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Stochastic Analysis of Single-Hop Communication
Link in Vehicular Ad Hoc Networks
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Abstract—A vehicular ad hoc network (VANET) is a promising
addition to our future intelligent transportation systems, which
supports various safety and infotainment applications. The high
node mobility and frequent topology changes in VANETs impose
new challenges on maintaining a long-lasting connection between
network nodes. As a result, the lifetime of communication links
is a crucial issue in VANET development and operation. This
paper presents a probabilistic analysis of the communication link
in VANETs for three vehicle density ranges. Firstly, we present
the stationary distribution of the communication link length using
mesoscopic mobility models. Secondly, we propose a stochastic
microscopic mobility model that captures time variations of inter-
vehicle distances (distance headways). A discrete-time finite-state
Markov chain with state dependent transition probabilities is
proposed to model the distance headway. Thirdly, the proposed
stochastic microscopic model and first passage time analysis are
used to derive the probability distribution of the communication link
lifetime. Numerical results are presented to evaluate the proposed
model, which demonstrate a close agreement between analytical and
simulation results.

Keywords—Vehicle mobility, communication link, microscopic mo-
bility, mesoscopic mobility, vehicle traffic flow.

I. INTRODUCTION

IN recent years, there have been extensive R&D activities to
develop vehicular ad hoc networks (VANETs) on the transport

infrastructure, which will enable communications among vehicles
and road-side units [2]. VANETs are expected to enhance the
intelligent transportation systems (ITS) and support not only
public-safety applications, but also a wide range of infotainment
applications.

Unlike traditional mobile ad hoc networks, the high node mo-
bility in VANETs can cause frequent network topology changes
and fragmentations. Moreover, VANETs are susceptible to vehicle
density variations from time to time throughout the day. This
imposes new challenges in maintaining a connection between
vehicular nodes. The length of the communication link and its
lifetime between network nodes are critical issues that determine
the performance of network protocols. From a routing protocol
perspective, the communication link length, i.e., the hop length,
determines the route length between source and destination
pairs. The route length is an important metric in shortest path
algorithms, which are a base of many routing protocols. Addi-
tionally, a short communication link lifetime can disrupt an on-
going packet transmission between two nodes, thus triggering a
new route discovery procedure. The interruptions of information
transmissions not only lead to a reception failure, but can also
result in wastage of the limited radio bandwidth. From a medium
access control (MAC) perspective, the communication link length
determines the amount of channel spatial reuse and the amount of
channel access that the nodes within a hop have. Simulations of
the IEEE 802.11p standard MAC protocol have shown that a large
relative speed between nodes (i.e., short link lifetime) reduces the
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channel access time of vehicular nodes [3]. Furthermore, the di-
verse potential applications for VANETs vary in their connection
time requirements. For example, safety applications do no require
a long link lifetime when compared to multimedia applications
[2]. Hence, analyzing the communication link length and lifetime
is essential for designing efficient routing and MAC protocols that
support different application requirements in VANETs [3], [4].

A distance headway is the distance between identical points on
two consecutive vehicles on the same lane. The distance headway
and its variations over time play an essential role in determining
both the communication link length and its lifetime. Modeling
vehicle traffic characteristics (e.g., the headways) has attracted
great attention from researchers in transportation engineering for
many years. In general, vehicle mobility models in the literature
can be categorized into three (microscopic, mesoscopic, and
macroscopic) types according to the detail level of the interactions
among vehicles that the model characterizes [5]–[7]. A macro-
scopic distance headway model describes the average distance
headway over a highway. On a mesoscopic level, the distance
headways of individual vehicles are described by independent and
identically distributed random variables [5], [8]. A microscopic
model specifies time variations of a distance headway according
to the driver behaviors and interactions with neighboring vehicles
[5], [6]. Mesoscopic models are used to model the communication
link length between two network nodes [8]. Given an available
communication link with a certain length, the knowledge of the
link duration (lifetime) is of major importance especially for
applications with high rate contents and strict delay requirements.
In the literature, there are studies to model the communication
link lifetime based on mesoscopic models and/or deterministic
microscopic properties (e.g., [8]). However, the two main factors
that affect changes of a distance headway over time, i.e., the driver
behaviors and interactions with neighboring vehicles, are both
random. Furthermore, the correlation between a distance headway
and its changes over a time period is not captured in a mesoscopic
model. Therefore, to accurately model the communication link
lifetime, a microscopic mobility model should be used. In general,
microscopic mobility models in the literature include a set of
deterministic and/or probabilistic rules that define how a vehicle
on road changes its speed and/or acceleration in reaction to its
neighboring vehicles’ behaviors [5]. As such a model depends
on the behaviors of neighboring vehicles over time, the analysis
tends to take the form of case studies (e.g., [8]).

In this paper, we present a stochastic analysis of the com-
munication link, based on the three types of distance headway
models. On a macroscopic level, we consider three levels of
average distance headways, corresponding to different traffic
flow conditions. For each traffic flow condition, we employ the
associated mesoscopic distance headway model to derive the
probability distribution of the communication link length. We
propose a microscopic model that describes the time variations of
a distance headway. The model takes into account the dependency
of the changes of a distance headway on its current value. We
validate the proposed dependency using empirical and simulated
highway data. With the proposed stochastic microscopic model,
we derive the probability distribution of the communication link
lifetime using the first passage time analysis. Finally, we simulate
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Figure 1. An illustration of the proposed discrete-time Nmax-state Markov chain model of the distance headway

highway vehicular traffic using microscopic vehicle traffic simu-
lator, VISSIM, and demonstrate that the analytical results of our
model match well with simulation results.

II. SYSTEM MODEL

Consider a VANET on a multi-lane highway with no on or
off ramps. We focus on vehicles in a single lane with lane
changes implicitly captured in our analysis. We choose to model
a single lane from a multi-lane highway instead of a single-lane
highway, in order to be more realistic in a highway scenario. A
vehicle can overtake a slower leading vehicle, if possible, and
accelerate towards its desired speed1. Assume that the highway
is in a steady traffic flow condition defined by a time-invariant
vehicle density, and denote the vehicle density on the lane under
consideration by D in vehicles per kilometer (veh/km). Let µ
and σ be the mean and the standard deviation of the distance
headway in meters, respectively, where µ = 1000/D and σ are
constant system parameters and take different values according
to the vehicle density. Time is partitioned with a constant step
size τ . Let Xi = {Xi(m),m = 0, 1, 2, . . . } be a discrete-time
stochastic process of the ith distance headway, between node i and
node i + 1, where Xi(m) is a random variable representing the
distance headway of node i at the mth time step, i = 0, 1, 2, . . . ,
m = 0, 1, 2, . . . . For notation simplicity, we omit the index i
when refereing to an arbitrary distance headway. At any time
step, Xi(m) ∈ [α,Xmax] for all i,m ≥ 0, where α and Xmax is
the minimum and maximum inter-vehicle distances, respectively.
Furthermore, assume that Xi’s are independent with identical
statistical behaviors for all i ≥ 0. All the vehicles have the same
transmission range, denoted by R. Any two nodes at a distance
less than R from each other are one hop neighbors. Assume
that the transmission range is much larger than the width of the
highway such that a node can communicate with any node within
a longitudinal distance of less than R from it. The length of a
hop is defined as the distance to the furthest node within the
transmission range of a reference node, which is upper bounded
by R.

Table I. Traffic flow condition for different vehicle densities [5]

Density
(veh/km)

Traffic flow condition

0− 7 Free-flow operations Uncongested flow
7− 12 Reasonable free-flow operations conditions
12− 19 Stable operations (low density)
19− 26 Borders on unstable operations

Near-capacity flow
26− 42 Extremely unstable flow operations conditions

(intermediate density)
42− 62 Forced of breakdown operations Congested flow
> 62 Incident situation operations conditions (high density)

1In a single-lane highway, the vehicle traffic gradually converges into a number
of platoons lead by the slower vehicles on the highway [9].

III. VEHICLE MOBILITY MODEL

To characterize how the distance headway and its variations
over time affect the communication link lifetime, we characterize
the distance headway based on vehicular mobility models. On a
macroscopic level, we consider three different traffic flow condi-
tions: uncongested, near-capacity, and congested. In this work, we
study each of the three traffic flow conditions separately, without
considering the case of changing traffic flow condition. Each
traffic flow condition corresponds to a range of vehicle densities
according to Table I [5]. The uncongested, near capacity, and
congested traffic flow conditions correspond to low, intermediate,
and high vehicle densities, respectively. Additionally, each traffic
flow condition corresponds to a unique microscopic and a unique
mesoscopic distance headway model.

A. Mesoscopic mobility model

Main mesoscopic models in the literature focus on the time-
headway, which is the elapsed time of the passage of identical
points on two consecutive vehicles [5]. For an uncongested traffic
flow condition, the exponential distribution has been shown to be
a good approximation for the time headway distribution [5]. With
a low vehicle density, interactions between vehicles are very low
and almost negligible. As a result, vehicles move independently
at a maximum speed [5]. It is reasonable to assume that, over a
short time interval of interest, vehicles move at constant velocity
and do not interact with each other [10], [11]. Therefore, for a
low vehicle density, we assume that the distance headway has the
same distribution as the time headway with parameters properly
scaled. The inter-vehicle distances Xi’s at any time step are
independent and identically distributed (i.i.d.) with an exponential
probability density function (pdf)

fXi(x) =
1

µ
e−

x
µ , x ≥ 0. (1)

In this case, the mean and the standard deviation of the distance
headway is µ = σ = 1000

D . According to the distribution,
P (Xi ≤ α) > 0; however, for simplicity, we ignore the effect of
this probability2.

In the literature, the Gaussian distribution is used to model
the time headway for a congested traffic flow condition [5].
Although the time headway is almost constant for a high vehicle
density, driver behaviors cause the time headway to vary around
that constant value. Therefore, the Gaussian distribution model
for the time headway characterizes the driver attempt to drive
at a constant time headway [5]. With the same argument, we
assume that the distance headways vary around a constant value
with a Gaussian distribution. The pdf of the distance headway is

2P (Xi ≤ α) = 1 − e−Dα. For example, for D = 6 veh/km and α = 6.7
meters [5], P (Xi ≤ α) = 0.04. The probability P (Xi ≤ α) increases with D.
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approximately given by

fXi(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , x ≥ 0. (2)

The standard deviation σ for a high vehicle density is given by3

σ = (µ−α)
2 .

For a near-capacity traffic flow condition, empirical pdfs for
inter-vehicle distances show that neither an exponential nor a
Gaussian distribution is a good fit [12]. Hence, we assume that
the inter-vehicle distances follow a general distribution, Pearson
type III, that was originally proposed for time headways [5]. With
an intermediate vehicle density, the pdf of the distance headway
is approximately given by

fXi(x) =
λz

Γ(z)
(x− α)z−1e−λ(x−α), x ≥ α (3)

where λ and z are the scale and shape parameters of the
general Pearson type III distribution, respectively, and Γ(z) =∫∞

0
uz−1e−udu is the gamma function. The parameters λ and z

are related to µ and σ according to the following relations [5]

λ =
µ− α
σ2

, z =
(µ− α)2

σ2
. (4)

B. Microscopic mobility model
We model the stochastic process, Xi, as a discrete-time finite-

state Markov chain, inspired by [12], [13]. The Markov chain,
illustrated in Figure 1, has Nmax states corresponding to Nmax
ranges of a distance headway. The length of the range covered
by each state is a constant, denoted by L in meters. The jth

state covers the range [xj , xj + L), 0 ≤ j ≤ Nmax − 1, where
xj = α + jL. At any time step, Xi(m) = xj denotes that the
distance headway Xi is in the jth state, for all i,m ≥ 0, and
0 ≤ j ≤ Nmax − 1. Let NR = R−α

L be the integer number of
states that cover distance headways within R. Hence, the states
with indices j ∈ {0, 1, 2, . . . , NR−1, NR, NR+1, . . . , Nmax−2,
and Nmax − 1} correspond to the quantized distances xj ∈
{α, α+ R−α

NR
, α+ 2R−αNR

, α+ 3R−αNR
, . . . , α+ R−α

NR/(NR−1) , R, α+
R−α

NR/(NR+1) , . . . , Xmax − R−α
NR

, and Xmax}, respectively. Within
a time step, a distance headway in state j can transit to the
next state, the previous state, or remain in the same state with
probabilities pj , qj , or rj , 0 ≤ j ≤ Nmax−1, respectively. Without
loss of generality, assume that probability transition matrix is a
positive-definite tri-diagonal and is given by

M =



r0 p0 0 . . . . . . 0

q1 r1 p1 0 . . .
...

0 q2 r2 p2 0
...

...
. . . . . . . . . . . . 0

0 . . . 0 qNmax−2 rNmax−2 pNmax−2

0 . . . . . . 0 qNmax−1 rNmax−1


. (5)

The tri-diagonal structure of M is due to the fact that the
values of a distance headway at consecutive time steps are highly
correlated, for a short time step, such as τ ≤ L

v̄ , where v̄ is the
maximum relative speed between vehicles4. We propose to use
the following state-dependent transition probability functions

3We use the same guidelines for calculating the variance of time headway as
given in [5]. With σ =

(µ−α)
2

, P (Xi > α) = 0.977 [5]. For a congested
traffic flow condition (i.e., D ≥ 42 veh/km) and α = 6.7m [5], P (Xi ≤ 0) ≤
2.8× 10−3.

4Consider an i.i.d. desired vehicle speed with a mean of 100 kilometer per hour
and a standard deviation of 10 kilometer per hour, i.e., P (v̄ ≤ 36) = 0.99. In
this case, the choice of τ = 2 seconds for L = 20 meters, reduces the transition
probability of the distance headway to a non-neighboring state to less than 0.0054

Figure 2. The transition probability from state j to (a) state j+ 1, (b) state
j − 1, and (c) state j, for different xj values from NGSIM and
VISSIM data for intermediate to high vehicle densities. Results for
the weighted linear regression (LR) fit model for (6) are given in
the legends.

pj = p

(
1− β

(
1− xj

Xmax

))
qj = q

(
1− β

(
1− xj

Xmax

))
rj = 1− pj − qj , 0 ≤ j ≤ Nmax − 1, 0 ≤ p, q, β ≤ 1 (6)

where p, q, and β are constants that depend on the vehicle density.
For a low vehicle density, β is close to zero, and therefore the
transition probabilities are independent of the state value, xj .
The value of β increases as the vehicle density increases, and
thus increases the dependency on the state value. Eq.(6) can be
explained as follows. In a low vehicle density, distance headways
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Figure 3. Probability transition matrix for 100 quantized values of xj , xj′ ∈
[110, 120] with L = 0.1 meters and τ = 0.1 seconds. The matrix
is calculated based on NGSIM data.

are relatively large. Hence, a vehicle moves freely with a desired
speed [5]. In such a scenario, the distance headway value does
not affect the driver’s choice to keep/change the speed, since
the distance headway is large enough. On the other hand, in a
high vehicle density situation, distance headways are relatively
small. Hence, vehicles move with high constraints to keep a safe
distance ahead. In such a scenario, the distance headway value
has a high impact on the driver’s behavior and his/her choice to
keep/change the speed (and consequently the distance headway).
The constant β is comparable with the driver strain constant used
in [6], whereas β = 0 in [7]. The transition probabilities of the
distance headway to neighboring states increase with the distance
headway value, when β > 0 in (6). This is due to the fact that a
larger distance headway results in less constraints in driving.

In order to verify the dependency of the distance headway
transition probability on its current state, we compute the transi-

tion probability matrix using i) empirical vehicle trajectory data
collected from highways provided by Next Generation Simula-
tion (NGSIM) online database [14], and ii) simulated vehicle
trajectory data generated by VISSIM microscopic vehicle traffic
simulator. The vehicles in VISSIM simulator move according
to Wiedemann’s microscopic mobility model. Wiedemann is
psycho-physical car-following model that describes behaviors of
individual vehicles according to their interactions with neighbor-
ing vehicles, their desired relative speeds, their relative positions,
and some driver-dependant behaviors. The Wiedemann model ac-
counts for four different driving modes: free driving, approaching,
following, and breaking [15]. We adopt the Wiedemann 99 model
which is designed for a highway scenario with its parameters
set to the default values suggested in [16]. We use two NGSIM
data sets: I-80-Main-Data and US-101-Main-Data, which were
collected from a seven lane highway for a section of 500 and
640 meters, respectively. From the NGSIM data sets, we exclude
data points associated with vehicles 1) on an on-ramp lane, 2) on
an off-ramp lane, 3) at the end of the section, or 4) undertaking
a lane change. The VISSIM data set was obtained via six 30-
minute simulations of a three-lane highway traffic for different
vehicle densities. The highway is a closed loop, and the vehicles
enter the highway with a traffic flow of (3052.8, 1914.2, 854.6,
683.7, and 379.8) vehicle per hour per lane for 1000 seconds,
resulting in vehicle densities of (42, 26, 16, 9, and 5), respectively.
The VISSIM data points associated with vehicles entering the
highway or changing lanes are not included in our analysis. To
obtain the transition probabilities, the NGSIM and VISSIM data
sets are mapped into a sequence of quantized state values (xj)
with a predefined state length L, where xj ∈ [0, Xmax] in meters
and 0 ≤ j ≤ Nmax − 1. The NGSIM data is only available with
intermediate-to-high vehicle densities with Xmax = 100 meters.
For each state j, the transition probabilities for the distance
headway are determined by counting the number of occurrences
of each transition. Let nj,j′ be the number of transitions of a
distance headway from state j to state j′, 0 ≤ j′ ≤ Nmax − 1,
within a time step of length τ , and nj =

∑Nmax−1
j′=0 nj,j′ be the

number of time steps at which the distance headway is in state
j. The transition probability from state j to j′ is calculated by
pj,j′ =

nj,j′

nj
, 0 ≤ j, j′ ≤ Nmax − 1.

Figure 2 plots the transition probabilities (and their standard
deviation) from state j to its direct neighboring states and to itself
for different xj values, with the default data recording values:
L = 1 meter and τ = 0.1 seconds for the NGSIM data set, and
L = 2 meters and τ = 0.2 seconds for the VISSIM data set. The
results show a dependency of the transition probabilities on the
xj value. The weighted linear regression (LR) is used to fit the
transition probabilities in Figure 2, with nj,j′ being the weight
of each pj,j′ data point. The transition probabilities pj and qj
increase with the quantized state value, xj , which agrees with
(6). The values of p, q, and β are calculated according to the
resulting weighted linear regression (LR) fit and are given in the
figure legends. The results show that pj,j′ is smaller than 10−3 for
|j − j′| > 1, and is therefore neglected, which is consistent with
the tri-diagonal transition matrix assumption given in (5). Figure 3
plots the transition probability matrix calculated from the NGSIM
data for xj , xj′ ∈ [110, 120], L = 0.1 meters, and τ = 0.1
seconds. It is observed from Figure 3 that, for a reduced value of
the ratio L/τ , pj,j′ increases for |j − j′| > 1. Figure 4 plots the
transition probability to the next state (and its standard deviation)
for different xj values and different vehicle densities. The results
show that, the larger the vehicle densities, the higher the state-
dependency of the transition probabilities. The resulting β values
for different vehicle densities are plotted in Figure 5, which shows
an approximate linear relation between β and the vehicle density.
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Figure 4. Transition probability from state j to state j + 1, for different xj
values from VISSIM data for vehicle densities of (a) 9, 26, and
42 veh/km with L = 20 meters and τ = 2 seconds and (b) 5, 9,
16, 26, and 42 veh/km, with L = 2 meters and τ = 0.2 seconds.
Results of the weighted linear regression fit model for (6) are given
in the legends.

This agrees with our proposed transition probability functions in
(6).

It should be noted that the proposed microscopic model does
not explicitly describe how and when lane changes occur nor
does it describe impacts of lane-changes on the time variations
of distance headways. However, the model implicitly captures the
impact of lane changes on maintaining the ability of the vehicles
to overtake slower vehicles and accelerate towards their desired
speed. This is captured in the parameters p, q, and β which can
be tuned from empirical/simulated multi-lane highway trajectory
data for one of the lanes as done earlier in this section.

IV. DISTRIBUTION OF THE COMMUNICATION LINK LENGTH

In this section, we present the probability distribution of the
communication link length using mesoscopic distance headway
models. The hop length (or the link length), denoted by H , is the
distance from a reference node to the furthest node within the
transmission range of the reference node, which is upper bounded
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Figure 5. State dependency parameter, β for different D values calculated
based on VISSIM data.

by the transmission range R. Given a mesoscopic model, the
distance headways Xi’s are i.i.d. with probability density function
fX(x) and cumulative distribution function (cdf) FX(x). Let Q(l)
be the event that there exists at least one node within distance
l from a reference node. The event Q(l) occurs with probability
FX(l). Let Qc(l) be the complement of event Q(l), i.e., the event
that there are no nodes within distance l from a reference node.
Then, the cdf of H is given by [17]

FH(h) =
P (Qc(R− h), Q(h))

P (Q(R))
. (7)

The pdf can then be calculated by fH(h) = d
dhr

FH(h). For a low
vehicle density, the distance headway is exponentially distributed
with pdf given in (1). The pdf of the corresponding hop length
is given by [18]

fH(h) =
e−

(R−h)
µ

µ(1− e−
R
µ )
, 0 < h < R (8)

which is a scaled exponential distribution truncated at R. For
an intermediate vehicle density, the distance headways are i.i.d.,
each following the Pearson type III pdf in (3). The cdf for the
first hop length can be derived from (7) and the corresponding
pdf is found to be

fH(h) =
1

γ(z, λ(R− α))
[fX(R− h)γ(z, λ(h− α)

+fX(h)Γ(z, λ(R− h− α))], α ≤ h < R− α
(9)

where γ(z, x) =
∫ x

0
tz−1e−tdt and Γ(z, x) =

∫∞
x
tz−1e−tdt are

the lower and the upper incomplete gamma functions, respec-
tively, and fX(·) is given by (3). The derivation for fH(h) is
given in Appendix A.

For a high vehicle density, the distance headways are i.i.d.,
each following the Gaussian pdf in (2). Using the cdf of the
Gaussian distribution, FX(x) = 1

2

(
1 + erf

(
x−µ√

2σ

))
, the cdf for
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the hop length can be derived from (7) and is given by

fH(h) =
1√
2πσ

(
1 + erf

(
R− µ√

2σ

))−1

×
[
e−

(h−µ)2

2σ2

×
(

1− erf

(
R− h − µ√

2σ

))
+ e−

(R−h−µ)2

2σ2

×
(

1 + erf

(
h − µ√

2σ

))]
, 0 < h < R (10)

where erf(·) is the error function, given by erf(x) =
2√
π

∫ x
0
e−t

2

dt.

V. COMMUNICATION LINK LIFETIME

Consider a communication hop from an arbitrary reference
node in the direction of the vehicle traffic flow. The reference
node is one hop away from all the nodes within a distance
less than R (assuming that an on/off link depends only on the
distance between the nodes). Define the communication link
lifetime between two nodes as the first time step at which the
distance between the two nodes is larger than or equal to R,
given that the distance between them is less than R at the 0th

time step. For any node within R from the reference node, the
communication link lifetime is at least equal to the that of the
furthest node from the reference vehicle (referred to as hop edge
node). A study of the communication link lifetime of the edge
vehicle from its reference vehicle is presented in the following.

A. First passage time between two distance headway states

Let T ij,j′ , 0 ≤ j, j′ ≤ Nmax−1, be the first passage time of the
distance headway Xi to state j′ given that the distance headway is
in state j at the 0th time step, i.e., T ij,j′ = inf{m > 0;Xi(m) =
xj′ , Xi(0) = xj}, 0 ≤ j ≤ Nmax − 1 (inf{·} is the Infimum). In
the following, Tj,j′ is used without superscript i for an arbitrary
distance headway. Let M ′ be an Nmax × Nmax matrix equal to
M with qNmax−1 = 0 and rNmax−1 = 1. Let {λu}Nmax−2

u=0 be the
Nmax − 1 non-unit eigenvalues of M ′. The first passage time to
state Nmax − 1, given that Xi(0) = x0, is the sum of Nmax − 1
independent geometric random variables, each with a mean equal
to 1

1−λu [19]. The probability generating function of T0,Nmax−1 is
given by

GT0,Nmax−1
(v) =

Nmax−2∏
u=0

[
(1− λu)v

1− λuv

]
. (11)

The probability mass function (pmf) of T0,Nmax−1 is then calcu-

lated by PT0,Nmax−1
(m) =

G
(m)
T0,Nmax−1

(0)

m! , where G(m)
T0,Nmax−1

(0) is
the value of the mth derivative of GT0,Nmax−1

(v) at v = 0.
Let M (j) be a (j + 1) × (j + 1) matrix, 0 < j < Nmax − 1,

equal to the upper left (j + 1) × (j + 1) portion of matrix
M with qj = 0 and rj = 1. The first passage time of
the distance headway to state j, given that the initial distance
headway is in state 0, has a probability generating function
GT0,j

(v) =
∏j−1
u=0

[
(1−λ(j)

u )v

1−λ(j)
u v

]
, where λ(j)

u , u = 0, 1, . . . , j − 1,

are the j non-unit eigenvalues of M (j). Note that the distance
headway cannot move to state j′(> j) before passing through
state j in a birth and death process. Using T0,j′ = T0,j+Tj,j′ , the
passage time to state j′ given that the initial distance headway
is in state j, 0 ≤ j < j′ ≤ Nmax − 1, can be calculated. The

probability generating function of Tj,j′ is GTj,j′ (v) =
E
[
v
T
0,j′

]
E[vT0,j ]

,
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Figure 6. Probability mass function of the first passage time for (a) T1,Nmax ,
(b) T1,4, and (c) T2,3, with mean values of 19.8×103, 1.24×103,
and 318.4 seconds, respectively, with parameters Nmax = 9, L =
20 meters, τ = 2 seconds, Xmax = 160 meters, β = 0.66, p = 0.12,
and q = 0.26.

and is calculated by

GTj,j′ (v) = vj
′−j

∏j′−1
u=0

[
(1−λ(j′)

u )

1−λ(j′)
u v

]
∏j−1
u=0

[
(1−λ(j)

u )

1−λ(j)
u v

] . (12)

Figure 6 plots the pmf’s of T0,Nmax−1, T1,4 and T2,3 for a nine-
state distance headway model. The pmf’s are evaluated using
MAPLE [20]. Figure 6 shows that the probability of the first
passage time, Tj,j′ , taking on a small value decreases as the
number of states, |j′ − j|, increases.

B. First passage time of the sum of distance headways
The distance between a reference node and its hop edge

node is equal to the sum of the distance headways between
the two nodes. Let NH be the number of nodes between a
node and its hop edge node at the 0th time step. Label the
nodes with IDs: {0, 1, ...NH + 1}, where the reference node
has ID 0, and the hop edge node has ID NH + 1. Therefore,
R ≤

∑NH+1
i=0 Xi(0) < R+XNH+1(0). A node and its hop edge

node remain connected until
∑NH
i=0Xi(m) ≥ R at some time step

m which is the communication link lifetime.
The sum of (NH + 1) i.i.d. distance headways, where each

headway, Xi, is a birth and death Markov chain as illustrated
in Figure 1, is an (NH + 1) dimensional Markov chain. The
complexity of this Markov chain is obvious especially when
NH is not small, since a non-zero transition probability to a
non-neighboring state is possible. For tractability, we use an
alternative approach as follows.
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C. Link disconnection events
In this subsection, we present the set of events that

cause the disconnection between a reference node and its
hop edge node at a certain time step, m. Consider a set
X = {X0, X1, . . . , XNH} of (NH + 1) distance headways
(stochastic processes) between the reference node and its
hop edge node, where X = {X(m),m = 0, 1, 2, . . . }. For
notation simplicity, let X(m) = {k0, k1, . . . , kNH} denote
{Xi(m) = xki}

NH
i=0. Furthermore, let {s0, s1, . . . , sNH}

denote the set of state indices of the (NH + 1) distance
headways at the 0th time step, (i.e., {Xi(0) = xsi}

NH
i=0), where

si ∈ {0, 1, 2, . . . , NR − 1}, and
∑NH
i=0 xsi < R. Let ED be the

event that the link between a reference node and its hop edge
node, separated by NH nodes, disconnects given X(0), and let
ED(m) be the event that this disconnection occurs at the mth

time step. When the hop edge node and the reference node are
adjacent to each other, i.e., NH = 0, a link disconnection occurs
when the distance headway X0 transits to state NR. Therefore,
ED(m) ≡ {X0(m) = xNR |s0} for NH = 0.

When NH > 0, consider first the case when
α = 0. A link disconnection occurs at time step m if{
X(m) = {k0, k1, . . . , kNH},

∑NH
i=0 ki ≥ NR

}
. That is, the set

{ki}NHi=0 is an integer partition of a positive integer that is greater
than or equal to NR. In number theory and combinatorics, an
ordered integer partition of a positive integer n is a sequence
of positive integers whose sum equals n. Each member of
the sequence is called a part. An ordered J-restricted integer
partition of an integer n is an integer partition of n into
exactly J parts. Let AJ(n) = {a1(i), a2(i), . . . , aJ(i)}LJ (n)

i=1
be a set of all possible ordered J-restricted integer partitions
of n, where aj(i), 1 ≤ j ≤ J is the jth part of the ith

partition AiJ(n), and LJ(n) =
(
n−1
J−1

)
is the total number

of such partitions, i.e., the size of set AJ(n) [21]. For
example, A2(6) = {{1, 5}, {5, 1}, {2, 4}, {4, 2}, {3, 3}}, where
A1

2(6) = {1, 5}, a1(1) = 1, a2(4) = 2 and L2(6) =
(

6−1
2−1

)
= 5.

Furthermore, let KJ(NH) = {k1(v), k2(v), . . . , kJ(v)}KJ (NH)
v=1

be the set of all J-combinations of the set {0, 1, . . . , NH}, where
kj(v), 1 ≤ j ≤ J , is the jth element of the vth combination, and
let KJ(NH) =

(
NH+1
J

)
be the number of such combinations.

We define two random events, e1(m), e2(m) at the mth time
step as follows:

e1(m) ≡
NH⋃
k0=0

{
Xk0(m) = xNED

∣∣∣sk0} (13)

e2(m) ≡
NH+1⋃
J=2

LJ (NED)⋃
i=1

KJ (NH)⋃
v=1

{
Xk1(v)(m) ≥ xa1(i),

Xk2(v)(m) ≥ xa2(i), . . . , XkJ (v)(m) ≥ xaJ (i)

∣∣∣
sk1(v), sk2(v), . . . , skJ (v)

}
. (14)

where NED = NR − b αNH
(R−α)/NR

c is an integer such that if set
X is in set of states whose indices construct an integer partition
of an integer greater than or equal to NED, the communication
link breaks. Note that NED accounts for the minimum value of
the distance headways (i.e., α), and NED = NR for α = 0.
Event e1(m) occurs when at least one of the distance headways
of set X is in state NED at the mth time step, resulting in a link
disconnection. Note that NED is the least state index required for
a distance headway to reach in order for the link to disconnect.
Event e2(m) occurs when at least J distance headways of set
X are in states that construct a J-restricted integer partition of
an integer that is greater or equal to NED with parts at most

equal to NR. Note that NED accounts for the minimum value of
the distance headway, i.e., α. That is, event e2(m) occurs if J
distance headways of set X are in states {k1, k2, . . . , kJ} at the
mth time step such that

∑J
i=1 ki ≥ NED for any 2 ≤ J ≤ NH +

1. An occurrence of event e2(m) result in a link disconnection
at the mth time step, because the sum NED + bαNHL c is equal to
NR, which indicates that the sum of the J distances is greater
than or equal to R. Consequently, a link disconnection occurs
at the mth time step when either e1(m) or e2(m) occurs, i.e.,
ED(m) = {e1(m) ∪ e2(m)}.

D. Probability distribution of the link lifetime
The lifetime or a communication link from a reference node to

its hop edge node, separated by NH nodes, given X(0), is the first
passage time of event ED(m), denoted by T (ED). Let T (ei) be
the first passage time for the occurrence of event ei(m), i = 1, 2
(i.e., T (ei) = min{m|ei(m)}). The communication link lifetime
is calculated by T (ED) = min{T (e1), T (e2)}. For NH = 0, this
simplifies to T (ED) = T (e1) = Ts0,NED , with pmf PT (ED)(m)
which can be calculated using the mth derivative of (11) and (12)
for s0 = 0 and s0 > 0, respectively.

For NH > 0, the calculation of the pmf of the link lifetime
is not straight forward, due to the obvious correlation between
e1(m) and e2(m). Let V = {V ′

⋃
V
′′} be a matrix resulting

from the union of two matrices, V
′

and V
′′

, with the three
matrices having NH+1 columns. Each unique row of V

′
consists

of J elements equal to one of the partitions in AJ(NED) and
(NH − J + 1) zero elements, 1 ≤ J ≤ NH + 1. The number
of rows of V

′
is equal to

∑NED
J=1

(
NH+1

NH−J+1

)(
NED−1
J−1

)
. Matrix

V
′′

is constructed similarly with all possible ordered J-restricted
partitions of integers NED+1, NED+2, ..., (NH +1)NED, each
with the largest part less than or equal to NED. For example, for
NH = 1, NR = 3, α = 0 we have

V
′

=

 3 0
0 3
1 2
2 1

 , and V
′′

=


1 3
3 1
2 2
3 2
2 3
3 3

 .

A link disconnection occurs at the mth time step when the
distance headway set X is in states {u1, u2, . . . , uNH+1} such that
{u1, u2, . . . , uNH+1} is a row in V . Let ED,V (m) ≡ {X(m) =
V |X(0)} be a set of events, each corresponding to set X being in
a set of states that construct one of the rows of V at the mth time
step, given X(0). An event in the set ED,V (m), ED,V (v)(m),
1 < v < |V |, is the event that the set X is in states that construct
the vth row in V at the mth time step, where |V | is the number
of rows in V . An occurrence of event ED,V (v)(m) results in a
link disconnection at the mth time step. The first passage time of
these events is T (ED,V ) = min {m|ED,V (m)}. The distribution
of T (ED,V ) can be derived to be

PT (ED,V )(m)

=



∏NH
i=0M

′

si+1,vi+1, m = 1∏NH
i=0M

′m
si+1,vi+1 −

[∑m−1
n=1

{∏NH
j=0M

′n
vj+1,vj+1

}t
⊗ PT (ED,V )(m− n)

]
, m > 1

(15)

where vi is the ith column of matrix V and M
′m
si+1,vi+1 is an array

with elements equal to the (vi + 1)
th entries of the (si + 1)

th

row of the mth power of matrix M ′, 1 ≤ i, j ≤ Nmax, {·}t
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denotes the transpose matrix operation, and the product notations∏
and ⊗ correspond to the general and the Hadamard matrix

multiplications, respectively. For m > 1, the subtracted term
in (15) is to guarantee that none of the ED,V events occurs
before time step m, i.e., set X does not reach states with
indices that construct a row in V before time step m. Since the
communication link disconnects if any of the events in ED,V
occurs, the pmf of the link lifetime is given by

PT (ED)(m) =

|V |∑
v=1

PT (ED,V (v))(m) (16)

where |V | is the number of rows in matrix V and V (v) is the
vth row of V .

VI. RESULTS AND DISCUSSION

This section presents numerical results for the analysis of
the pdf of the communication link length, fH(h), and the
pmf of the link lifetime, PT (ED)(m). We consider three traffic
flow conditions, uncongested, near-capacity, and congested, each
corresponding to a set of parameters listed in Table II. We set
σ = 1000

2D for the mesoscopic distance headway models. The
parameters for the microscopic Markov-chain distance headway
model are also listed in Table II, where β, p and q follow the
VISSIM data fitting results in subsectionIII-B. Without loss of
generality, we set α = 0, and Xmax = R. This is sufficient for
communication link analysis, as the link breaks if any Xi’s reach
state NR. The values of NH and X(0), listed in Table II, are first
set to their average values. To verify the link lifetime analysis, we
compare the analytical link lifetime pmf calculated with (15) and
(16) to that calculated from simulated vehicular traffic. A three-
lane highway traffic is simulated using the microscopic vehicle
traffic simulator VISSIM as described in subsectionIII-B. The
choice of simulating a three-lane highway instead of a single-lane
highway is to achieve a more realistic vehicle mobility in which
a vehicle can overtake other vehicles and accelerate towards its
desired speed. The desired speed for all vehicles is normally
distributed with mean 100 kilometer per hour and standard
deviation of 10 kilometer per hour. The pmf of the lifetime of
a link with initial conditions NH and X(0), is calculated by
counting the number of occurrences of link breakage at mth time
step for m > 0 and for all links with initial conditions NH
and X(0). Six 30-minute simulations are obtained for each of
the three vehicle densities. The calculation of the link lifetime
pmf, PT (ED)(m), from the VISSIM simulated vehicle traffic
data includes the lifetime of the following: 1) a link between
a reference vehicle and its corresponding hop edge node on the
same lane, independently of changing hop edge node during the
link’s lifetime as long as the initial hop edge node remains in
the link; and 2) a new link between a reference vehicle and its
new hop edge node on the same lane when its previous link
breaks. A link which involves a lane change during its lifetime
is excluded from the pmf calculation. The frequency of a link
lifetime at value l is upper bounded by TsimNS

l , where Tsim is
the simulation time and NS is the total number of vehicles in
the simulation. The frequency of l-valued lifetime occurrences in

Table II. System parameters in simulation and analysis

Traffic flow D(veh/km) NH β p,q X(0)
condition

Uncongested 9 0 0.4 0.17 {5}
Near-capacity 26 3 0.74 0.23 {1,1,1,1}

Congested 42 5 0.94 0.35 {1,1,1,1,1,1}
R (meter) NR Nmax α τ (second) L(meter)

160 8 9 0 2 20
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Figure 7. The probability density function of the hop length for three traffic
flow conditions with vehicle densities of 9, 26, and 42 veh/km.

VISSIM data is normalized accordingly in the link lifetime pmf
calculation.

Figure 7 plots the pdfs (8)-(10) of the hop length for three
vehicle densities D = 9, 26, and 42 veh/km with average hop
length equal to 99.2, 121.8, and 132.2 meters, respectively. The
average length of the communication link is larger for a higher
vehicle density, due to a larger average number of nodes between
a node and its hop edge node. Using (1)-(3), the probability for
an unavailable link between two vehicles (i.e., P (Xi > R))
is 0.23, 5.2 × 10−5, and 0 for D = 9, 26, and 42 veh/km,
respectively. That is, the probability of network fragmentations
is higher in an uncongested traffic flow condition than that in a
congested traffic flow condition.

Figure 8 plots the pmf of the communication link lifetime
for the three traffic flow conditions. The theoretical results are
obtained using (12) for the uncongested traffic flow condition and
(16) for the near-capacity and congested traffic flow conditions.
We use MAPLE to calculate the mth derivative for the generating
function in (12). For large values of j and/or j′ in (12), we
use the mth derivative of the product rule proposed in [22].
The simulation results are calculated from the generated VISSIM
vehicle trajectory data. The simulation results closely agree with
the theoretical calculations. However, there exist slight differences
between simulation and theoretical results. This is mainly due
to lane changes, which are not explicitly accounted for in our
model. The effect of lane changes is more notable in the low
vehicle density simulation results, where we get zero probability
for some large link lifetime values, as shown in Figure 8(a).
This is due to the high probability of lane change for large link
lifetimes, which is excluded from our calculations. The average
link lifetime is found to be 335.5, 88.1, and 65.9seconds for
the low, intermediate, and high vehicle densities, respectively.
Recall from subsectionV-C, that the link disconnection event,
ED, depends on the initial conditions NH and X(0). In order to
extend the results for different initial conditions, we conduct the
following: 1) discretize the mesoscopic distance headway models
in (1)-(3); 2) using the discretized mesoscopic distance headway
models, calculate the probability, P (X(0) = {si}ni=1|NH = n),
that set X(0) of size n is equal to set {si}ni=1, for 0 ≤ si ≤ Nmax;
and 3) using renewal theory, the pmf of the NH is calculated
for each of the mesoscopic distance headway models in (1)-
(3) [23]. Therefore, we extend the results for different initial
conditions (i.e., NH and X(0)) for the range of values within
which NH lies with probabilities of 0.94, 0.95, and 0.94 and X
lies with probabilities 0.94, 0.97, and 0.99, for D = 9, 26, and
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Figure 8. Probability mass function of the communication link lifetime for
D = (a) 9, (b) 26, and (c) 42 veh/km.

42 veh/km, respectively. Finally, the low of total probability is
used to find the pmf of the link lifetime over the considered
set of initial conditions. The average link lifetime, over the
considered range of initial conditions, is found to be 145.50,
46.07, and 44.76 seconds for the low, intermediate, and high
vehicle density, respectively. Although, intuitively, it is thought
that a communication link lasts longer with a higher vehicle
density, our results indicate the opposite. The reasons are: 1) the
impact of a larger number of vehicles within the link, NH , with
a higher vehicle density and therefore multiple mobility factors
on the communication link lifetime; and 2) vehicles tendency
to move with their maximum desired speed in an uncongested
traffic flow conditions. Since the communication link disconnects
when the sum of any J ≤ NH + 1 distance headways is greater
than R, the larger the NH value, the more frequently a link
breakage occurs, for the same distance headway model. Although
distance headways are large in a low vehicle density scenario
with free driving (Table I), this does not necessarily indicate a
large probability of changing speeds (i.e., large p and q). On the
contrary, vehicles are more likely to be at their maximum desired
speeds, resulting in small p and q values [5]. In a congested
traffic flow condition, vehicles are more likely to undergo stop-
and-go situations, in which drivers speed up whenever they get an
opportunity (i.e., large p and q values). This agrees with VISSIM
results shown in Figure 4.

From the results shown in Figure 7 and Figure 8, we conclude
the following: For a high traffic density, there is a higher probabil-
ity of link availability between two nodes (Figure 7); however, the
link lifetime is shorter (Figure 8). This causes the communication
link to fluctuate between connection and disconnection more

frequently when compared to that in a low vehicle density. This is
due to the stop-and-go scenario in a high vehicle density. On the
other hand, for a low traffic density, there is a lower probability of
link availability between two nodes (Figure 7); however, if a link
exists, the link lasts longer when compared to the case in a high
vehicle density (Figure 8). Therefore, when a communication link
disconnects in an uncongested traffic flow condition, it has a
smaller probability to re-connect than that in a congested traffic
flow condition.
It should be noted that our communication link analysis depends
only on the link distance. In reality, the communication link
between two nodes depends not only on the distance between
the two nodes, but also on the communication channel condition.
Although the distance between two nodes may be less than the
communication range, poor channel conditions may result in
inability of the two nodes to communicate. Both vehicle mobility
and vehicle density impact the communication channel conditions
[24]. Additionally, as the vehicle density increases to a traffic
jam situation, the network data load increases. In this case, the
communication between two nodes (and, therefore, the link life-
time) is controlled by the network data traffic congestion rather
than by vehicle mobility [25]. Extending our communication link
analysis to account for the communication channel condition and
the network data load needs further investigation.

VII. CONCLUSION

This paper presents a stochastic analysis of the communication
link in a highway VANET with focus on a single lane. Meso-
scopic mobility models are used to derive the stationary proba-
bility density of the communication link length for three traffic
flow conditions. A stochastic microscopic model is proposed for
the distance headway. The model captures time variations of the
distance headway based on a discrete-time Markov chain that
preserves the realistic dependency of distance headway changes
at consecutive time steps. This dependency increases with the
vehicle density, which is consistent with highway data patterns
from empirical NGSIM and simulated VISSIM data sets. Further,
the distance headway model is used to analyze the communication
link lifetime. The first passage time analysis is employed to derive
the probability distribution of the communication link lifetime.
Numerical results indicate that the communication hop length
increases and the link lifetime decreases with an increase in
vehicle density. The link length and lifetime statistics are essential
to the development of network protocols and algorithms to ensure
reliable information delivery in VANETs.

APPENDIX A
HOP LENGTH DISTRIBUTION FOR INTERMEDIATE VEHICLE

DENSITY

From (3), the pdf of the inter-vehicle spacing X ∼
Pears(λ, z, α), and the corresponding cdf is

FX(x) =

∫ x

α

fX(x)dx

=

∫ x

α

(x− α)z−1e−λ(x−α)dx.

Letting u = λ(x− α),

FX(x) =
λz

Γ(z)

∫ x−α
λ

0

(u
λ

)z−1

e−uλdu

=
1

Γ(z)

∫ λ(x−α)

0

uz−1e−udu

=
γ(z, λ(x− α))

Γ(z)
.
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From (7), we have

FH(h) =
P (Ac(R− h)) (1− P (Ac(h)))

1− P (Ac(R))

=
(1− FX(R− h))FX(h)

FX(R)
.

Substituting (17),

FH(h) =

[
1− γ(z,λ(R−h−α))

Γ(z)

] [
γ(z,λ(h−α))

Γ(z)

]
γ(z,λ(R−α))

Γ(z)

=

[
1− γ(z,λ(R−h−α))

Γ(z)

]
γ(z, λ(h− α))

γ(z, λ(R− α))
.

Therefore, d
dh

γ(z,f(h))
Γ(z) = fz−1(h)e−f(h)

Γ(z)
d
dhf(h). The correspond-

ing pdf fH(h) = d
dhFH(h), which leads to

fH(h) =
1

γ(z, λ(R− α))
[fX(R− h)γ(z, λ(h− α))

+fX(h)Γ(z, λ(R− h− α))], α ≤ h < R− α.
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