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Abstract 

An
adaptive
control
model
of
a
network
of
 signalized
 intersections
 is
proposed
based
on
a
discretetime,
 stationary,

Markov
decision
process.
The
model
 incorporates
probabilistic
forecasts
of
individual
vehicle
actuations
at
downstream

inductance
loop
detectors
that
are
derived
from
a
macroscopic
link
transfer
function.
The
model
is
tested
both
on
a
typical

isolated
traffic
intersection
and a
simple
network
comprised
of
five
fourlegged
signalized
intersections,
and
compared
to

fullactuated
 control.
Analyses
of
 simulation
 results
 using
 this
 approach
 show
 significant
 improvement
over
 traditional

fullactuated
control,
especially
for
the
case
of
high
volume,
but
not
saturated,
traffic
demand.
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1. Introduction 

At
 a
 signalized
 intersection,
 traffic
 signals
 typically
 operate
 in
 one
 of
 three
 different
 control
 modes:
 pre
timed
 control,
 semiactuated
 control
 and
 fullactuated
 control (Wilshire
 et
 al.,
 1985).
 In
 pretimed
 control,

all
 of
 the
 control
 parameters
 are
 fixed
 and
 preset
 offline.
 Offline
 techniques
 (e.g.,
 the
 various
 versions
 of

the
TRANSYT (Robertson,
1969) family
of
software packages)
are
useful
 in
generating
 the
parameters
 for

fixed
timing
plans
for
conventional
pretimed
urban
traffic
control
systems
based
on
the
deterministic
traffic

conditions
during
different
time
periods
of
the
day
(e.g.,
peak
hours,
offpeak
hours).
In
actuated
(both
semi
and
full)control,
 the
control
signal
 is
adjusted
 in
accordance
with
a
 ‘‘closedloop,
online’’
control
 strategy

based
on
realtime
traffic
demand
measures
obtained from
detectors;
while
the
controllers
themselves
respond

to the
fluctuations of the
traffic
flows in the network, the
base
parameters do
not.
Alternatively, a
class of
con
trol
 algorithms
 that
 includes
 SCOOT
 (Split,
 Cycle
 And
 Offset
 Optimization
 Technique) (Hunt
 et
 al.,
 1982;

Robertson
 and
 Bretherton,
 1991)
 and
 SCATS
 (Sydney
 Coordinated
 Adaptive
 Traffic
 System)
 (Lowrie,

1982) are generally
considered
to
be
‘‘online’’
algorithms,
in
which
the
control
strategy
is
to
‘‘match’’
the
cur
rent
traffic
conditions
obtained
from
detectors
to
the
‘‘best’’
precalculated
offline
timing
plan.




Far
fewer
welltested
examples
exist
of
realtime
adaptive
traffic
control
systems
that
react
to
actual
traffic

conditions
online,
the
most
notable
among
these
being
the
wellknown
OPAC
algorithm (Gartner,
1983),
and

RHODESTM, a
realtime
trafficadaptive
signal
control
system
that
uses a
traffic
flow
arrivals
algorithm (Head,

1995) based
on
detector
information
to
predict
future
traffic
volume.


In general,
two
issues
must be
addressed to achieve
realtime
adaptive
traffic
control: (1) development of a

mathematical
 model
 for
 the
 control
 of
 the
 stochastic,
 highly
 nonlinear
 traffic
 system,
 and
 (2)
 design
 of
 an

appropriate
control
 law
such
 that
 the
behavior
of
 the
 system
meets
certain
performance
 indices
 (e.g.,
mini
mum
queue
length,
minimum
delay
time,
etc.).
Mathematical
models
used
for
the
representation
of
traffic
phe
nomena
on
signalized
surface
street
networks
can
be
classified
into
the
following
three
generalized
categories:

(1)
storeandforward
models (Hakimi,
1969;
Singh
and
Tamura,
1974;
D’Ans
and
Gazis,
1976),
 (2)
disper
sionandstore
models (Cremer
and
Schoof,
1989;
Chang
et
al.,
1994),
and
(3)
kinematic
wave
models (Ste
phanedes
and
Chang,
1993;
Lo,
2001).


There
 are
 two
 fundamental
 approaches
 for
 online
 optimization:
 binary
 choice
 logic
 and
 the
 sequential

approach.
 In
 the
binary
choice
 logic
approach,
 time
 is
divided
 into
 successive
 small
 intervals,
and
a
binary

decision
is
made
either
to
extend
the
current
signal
phase
by
one
interval,
or
to
terminate
it.
Examples
of
this

approach
 include
 Miller’s
 algorithm,
 traffic
 optimization
 logic
 (TOL),
modernized
optimized
vehicle
actua
tion
 strategy
 (OVA),
 stepwise
 adjustment
 of
 signal
 timing
 (SAST),
 etc.
 (Lin,
 1989;
 Lin
 and
 Vijayakumar,

1989).
The
drawback
of
 this
approach
 is
 that
 it
only
considers
a
very
short
 future
 time
 interval
 (usually
3–

6 s)
 for
 the
 decision,
 and
 thus
 cannot
 guarantee
 the
 overall
 optimization
 of
 the
 signal
 operation.
 In
 the

sequential
approach,
the
length
of
a
decisionmaking
stage
is
relatively
longer
(from
50
to
100
s)
to
more
clo
sely
approach
the
longterm
optimal
control. In
OPAC,
developed
explicitly
for
realtime
traffic
control,
the

alternative
disadvantages
of
 the
binary
and
sequential
approaches
are
mitigated
by
 incorporating
a
rolling
horizon
approach;
however,
its
application
formally
is
limited
to
isolated
intersections.
Artificial
neural
net
works
 (ANN)
 also
 have
 been
 applied
 to
 finding
 the
 solution
 for
 traffic
 control
 problems (Nakatsuji
 and

Kaku,
 1991)
 through
 an
 assumed
 mapping
 between
 the
 control
 variables
 (e.g.,
 the
 split)
 and
 the
 objective

function
 (e.g.,
 the
queue
 length);
 the
neural
network
 is
 trained
offline,
using
 the
nonlinear
mapping
ability

of
ANN,
to
realize
 this
 relationship.
Then
the
signal
optimization
 is
performed
online,
using
the
selforga
nization
 property
 of
 an
 ANN.
 The
 training
 algorithm
 is
 a
 stepwise
 method
 (combination
 of
 a
 Cauchy

machine
and
the
‘‘backpropagation’’
algorithm).
However,
 this
approach
is
valid
only
when
the
traffic
sys
tem
is
 in
steady
state.


Although
 most
 existing
 adaptive
 signal
 control
 strategies
 incorporate
 an
 implicit
 recognition
 that
 traffic

conditions
 are
 time
 variant
 due
 to
 random
 processes,
 they
 generally
 adopt
 explicitly
 deterministic
 control

models.
Additionally,
most
employ
heuristic
control
strategies
without
an
embedded
traffic
flow
model.
Alter
natively, the
random
nature of the
traffic system
lends
itself
more
directly to a
stochastic
control
approach. In

the
work
 reported
 here,
 a
 stochastic
 traffic
 signal
 control
 scheme, based
on Markovian decision
 control, is

introduced.
The
objective
 is
 to
develop
a
realtime
adaptive
control
 strategy
that
explicitly
 incorporates
 the

random
nature
of
the
traffic
system
in
the
control. A
Markov
control
model
is
first
developed;
then
the
signal

control
problem
is
formulated
as
a
decisionmaking
problem
for
the
Markov
model.
This
approach
is
tested

both
on
a
 typical
 isolated
 traffic
 intersection
and
a
simple
network
comprised
of
five
 fourlegged
 signalized

intersections,
and
compared
to
fullactuated
control.
Analyses
of
simulation
results
using
this
approach
show

significant
 improvement
over
 traditional
 fullactuated
control,
 especially
 for
 the
 case
of
high
volume
 traffic

demand.


2. Markov control model 

A
stochastic
process
x(t) is
called
Markov (Papoulis,
1984) if
its
future
probabilities
are
determined by
its

most
recent
values;
i.e.,
 if
for
every
n and
t1 <
t2
� � �
<
tn 

P ðxðtnÞ
6 xnjxðtÞ8t 6 tn�1Þ ¼ 
P ðxðtnÞ 6 xnjxðtn�1ÞÞ: 

The
 adaptive
 control
 algorithm
 proposed
 is
based
on
a
discretetime,
 stationary,
Markov
control
 model

(also
known
as
a
Markov
decision
process
or
Markov
dynamic
programming)
defined
on (X,A,P,R),
where




1.
 X,
a
Borel2
 space,
 is
the
state
space
and
every
element
in
the
space
x 2 X is
called
a
state;

2.
 A,
also
a
Borel
space,
is
defined
as
the
set
of
all
possible
controls
(or
alternatives).
Each
state
x 2 X is
asso

ciated
with
a
nonempty
measurable
subset
A(x) of 
A whose
elements
are
the
admissible
alternatives
when

the
system
is
 in
state
x;


3.
 P,
 a
probability
measure
 space
 in
which
an
element
pij
k denotes
 the
 transition
probability
 from
state
 i to


state
 j under
alternative
action
k;
and

4.
 R,
a
measurable
function,
also
called
a
onestep
reward.


Selection
of
a
particular
alternative
results
in
an
immediate
reward
and
a
transition
probability
to
the
next

state.
The
total
expected
discounted
reward
over
an
infinite
period
of
time
is
defined
as


" # 

1

X 

bt
V D E rðxt; at Þ
; ð1Þ


t¼0


where
r( Æ ) is
the
onestep
transition
reward, bt (0
6 bt 6 1)
is
the
discount
factor,
and
a is
the
policy.
The
opti
mal
reward
v *,
or
the
supremum
(least
upper
bound)
of
V,
 is
defined
as


v�ðx; a�Þ ¼ sup½V ðx; aÞ�: ð2Þ

a2A 

It can be
obtained by
solving a
functional
equation (also called the dynamic
programming equation, or DPE):


v� ¼ Tv�; ð3Þ


where
T is
a
contraction
operator3
 and

" # 

N 
X 

TvðxÞ ¼ max
 qðx; aÞ þ b vðxÞpa 
: ð4Þij

a2A 
j¼1


The
expected
onestep
transition
reward
q(x,a),
 is
defined
as


N 
X 

qðx; aÞ ¼ 
 ra a ð5Þijpij:  
j¼1



The
unique
solution
of
the
above
DPE
can
be
calculated
iteratively
by
the
successive
approximation
method

(HernandezLerma,
1989)4:


" # 

N 
X 

vnðxÞ ¼ max
 qðx; aÞ þ b vn�1ðxÞp
a 

: ð6Þij
a2A 

j¼1


Therefore,
for
a
specific
control
problem,
once
the
transition
matrix
and
the
reward
matrix
are
defined,
then

by
maximizing
the
total
expected
reward,
a
policy
for
choosing
an
alternative
for
each
state
can
be
obtained.

This
represents
the
optimal
strategy
that
should
be
followed.


3. Traffic dynamics 

Consider
the
typical
fourlegged
isolated
traffic
intersection
shown
in
Fig. 1,
where
the
various
possible
traf
fic
movements
are
labeled
according
to
NEMA
(National
Electrical
Manufacturers
Association)
convention.


2
 The
states of a Markov
control
model
are
defined
on
the
Borel
space—a
Borel
subset of a
complete
separable
metric
space.
The
Borel


set
of
a
metric
space
is
the
set
in
the
smallest
Borel
field
containing
the
open
subset
of
that
metric
space.
See,
e.g.,
Loeve,
M.
Probability


Theory
I,
fourth
ed.,
SpringerVerlag,
1977,
pp.
92.

3
 A function T from
S into
itself,
where (S,d) is
a
metric
space,
is
a
contraction
operator
if d(Tu,Tv) 6 bd(u,v) for 0 6 b < 1 and
"u 2 S,


v 2 S.

4
 See
Appendix
A
for
proof.
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5 
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Fig.
1.
 A
typical
traffic
intersection.


The
state
equation
for
the
continuous
traffic
flow
process
associated
with
any
movement
j that
is
sampled

every
Dt seconds,
where
time
is
 indexed
with
the
integer
k,
can
be
expressed
by
the
current
queue
qj(k):


qjðkÞ ¼ qjðk � 1Þ þ DqjðkÞ; j ¼ 1; 2; . . . ; 8; ð7Þ


j j j jwhere
DqjðkÞ ¼ qinðkÞ � q ðkÞ is
 the
difference
 between
 the
 input
qinðkÞ and
 the
output
q ðkÞ during
 time
out out

interval [k � 1,k),
and
qj(k � 1)
is
the
queue
at
previous
time
instant (k � 1).
For
a
typical
fourlegged
traffic

intersection
with
eight
movements,
the
current
queue
q(k) can
be
further
defined
by
the
vector


qðkÞ ¼ ½qjðkÞ�
0
¼ ½q1ðkÞ; q2ðkÞ; . . . ; q8ðkÞ�

0

; ð8Þ


where
prime (
0 ) is
used
to
denote
transpose.
The
input qin(k) and
output qout(k) of
the
intersection
(i.e.,
num
ber
of
vehicles
entering/leaving
the
intersection)
can
also
be
similarly
defined
as
vectors
of
like
dimension:


j 0
 j 0

qinðkÞ ¼ ½q ðkÞ� ; q ðkÞ ¼ ½q ðkÞ� : ð9Þin out out

The
output
qout(k) can
further
be
expressed
as
a
function
of
the
current
control
of
the
intersection,
u(k),
and

the
current
queue,
q(k):


qout
ðkÞ ¼ foutðuðkÞ; qðkÞÞ; ð10Þ


where
fout(k) is
also
a
vector
of
the
same
dimension,
 i.e.,


fout
ðkÞ ¼ ½f 
j 
outðkÞ�

0

ð11Þ


and
where
the
elements
f j outðkÞ are
determined
by

h i 

f j outðkÞ ¼ 

min


0;

( 

qjðkÞ; Dt 
hmin


; ujðkÞ ¼ 0; 

ujðkÞ ¼ 1

ð12Þ


in
which
hmin
 is
the
minimum
headway,
and
uj(k) is
a
dichotomous
variable
indicating
the
control
signal
for

the
jth
movement:
uj(k) = 0
denotes
that
the
jth
movement
has
the
green
signal
and
uj(k) = 1
indicates
a
red

signal.


Under
standard
eightphase
dualring
control (Fig. 2),
the
barrier
divides
the
eight
NEMA phases
into
two

interlocked groups
(rings):
east/west
and
north/south;
in
each
ring,
four
movements
(two
through
movements

and
their
corresponding
leftturn
movements)
must
be
served
if
there
is
demand.
Although
there
are 2
Æ 4! = 48 

different
 phase
 sequences
 available,
 depending
 on
 the
 traffic
 demand,
 the
 ring
 and
 barrier
 rules
 restrict
 the

maximum
number
of
phase
transitions
in
a
single
cycle
to
six—a
maximum
of
three
distinct
phase
combina



1+5 FA 2+6 FB 

1+6 FA1 

2+5 FA 2 

3+7 FC 4+8 FD 

3+8 FC 1 

4+7 FC2 

Fig.
2.
 Eightphase
dualring
signal
control.


tions
on
each
side
of
 the
barrier.
Using
this
 information,
 the
phase
sequencing
constraints
on
choice
of
 the

current
control
depends,
at
most,
on
three
previous
control
signals:


uðkÞ ¼ fuðqðkÞ; s; uðk � s1Þ; uðk � s2Þ; uðk � s3ÞÞ; ð13Þ


where
s1
 is
 the
 time
 duration
 of
 the
 most
 recent
 previous
 phase,
 s2
 is
 the
 time
 duration
 of
 the
 nexttolast

phase,
 and
 so
 on.
 In
 addition
 to
 the
 sequencing
 constraints,
 the
 duration
 of
 the
 current
 signal,
 s,
 must
 be

bounded between
some
minimum
(e.g.,
minimum
green,
minimum
green
extension)
and
maximum
(e.g.,
max
imum
green)
time
period:


smin
6 s 6 smax
: ð14Þ


This
schema
easily
can
be
generalized
 to
traffic
networks
with
multiple
 intersections.
In
a
traffic
network

with
n intersections,
 the
order
of
 the
dynamic
equations
 is
 increased
 to
n · 8
(assuming
 that
 there
are
eight

traffic
movements
 in
 each
 intersection).
However,
 any
 complicated
 traffic
network
can
be
decomposed
 into

a
group
of
small
‘‘elementary
networks’’,
as
shown
in
Fig.
3,
consisting
of
five
intersections.
In
this
manner,

the
 study
of
 the
entire
 traffic
network
can
be
reduced
 to
 the
analysis
of
 these
elementary
networks
and
 the

interconnections
between
them.5


The
complete
traffic
dynamics
model
for
the
network
shown
in
Fig.
3
includes
the
following
equations:


uðkÞ ¼ ½u1ðkÞ; u2ðkÞ; . . . ; u5ðkÞ�
0

; 

fuðkÞ ¼ ½fu1ðkÞ; fu2ðkÞ; . . . ; fu5ðkÞ�
0

; 

h i0


qoutðkÞ ¼ 
qout1ðkÞ; qout2ðkÞ; . . . ; qout5ðkÞ
; 
h i0


qinðkÞ ¼ 
qin1ðkÞ; qin2ðkÞ; . . . ; qin5ðkÞ
; ð15Þ

h i0


qðkÞ ¼ 
q1ðkÞ; q2ðkÞ; . . . ; q5ðkÞ
; 
h i0


fout
ðkÞ ¼ 
fout
1ðkÞ; fout2ðkÞ; . . . ; fout5ðkÞ
; 

qðkÞ ¼ qðk � 1Þ þ DqðkÞ; 

where


q
j 
outiðkÞ ¼ foutðu

j 
i ðkÞ; q

j 
i ðkÞÞ; ð16Þ


5
 This
approach
also
facilitates
parallel
processing
techniques
to
improve
the
computational
efficiency
for
realtime
control.
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Fig.
3.
 A
typical
elementary
traffic
network
with
five
intersections.


8 

h i 

< min
 qi
jðkÞ; Dt ; ui

jðkÞ ¼ 0

f j hmin


out
ðkÞ ¼ 
 i ¼ 1; 2; . . . ; 5; j ¼ 1; 2; . . . ; 8: ð17Þ

: 

0; ui
jðkÞ ¼ 1


In
Eq.
(15),
the
subscripts
to
the
various
vector
quantities
refer
to
the
particular
intersection,
and
the
vector

quantities
themselves
are
as
previously
defined.


Unlike
the
case
of
an
isolated
 intersection,
the
 interactions
between
intersections
must
be
included
 in
the

traffic
 model
 for
 this
 case.
 For
 example,
 consider
 the
 simple
 case
 of
 the
 two
 adjacent
 intersections
 shown

in
Fig.
4.


The
eight
traffic
movements
associated
with
each
intersection
can
be
classified
into
two
different
types:


1.
External movement. The
arrival
vehicles
come
from/go
to
a
‘‘dummy
node’’
outside
the
network
(these
vehi
cles
can
be
considered
as
the
‘‘input/output’’
of
this
network);
and


4 7 
5 
2 3 

Intersection I

8 
1 

6 
4 7 
5 
2 3 8 

1 

6

 Intersection II 

Fig.
4.
 A
traffic
network
with
two
intersections.




� � 

2.
 Internal movement. The
arrival vehicles
come
from/go
to
a
neighboring node
inside
the
network
(these
vehi
cles
can
be
considered
as
the
‘‘interconnection’’
of
this
network).


For
example,
movements 1
and 6
are
internal
movements
of
intersection
I,
which
receive
the
outputs
from

intersection
II,
movements
3
and
6.
All
of
the
other
movements
of
intersection
one
are
external
movements.

Similarly,
all
of
the
movements
of
intersection
II
are
external
movements,
with
the
exception
of
movements 2

and
5,
which
receive
 the
output
from
the
movements
2
and
7
of
 intersection
I.
Then,
 for
 intersection
I,
 the

internal
movements
are
defined
by


� � � � � � � � �� 

1
 b3;1 3

; b6;1 6q ðkÞ ¼ fin
 k � T 3


; q k � T 3
 k � T 6

; q k � T 6


;inI II;I
 II;I
 outII
 II;I
 II;I
 II;I
 outII
 II;I

� � � � � � � � �� ð18Þ


6
 b3;6 3

; b6;6 6q ðkÞ ¼ fin
 k � T 3


; q k � T 3
 k � T 6

; q k � T 6


;inI II;I
 II;I
 outII
 II;I
 II;I
 II;I
 outII
 II;I


where
bj1;j2
 is
defined
as
the
vehicle
turning fraction
from
intersection
i1,
movement
j1
to
intersection
i2,
movei1;i2


6ment
j2,
 and where
T
j1
 represents
the
travel time
for
the
first
vehicle
in
the
platoon
of
vehicles
in
movement
j1i1;i2


of
intersection
 i1
 to
reach
intersection
 i2.

The
timedependent
turning
factors
can
be
represented
by
the
turning
fraction
matrix,
b(k),
whose
elements


indicate
the
percentage
of
vehicles
turning
from
a
certain
movement
at
the
upstream
intersection
to
a
specific

movement
at
the
down
stream
intersection.
For
the
case
of
two
intersections
shown
in
Fig. 4,
b(k) can
be
writ
ten
as
a 16
· 16
matrix:


ð19Þ


where

2 3 

0
 0 0 0
 0 0 0 0

6 

b
2;2
 b2;5
 7

0
 ðkÞ
0 0
 ðkÞ
0 0 0
6 I;II I;II 7 

6 7 

6 70
 0 0 0
 0 0 0 0

6 7 

6 7

bI;IIðkÞ ¼ 6 � � �
 � � �
 � � �
7

; 
6 7 

6 70
 0 0 0
 0 0 0 0

6 7 

6 7

b7;2
 b7;5

4 0
 ðkÞ
0 0
 ðkÞ
0 0 0 
5I;II I;II

0
 0 0 0
 0 0 0 0

2 3

0
 0 0 0 0
 0 0 0

6 70
 0 0 0 0
 0 0 0

6 7 

6 7 

b3;1
 b3;6

6 ðkÞ
0 0 0 0 
 ðkÞ
0 0 
7II;I II;I
6 7 

6 70
 0 0 0 0
 0 0 0

6 7

bII;IðkÞ ¼ 6 7 
: 

6 0
 0 0 0 0
 0 0 07 
6 7 

6 b6;1
 b6;6

7ðkÞ
0 0 0 0 
 ðkÞ
0 0 


6 II;I II;I 7 

6 7 

0
 0 0 0 0
 0 0 05 

0
 0 0 0 0
 0 0 0


Using
this
general
expression
for
b(k)


j 
br;j rqin
iðkÞ ¼ fin
 m;iðk � T m

r 
;iÞ; q ðk � T m

r 
;iÞ 8r 2 M i 

; m 2 I i ; ð20Þout
m m

6
 For
example,
b3;1 ðkÞ represents the
percentage of
vehicles
from
movement 3
of
intersection II
turning to
movement 1
of
intersection I
II;I

during
time
interval
k.


4 



where
Ii is
the
set
of
all
neighboring
intersections
with
direct
approaches
to
intersection
i,
and
M i is
the
set
of
m 

all
movements
of
intersection
m that
contribute
to
the
internal
movements
of
intersection
 i.

Practical
application
of
Eq.
(20)
relies
on
the
ability
to
predict
both
the
timedependent
turning
fractions,


b(k),
and
the
platoon
travel
times
from
neighboring
intersections
to
the
target
intersection,
T
j1
 .
The
estimai1;i2


tion
of
turning
fractions
from
count
data
has
been
the
subject
of
numerous
investigations;
see,
e.g.,
the
review

provided
by
Maher
(1984)
for
a
summary
of
models
that
require
counts
for
only
one
cycle
but
need
prior
turn
ing
proportion
estimation.
However,
the
accuracy
of
such
methods is
highly
dependent
on
how
representative

the
a priori estimates
are
of
the
current
events.
Alternatively,
estimations
based
on
simple
timeseries
analyses

do
not
need
such
prior
estimates
but
require
a
long
time
frame
which
impedes
their
responsiveness,
and
are

unreliable
during
times
of
sudden
and
highly
irregular
turning
movement
changes
caused
by
such
unforeseen

events
as
traffic
accidents.
Davis
and
Lan
(1995)
have
proposed
a
method
that
estimates
intersection
turning

movement
proportions
from
lessthancomplete
sets
of
traffic
counts,
even
under
conditions
in
which
the
num
ber
or
placement
of
detectors
 does
not
 support
 complete
counting.
Chang
 and
Tao
 (1997)
propose
a
 time
dependent
 turning
estimation
 that
 incorporates
 signal
 timing
 parameters
on
 the
distribution
of
 intersection

flows.
More
recently,
Mirchandani
et
al.
(2001)
propose
four
closedform
estimation
methods:
(1)
maximum

entropy
(ME),
(2)
generalized
leastsquared
(GLS),
(3)
leastsquared
error
(LS),
and
(4)
leastsquared
error/

generalized
leastsquared
error
(LS/GLS).
Although
not
specifically
addressing
the
estimation
of
turning
frac
tions
for
purposes
of
signal
timing,
Chen
et
al.
(2005)
and
Nie
et
al.
(2005)
have
examined
a
generalized
path

flow
estimator
(PFE)
as
a
onestage
network
observer
to
estimate
path
flows
and
path
travel times
from
traffic

counts
 in
 a
 transportation
 network,
 and
 have
 shown
 it
 to
 be
 a
 reasonably
 accurate
 method
 for
 estimating

dynamic
path
flows
based
on
limited
realtime
detector
data.
The
estimated
path
flows
can
further
be
aggre
gated
to
obtain
dynamic
origin–destination
(O–D)
flows,
a
byproduct
of
which
are
the
turning fractions
at
the

various
nodes in
the
network.
In
the
results
presented
here,
we
presume
that
the
b(k) can
be
determined
from

one
or
another
of
these
existing
estimation
procedures.


In
 order
 to
 determine
 the
 platoon
 travel
 times
 from
 neighboring
 intersections
 to
 the
 target
 intersection,

T

j1
 ,
we
 employ
 the
wellknown
empirical
model
developed
by
Robertson
 (1969)
 for
platoon
dispersion
 to
i1;i2

describe
 the
flow
dynamics
 from
upstream
 intersections
 to
downstream
movements.
Robertson’s
dispersion

model
 has
 been
 used
 and
 tested
 extensively
 in
 field
 applications
 involving
 both
 TRANSYT
 and
 SCOOT,

and
 found
 to
 be
 a
 very
 effective
 representation
 of
 platoon
 dynamics.
 In
 its
 basic
 form,
 the
 model
 has
 the

representation:


Q1ðt0
þ T Þ ¼ F � Q2ðt0Þ þ ð1� F Þ � Q1ðt0
þ T � 1Þ; ð21Þ


where


1
F ¼



1þ abT avg



and
where
Q1,
Q2
are
the
traffic
volumes
at
the
downstream
and
upstream
intersections
(measured
in
vehicles/

h),
respectively;
a and
b are
called
platoon
dispersion
parameters;
t0
is
the
initial
time
when
the
platoon
leaves

the
upstream
intersection;
Tavg
 is
the
average
travel
time,
and
T is
the
minimum
travel
time
between
the
two

intersections,
i.e.,
the
time
for
the
lead
vehicle
in
the
platoon
to
reach
the
downstream
intersection.7
 T
is
re
lated
to
Tavg
 through
the
parameter
b,
 i.e.,


T ¼ bT avg
: ð22Þ


Substituting
Robertson’s
platoon
dispersion
formula
into
Eq.
(20)
leads
to

X 

j
F � br;j r j

qin
iðkÞ ¼ 
 m;iðk � T rm;iÞ � qout
mðk � T rm;iÞ þ ð1� F Þ � qin
iðk � 1Þ ð23Þ

8r2M i 

m  
m2I i  

with
the
current
control
vector
defined
by


uiðkÞ ¼ fuðqiðkÞ; si; uiðk � s1Þ; uiðk � s2Þ; uiðk � s3ÞÞ; ð24Þ


7
 Both
T and
Tavg
 must
be
rounded
to
integer
values.




� � 

� 

where
 smini 6 si 6 smaxi,
 bm
r;j 

;ið�Þ
can
 be
 derived
 from
 counts
 from
 upstream
 stopline
 detectors
 according
 to

existing
procedures
discussed
previously,
and
where
the
T r 

m;i are
determined
by
Eq.
(22)
from
parameter
spec
ification
and
average
travel
speed.


4. Markov adaptive control model for traffic signal control 

The
state
variable
in
the
traffic
dynamics
equation
developed
above
is
queue
length.
Although
the
state
of

the
Markov
control
model
can
be
defined
as
the
number
of
vehicles
in
the
intersection,
this
approach
results
in

an
excessively
large
number
of
states,
even
for
a
single
intersection.8
To
address
this
problem,
the
state
of
the

Markov control
model is
instead defined by
introduction of a
binary
threshold
value
(number of vehicles)
indi
cating whether or not the
current queue for a
particular
movement is
sufficiently large to be ‘‘congested’’, i.e.,

if
the
queue
length
of
a
specific
movement
is
greater
than
its
threshold
value,
then
the
movement
is
in
the
‘‘con
gested
mode’’; otherwise it is in
the
‘‘noncongested
mode’’.
These
binary
modes
(congestion/noncongestion)

are
defined
as
the
two
states
 in
the
state
space
X.9


Since
the
state
space
is
discrete,
the
probability
measure
P is
a
discrete
transition
law,
and
the
probability

matrix
P is
timevarying
due
to
the
timevarying
traffic
flow.
At
time
step
k,
P is
a
function
of
q(k),
Dq̂ðk þ 1Þ,

and
u(k):


PðkÞ ¼ 
f p ½qðkÞ; qinðk þ 1Þ; uðkÞ�; ð25Þ


where
q(k) is
the
current
queue,
Dq̂ðk þ 1Þ
is
the
estimated
number
of
arrivals
 in
the
next
time
interval,
and

u(k)
 is
 the
 control
 signal.
 Assuming
 that
 at
 time
 step
k,
 the
 current
 queue
 length
 of
 a
 specific
 movement
 i 
is
denoted
by
q0;
and
qg
 vehicles
can
pass
 through
 the
 intersection
 if
 the
 traffic
 signal
 for
 this
movement
 is

green;
 then
 the
 transition
 probability
 from
 any
 current
 state
 (either
 congested
 or
 noncongested)
 to
 the

noncongested
state
under
control
signal
u can
be
written
as


ui i i i ip ¼
p q̂ þ q � dðuiÞ � 
q 6 q ð26ÞSi!N i in
 0
 g
 threshold


and,
to
the
congested
state,
as

ui uip ¼
1� p ; ð27ÞSi!Ci Si!N i 

where


1; when
ui ¼
Gi;

dðuiÞ ¼ 
 ð28Þ

0; otherwise: 

In
the
above,
qi is
the
threshold
which
defines
the
congested/noncongested
state;
Si is
the
current
state
threshold


(Ni for
noncongested
state
and
Ci for
congested
state);
ui is
the
control
signal (Gi for
green
signal
and
Ri for

red
signal).
Two
special
cases
are
noted
in
that:


Ri Rip �
1; and
 p �
0: ð29ÞCi !Ci Ci!N i 

As
mentioned
previously,
for
a
typical
traffic
intersection
with
eight
independent
movements,
the
total
number

of
states
is
28
=
256.
The
transition
probability
for
each
movement
is
also
independent;
therefore,
the
overall

transition
probability
for
an
intersection
is


8

Y 

p
u 

¼
 pui ; ð30ÞStatej!Stater Si !Si  
i¼1



where
j, r = 1,2, . . . , 256;
and
u(k) = [u1,u2, . . . ,u8] 0
.


8
 For
example,
if
the
number
of vehicles
under
consideration
is
20
per
movement,
then
for
an
isolated
intersection
with
eight
movements,


the
total
number
of
states
is
218
� 3.78
 .· 1010


9
 For
an
isolated
intersection
with
eight
movements
and
ten
vehicles
per
movement,
the
number
of
states
is
dramatically
reduced
by
a


factor
of
108
 to
28
=
256.




The
reward
matrix
R has
the
same
dimension
and
a
definition
similar
to
that
of
the
probability
matrix.
The

control
objective
is
to
maintain
the
noncongested
condition
or,
if
already
congested,
to
transit
to
a
noncon
gested
state.
The
latter
yields
a
greater
reward
than
the
former
and
the
transition
from
a
noncongested
state

to
congested
carries
a
greater
penalty
than
remaining
in
a
congested
state.
Since
the
congested/noncongested

state
is
defined
in
terms
of
queue
length,
the
reward
matrix
is
a
function
of
the
current
queue,
the
threshold,

and
the
control
signal:


RðkÞ ¼ 
fr½q0ðkÞ; qthreshold
ðkÞ; uðkÞ�: ð31Þ


For
example,
if
the
objective
is
to
minimize
the
queue
length,
then
the
reward
for
each
possible
case
can
be

chosen
as
the
following:


rGi ¼
qi þM1;N i!N i 0


rRi ¼
qi þM2;N i!N i 0


rGi ¼
qi þM3;N i!Ci 0


rRi ¼
M4;N i!Ci 

rGi ¼
qi þM5;Ci!N i 0


rRi ¼
N :A:;Ci!N i 

rGi ¼
qi þM6;Ci!Ci 0


rRi ¼
M7;N i!N i 

where
Mi,
 i = 1,2, . . . , 7,
are
constants
which
can
be
specified
for
a
specific
traffic
control
problem.10


Similar
to
the
probability
matrix,
the
overall
reward
for
an
intersection
with
eight
independent
movements

is


8

Y 

r
u 

¼
 rui ; ð32ÞStatej!Stater Si!Si  
i¼1



where
 j, r = 1,2, . . . , 256.

The
signal
phases
are
the
different
alternatives
for
each
state;
for
a
typical
isolated
traffic
intersection
with


eight
independent
movements
under
eightphase
dualring
signal,
the
signal
control
problem
takes
the
form
of

a
 256state
 Markov
 process
 with
 eight
 alternatives
 for
 each
 state.
 The
 optimal
 policy
 is
 then
 obtained
 by

selecting
 the
alternative
 for
each
state
 that
maximizes
the
total
expected
reward.
As
has
been
demonstrated

above,
 this
 optimal
 solution
 is
 unique
 and
 can
 be
 calculated
 iteratively
 by
 the
 successive
 approximation

method.


The proposed Markov control
model
can be
illustrated by the simplified
example of the twophase
isolated

intersection
shown
in
Fig. 5, in
which
traffic
flows
along
two
directions,
i.e.,
north/south
(denoted by
1)
and

east/west
(denoted by
2).
Thus,
there
are
four
possible
states,
i.e.,
N1N2,
N1C2,
C1N2,
and
C1C2.
Fig. 6
shows

the
schematics
of
this
Markov
chain.
To
simplify
the
example,
amber
displays
and
all
red
signals (R1R2) are

ignored;
G1G2
 is
 prohibited
 for
 obvious
 reasons.
 Under
 these
 conditions,
 there
 are
 two
 alternatives
 (signal

phases)
in
each
state,
i.e.,
G1R2
 and
R1G2.
With
the
usual
assumption
of
Poisson
arrivals,
the
various
transi
tion
probabilities
can
be
calculated
directly.
For
example,
the
transition
probabilities
from
the
noncongested

state
are


qthreshold
�qþqg
 �kDt qthreshold
�q 
X X 

�kDt 
G ðkDtÞ

n 
e R ðkDtÞ

n 
e

p ¼
 ; p ¼
 ; ð33aÞN !N N!Nn! n! 
n¼1
 n¼1



G G R R pN !C ¼
1� pN !N ; pN!C ¼
1� pN!N ; ð33bÞ


where
n is
a
positive
integer (n = 1,2, . . .);
k is
the
average
vehicle
arrival
rate
(vehicles/h)
and
Dt is
the
time

interval
(i.e.,
duration
of
each
counting
period).


10
 If
the
objective
is
to
minimize
the
delay
time,
the
specific
rewards
can
also
be
chosen
as
functions
of
the
vehicle
delay.




Fig.
5.
 An
isolated
intersection
with
through
movements
only.


N1 N 2 N1 C2 

p1,1 

r1,1 

p1,2 r1, 2 

p2,1 r2,1 

p2,2 

C1C2C1N 2 
p3,4 r3,4 

p4,3 r4,3 

r3,3 

p4,4 

p3,1 p1,3 p4,2 p2,4 

p4,1 p3,2 

p2,3 p1,4 

r3,1 r1,3 r4,2 r2,4 

r4,1 r3,2 

r2,3 r1,4 

Fig.
6.
 The
Markov
chain
for
the
example.


r2,2 

p3,3 

r4,4 

... 

The
corresponding
state
probabilities
are


G1R2
 G1
 R2p ¼
p � p ;N1N 2!N1N 2
 N 1!N 1
 N2!N 2


G1R2
 G1
 R2
p ¼
p � p ;N1N 2!N1C2
 N 1!N 1
 N2!C2 ð34Þ


Since,
for
this
example,
there
are
four
states
with
two
alternatives
for
each
state,
the
elements
above
form

an 8
· 4 transition
probability
matrix, as
shown in Table 1.
Elements of the
reward
matrix
can be
calculated in

similar
fashion.


A
general
block
diagram
of
traffic
control
using
this
scheme
at
an
isolated
signalized
intersection
is
 illus
trated
 in
Fig.
 7,
 and
a
 corresponding
 computational
 flow
 chart
 shown
 in
 Fig.
 8.
Based
on
 the
 current
 and

the
 estimated
 traffic
 flow,
 the
 controller
 generates
 a
 traffic
 control
 signal
 to
 control
 the
 traffic
 system
 for

the
next
time
interval.


In
the
application
of
this
procedure
to
realtime
adaptive
control
for
a
traffic
system,
the
timevarying
prob
ability
matrix
P and
the
reward
matrix
R are
calculated
and
updated
every
Dt seconds11;
a
decision
 is
 then


11
 The
minimum
time
interval
is
chosen
as
Dt =
smini (i.e.,
minimum
green
extension
time).




Table
1


The
state
probability
matrix
for
the
example


State
 N1N2
 N1C2
 C1N2
 C1C2


N1N2
 G1R2
 p
G1R2

N1N2!N1N2


p
G1R2


N1N2!N1C2

� � �
 p

G1R2


N1N2!C1C2


R1G2
 pR1G2

N1N2!N1N2


N1C2
 G1R2


R1G2


. . 
. 

. . 
. 

C1N2
 G1R2


R1G2


. . 
. 

. . 
. 

C1C2
 G1R2
 pG1R2


C1C2!C1C2


R1G2
 p
R1G2


C1C2!C1C2


Input  

Queue  Intersection 

System Dynamics 

Output 

Queue 

Controller Estimation 

• • 

Fig.
7.
 Traffic
control
at
signalized
intersection.
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Fig.
8.
 Computational
flow
chart.
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Fig.
9.
 Traffic
control
for
two
intersections.


made
regarding
the
choice
of
the
control
signal
for
the
next
time
interval
based
on
the
current
measurement

from
the
detector,
as
well
as
the
estimation.
Once
the
optimal
policy
is
found,
it
is
implemented
for
one
time

step
(i.e.,
Dt seconds).
At
the
next
time
interval,
both
the
probability
matrix
and
reward
matrix
are
updated

and
the
whole
decisionmaking
process
 is
repeated.


To
enforce
the
phase
constraints,
a
stepbystep
decisionmaking procedure
(also
termed
a
‘‘decision
tree’’)

is
employed.
For
example,
a
decision
is
made
first
to
determine
which
ring
will
be
served
by
the
Markovian

decision
algorithm.
After
this
is
determined,
the
second
decision
is
to
choose
one
of
the
four
alternatives
from

the
first
decision,
again
using
the Markovian decision
algorithm.
The
next
phase is
either
fixed
or can be
cho
sen
from
the
two
phases
left,
depending
upon
the
second
decision.
At
the
last
decision
step
for
this
ring,
there

is
either
no
phase
or
just
one
fixed
phase
left.
This
procedure
not
only
guarantees
the
phase
constraints
but

also
dramatically
reduces
computation
time.


Application
of
 the
decision
control
 to
 the
 signal
 control
of
 a
 network
 of
multiple
 intersections
proceeds

along
 a
 similar
 manner;
 a
 block
 diagram
 for
 the
 control
 system
 of
 two
 traffic
 intersections
 is
 shown
 in

Fig.
9.
In
such
cases,
the
control
signal
of
the
two
neighboring
intersections
do
not
interact
until
some
min
imum
travel
time,
at
which
time
the
control
is
modeled
through
the
probability
estimation
of
internal
move
ment
arrivals
at
the
downstream
intersections.
That
is,
assuming
that
the
minimum
travel
time
between
two

intersections
is
longer
than
the
minimum
green
extension
time,
the
control
signals
of
the
two
intersections
do

not
interact
due
to
the
random
travel
time
delay
between
them.
After
the
minimum
travel
time,
the
control
at

one
intersection
does
affect
intersections
downstream;
this
effect
is
modeled
in
the
probability
estimation
at
the

downstream
 intersections.
 As
 a
 result,
 adjacent
 intersections
 can
 be
 ‘‘isolated’’
 and
 the
 respective
 control

actions
can
be
calculated
separately.


5. Results on application of Markov adaptive signal control model 

In this
section, the control
model is
tested by
simulation on both
an isolated
traffic
intersection and a typical

traffic
network
with
five
interconnected
intersections
to
evaluate
its
performance
with
respect
to
conventional

fullactuated
 control.
 Specifically,
 a
 series
 of
 computer
 simulations
 are
 performed,
 under
 various
 different

vehicle
arrival
rates,
and
the
means
and
variances
of
the
respective
performance
measures
of
the
conventional

and
proposed
adaptive
control
algorithm
are
analyzed.
The
simulations
assume
that
queues
on
all
approaches

are
empty
as
an
initial
condition
and
that
vehicle
arrivals
on
external
approaches
follow
a
Poisson
distribu
tion;
 for
 demonstration
 purposes,
 a
 value
 of
 qthreshold
= 1
 (i.e.,
 the
 presence
 of
 any
 queue)
 was
 assumed.

The
reward
matrix
was
based
on
the
objective
being
to
minimize
the
queue
length,
and
the
reward
calculated

according
to
Eq.
(32).
In
the
case
of
the
network
simulation,
the
distance
between
any
two
adjacent
intersec
tions
is
chosen
to
be
1000
feet.
The
parameters
used
in
the
simulation
(for
all
the
movements)
are
summarized

as
follows:




Parameter
 Value


Minimum
green
time
(s)
 3

Maximum
green
time
(s)
 30

Extension
(gap)
time
(s)
 3

Yellow
time
(s)
 3

All
red
time
(s)
 0

Loss
time
(s)
 0

Minimum
departure
headway
(s)
 2

Minimum
arrival
headway
(s)
 2


Using
the
same
set
of
input
(arrival) data,
the Markovian
control
algorithm
and
the
conventional
fullactu
ated control
were applied to a
fourlegged isolated
traffic
intersection, such as that
shown in
Fig. 1, with eight

movements
(four
through
movements
and
their
corresponding
leftturn
movements)
to
evaluate
their
perfor
mances.
The
algorithm
used
to
simulate
fullactuated
control
was
designed
to
mimic
the
logic
of
a
common

Type
170
dual
ring
controller
with
parameters
as
specified
in
the
previous
table—eightphase
operation
was

assumed.
 To
 minimize
 initial
 condition
 effects,
 the
 two
 algorithms
 are
 applied
 for
 a
 simulated
 time
 of

65
min,
and
the
average
delay
(per
vehicle)
during
the
last
five
minutes
of
the
simulation
is
used
for
compar
ison.12
 Two
 different
 general
 cases
 were
 considered:
 (1)
 uniform
 (balanced)
 demand
 among
 all
 conflicting

movements,
and
 (2)
 the
 through
 traffic
demand
dominates
 the
 leftturn
 demand
by
a
 ratio
of
2:1.
The
 two

algorithms
were
applied
for
different
arrival
rates,
representing
a
range
of
both
unsaturated
and saturated
con
ditions.
(Under
the
assumption
of
2second
minimum
headways,
the
intersection
has
a
total
capacity
of
3600

vehicles
per
hour
of
green.) In
order
to
provide
statistical
significance
for
the
simulation
results,
the
two
algo
rithms
were
tested on
different
sets of
random
data for
each
arrival
rate (a
total of
forty in the cases in
which

leftturning
 traffic
was
assumed
equal
 to
through
traffic,
and
fifteen in
the
cases
 in
which
 leftturning
traffic

was
equal
to
half
of
the
through
traffic).


The
means
of
the
average
delay
per
vehicle
for
the
final
fiveminute
period
of
each
set
of
forty
simulations

corresponding
to
the
two
cases
of
leftturn
to
through
traffic
ratios
of
1.0
(LT/T
=
1.0)
and
0.5
(LT/T
=
0.5)

are
plotted
in
Fig.
10,
where
‘‘MAC’’
stands
for
the
Markov
adaptive
control
algorithm,
and
‘‘FAC’’
stands

for
 the
fullactuated
control.
As
a
 further
 ‘‘benchmark’’
comparison,
delay
calculations
based
on
Webster’s

delay
 equation
 for
 Poisson
 arrivals
 under
 fixedtime
 (pretimed)
 control
 are
 also
 provided
 (labeled
 Pre

(C = 60 s) 
and Pre (C = 45 s)
for
cycle
lengths
of
60
and
45
s,
respectively).


Significance
tests
based
on
tstatistics
resulting
from
hypothesis
tests
on
the
difference
of
sample
means
indi
cate
that
the
difference
in
means
of the
simulation
results
is
significantly different
(at
0.05
level
or
above)
for
all

cases
except
for
the
LT/T
=
1.0
case
in
which
the
total
intersection
volume
is
1500
vph.
The
hypothesis
tests
on

the
difference
of
means
assume
that
the
two
populations
are
independent
and
have
a
normal
distribution.
Alter
natively,
order
statistics
(distributionfree
statistics)
estimate
the
limits
within
which
a
certain
percentage
of
the

probability
of
the
random
variable
lies
with
a
certain
degree
of
confidence
without
having
prior
knowledge
of

the
probability
distribution.
For
the
case
involving
40
samples
taken
from
a
population,
the
upper/lower
bound

within
which
90%
of
the
probability
of
the
random
variable
lies
can
be
obtained
with
92%
confidence.
Fig.
11

displays
these
bounds
on
the
steady
state
delay
resulting
both
from
fullactuated
and from
Markovian
control

algorithms.


From
the
above
figures,
except
for
the
case
in
which
the
leftturn
traffic
volume
is
equal
to
the
through
vol
ume
(LT/T
=
1.0)
and
the
traffic
volume
is
relatively
light
(e.g.,
arrival
rate
is
200
vehicles/hour/movement),

the
performance
of
the
Markov
algorithm
is
significantly
better
than
the
fully
actuated
controller
(as
well
as

the
pretimed
controller).
For
example,
for
LT/T
=
1.0,
when
k =
300,
the
Markov
algorithm
shows
about
a

25%
improvement
on
the
average
steady
state
delay;
for
k = 400
and k = 500,
the
average
steady
state
delay
of

the
Markov
controller
is
only
about
one
half
of
that
of
the
fullactuated
controller.
As
expected,
under
sat
urated
conditions
both
algorithms
exhibit
increasingly
worse
delays,
although
the
Markov
control
(on
aver

12
 In
most
cases,
the
steady
state
is
reached
within
an
hour
of
simulation.
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10.
 Algorithm
performance
comparison
for
isolated
intersection.


age)
still
outperforms
fullactuated
control.
The
simulation
results
indicate
that
by
applying
the
Markov
adap
tive
control
algorithm,
the
average
delay
at
an
isolated
intersection
may
be
reduced
dramatically
(22–51%).


The
Markov
adaptive
control
algorithm
was
also
tested
on
a
 typical
 traffic
network
of
five
 intersections,

such
as
that
depicted
in
Fig. 3.
For
this
case,
Poisson
arrivals
were
assumed
at
the
external
inputs; the
arrivals

at
all
 internal
approaches
are
an
outcome
of
the
control
strategy
employed
at
associated
upstream
intersec
tions.
The
 tests
were
conducted
 for
LT/T
=
1.0
using
five
different
arrival
 rates:
k =
200,
300,
400,
500
and

600
vehicles
per
hour
per
movement.
The
internal
approaches
 linking
the
five
intersections
were
assumed
to

be
1000
ft
in
length,
and
the
average
travel
speed
assumed
to
be
30
mph
(resulting
in
a
value
of
Tavg
= 23 s).

The
parameters
in
Robertson’s
platoon
dispersion
model
were
assumed
to
be
a =
0.35,
b =
0.8—the
common

default
values
for
US
studies.
The
mean
values
(of
the
40
sets
of
data)
of
the
steady
state
delay
are
plotted
in

Fig.
12.
The
dotted
lines
in
Fig.
12
display
the
upper/lower
bounds
within
which
90%
of
the
probability
of
the

steady
state
delay
resulting
both
from
fullactuated
and
from
Markovian
control
algorithms
lay.


The
results
indicate
that
the
Markov
algorithm
substantially
outperforms
traditional
fullactuated
control,

particularly
when
the
intersection
is
at,
or
near
saturation.
For
example,
when
k 6 500
(total
intersection
vol
ume
of
4000
vph),
the
average
steady
state
delay
of
the Markov
controller
is
only
about
one
half
of
that
of
the

fully
actuated
controller.
Under
heavy
oversaturated
conditions (k =
600),
delay
with
both
algorithms
tend
to

converge
at
a
relatively
high
value.


We
note
that,
under
simple
fivenode
network
conditions
with
identical
arrival
rates,
the
performance
of
the

Markov
 control
 algorithm
 closely
 mirrors
 that
 obtained
 in
 the
 case
 of
 the
 isolated
 intersection
 example

(Fig.
13).
Although
preliminary,
the
results
suggest
that
application
of
the
algorithm
in
a
network
setting
tends

to
decrease
variability
 in
performance;
 this
 is
expected,
since
 the
variability
expressed
 in
the
Poisson
arrival

patterns
 at
 the
 external
 nodes
 becomes
 an
 increasingly
 minor
 factor
 as
 the
 number
 of
 internal
 approaches

increases.
This
latter
factor
may
help
to
explain
the
large
variance
seen
in
the
isolated
intersection
case
under

heavy
oversaturation.


As
stated
previously,
the
specific
objective
used
in
these
examples
of
application
of
the
Markov
Adaptive

Control
algorithm
was
not
specifically
to
minimize
delay,
but
rather
to
minimize
the
queues
on
the
intersection

approaches;
the
delay
performance
characteristics
presented
above
were
an
ancillary
outcome
of
the
specific

objective.
Relative
to
performance
related
to
that
specific
objective,
Fig.
14
presents
representative
values
of
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Fig.
11.
 Upper
and
lower
bounds
on
simulation
results.


the
maximum
queues
for
each
movement
obtained for
the
network
case
in
which
the
total
intersection
volume

is
3200
vph,
or
about
90%
of
intersection
capacity.


The
 results
 indicate
 that
 the
Markov
Adaptive
Control
algorithm
significantly
outperforms
 fullactuated

control
in
this
aspect,
although
it
must
be
noted
that
fullactuated
control
is
not
explicitly
designed
to
mini
mize
queue
length,
but
rather
implicitly
works
toward
this
end
via
its
extension
settings.


6. Summary and conclusions 

Traffic
signal
control
is a
major
ATMS
component
and
its
enhancement
arguably is
the
most
efficient
way

to
reduce
surface
street
congestion.
The
objective
of
the
research
presented
here
has
been
to
present
a
more

effective
systematic
approach
to
achieve
realtime
adaptive
signal
control
for
traffic
networks.
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 MAC
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network
and
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In
this
 research,
 the
problem
of
finding
optimal
 traffic
signal
 timing
plans
has
been
solved
as
a
decision
making
problem
for
a
controlled
Markov
process.
Controlled
Markov
processes
have
been
used
extensively

to
analyze
and
control
complicated
stochastic
dynamical
systems;
 its
probabilistic,
decisionmaking
features

match almost
perfectly
with
the
design
features
of
a
traffic
signal
control
system.
The
Markovian
model
devel
oped
herein
as
the
system
model
for
signal
control
incorporates
Robertson’s
platoon
dispersion
traffic
model

between
intersections
and employs
the
value
iteration
algorithm
to
find
the
optimal
decision
for
the
controlled

Markov
process.
Analysis
of
computer
simulation
results
indicates
that
this
systematic
approach
is
more
effi
cient
than
the
traditional
fullactuated
control,
especially
under
the
conditions
of
high
traffic
demand.




There
are,
of
course,
significant
limitations
to
the
present
approach.
Most
notable
is
that
as
the
size
of
the

traffic
network
increases,
i.e.,
the
number
of
nodes/intersections
and/or
links
increases,
the
dimension
of
the

Markovian
control
model
increases
dramatically,
requiring
more
memory
space
and
computation
time.
This

dimensionality
issue
is
very
important
to
realtime
implementation,
where
processing
speed
is
crucial.
In
the

current
formulation,
one
potential
solution
to
this
problem
is
alluded to by decomposing
the
network
into
sets

of
 interlinked
network
kernels
of
five
intersections
that
could
be
handled
by
distributed/parallel
processing

protocols;
 however,
 no
 attempt
 has
 been
 made
 to
 thoroughly
 investigate
 the
 issues
 of
 such
 decomposition

algorithms.
Further,
before
any
attempt
to
implement
the
results,
a
comprehensive
sensitivity
analysis
needs

to
be
conducted
to
study
the
effect
of
the
various
parameters
employed
in
the
simulation
testing
on
both
the

performance of the
model
as
well
as
on
the
objective
function.
Finally,
for
field
testing,
the
original C language

code
must
first
be
rewritten
into
assembly
language;
then
the
firmware
can
be
loaded,
or
’’burned
in’’
to
the

PROM
(Programmable
ReadOnly
Memory)
chip
of
the
controller.


Appendix A. Successive approximation method—value iteration algorithm 

The
successive
approximation
algorithm
given
by
Eq.
(6)
can
be
proved
by
Banach’s
fixed
point
theorem.

Banach’s
fixed
point
 theorem
states
 that
 if
T is
a
contraction
operator
mapping
a
complete
metric
space


(S,d) into
itself,
then
T has
a
unique
fixed
point
v *
 such
that
for
any
v 2 S and
n P 0:


dðT nv; v�Þ 6 bn
dðv; v�Þ; ðA:1Þ


*where
v *
2 S satisfies
Tv* =
v ,
d is
the
metric
and
0
6 b < 1. 

To
prove
the
operator
T defined
in
Eq.
(4)
for
the
Markov
process
is
a
contraction
operator,
let
B(X) be
the


Banach
space
(a
complete
normed
linear
space)
of
realvalued
bounded
measurable
functions
on
a
Borel
space

X with
supremum
norm:
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2 3 4 5 6 7 8 

kvk ¼ sup
jvj: ðA:2Þ

x 



� " # " # � 

� � 

� � 

For
any
u 2 B(X) and
v 2 B(X),
we
have


� N N � 

X X 

� a a �jTvðxÞ � TuðxÞj ¼
� max
 qðx; aÞ þ b vðxÞp �max
 qðx; aÞ þ b uðxÞp �ij ij 
� a2A a2A �

j¼1
 j¼1


� N � 

X 

6 b max
� ½vðxÞ � uðxÞ�paij� 6 bkvðxÞ � uðxÞk: 
a2A � � 

j¼1


Taking
the
supremum
over
all
x 2 X:


kTv � Tuk 6 bkv � uk; ðA:3Þ


where
k Æ k is
the
supremum
norm.
Thus
by
the
definition,
T is
a
contraction
operator.

Rewrite
Eq.
(6)
as


vn ¼ Tvn�1
¼ T nv0


with
arbitrary
 initial
condition
v0
2 V,
 then
by
the
Banach’s
fixed
point
theorem,


kvn � v�k ¼ kT nv0
� v�k 6 bnkv0
� v�k: ðA:4Þ


Since
0
6 b 6 1 and 
v is
bounded,


limit
vn ! v� ðA:5Þ

n!1


i.e.,
the
optimal reward,
or
the
solution
of
Eq.
(4),
exists
and
can
be
approximated
by
the
valueiteration
algo
rithm.
The
uniqueness
of
this
solution
is
also
guaranteed
by
the
Banach’s
fixed
point
theorem.
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