitted set

of z′ in the simulation model in that section. Such a model was proposed by Greenan (2015). Her

model represents the dependence of survival on the network and the covariates in the rate function,

not in the objective function. This leads to a network coevolution version of the proportional

hazards model.

4.3.5. Nondirected networks. A larger difference is the modeling of nondirected networks,

defined by the restriction that xi j = x j i . Here the actor-oriented framework requires us to express

the coordination between actors i and j in the choice of the tie value xi j (t). Several models for

this coordination are presented by Snijders & Pickup (2017).

5. SOME EXAMPLES

The actor-oriented model has been used in various publications, many of which are listed at

http://www.stats.ox.ac.uk/∼snijders/siena/.

The example presented here is based on social network data collected in the Teenage Friends

and Lifestyle Study (Pearson & Michell 2000, West & Sweeting 1996). This data set was also used

in the article explaining the joint analysis of social selection and social influence (Steglich et al.

2010), but here only results for the network dynamics are given.

Friendship network data were collected for a cohort of pupils in a school in western Scotland.

The panel data were recorded over a three-year period starting in 1995, when the pupils were aged

13, and ending in 1997. A total of 160 pupils took part in the study, 129 of whom were present at
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Figure 1

Second wave of the western Scotland friendship network from the Teenage Friends and Lifestyle Study
(Pearson & Michell 2000, West & Sweeting 1996). Boys are represented as squares, and girls are circles.
Color/shading represents smoking (bottom) and drinking (top); orange/light is high, blue/dark is low. Gray
arrows are asymmetric directed friendships, and black lines are reciprocated friendships. Vertices are
numbered 1, . . . , 129 as in the data set. Picture provided by Krists Boitmanis.

all three measurement points. The friendship networks analyzed here were observed by allowing

the pupils to name up to six closest friends. A picture of the second wave is in Figure 1.

The data set analyzed here consists of the pupils present at all three waves. Based on sociological

theories about friendship combined with earlier studies, the model included the following set of

effects:

1. The outdegree effect (7)

2. The reciprocity effect (8)

3. The so-called geometrically weighted edgewise shared partners (GWESP) effect (Snijders

et al. 2006, Hunter 2007): to account for transitive closure, that is, the tendency for friends

of friends to be friends. This differs from the transitive triplets effect (Equation 9) in that

the number of indirect connections does not have a linear effect on the log-probability for

the creation of a direct tie, but rather a concave increasing effect:

GWESP(i , α, x) =
∑

j

xi j eα
{

1 − (1 − e−α)
∑

h xih xh j
}

. (30)

Here α is a tuning parameter, which is chosen at the usual fixed value of α = ln(2). The

GWESP effect fits better than the transitive triplets effect for this and many other data

sets.
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4. Four degree-related effects, useful for a good representation of the indegree and outdegree

distributions:

s IPi (x) =
∑

j

xi j x+ j indegree popularity

sOAi (x) =
∑

j

xi j xi+ outdegree activity

s IAi (x) =
∑

j

xi j x+i indegree activity

sRAi (x) =
∑

j

xi j

(

∑

h

xihxhi

)

reciprocated degree activity.

Here the + denotes summation over the index.

5. Having the same gender,

sSGi =
∑

j

xi j I {gender i = gender j },

where I {A} is the indicator function of the event A

6. The distance between the dwelling places. This was operationalized as the centered loga-

rithm of the distance between the centroids of the postcode regions:

sLDi =
∑

j

xi j ln(di j ).

Estimation was done with the Method of Moments as in Snijders (2001), using the R package

RSiena version 1.1-294. To account for the restriction that outdegrees were not larger than 6,

the permitted set Ar
i (x

0) in Section 2 was the set of all digraphs with outdegrees not larger than 6,

and differing in no more than one tie variable from x0.

The results are in Table 1, and the interpretation is the following. For the rate parameters,

actors have on average 13 and 10 opportunities for change, respectively, in periods 1 (wave 1 –

wave 2) and 2 (wave 2 – wave 3). Recall that an opportunity for change does not need to lead to

a change, and changes can be canceled before being observed; these estimated rate parameters

Table 1 Estimation results of actor-oriented model for western Scotland data: parameter

estimates and standard errors

Effect Parameter (Standard error)

Rate period 1 ρ̂1 = 12.853 (1.375)

Rate period 2 ρ̂2 = 10.217 (1.020)

Outdegree β̂OD = −3.092 (0.224)

Reciprocity β̂R = 3.297 (0.271)

GWESP β̂GWESP = 1.856 (0.083)

Indegree-popularity β̂IP = −0.055 (0.020)

Outdegree-activity β̂OA = 0.101 (0.035)

Reciprocated degree-activity β̂RA = −0.244 (0.065)

Indegree-activity β̂IA = −0.115 (0.051)

Log distance (centered) β̂LD = −0.180 (0.040)

Same gender β̂SG = 0.636 (0.083)
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are therefore higher than the observed average number of changes. The parameters in the ob-

jective function can be tested by referring the t-ratio of estimate divided by standard error to an

approximating standard normal distribution. No proof is available for this, but it is supported by

extensive simulation studies. Because all effects in this model operate for creation of new ties as

well as for maintenance of existing ties, positive parameters have the interpretation that the effect

works for both these aspects of the dynamics. The outdegree effect balances between creation and

termination of ties, given all other effects in the model, and usually is taken for granted in the

interpretation; it is negative, reflecting that the probability of befriending arbitrary others is low.

There is a strong tendency toward reciprocity (β̂R = 3.297) as well as transitive closure as repre-

sented by the GWESP effect (β̂GWESP = 1.856). This is generally seen for friendship networks.

Friendship ties become less likely as the distance between dwellings increases (β̂LD = −0.18), and

are more likely between same-gender pairs (β̂SG = 0.636). High indegrees have a negative effect

on receiving and keeping incoming friendships (β̂IP = −0.055) and also on creating and main-

taining outgoing friendships (β̂IA = −0.115). High current outdegrees have a positive effect on

creating and maintaining outgoing friendships (β̂OA = 0.101). However, all these degree effects

should be considered in light of all other effects, in particular the reciprocated degree-activity

effect (β̂RA = −0.244). An interpretation is that those who have many reciprocated friendships

are satisfied with their network position, this negative parameter showing that they are less active

in creating new ties; the strongly positive reciprocity effect implies they keep their existing ties

with a high probability; contrasting with this, those with few reciprocated friendships will try

to establish more friendships. Note that the maximum outdegree of 6 is a bound that is used as

a constraint in the simulation model; this should be taken into account in the interpretation of

parameter estimates.

5.1. Coevolution of Networks and Behavior

The models for coevolution of networks and behavior have been used in various studies of how

adolescent lifestyles and health behaviors are influenced by friends’ behaviors, and how important

they are for making and losing friends. An overview is the special issue “Network and Behavior

Dynamics in Adolescence” of the Journal of Research on Adolescence (see Veenstra et al. 2013).

5.2. Multivariate Dependent Networks

A multivariate application was presented by Huitsing et al. (2014). Two interdependent networks

of bullying and defending were studied in three elementary schools with a total of 354 children

over three waves. The children could nominate others in the school who bullied them and also

others who defended them. Note that bullies can also be defended themselves, which points

to cooperation in bullying. Of special interest was how bullying and defending influenced each

other, with distinct attention for effects at the dyadic, actor, and triadic levels. At the dyadic level,

unexpectedly, no significant effects were found; also, at the actor level, where effects of in- and

outdegrees were tested, results were not strong and differed somewhat between the three schools.

Clear patterns did emerge, however, at the triadic level. For example, in these three groups, if i

bullies j and k defends j , then the probability is higher that, later, i will also bully k: Defending

others leads to being victimized, in turn, by their bullies. Another pattern is that if i defends j

and j bullies k, the probability will be higher that, later, i will also bully k. Here the defending

is interpreted not as defense against bullies, but as defending bullies against others who try to

intervene. Such patterns can be called mixed triadic closure, generalizing the more well-known

pattern of transitive network closure.
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6. SOME OTHER RELATED MODELS

There are a variety of nonstatistical models for network dynamics, designed for theoretical or other

purposes—too many to even start reviewing here. Surveys of statistical models for networks were

given by Goldenberg et al. (2009) and Kolaczyk (2009). Reviews from an economics, statistical

physics, and sociological point of view, respectively, can be found in Jackson (2008) and Graham

(2015), Newman (2010), and Snijders (2011). An overview of dynamic network models from a

background of statistical mechanics, but with quite general applications, was given by Holme &

Saramäki (2012). In the following, we briefly mention some statistical longitudinal network models

for networks observed at two or more discrete time points.

Some of these are longitudinal versions of the exponential random graph model (ERGM) of

Wasserman & Pattison (1996) and Lusher et al. (2013). Of these, the longitudinal tie-oriented

model of Koskinen & Snijders (2013) is closest to the stochastic actor-oriented models presented

here. This model is called the longitudinal ERGM in Koskinen et al. (2015). It is a continuous time

model, with changes restricted to sequences of changes of single tie variables. The opportunities

for change occur randomly for pairs of nodes, and the probability of tie changes, given that some

pair of nodes was selected, is defined by a logistic regression model conditional on the rest of the

graph just like in the basic ERGM. The model specification can be done in a similar way to the

actor-oriented model proposed in this article, except that an analogue of the rate function is not

straightforward to define and is not implemented in current software.

Hanneke et al. (2010) proposed the temporal ERGM (TERGM). This is a discrete time network

model for a network time series X (t1), . . . , X (tM ) where the conditional distribution of X (tm)

given X (tm−1) has an ERGM distribution. They elaborated on the case where the Xi j (tm) for

i , j = 1, . . . , n are conditionally independent given X (tm−1). This avoids the so-called near-

degeneracy problems discussed by Snijders et al. (2006) and Schweinberger (2011), but Lerner

et al. (2013) concluded that the restriction to models with conditional independence given the

preceding observation does not give a good representation of network dependencies, unless inter-

observation times are relatively short. A different presentation of basically the same model was

given by Paul & O’Malley (2013).

The TERGM was extended by Krivitsky & Handcock (2014) to the separable temporal ERGM,

which is a TERGM for which the newly created ties are conditionally independent of the ter-

minated ties. This assumption will not always be tenable, but it may facilitate interpretation of

parameters. Their article contains an application implementing triadic network dependence.

Other longitudinal models build on the latent space network models of Hoff et al. (2002).

These models postulate a low-dimensional Euclidean space in which the nodes are positioned,

with the log-odds of a tie being a linear function of covariates and the distance between the nodes.

Durante & Dunson (2014) proposed a longitudinal latent space model, using the inner product

instead of the distance; whether this is easily interpretable and provides a good fit will depend on

the application. In their model the positions of the nodes evolve in continuous time according to

a Gaussian process.

A different approach is taken by Westveld & Hoff (2011). Because the tie xi j = 1 is interpreted

as a connection going from i to j , it is customary to call i the sender and j the receiver of the

tie. Westveld and Hoff specify a mixed effects model, with sender and receiver effects, which are

correlated over time. In a sense this is a longitudinal version of the p2 model of van Duijn et al.

(2004), but with a less detailed representation of reciprocity.

For the stochastic actor-oriented model as well as all these other models, estimation procedures

have been developed, but up to now no mathematical proofs have been available of properties such

as unbiasedness or consistency. The relevant asymptotics here would be that, with a fixed number
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of waves M, the number of nodes n tends to infinity, and the average degree remains bounded in

probability. The network dependence is so difficult that so far these models have resisted attempts

at constructing such proofs, although various simulations have led to conjectures that indeed

some consistency and asymptotic normality properties should hold. Graham (2015) reviewed

some identification properties.

7. DISCUSSION

The crucial issue for network modeling is how to represent dependence structures between net-

work ties. For single (cross-sectional) observations of one network this is very hard, but for lon-

gitudinal network data there is at least the arrow of time. The stochastic actor-oriented model

is designed for longitudinal network data collected in a panel design, with two or more panel

waves. It is a Markov chain model, consisting of a combination of two generalized linear models

for the unobserved continuous-time process, but observed only at the times of the panel waves.

If change between subsequent waves is not too large, then a strong dependence between the re-

peated observations may be presumed. A rule of thumb was proposed (Snijders et al. 2010b) that

Jaccard measures of similarity between successive waves preferably should be 0.3 or more. This

means that the number of remaining ties is not much fewer than the average of the number of

newly created ties and the number of terminated ties. Experience with applications has shown,

however, that data sets with larger turnover, and Jaccard similarities between successive waves

lower even than 0.2, may also be meaningfully analyzed with this model. When the amount of

change is somewhat limited in this way, and when it is reasonable to assume that, as an approxima-

tion, network change took place as an unobserved sequence of dyadic (as opposed to groupwise)

changes, the stochastic actor-oriented model may be a good representation of network dynamics.

As with other generalized linear models, there is a wide flexibility to adapt the model specification

to the domain of application, research question, and subject-matter knowledge. How to specify

the model is discussed at length in Snijders & Steglich (2017a), and some examples are given in

Snijders & Steglich (2017b). The model is available in the R package RSiena. Its manual (Ripley

et al. 2016) presents many specification possibilities. Published applications can be found at the

website http://www.stats.ox.ac.uk/∼snijders/siena/.

The choice between models, comparing the stochastic actor-oriented model to other models

such as those mentioned in Section 6, should be based on considerations such as goodness of fit,

conceptual validity, specification possibilities, interpretability, and practicality. This choice will

also depend on the purposes of the data analysis: for example, studying network dependencies

themselves, versus controlling for network structure in tests of effects of actor or dyadic variables.

Goodness of fit, in the sense of a good representation of dependence structures, can be assessed

by comparing simulated data to observed data in the way discussed for cross-sectional network

models by Hunter et al. (2008). Methods for doing this were developed by Lospinoso (2012) and

are presented in Snijders & Steglich (2017a). The network effects that can be specified in the

stochastic actor-oriented model and in the various longitudinal variants of the ERGM give more

flexible possibilities to explicitly specify and investigate the details of the network dependence than

the latent space or the mixed effect models.

The stochastic actor-oriented model is based on a continuous-time probability model, whereas

the data are assumed to be collected at discrete time points, possibly as few as two. With the

free multiplicative parameter ρm in the rate function (Equation 3), this implies that as long as

observation does not interfere with the process, the timing of the observations does not affect the

validity of the model. The model refers to a process unfolding in continuous time with a stationary

transition distribution (unless some of the parameters are time-dependent) of which the marginal
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distribution is not necessarily stationary; the meaning and values of parameters other than ρm are

unrelated to the observation times. This may be an advantage over discrete-time models when

modeling processes for which time elapsed between observations is irregular or does not have a

regular consequence on the network changes.

For modeling cross-sectional network data, the ERGM (Wasserman & Pattison 1996, Lusher

et al. 2013) is much used. This model is known to be plagued by the problem of near-degeneracy,

which appears as the property that for many quite usual observed data sets, the ML estimate is

obtained for a distribution concentrating almost all of its probability mass on a few networks, some

complete or very dense and some empty or very sparse, for which the expected value of the sufficient

statistics is indeed equal to the observed value, but such that all these networks are quite distant from

the observed network. This problem is discussed, for example, by Snijders et al. (2006), Rinaldo

et al. (2009), and Schweinberger (2011), and the first reference proposes specifications that avoid

near-degeneracy. Because of its longitudinal nature, this problem does not affect the stochastic

actor-oriented model; depending on the model specification, it may, however, apply to its limiting

stationary distribution. For practical application, this is of no direct concern. There is a relation

with model specification, however, because the specifications for which the limiting distribution

could be near-degenerate might also be prone to having a worse fit when applied to panel data. As

an example, transitivity for cross-sectional networks cannot be modeled well by the ERGM with

the count of transitive triplets among the sufficient statistics; this statistic leads to near-degenerate

models. For the purpose of modeling transitivity, it can be replaced by the GWESP effect, which is

analogous to Equation 30 (see Hunter 2007). The count of transitive triplets defines a linear effect

of the number of indirect connections on the log-odds for the existence of a direct tie; the GWESP

statistic defines a concave increasing effect, and its sublinearity counters the near-degeneracy. For

the longitudinal stochastic actor-oriented model, the transitive triplets effect is Equation 9; this

effect can be used mostly without a problem, but often a better fitting representation of transitivity

is given by the GWESP effect (Equation 30).

Modeling network dynamics is quite demanding in many respects, and the area is itself highly

dynamic. More models will have to be developed in response to the needs of empirical researchers.

New procedures should be constructed that may be more efficient statistically and/or computa-

tionally, and implemented in software. Mathematical results should be proved for properties of

the statistical procedures. A major open question is the robustness of estimation results for mis-

specification, and the role played in this respect by the goodness of fit of a model.
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