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Abstract. Stochastic evolution of Chemical Reactions Networks (CRNs)
over time is usually analysed through solving the Chemical Master Equa-
tion (CME) or performing extensive simulations. Analysing stochasticity
is often needed, particularly when some molecules occur in low numbers.
Unfortunately, both approaches become infeasible if the system is com-
plex and/or it cannot be ensured that initial populations are small. We
develop a probabilistic logic for CRNs that enables stochastic analysis of
the evolution of populations of molecular species. We present an approx-
imate model checking algorithm based on the Linear Noise Approxima-
tion (LNA) of the CME, whose computational complexity is independent
of the population size of each species and polynomial in the number of
different species. The algorithm requires the solution of first order poly-
nomial differential equations. We prove that our approach is valid for
any CRN close enough to the thermodynamical limit. However, we show
on four case studies that it can still provide good approximation even for
low molecule counts. Our approach enables rigorous analysis of CRNs
that are not analyzable by solving the CME, but are far from the deter-
ministic limit. Moreover, it can be used for a fast approximate stochastic
characterization of a CRN.

1 Introduction

Chemical reaction networks (CRNs) and mass action kinetics are well studied for-
malisms for modelling biochemical systems [9]. In recent years, CRNs have also
been successfully used as a formal programming language for biochemical sys-
tems [33,7,10]. There are two well established approaches for analyzing chemical
networks: deterministic and stochastic [20]. The deterministic approach models
the kinetics of a CRN as a system of ordinary differential equations (ODEs)
and represents average behaviour, valid in the thermodynamic limit [19]. The
stochastic approach, on the other hand, is based on the Chemical Master Equa-
tion (CME) and models the CRN as a continuous-time Markov chain (CTMC)
[6]. The stochastic behavior can be analyzed by stochastic simulation [20] or by
exhaustive probabilistic model checking of the CTMC, which can be performed,
for example, by using PRISM [25].
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Exhaustive analysis of the CTMC is able to find the best- and worst-case
scenarios and is correct for any population size, but suffers from the state-space
explosion problem [26] and can only be used for relatively small systems. In
contrast, deterministic methods are much more robust with respect to state-
space explosion, but unable to represent stochastic fluctuations, which play a
fundamental role when the system is not in thermodynamic equilibrium.

Contributions. In this paper we develop a novel approach for analysing
the stochastic evolution of a CRN based on the Linear Noise Approximation
(LNA) of the CME. We formulate SEL (Stochastic Evolution Logic), a prob-
abilistic logic for CRNs that enables reasoning about probability, expectation
and variance of linear combinations of populations of the species. Examples of
properties that can be specified in our logic are shown in Example 1. We pro-
pose an approximate model checking algorithm for the logic based on the LNA
and implement it in Matlab and Java. We demonstrate that the complexity of
model checking is polynomial in the initial number of species and independent of
the initial molecule counts, thus ameliorating state-space explosion. Further, we
show that model checking is exact when approaching the thermodynamic limit.
Though the algorithm may not be accurate for systems far from the deterministic
limit, this generally happens when the populations are small, in which case the
analysis can be performed by transient analysis of the induced CTMC [24]. Our
approach is essential for CRNs that cannot be analyzed by (partial) state space
exploration, because of large or infinite state spaces. Moreover, it is useful for a
fast (approximate) stochastic characterization of CRNs, since solving the LNA
is much faster than solving the CME [16]. We prove asymptotic correctness of
LNA-based model checking and show on four examples that it is still possible to
obtain very good approximations even for small population systems, comparing
with standard uniformisation [24] and statistical model checking implemented
in PRISM [25].

Related work. The closest work to ours is by Bortolussi et al. [4], which uses
the Central Limit Approximation (CLA) (essentially the same as the LNA) for
checking restricted timed automata specifications, assuming a fixed population
size. Wolf et al. [37] develop a sliding window method to approximately verify
infinite-state CTMCs, which applies to cases where most of the probability mass
is concentrated in a confined region of the state space. Recently, Finite State
Projection algorithms (FSP algorithms) for the solution or approximation of the
CME have been introduced [28]. Both methods apply to the induced CTMC, but
require at least partial exploration of the state space, and are thus not immune
to state-space explosion.

Structure of the paper. In Section 2 we summarise the deterministic
and stochastic modelling approaches for CRNs, and in Section 3 we describe the
Linear Noise Approximation method. Section 4 introduces the logic SEL and
the corresponding model checking algorithm based on the LNA. In Section 5 we
demonstrate our approach on four networks taken from the literature. Section 6
concludes the paper.



2 Chemical Reaction Networks

A chemical reaction network (CRN) C = (Λ,R) is a pair of finite sets, where
Λ is the set of chemical species and R the set of reactions. |Λ| denotes the
size of the set of species. A reaction τ ∈ R is a triple τ = (rτ , pτ , kτ ), where
rτ , pτ ∈ N|Λ| and kτ ∈ R>0. rτ and pτ represent the stoichiometry of reactants
and products and kτ is the coefficient associated to the rate of the reaction;
its dimension is s−1. We often write reactions as λ1 + λ3 →k1 2λ2 instead of
τ1 = ([1, 0, 1]T , [0, 2, 0]T , k1), where ·T indicates the transpose of a vector. We
define the net change associated to a reaction τ by υτ = pτ − rτ . For example,
for τ1 as above, we have υτ1 = [−1, 2,−1]T .

We make the assumption that the system is well stirred, that is, the prob-
ability of the next reaction occurring between two molecules is independent of
the location of those molecules. We consider fixed volume V and temperature;
under these assumptions a configuration or state x ∈ N|Λ| of the system is given
by the number of molecules of each species. We define [x] = x

N
, the vector of

the species concentration in x for a given N , where N = V ·NA is the volumet-
ric factor, V is the volume of the solution and NA is Avogadro’s number. The
physical dimension of N is Mol−1 · L, where Mol indicates mole and L is litre.
Given λi ∈ Λ then #λi x ∈ N represents the number of molecules of λi in x and
[λi] x ∈ R the concentration of λi in the same configuration. In some cases we
elide x, and we simply write #λi and [λi] instead of #λi x and [λi] x. They are
related by [λi] =

#λi

N
. The dimension of [λi] is Mol · L−1.

The propensity αn,τ of a reaction τ in terms of the number of molecules is a
function of the current configuration of the system x such that αn,τ (x)dt is the
probability that a reaction event occurs in the next infinitesimal interval dt. In
this paper we assume as valid the stochastic form of the law of mass action, so
the propensity rates are proportional to the number of molecules that participate
in the reaction [6]. Stochastic models consider the system in terms of numbers
of molecules, while deterministic ones, generally, in terms of concentrations, and
the relationship is as follows. For a reaction τ = (rτ , pτ , kτ ), given the configu-

ration x and rτ,i, the i-th component of rτ , then αc,τ (x) = kτ
∏|Λ|

i=1 ([λi] x)
rτ,i

is the propensity function expressed in terms of concentrations as given by the
deterministic law of mass action. It is possible to show that, for any order of
reaction, αn,τ (x) ≈ Nαc,τ (x) if N is sufficiently large [1]. Note that αc,τ is
independent of N . In this paper we are interested only in finite time horizon,
because of the problematic character of studying solutions of ODEs for infinite
time horizon [3].

Example 1. Consider the CRN C = ({λ1, λ2, λ3}, R), where R = {(λ1 + λ2 →10

λ2 + λ2), (λ2 + λ3 →10 λ3 + λ3)}, with initial conditions #λ1 = 98,#λ2 =
1,#λ3 = 1, for a system with N = 1000. Figure 1 plots the expectation and
standard deviation of population sizes. We may wish to check if the maximum
expected value of #λ2 remains smaller than 75 molecules during the first 2sec.
However, the system is stochastic, so we also need to analyse whether the vari-
ance is limited enough when #λ2 reaches the maximum. Sometimes, analysis



of first and second moments does not suffice, so it could be of interest to check
the probability of some events, for instance, is the probability that, between
t1 = 0.5sec and t2 = 1.0sec, #λ2 − (#λ1 +#λ3) > 0 greater than 0.6?

Fig. 1: Expected number and stan-
dard deviation of species of the CRN
of Example 1 for the given initial con-
ditions, calculated by simulating the
CME.

Deterministic semantics. Let C =
(Λ,R) be a CRN. The deterministic
model approximates the concentration of
the species of the system over time as a
set of autonomous polynomial first order
differential equations:

dΦ(t)

dt
= F (Φ(t)) (1)

F (Φ(t)) =
∑

τ=(rτ ,pτ ,kτ )∈R υταc,τ (Φ(t))

and αc,τ (Φ(t)) = kτ
∏|Λ|

i=1 Φi(t)
rτ,i . Func-

tion Φ : R≥0 → R|Λ| describes the be-
haviour of the system as a set of deter-
ministic equations assuming a continuous
state-space semantics, therefore Φ(t) ∈
R|Λ| is the vector of the species concen-
trations at time t. Assuming t0 = 0, the
initial condition is Φ(0) = [x0], expressed as a concentration. Note that F (Φ(t))
is Lipschitz continuous, so Φ exists and is unique [17].

Stochastic semantics.CRNs are well represented by CTMCs, whose tran-
sient analysis can be performed via the Chemical Master Equation (CME) [35].

Definition 1 Given a CRN C = (Λ,R) and the volumetric factor N , we de-
fine a time-homogeneous CTMC [11,32] (XN (t), t ∈ R≥0) with state space S =
N|Λ|. Given x0 ∈ S, the initial configuration of the system, then P (XN (0) =
x0) = 1. The transition rate from state xi to state xj is defined as r(xi, xj) =∑

{τ∈R|xj=xi+vτ}
Nαc,τ (xi).

XN (t) describes the stochastic evolution of molecular populations of each species
at time t. For x ∈ S, we define P (t)(x) = P (XN (t) = x|X(0) = x0), where x0 is
the initial configuration. The CME describes the time evolution of XN as:

d

dt

(
P (t)(x)

)
=

∑

τ∈R

{Nαc,τ (x− υτ )P
(t)(x− υτ )−Nαc,τ (x)P

(t)(x).} (2)

The CME can be equivalently defined in terms of the infinitesimal generator
matrix [37], which admits computing an approximation of the CME using, for
example, fast adaptive uniformisation [14,13] or the sliding window method [37].

We also define the CTMC (X
N (t)
N

, t ∈ R≥0) with state space S = Q|Λ|. If

[x0] ∈ S is the initial configuration, then P (X
N (0)
N

= [x0]) = 1. The transition
rate from state [xi] to [xj ] is defined as r([xi], [xj ]) =

∑
{τ∈R|[xj ]=[xi]+

vτ
N

} Nαc,τ (xi).



XN (t)
N

is the random vector describing the system at time t in terms of concen-

trations. In [1,17] it is proved that lim
N→∞

sup
t′≤t

‖XN (t′)
N

− Φ(t′)]‖ = 0 almost surely

for every time t. This explains the relationship between the two different seman-
tics, where the deterministic solution can be viewed as a limit of the stochastic
solution, valid when close enough to the thermodynamic limit.

3 Linear Noise Approximation

The solution of the CME can be computationally expensive, or even infeasible,
because the set of reachable states can be huge or infinite. The Linear Noise
Approximation (LNA) has been introduced by Van Kampen as a second order
approximation of the system size expansion of the CME [35]. Since stochastic
fluctuations depend on N , and specifically, for average concentrations, are of the
order of N

1

2 [16,32], to derive the expansion Van Kampen assumes that:

XN (t) ≈ NΦ(t) +N
1

2Z(t) (3)

where Z(t) = (Z1(t), Z2(t), ..., Z|Λ|) is the random vector, independent of N ,
representing the stochastic fluctuations, Φ(t) is given by the solution of Eqn (1)
and XN (t) is the random vector of Definition 1. Using this substitution in the
system size expansion and then truncating at the second order, the probability
distribution of Z(t) is found to be given by the following linear Fokker-Plank
equation [16]:

∂P (Z, t)

∂t
= −

|Λ|∑

i=1

|Λ|∑

j=1

∂Fj(Φ(t))

∂Φi

∂(ZjP (Z, t))

∂Zi

+
1

2

|Λ|∑

i=1

|Λ|∑

j=1

Gi,j(Φ(t))
∂2P (Z, t)

∂Zi∂Zj

(4)
where G(Φ(t)) =

∑
τ∈R υτυτ

Tαc,τ (Φ(t)) and Fj(Φ(t)) is the j−th component
of F (Φ(t)). The solution of Eqn (4) gives a Gaussian process. For every time t,
Z(t) has a multivariate normal distribution, whose expected value and covariance
matrix are the solution of the following equations [16,21]:

dE[Z(t)]

dt
= JF (Φ(t))E[Z(t)] (5)

dC[Z(t)]

dt
= JF (Φ(t))C[Z(t)] + C[Z(t)]JT

F (Φ(t)) +G(Φ(t)) (6)

where JF (Φ(t)) is the Jacobian of F (Φ(t)). We consider as initial conditions
E[Z(0)] = 0 and C[Z(0)] = 0. This means that E[Z(t)] = 0 for every t.

It is possible to justify the hypothesis (3) noting that in the lowest order the
CME expansion reduces to Eqn (1), and with the following theorem by Kurtz:

Theorem 1. [17] Consider the subset E ⊂ R|Λ| on which are defined the propen-

sity functions αc,τ . Let Z
N (t) be the random vector given by ZN (t) = N

1

2 (X
N (t)
N

−
Φ(t)). Suppose that

∑
τ∈R

|vτ
2| sup

X∈K

αc,τ (X) < ∞ for each compact K ⊂ E, and

that, for N → ∞, ZN (0) = Z(0), then ZN (t) converges in distribution to Z(t).



The LNA thus permits approximation of the probability distribution of XN (t)

with the probability distribution of Y N (t) = NΦ(t)+N
1

2Z(t). It is easy to show
that Y N (t) has a Gaussian distribution; indeed, Z(t) is Gaussian distributed,
and N and Φ(t) are deterministic.

To compute the LNA it is necessary to solve O(|Λ|2) first order differential
equations, but the complexity is independent of the initial number of molecules
of each species. Therefore, one can avoid the exploration of the state space that
methods based on uniformisation rely upon.

Theorem 1 alone only guarantees convergence in distribution. However, in
[36], LNA is derived as an approximation of the Chemical Langevin Equation
(CLE) [18], rather than system size expansion. This shows that LNA is valid for
every real chemical system close enough to the thermodynamical limit, at least
for a limited time. Thus, LNA is exact in the limit of high populations, but can
also be used for small populations if the behaviour is not too far from the deter-
ministic limit, taking into account the continuous nature of the approximation
and Gaussian assumptions on the noise [21,36].

3.1 Probabilistic analysis of CRNs

We have shown that XN can be approximated by Y N (t) = NΦ(t) + N
1

2Z(t),
where Y N (t) has a multivariate Gaussian distribution, so it is completely charac-
terized by its expected value and covariance matrix, whose values are respectively
E[Y N (t)] = NΦ(t) and C[Y N (t)] = N

1

2C[Z(t)]N
1

2 = NC[Z(t)].
Since Y N has a multivariate normal distribution then every linear combina-

tion of its components is normally distributed. Therefore, givenB = [b1, b2, · · · , b|Λ|]
where b1, b2, ..., b|Λ| ∈ Z, we can consider the random variable BY N (t), which
defines a linear combination of the species at time t. For every t, BY N (t) is a
normal random variable, whose expected value and variance are

E[BY N (t)] = BE[Y N (t)] (7)

C[BY N (t)] = BC[Y N (t)]BT (8)

For a specific time tk, it is possible to calculate the probability that BY N (tk)
is within a set I of closed, disjoint real intervals [li, ui], where li, ui ∈ R ∪
{+∞,−∞}. This probability ΩY N ,B,I(tk) is given by

ΩY N ,B,I(tk) =
∑

[li,ui]∈I

ui∫

li

g(x|E[BY N (tk)], C[BY N (tk)])dx (9)

where g(x|EV, σ2) is the Gaussian distribution with expected value EV and
covariance σ2. We recall that it is possible to find numerical solution of Eqn (9)
in constant time using the Z table [30].

Example 2. Consider the CRN of Example 1, then we can obtain the probability
that #λ1 − 2#λ3 is at least 10 at time 20 by defining B′ = [1, 0,−2], I ′ =
{[10,+∞]} and calculating ΩY N ,B′,I′(20).



The following theorems are consequences of results in [36], which can be gener-
alized for reactions with a finite number of reagents and products. They show
asymptotic pointwise convergence of expected value, variance and probability.

Theorem 2. Let C = (Λ,R) be a CRN. Suppose the solution of Eqn (6) is
bounded, then, approaching the thermodynamic limit, for any finite instant of
time ti

lim
N→∞

‖ΩY N ,B,I(ti)− Ω̃XN ,B,I(ti)‖ = 0, (10)

where Ω̃XN ,B,I(ti) is the probability that B(XN ) is within I at time ti.

Theorem 3. Suppose the solution of Eqn (6) is bounded, then, approaching the
thermodynamic limit, for any finite instant of time tk

lim
N→∞

‖C[BY N (tk)]− C[BXN (tk)]‖ = 0 (11)

lim
N→∞

‖E[BY N (tk)]− E[BXN (tk)]‖ = 0. (12)

To solve the differential equations (5) and (6), it is necessary to use a nu-
merical method such as adaptive Runge-Kutta algorithm [5]. This yields the
solution for a finite set of sampling times Σ = [t1, ..., t|Σ|] ∈ R|Σ|, where t1 ≤
... ≤ tk ≤ ... ≤ t|Σ| and |Σ| is the sample size. Assuming Y N is separable, that
is, it is possible to completely define the behavior of Y N by only considering a
countable number of points, we can calculate ΩY N ,B,I for any point in Σ and
if points are dense enough then this set exhaustively describes the probability
that BXN is within I over time. This restriction is not a limitation since for any
stochastic process there exists a separable modification of it [23].

4 Stochastic Evolution Logic (SEL)

Let C = (Λ,R) be a CRN with initial state x0, in a system of size N . We now
define the logic SEL (Stochastic Evolution Logic) which enables evaluation of
the probability, variance and expectation of linear combinations of populations
of the species of C.

The syntax of SEL is given by

η := P∼p[B, I][t1,t2] | Q∼v[B][t1,t2] | η1 ∧ η2 | η1 ∨ η2

where Q = {supV, infV, supE, infE}, ∼= {<,>}, p ∈ [0, 1], v ∈ R, B ∈ Z|Λ|,
I = {[li, ui] | li, ui ∈ R ∪ [+∞,−∞] ∧ [li, ui] ∩ [lj , ui] = ∅, i 6= j} and [t1, t2] is
a closed interval, with the constraint that t1 ≤ t2 and t1, t2 ∈ R. If t1 = t2 the
interval reduces to a singleton.

Formulae η describe global properties of the stochastic evolution of the sys-
tem. (B, I) specifies a linear combination of the species of C and a set of intervals,
where B ∈ Z|Λ| is the vector defining the linear combination and I represents



a set of disjoint closed real intervals. P∼p[B, I][t1,t2] is the probabilistic oper-
ator, which specifies the probability that the linear combination defined by B

falls within the range I over the time interval [t1, t2]. supE, infE, infV, supV

respectively yield the supremum and infimum of expected value and variance of
the random variables associated to B within the specified time interval.

Example 3. Consider the CRN of Example 1. Checking if the variance of #λ1 re-
mains smaller than K1 within [tj , tk] can be expressed as supV<K1

[[1, 0, 0]][tj ,tk].
Another example is checking if, in the same interval, (#λ1−#λ2) is at least K2

or within [K3,K4], with K3 < K4 < K2, with probability greater than 0.95:
P>0.95[[1,−1, 0], ([K3,K4], [K2,∞])][tj ,tk]. Equivalently, instead of writing B, we
write directly the linear combination it defines. For example, in the latter case
we have P>0.95[(#λ1 −#λ2), ([K3,K4], [K2,∞])][tj ,tk].

Semantics Given a CRN C = (Λ,R) with initial configuration x0 in a system of
fixed volumetric factorN , its stochastic behaviour is described by the CTMCXN

of Definition 1. We define a path of CTMC XN as a sequence ω = x0t1x1t1x2...

where xi is a state and ti ∈ R>0 is the time spent in the state xi. A path is
finite if there is a state xk that is absorbing. ω ⊗ t is the state of the path at
time t. Path(XN , x0) is the set of all (finite and infinite) paths of the CTMC
starting in x0. We work with the standard probability measure Prob over paths
Path(XN , x0) defined using cylinder sets [24].

We first define when a path ω satisfies (B, I) at time t

ω, t |= (B, I) ↔ ∃[li, ui] ∈ I . li ≤ B(ω ⊗ t) ≤ ui.

Note that B(ω ⊗ t) is well defined because ω ⊗ t ∈ N|Λ|.

We now define PrX
N

B,I (t) = Prob{ω ∈ Path(XN , x0) |ω, t |= (B, I)}, then
if the time interval is a singleton the satisfaction relation for the probabilistic
operator is

XN , x0 |= P∼p[B, I][t1,t1] ↔ PrX
N

B,I (t1) ∼ p

Instead, for t1 < t2 we have

XN , x0 |= P∼p[B, I][t1,t2] ↔
1

t2 − t1

∫ t2

t1

PrX
N

B,I (t) dt ∼ p

PrX
N

B,I (t) is the probability of the set of paths of XN such that the linear combi-
nation of the species defined by B falls within I. It is well defined since we have
previously defined the probability measure Prob on Path(XN , x0). To define
the satisfaction relation of the probabilistic operator we simply take the average

value of PrX
N

B,I (t) during the interval [t1, t2]. For the remaining operators the
satisfaction relation is defined as

XN , x0 |= supV∼v[B][t1,t2] ↔ sup(C[B(XN )], [t1, t2]) ∼ v

XN , x0 |= infV∼v[B][t1,t2] ↔ inf(C[B(XN )], [t1, t2]) ∼ v



XN , x0 |= supE∼v[B][t1,t2] ↔ sup(E[B(XN )], [t1, t2]) ∼ v

XN , x0 |= infE∼v[B][t1,t2] ↔ inf(E[B(XN )], [t1, t2]) ∼ v

XN , x0 |= η1 ∧ η2 ↔ XN , x0 |= η1 ∧XN , x0 |= η2

XN , x0 |= η1 ∨ η2 ↔ XN , x0 |= η1 ∨XN , x0 |= η2

inf(·, [t1, t2]) and sup(·, [t1, t2]) respectively denote the infimum and supremum
within [t1, t2].

4.1 LNA-based Approximate Model Checking for CRNs

Stochastic model checking of CRNs is usually achieved by transient analysis
of the CTMC XN [24], which involves solving the CME and thus suffers from
the state-space explosion problem. We propose an approximate model checking
algorithm based on LNA. The inputs are a SEL formula η, the stochastic process
XN induced by the CRN and initial state x0. The output is true in case the
formula is verified, and otherwise false.

The algorithm proceeds by induction on the structure of formula η, succes-
sively computing whether each subformula is satisfied or not. We assume that
Eqn (5) and (6) are solved numerically where Σ is the finite set of sample points
on which their solution is defined and that t0, initial time, and tmax, final time,
are always sampling points.

Probabilistic operator. To evaluate P∼p[(B, I)][t1,t2] we construct the func-
tion Prob(B,I)(t) = ΩY N ,B,I(ti) for t ∈ [ti, ti+1), ti, ti+1 ∈ Σ (alternatively, can
be constructed as the interpolation of the values of ΩY N ,B,I over Σ points).

Lemma 1. Prob(B,I) is integrable on R≥0.

Theorem 2 guarantees the pointwise correctness of Prob(B,I) and its integrability
allows us to compute the following approximation, then compare to threshold p

to decide the truth value. If t2 6= t1 then
1

t2−t1

∫ t2

t1
PrX

N

B,I (t) dt ≈
1

t2−t1

∫ t2

t1
ProbB,I(t)dt

else if t1 = t2 then PrX
N

B,I (t1) ≈ ProbB,I(t1).

Expectation and variance operators To evaluate sup(C[B(XN )], [t1, t2]),
inf(C[B(XN )], [t1, t2]), sup(E[B(XN )], [t1, t2]) and inf(E[B(XN )], [t1, t2]) we
use the LNA, namely, compute the expected value and variance of Eqn (8)
and (7). Theorem 3 guarantees the quality of the approximation. We can now
compute the following approximations, then compare to the threshold v:

sup(C[B(XN )], [t1, t2]) ≈ max{C[BY N (tk)] | (tk ∈ Σ∧t1 ≤ tk ≤ t2)∨(tk ∈ L[t1,t2])}

inf(C[B(XN )], [t1, t2]) ≈ min{C[BY N (tk)] | (tk ∈ Σ∧t1 ≤ tk ≤ t2)∨(tk ∈ L[t1,t2])}

and similarly for the expected value. L[t1,t2] = {ti|ti ∈ Σ ∧ ∄tj ∈ Σ such

that |t1 − tj | < |t1 − ti|} ensures that for any time interval there is at least



one sampling point, even if the interval is a singleton. Note that, for each sub-
formula, the algorithm involves the calculation of some quantity, so one can
define a quantitative semantics for SEL as in [15].

LNA-based model checking can also be used for systems far from the thermo-
dynamic limit, at a cost of some loss of precision. LNA assumes continuous state
space, and it is not possible to justify this assumption for very small popula-
tions. However, if the distributions of interest are not multi-modal and the noise
term is finite and approximated by a Gaussian distribution, then LNA gives very
good approximation even for quite small systems. It is clear that model checking
accuracy increases as N grows. We emphasise that the model checking algorithm
we have presented is also able to handle CRNs whose stochastic semantics is an
infinite CTMC, which occur frequently in biological models.

Complexity of LNA-based approximate model checking The time com-
plexity for model checking formula η against a CRN C = (Λ,R) is linear in |η|.
In the worst case, analysis of a single operator requires the solution of O(|Λ|2)
polynomial differential equations for a bounded time. However, an efficient im-
plementation can solve the O(|Λ|2) ODEs only once for the interval [0, tmax], and
then reuse this result for every operator, where tmax is the greatest (finite) time
of interest. Note that ODEs are solved in terms of concentrations (a value be-
tween 0 and 1 by convention), ensuring independence of the number of molecules
of each species, although stiffness can slow down the solution of the LNA.

5 Experimental Results

We implemented the methods in a framework based on Matlab and Java. The
experiments were run on an Intel Dual Core i7 machine with 8 GB of RAM.
To solve the differential equations, we use Matlab ode45, a variable step Runge-
Kutta algorithm. We employ LNA-based model checking for the analysis of four
biological reaction networks: a Phosphorelay Network [12], a Gene Expression
Model [34,27], the FGF pathway [22] and the GW network [8]. For every network,
the CRN and parameters have been taken from the referenced papers. We coded
the same CRNs in PRISM in order to compare accuracy and time of execution
with standard uniformisation of the CME [24] and statistical model checking
(SMC) techniques (confidence interval method) as implemented in PRISM. For
the FGF and GW case studies, we cannot use global analysis nor SMC, because
the state space is too large for direct analysis, and SMC requires many time-
consuming simulations to obtain good accuracy.

Phosphorelay Network. We consider a three-layer phosphorelay network
whose structure is derived from [12]. Each layer (L1, L2, L3) can be found in
phosphorylate form (L1p, L2p, L3p). We consider the initial condition #L1p =
#L2p = #L3p = 0, #L1 = #L2p = #L3p = Init, where Init ∈ N. Then we
analyse the ligand B, whose initial condition is #B = 3∗Init. We are interested
in checking the following SEL property:

P>0.7[(#L1p−#L3p), [0,+∞]][0,100] ∧ P>0.98[(#L3p−#L1p), [0,+∞]][300,600]



which is verified if, in the first interval, the probability that #L1p is greater
than #L3p is > 0.7 and if, between 300 and 600, with probability > 0.98,
#L3p is greater than #L1p. We evaluate this formula in three different initial
conditions, firstly Init = 32 and N = 5000, then Init = 64 and N = 10000,
and finally Init = 100 and N = 15625, so the same concentration but different
numbers of molecules. In all cases, the LNA-based model checking evaluates the
formula as true. To understand the quality of the approximation, we check the
following quantitative formula P=?[(#L3p−#L1p, [0,+∞])][T,T ] for T ∈ [0, 600]
(in our implementation =? gives the quantitity calculated by model checking
the operator). We compare the results with the evaluation of the corresponding
CSL formula using standard uniformisation (Unif) with error 10−7 [24]. The
following table shows the results. MaxErr is the maximum error computed by
LNA-based approach compared to standard uniformisation and AvgErr is the
average error; T ime(·) stands for execution time.

Init Time (LNA) Time (Unif) MaxErr AvgErr
20 0.22 sec 2 min 0.0675 0.0519
32 0.23 sec 5 min 0.059 0.02
64 0.26 sec > 2 hr 0.0448 0.0027
100 0.3 sec > 2 hr 0.03 0.0011

Note that as Init increases the error of our method decreases, while the execution
time is practically independent of the molecular count. LNA-based algorithms
are faster in all cases. Thus our approach can be used even for quite small
population systems, giving a fast approximate stochastic characterization.

Gene Expression. We consider a simple CRN that models the transcrip-
tion of a gene into an mRNA molecule, and the translation of the latter into
a protein. The CRN, rates and initial conditions are the same as in [27]. The
stochastic semantics of the reaction network is an infinite CTMC, and we use
this model to show that our method can handle infinite state-space processes.
We consider the quantitative property supE=?[#mRNA][T,T ], which gives the
number of molecules ofmRNA in the system at time T . We compare our method
with SMC estimation of the same property by using 50000 simulations, for
T = {300, 600, 900, 1200}, and in the following tables we compare the results
in terms of execution time (T ime(·)) and expected value of #mRNA estimated
(ExpV al(·)). LNA-based model checking is several orders of magnitude faster
without loss of accuracy.

T Time (LNA) Time (Simul) ExpVal (LNA) ExpVal (Simul)
300 0.52 sec 75 sec 100.17 100.14 ± 0.1
600 0.54 sec 198 sec 142.15 142.11 ± 0.1
900 0.54 sec 337 sec 159.73 159.74 ± 0.1
1200 0.56 sec 483 sec 167.1 167.1 ± 0.1

FGF. We consider the model of Fibroblast Growth Factor (FGF) signalling
pathway developed in [22] composed of more than 50 reactions and species. We
consider the system with initially 105 molecules for species with non-zero initial



concentration. Analysis of the model reveals that the phosphorylated form of
FRS2 can bind the protein Src, and then this new complex, Src:FRS2, can re-
locate out. We want to check if the expected value of #Src:FRS2 during the first
3000 seconds reaches a maximum value greater than 40. We do that by checking
the property supE>40[#Src:FRS2][0,3000]. The formula evaluates to true, and in
Figure 2 we analyze the expected value and standard deviation of #Src:FRS2.
We obtain these values directly from the logic considering the quantitative in-
terpretation of supE=?[#Src:FRS2][T,T ] and supV=?[#Src:FRS2][T,T ] for T ∈
[0, 3000]. It is possible to see that, after an initial peak, relocation causes expo-
nential decay.

Fig. 2: Expected number and standard devi-
ation of species of #Src:FRS2 in the FGF
pathway during the first 8000 seconds esti-
mated by our method is compared with a
stochastic simulation of the same species.

In the same figure we show
a single stochastic simulation of
the system for the same initial
conditions, confirming our evalu-
ation. Moreover, the approxima-
tion can be justified theoretically.
#Src:FRS2 converges to zero nec-
essarily and this demonstrates the
unimodality of the distribution of
the species; we note that the vari-
ance is finite, so Eqn (3) holds.

DNA strand displacement

of GW network GW is a net-
work related to the G2-M cell cycle
switch [29]. Under particular ini-
tial conditions, it has been shown
that GW can emulate the Ap-
proximate Majority algorithm [8].
Here, we consider the two-domain
DNA strand-displacement imple-
mentation of GW [7]. The corre-
sponding CRN is composed of 340
species and 240 reactions. For our analysis the species of interest are R and
P , whose initial conditions are #R = 90 and #P = 10; initial conditions
of other species are taken from the referenced papers. We check the property
P>0.9[#R − #P, [50,+∞]][6000,35000] for a system of size N = 45000, which is
verified as true in 28 minutes.

6 Concluding Remarks

We presented a novel probabilistic logic for analysing stochastic behaviour of
CRNs and proposed an approximate model checking algorithm based on the
LNA of the CME. We have demonstrated on four non-trivial examples that LNA-
based model checking enables analysis of CRNs with hundreds of species, and
even infinite CTMCs, at a cost of some loss of accuracy. It would be interesting



to find bounds on the approximation error when the system is far from the
thermodynamic limit. However, the error is not only dependent on the value
of N , but also on the structure of the CRN, the rates, and the property. As
future work, we plan to improve the accuracy of the method near critical points
similarly to the approach of [16], and to extend the logic with more expressive
temporal operators in the style of CSL [2]. We also intend to release a software
tool based on LBS [31].
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