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STOCHASTIC ADAPTIVE CONTROL FOR
EXPONENTIALLY CONVERGENT TIME-VARYING SYSTEMS*

GRAHAM C. GOODWINf, DAVID J. HILLer AND XIE XIANYA

Abstract. This paper shows that the standard stochastic adaptive control algorithms for time-invariant
systems have an inherent robustness property which renders them applicable, without modification, to

time-varying systems whose parameters converge exponentially. One class of systems satisfying this require-
ment is those having non-steady-state Kalman filter or innovations representations. This allows the usual
assumption of a stationary ARMAX representation to be replaced by a more general state space model.
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1. Introduction. A stochastic adaptive controller is an algorithm which combines
on-line parameter estimation with on-line control to generate a control law applicable
to systems having unknown parameters and random disturbances [1]. Control laws
based on this philosophy have been studied for at least three decades [2], but it is
only recently that rigorous convergence analyses have appeared. To gain insight into
the operation of these algorithms, several special cases have been studied in detail.
For example, the authors of [3] have examined the convergence properties of a
particular scheme which combines a simple stochastic gradient parameter estimator
with a minimum variance control law.

A number of interesting properties of these simple stochastic adaptive control
laws have been established. For example, the tracking error is known to converge to
a minimum (in a specific sense) in a sample mean square sense [3]. In the case of
regulation about a zero desired output, then it has been shown [5] that the parameter
estimates converge to a fixed multiple of the true parameter values. However, if the
desired output sequence is continuously disturbed and an identifiability condition
holds, then the parameters can be shown to converge to their true values [4]. Various
extensions of the above results have also been studied. For example convergence results
have been established in [7], for least squares based adaptive control algorithms.

The above papers deal with systems having constant parameters. However, in
practice one is often confronted with systems whose parameters vary with time in some
fashion. This has motivated several authors to investigate special classes oftime-varying
systems in an effort to gain insights into the convergence properties relevant to this
case. For example, Caines [8] has analyzed the performance of the stochastic gradient
algorithm of [3] applied to systems with (converging) martingale parameters. Further
results for systems having random parameters are described in [9].

The current paper also deals with systems whose parameters are time-varying.
Indeed, the work has much in common with the results in [8], [9]. All three papers
reduce to treatment of a near-super-martingale equation of a particular formmsee
equation (3.28) later. However, here the parameter time variations are deterministic
and thus a different method of analysis is necessary from that used in [8], [9].

Our analysis has three key steps: a proof that a system which is convergent toward
a minimum phase system has an input which grows no faster than the output; a proof
that a system which is exponentially convergent toward a strictly passive system is
eventually strictly passive in a certain sense (where the strict passivity concepts are

* Received by the editors May 29, 1984, and in revised form February 28, 1985.
f Department of Electrical and Computer Engineering, University of Newcastle, New South Wales,

2308, Australia.
$ Department of Computer Science, Shanghai University of Science and Technology, Shanghai, China.

589



590 GRAHAM C. GOODWIN, DAVID J. HILL AND XIE XIANYA

defined later); and a martingale convergence proof along the lines of [3], but using a
modified martingale result as first proposed in [ 10], [ 11] in a different context.

One application of the results developed here is to systems described by a state
space model corresponding to a non-steady-state innovations representation. Subject
to the assumption that the system has no uncontrollable modes (in the filtering sense
[12]) on the unit circle, then it is known [13] that the parameters in the innovations
model are time-varying and converge exponentially fast toward those ofthe steady-state
optimal filter. Thus the results of this paper allow global convergence to be established
for the standard adaptive control algorithms when applied to these systems. This
represents a relaxation of the usual modelling assumption employed elsewhere in the
literature (e.g. [3] to [9]) that the system is described by an ARMAX model or
equivalently a steady-state Kalman filter model. This particular robustness to modelling
assumption is often implicitly assumed in the literature, and it is thus interesting for
technical completeness to have a formal proof that the results go through in this case.

2. Preliminary result on passive systems. We verify a result which will be needed
in the subsequent proof of convergence of an adaptive control algorithm. This concerns
a passivity property of a system which is exponentially convergent toward an asymptoti-
cally stable and input strictly passive system. The definitions of passivity concepts used
correspond to those presented in [15, Appendix C]. Consider the extended Hilbert
space le(Z+) of sequences v’Z+-->R" with truncated inner product (u,v)r:
T-1 Tk--O U (k)v(k)< oo. The main definition for present purposes is as follows.

DEFINITION 2.1. Consider a dynamical system represented by mapping
G; le(-+ "> l.e(7/+). The system is input strictly passive (ISP) if[ :1; > 0 and/3 such that

(2.1) (Y, u>-->llull// Vu12(7/+) and T=>0.

Consider the following special case of the time-varying linear system model (A.1),
(A.2)"

(2.2) x( / 1) A( t)x( t) + Bu( t),

(2.3) y(t)- Cx(t).

Let A(t) - A exponentially fast and define {y*(t), {x*(t) by

(2.4) x*( + 1) Ax*(t) + Bu*(t),

(2.5) y*(t) Cx*(t)

with (A, B) controllable and A asymptotically stable.
The following result establishes that if (2.4), (2.5) is also ISP then (2.2), (2.3)

satisfies a property very close to ISP.
THEOREM 2.1. Provided (2.4), (2.5) is input strictly passive then there exist o, fl

and t > 0 such that

N

(2.6) E (Y(t)u(t) 8u(t)2) +/3 >- 0
t=

for all N> no >- ao and for all {u(t)} 12,(7/+). fl, 8 depend on u(t) for < no.
Proof. Since (2.4), (2.5) is ISP, there exists 15" <0 and fl*(x*(no)) such that

N

(2.7) , (y*(t)u*(t)-*u*(t)2)+ fl*(x*(no))>-O
t-n
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for all N >--no and for all u(t)/2e(+). From (2.7), we have
N N N

E (y*(t)-y(t))u(t)+ y(t)u(t)>--8* u(t)2-fl*(x*(no)).
t--

Let

Then

(2.8)

N

a(no, N):= Z (y*(t)-y(t))u(t).

N N

y(t)u(t)>-6 * u(t)2-t(no, N)-fl*(x*(no)).
t=n t=n

The remainder of the proof involves establishing a bound for a(no, N). Now
t--1

y*(t) C*(t, no)x*(no)+ Cr(t, i+ 1)Bu*(i),
i=n

y(t)= C(t, no)x(no)+ CdP(t, i+ 1)Bu(i)
i=n

where *(t, no)= At-n and (t, no) is given by (A.3). Then

a(no, N)= Y u(t)C A’-"ox*(no)- A(i) x(no)
t=n i=n

+ E u(t)C At-’-1- 1-I A(j) Bu(i)
no i+

:= a,(no, N)+ a2(no, N).

Now without loss of generality choose u*(t) so that

x*(no) x(no) and y*(no) y(no).

This is possible because (2.4), (2.5) is controllable. We can consider u(t)= u*(t) for
-> no. We have

I(no, N)I-<_ I(no, N)I+ I=(no, N)I.
The remainder of the proof involves bounding a and a. in terms of Ilu(t)[[ ti0

We will use 1. for the Euclidean norm.

Ic,(no, N)l- u(t)c At-"o- H A(i) x(no)
to i=o

<llu(t)ll c A,-"
.o H A(i) x(no)

N

/=rl

using the Schwarz inequality

c -o-II (i X(no
i=n

sin I1o I1 <- II,
N t--1

<=[[u(t)[llCllx(no)[ At-n- [-I A(i)
t=n i=n

N

<= Ilu(t)ll,,lcllx(,,o)l,"o-’ x,’-"o
t=

N<= 2e, u (t)ll .olX(no)l
choosing no>_- and using Lemma A.2
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where

Iclxo-
So Ic,(no, N)I<_- ,(llu(t)ll.)=+ ,lx(o)l =.

Now turning to 2, we have

[(no, N)l E u(t)C At-i-l- H A(j) Bu(i)
t=n i=n j=i+l

(jl u(i
j= i+1

< Ilu(t)ll" c At-i-’

i=

Observe that

C At-’-1- H A(j) Bu(i)
j +

C At-i-1

t=n i=n
rI A(j) Bu(i)

j=i+l

{ /tl ( ( t--1 ) )2)(t--1 )2)}1/2C At-i-l- [-I A(j) B E u(i
t=n \i=n j=i+l i=n

using the Schwarz inequality

< C At-’-l- rI A(j) B Ilu(t)ll
t=n i=n j=i+l

N t-1 } 1/2
N E E /’

2
T]
2(t-1)<-ICllBIIlu(t)ll.o

t=n i=n
using Lemma A.2

N 11/2-Icl Inlxllu(t)ll ’no E n 2(t-l,

t=n i=n

Now

So we have

Let

N t-1

t=n i=n

N-n p-1
2(t-1) E E 2(p+nO-1)

p=O q=O

N-n
2(n-l) E P’r]

2p

p=O

2

T] 2(no_
T]

(1 r/2)2

2no
(1- r/)"

’l2nla2(no, N)I-<- (llu(t)ll =o)21C IBIx (1 ,/2)2

since Inl< 1

T2no
2 Icl IBl (1 r/E)2"
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So

We then have

a2(no, N)I <-- e=(llu(t)l[ --o)

[a( no, N)[ _-< (81 + )(ll U( t)[I .No)U+ lx(no)[.
Note that el, e2 can be made arbitrarily small by taking no large enough.

Let

Substituting into (2.8)

Let

E := 81 + 22"

N

E y(t)u(t)(*-)(llu(t)ll.o)-/*(X(no))-llX(no)[.
8 :-- 8"- , :--*(x(no))+ellx(no)[

By taking no large enough, it can be guaranteed that t; > 0. D
Remarks. 1. Since system (2.4), (2.5) is both input strictly passive and asymptoti-

cally stable, it is in fact very strictly passive (see [15, Appendix C]).
2. The system does not become input strictly passive as usually defined because

t; is dependent on x(no).

3. The adaptive control algorithm. We are concerned here with the adaptive control
of a linear time-varying finite dimensional system admitting an autoregressive moving
average representation of the form:

y(t)+ al(t)y(t- 1)+... +a,(t)y(t- n)

(3.1) =bo(t)u(t-d)+ +bm(t)u(t-d-m)

+ to(t) + Cl( t)to( t- 1) +... + ct( t)to( t- l).

We shall express (3.1) in compact notation as

(3.2) A(t, q-1)y(t) ( t, q-1)q-au( t) + C( t, q-1)to( t)

where q-1 represents the delay operator and A(t, q-l) 14- al(t)q -1 + 4- a,(t)q-;
B(t, q-)=bo(t)+b(t)q-l+ +bm(t)q-m; C(t, q-i)= l+c(t)q-+ +ct(t)q-’.
The corresponding initial condition is Xo := {y(0)... y(1- k); u(1- d), , u(1- k);
to(0),..., to(l-k)} where k-max {n, m4-d, l}.

The process {Xo, to (.1), to (2),. .} is defined on the underlying probability space
(1", , P) and we define 5Fo to be the g-algebra generated by Xo. Further, for all _-> 1
t shall denote the g-algebra generated by the observations up to time t. The distribu-
tions of the random variables Xo, to(l), to(2),.., are assumed mutually absolutely
continuous with respect to Lebesgue measure.

We make the following assumptions on the process {to(t)}"

(3.3) N.1

(3.4) N.2

(3.5) N.3

E{co(t)l;,_}=O a.s. > 1.

2 0.2

1 N

limN_,oosup ,2= Ilw(t)ll 2 < a.s.
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We wish to design an adaptive control law to cause {y(t)} to track (in some sense)
a given desired output sequence {y*(t)) and to ensure that {y(t)), {u(t)} remain
bounded (in some sense). Reference [3] presents further background to this problem
as well as giving a convergence analysis for a particular adaptive control algorithm
for the case when A(t, q-l), B(t, q-l), C(t, q-l) do not depend on t.

In order to specify the algorithm, we assume"

S.1. d is known.
S.2. Upper bounds for n, m, and are known.

In addition, the following properties of system (3.2) will be assumed in the analysis
of the algorithm:

S.3 ai(t) ai, 1,. , n,

bi(t) hi, 0,. ., m,

ci( t)- ci, i= 1,’’’, l,

exponentially fast.
S.4. B(z) and C(z) have all zeros outside the closed unit circle, where

n(z) hod- blZ q- -t- bmgin,

C(z) 1 + cz + + cz t.
S.5. The system C(q-)z(t) b(t) is input strictly passive.
For simplicity we shall treat the single input single output unit delay (d 1) case.

However, natural extensions exist for the multi-input multi-output nonunit delay as
explored for non-time-varying systems in [3], [15], etc.

The model (3.2) can be rearranged into the following predictor form:

C(t, q-1)[y(t)-to(t)]= a(t, q-)y(t- 1)+ fl(t, q-1)u(t- 1)(3.6)

where

(3.7)

(3.8)

a( t, q-l):= C(t, q-l) A(t, q-1)]q,

fl(t, q-1):= B(t, q-)q.
The adaptive control algorithm which we propose to analyze is the following

stochastic gradient minimum variance algorithm"

,/,(t- l)
e(t)(3.9) A.1 O(t)=(t-1)- r(t_2)+b(t_l)7.(t_l)

where/(t) is an estimate of O(t) and Or(t)., (Cl(t), a2(t), ", an(t), bo(t),’" ", b,,(t),
c(t),’’ ", c(t)). (0) is given such that 0n+1(0) 0.

(3.10) A.2 r(t-1)=r(t-2)+,(t-1)T(t-1), r(0)>0 given.

A.3 y*(t) (t- 1)T(t 1).

(3.11) A.4 ,(t-1)7"=(y(t-1), ...,y(t-),u(t-1),...,u(t-),

where upper bound on max (n, m + 1, l).

A.5 fi( t) ,( -1)r( t).
(3.12)

A.6 e( t) y( t) y*( t).

-37(t- 1),. , -y(t-))
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This algorithm differs slightly from the time-invariant version in [3] by using a
posteriori predictions. A discussion of the significance of this can be seen in 15].

The theoretical possibility of division by zero while evaluating u(t) can be avoided
since it can be argued inductively [3] that division by zero is a zero probability event.
Since all the results in this paper are almost sure results, then division by zero can
only affect the convergence on a set of measure zero. This argument depends on the
above assumption of absolute continuity of the distribution functions. Hence, the
algorithm is well-posed in the sense that all variables remain bounded in finite time (a.s.).

We then have the following global convergence result:
THEOREM 3.1. Let Assumptions N.1-N.3 and S.1-S.5 holdfor the system (3.1) and

the algorithm A.1-A.6. Then with probability one, for any initial parameter estimate 0(0)

1 N

(3.13) lim sup-Noo t=l

1 N

(3.14) lim sup- u(t)2 < o,

.,l.,jra.l lim
1 N

v-, E [E{(y(t)-y*(t))21;,-1}-tr2] =0

2where trt is the minimum mean square control error achievable at time by;_ measurable
controls.

Proof We shall present an outline proof only, highlighting the key departures
from the usual proofs for time-invariant systems as in [3], [15].
Set

(3.16) r/(t) y(t) 37(t).

We then have the following preliminary properties of the algorithm:

r(t-2)
(3.17) P.1 r/(t) e(t).

r(t-1)
N b(t- 1)rb(t 1)

(3.18) P.2 lim Y,
woo =1 r(t- 1)r(t-2)

<"

(3.19)

where

(3.20)

(3.21)

(3.22)

(3.23)

P.3 C(t,q-1)z(t)=b(t)

z( t) rl( t) to( t),

b( t) -b( -1)r( t),

P.4 E{b(t)o(t)l;,_} 6(t-1)r6(t-l) 2

r(t-1)

The above properties are as in [3], [13].
Now subtracting O(t) from both sides of (3.9) and using (3.10), (3.17), we have

5(t)=(t--1)+Oe(t)+--’---"----b(t- 1)
r(t-2)

r/(t)
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where

Oe(t)=O(t)-O(t-1),

(3.24) (t)_d(t- 1)r/(t) =/(t- 1)+ Oe(t).
r(t-:)

Define

V( 5( T( ).

Then squaring both sides of (3.24) and using (3.21) gives

V(t)/
2b(t)rl(t) b(t--1)7b(t-1) 2(t) V(t 1)/2(t 1)7"Oe(t)/llOe(t)ll 2

r(t-2)
+

r(t-2)2 r/

Hence using (3.20), (3.23) we have

2E(V(t)l,_}= V(t-1)- E(b(t)z(t)l,_}
r(t-2)

r(t-2)r(t-1)
tr,-E

r(t_2)2 r/

/ Oe(t)ll =+ 2if(t- 1) TOe(t).
From Assumption S.3, there exists a G, A with 0 < G <, IAI< 1 such that

(3.26) I]Oe(t)ll 2<= IAI’"
Also, for 0< a(t) <, we have

2[(t-1)Oe(t)]<__a(t)211(t-1)l{2/

Thus selecting a(t)2= lal and using (3.26), we have

(3.27)
2[ if(t- 1) T0(t)] < IA I’/=11 if(t- 1)11 =/ GIA

IA ’/2 V(t 1 + GIA ’/.

Substituting (3.27) into (3.25) gives

E(V(t)l,.@,_,) V(t- 1)[1
r(t-2)

E{b(t)z(t)l,_}

(3.28) 2b(t-1)rb(t-l) 2 {b(t-1)Tb(t-l)r(t-1)r(t-2) trt-E r(t_2)2

Define

(3.29) S(t):=2 Y [b(j)z(j)-Sz(j)2]+K,
j---?l

S(t)
(3.30) X(t):= V(t)+r( 2"---+26

z(J)2 (j 1 2

J=.or(j-2)
+ b )rb(j 1

J=-o r(J- 2)2
r/(j)

From Assumptions S.5, S.3, Property P.3 and Theorem 2.1, we know that there
exist a no, 6> 0 and a K (depending on the conditions at no) such that S(t)>=O for
all >= no. Under these conditions X (t) -> 0.
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It is readily seen using (3.28), (3.30) that

E{X( t)l :t_l} _-< X(t 1)[ 1 + IA t/El
2b(t- 1)Tb(t 1)+
r(t--2)r(t--1)

for t>--_no.

From Property P.2, and Assumption N.2, we have that

y, b(t-1)Yb(t -1) 2

t=o r(t-2)r(t-1) o’t+ .
Thus we can apply the martingale convergence theorem (Appendix B) to conclude

(3.31) X(t)->X<o a.s.

Using (3.30), we see that
z(t)

(3.32) lim tY< a.s.,
N-, r(t-2)

v b(t- 1)rb(t 1)
(3.33) v-,lim = r(t-- 2)2

17(t)2 <G a.s.

The lower summation limits in (3.32), (3.33) can be extended from no to 1 because
the algorithm ensures all variables remain bounded in f;aite time (a.s.).

A simple argument by contradiction can now be used to conclude (3.13) to (3.15)
using (3.32) together with Assumptions S.3, S.4 and Theorem A.1. The steps are exactly
as in [3] and as explained in general in [15]. [3

4. Adaptive control with general state space model. Consider a linear finite
dimensional system described by the following time-invariant state space model:

(4.1) x( + 1) Fx( t) + Gu( t) + Vl(t),

(4.2) y(t) Hx(t) + v2(t)

where { vl(t)}, {v2(t)} are zero mean Gaussian white noise sequences satisfying:

(4.3)

(4.4)

E{v,(t)v,(t)T} Q= DDT >=0,

E{v2(t)v(t)T}= R >-O.

The initial state x(0) is also assumed to have a Gaussian distribution with mean go
and covariance Po. We make the following assumptions:

S.S. 1: (H, F) is observable.
S.S.2(a): (F, D) has no uncontrollable modes on the unit circle and Po>0

or
(b): (F, D) is stabilizable and Po>-0.

Using standard Kalman filtering ideas [12], the innovations model for (4.1),
(4.2) is

(4.5) ;(t+l)=F;(t)+Gu(t)+K(t)to(t), (0) :o,
(4.6) y(t) H(t) + to(t).

Here K(t) is obtained from the solution of the following matrix Riccati equation:

(4.7) E(t + 1) F,( t)FT F,( t)HT(HE(t)HT + R)-1HE(t)FT + Q,

(4.8) E(0) Po,

(4.9) K(t) F,(t)HT(H,(t)HT + R)-.
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In view of Assumption S.S.1, we can transform the system state such that (H, F)
are in observer canonical form, i.e. (4.5), (4.6) can be written as

-.a. 1 .. 0

ib
k(t)

(4.10) ( + 1) (t) + u(t) + to(t),

-an 0 knit)J
(4.11) y(t)=[1 0 0](t)+to(t).

Using (4.11) in (4.10) gives the following time varying ARMAX model"

A(q-)y(t) B(q-)u(t)+C(t, q-)to(t)(4.12)

where

(4.13)

A(q-) l + aq- + + anq -n,
B(q-) blq- + + bnq -n,
C(t, q-l)= 1 +(k(t- 1)+ a)q- + "+(kn(t- n)+ an)q -n.

It is known [13] that Assumptions S.S.1, S.S.2 are sufficient to ensure:

(4.14) K(t) K exponentiallyfast

and

(4.15) C(q -1) 1 +(/+ a)q- +. +(n + an)q is asymptotically stable.

We make the following additional assumptions:
S.S.3: b 0 (corresponding to d 1 in 3).
S.S.4: An upper bound for n is known. (As in S.2, this is an assumption on the

data supplied to the algorithm.)
S.S.5: The system

C(q-1)z(t)=b(t)

is input strictly passive.
S.S.6: B(z) has all zeros outside the unit circle and b 0 (the latter for simplicity

only).
We then have the following elementary corollary to Theorem 3.1:
COROLLARY 4.1. Let Assumptions S.S.1-S.S.6 hold for the system (4.1), (4.2) and

the algorithm A.1-A.6. Then with probability one, for any initial parameter estimate 0(0)

1 N

(4.16) lim sup- y(t)2 <,
Nct3 t=l

1 N

(4.17) lim sup- u(t)2 < o,
Nx3 t=l

1 N

(4.18) lim E{(y(t)-y*(t))l,_}=r
Noo t=l

where

(4.19) tr2= H,H" + R
and , is the steady state solution of (4.7).
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Proof The result is immediate from Theorem 3.1 on noting that { to (t) } is a Gaussian
2 0.2innovations sequence and therefore satisfies N.1-N.3. Also, 0.t --> exponentially fast

13]. Hence
1 v

2 0.2. ["](4.20) lim - 0.,
N-oo t=l

Remarks. 1. It should be pointed out that this result can be obtained directly from
the corresponding result for the steady-state ARMAX model [3], [15]. Firstly, note
that the covariance Po for the Kalman filter (with go) defines a Gaussian distribution
for Xo. So use of the steady-state gain K corresponds to a particular choice of the
initial condition distribution. Since the martingale convergence theorem leads to a
sample path convergence result, modification of the initial state distribution does not
affect this result. The proof for this comes by noting that once a.s. convergence has
been established with respect to one distribution, then it is also true for any other
distribution which is absolutely continuous with respect to the original one [ 18]. Thus,
having proved global convergence for the distribution corresponding to a steady-state
Kalman filter, it also holds for other distributions corresponding to the non-steady-state
case. However, it should be realized that the original martingale properties will no
longer apply.

2. If a general initial condition distribution is used and one replaces (4.12) by
the corresponding steady state ARMAX model, then the prediction error so defined
will not satisfy N.1.

3. The result in Corollary 4.1 also applies to degenerate distributions, i.e. when
the initial state is exactly known. In this case the argument in Remark 1 above cannot
be used and the more complicated machinery of 3 is necessary to deal with this case.

5. Conclusions. This paper has analyzed a robustness property of the discrete time
stochastic adaptive control algorithm based on gradient estimation and minimum
variance control. The algorithm is shown to be globally convergent when the system
parameters are exponentially convergent to values satisfying the conditions for a
globally convergent time-invariant system. This result is applied to the special case
where the time variation is derived from a non-steady-state Kalman filter.

Appendix A--Properties of convergent linear systems. We present some properties
of time-varying linear systems which are convergent toward an asymptotically stable
system.

We consider the following time-varying system:

(A.1) x( + 1) A( t)x( t) + B(t)u(t),

(A.2) y(t) C( t)x( t) 4- D(t)u(t)

and we introduce the notation:
rl--1

(A.3) (n, no)= I-I A(k)
k=

for the state transition matrix.
We will use I" for the Euclidean norm and II" for the 12 norm (similarly for the

induced norms).
LEMMA A.1. Let A be asymptotically stable. Suppose A(k)--> A. Then there exist, v > O, and 0 < < 1 such that

(m.4) I(n, no)l--<
for all n > no >--.
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Proof. Since A is asymptotically stable, ::lp > 0 such that

(A.5) p-ArpA Q with Q>0.

Now consider the autonomous time-varying system

(A.6) x(k+ 1) A( k)x( k)

and try the Lyapunov function

(A.7) V x x ’Px.

Then

(A.8)
V(x(k+ 1))- V(x(k))=x(k)r[Ar(k)PA(k)-P]x(k)

:= -x(k)rQ(k)x(k).

Now since Q(k)---)Q > O, then :1 such that for k >_-, we have some/z such that

(A.9) V(x(k+ 1))- V(x(k))<--lzlx(k)[2.

Introducing [xlp (x rpx) 1/2, we have

(A.10) where M= (1/AmaxP) 1/2.

Hence from (A.9)

Ix(k+ 1)1 -< x(k) Tpx(k) -/lx(k)l
<_-(1 M)lx(k)l, for all x(k).

Thus

IA(k)l =< (1 -/zM2) :=/3 < 1.

Hence for n > no -> a

[(n, no)[
n-1

H A(k)
k=

n-1

H IA(k)l /---o.
k=n

SO

[cI)(n, no)[ =< vfl"-"o for all n > no >= fi

where

l) (1/ AminP) 1/2. ["]

The authors suspect that Lemma 2.1 has been established elsewhere though they
have no specific reference. Fuchs [14] states a related (but differing in detail) result.
We can now immediately establish:
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THEOREM A.1. Consider the system (2.1), (2.2). Then provided A(k) A with A
asymptotically stable and B(k), C (k), D(k) are bounded"

(a) There exist , 0 < K1 < o3, 0 <- g2 < o3 independent ofN such that

N N

(A.11) E ly(t)lK, E lu(t)l+K for all N>-no>-_a.
l,10

(b) There exist ON m3 <--o3, ON m4< o3 which are independent of such that

(A.12) ly,(t)l<=m3+m4 max lu(,)l for all N>=t>=no.
no.r<=N

Proof. The proof mimics the corresponding proof for the time-invariant case given
elsewhere (see for example [15, Appendix B]).

In the sequel, we use the notation iix(t)ll,o:=(,=,oNN Ix(t)12) 1/2. If the sum is finite
for all N_-> no, we say x(t) lEe(7/+) where 7/+ is the set of integers no, no+ 1,. .

LEMMA A.2. Consider a matrix A and sequence A(k) as in Lemma A.1. Suppose
A( k) A exponentially. Then there exist f, X > O, and 0 < rl < 1 such that

n--1
n--1(A.13) A"-"- I] A(k) <--

k=

for all n > no >- .
Proof. Let K(k):= A-A(k). We find the following observation useful

n--1 n--2

A"-"-I-I A(k)=AA"-"-l-(A-K(n-1)) I-I A(k)
k k

=A A"-"o-1- l-I A(k) +K(n-1) 1-I A(k).
k k

Repeated application of this gives

n--1

A"-"- rI A(k)=A"-"-IK(no)+A"-"-EK(no+ l)A(no)
k--n

no+
+ A"-"o-aK(no+ 2) 1-I A(k)

k=n

n--3 n--2

+...+AK(n-2) 1-I A(k)+K(n-1) rI A(k).
k k

Now since A is stable, ly > 0, 0 < :< 1 such that

IAkl <_ .yk.

Lemma A.1 gives that for n> no-> t:lv> 0, 0</3<1 such that

A(k) <= v[3 "-"o.
k=

Further, exponential convergence of A(k) to A gives that lH > O, O< A < 1 such that

IK(k)l =< ,X

Let

q := max (y, v, f), /:= max (:,/3, ,X ).
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Then

Let

n-1

A"-"- 1-I A(k)
k=n

<= IK (no)[ IA"-- + IA(no)l [K (no+ 1)l

no+l
+ I-I A(k)IK(no+2)llA-o-

k---

n-3

+’’" + I’I A(k) IK(n-E)IIAI
k=n

n-2

+ I-I A(k) IK(n-1)l
k=

-< Cn-’(1 +m + qm-+ + qm"-"-:+ n.--o-,)
using the above exponential bounds

I]J2"0 n-1 1 de. ,on-no-1 2t_ rlT ,0
k

k=O

assuming that n no => 3

NJ2n n-1 2+1_ n

X:= b 2 2+
1

Then we have the required inequality. (It is easy to see that the result holds for
n > no.)

Appendix B---Modified martingale convergence theorem. Let {X(t)} be a sequence
of nonnegative random variables adapted to an increasing sequence of sub tr-algebras
{,}. If

E{X(t+l)l;,}<=(l+y(t))X(t)-a(t)+(t) a.s.

where a(t)>-O, fl(t)>-O and E{X(0)}<, .j=l ly(t)l<c, j=o/3(j)<o a.s. then
X(t) converges almost surely to a finite random variable and

N

lim a(t)<o
Noo t=O

aoS.

Proof. See Neveu [16]. 73
The above theorem was first employed in a stochastic adaptive control proof in

10], 11 ]. Other applications are given in 15].
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