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Abstract. Double-skin façades (DSFs), widely used in buildings to provide specific thermal 
efficiency, acoustic isolation, and weather resistance properties, have been recently used as passive 
control systems. The present study focuses on the stochastic analysis of a shear-type frame 
equipped with a DSF subjected to ground motion acceleration modelled as a zero-mean stationary 
Gaussian random process fully characterized by an imprecise power spectral density function i.e., 
with interval parameters. The influence of imprecision of the seismic excitation on the 
performance of the DSF is investigated by evaluating the bounds of the interval reliability function 
for a selected displacement process of the frame structure, in the framework of the classical first-
passage problem.  
Introduction 
A double-skin façade (DSF) is a multi-layered structure composed of a second “skin” placed in 
front of a regular building façade. DSFs are becoming increasingly popular for their capability of 
improving the energy performance and the aesthetics of buildings. Recently, the application of 
DSFs as vibration absorbers has been investigated assuming either deterministic [1] or stochastic 
excitation [2]. Previous studies mainly focused on the optimal design of the DSF by varying the 
layout of panels and design parameters such as the stiffness of links to the building.  

The present study addresses the stochastic analysis of a shear-type frame equipped with a DSF 
subjected to ground motion acceleration taking into account epistemic uncertainties affecting the 
excitation. Following Pipitone et al. [2], the DSF is modelled as a set of independent panels, each 
one described as a mass lumped system connected to the main structure by elastic springs at the 
floor level. Within the strong motion phase, seismic excitation is modelled as a zero-mean 
stationary Gaussian process, fully characterized by an imprecise power spectral density (IPSD) 
function, recently proposed by Muscolino et al. [3]. The three parameters characterizing the 
assumed spectral model are described as interval variables by applying the so-called Improved 
Interval Analysis [4]. The bounds of the spectral parameters are estimated through the analysis of 
a set of accelerograms recorded on rigid soil deposits. Since the IPSD function has an interval 
nature, response statistics of the seismically excited system are described by intervals. To assess 
structural safety, the IPSD function of ground motion acceleration is incorporated into the 
formulation of the classical first-passage problem and the bounds of the interval reliability function 
for a selected response process are estimated.  
Problem formulation 
Let us consider a combined system (see Fig. 1) consisting of a s − storey shear-type frame (primary 
system) equipped with a DSF (secondary system) subjected to seismic excitation modelled as a 
zero-mean stationary Gaussian random process fully characterized by an IPSD i.e., with interval 
parameters. The primary system is characterized by storeys having equal mass m , lateral stiffness 
k  and inter-storey height h . A constant viscous damping ratio 0ζ  is assumed for all modes of 
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vibration. Following Pipitone et al. [2], the DSF is modelled as a set of N  independent panels 
connected to the main structure by elastic springs at the floor level. The generic panel is modelled 
as a system composed by j  lumped masses equally spaced by /2h . Each lumped mass has two 
degrees-of-freedom (DOFs), namely the horizontal displacement ( )jx t  and the rotation ( )j tθ  (see 
Fig. 1). The flexural stiffness of the panels Pk  and the stiffness of the springs are assumed 
proportional to the lateral stiffness k of the frame through the dimensionless coefficients υ  and α, 
respectively. The same viscous damping ratio Pζ  is assumed for all the  panels. 

 
Figure 1: Shear-type primary structure with double-skin façade. 

 
After a static condensation of the rotational DOFs of the panels, the equations of motion of the 

coupled system subjected to imprecise seismic excitation can be written as: 

g( ) ( ) ( ) ( )I I I It t t U t+ + = −MU CU KU Mτ    (1) 

where a dot over a variable denotes differentiation with respect to time t ; ( )I tU  is the interval 
vector random process that collects the n  dynamically significant nodal displacements, with the 
apex I denoting interval quantities; g ( )IU t  is the ground motion acceleration characterized by an 
IPSD function; τ  is the n -vector listing the influence coefficients; M  and K  are the n n×  mass 
and stiffness block matrices of the coupled structure: 
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where 0M  and 0K  are the mass and stiffness matrices of the primary structure; iM  and iK  
are the mass and stiffness matrices (after static condensation) of the -thi panel; 0SK  represents the 
increment of the stiffness matrix of the primary structure due to the secondary system; S iK  and 

0iK  contain the stiffness of the elastic springs at each storey level; O  is a zero matrix of 

N
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appropriate dimensions. The primary building and the panels are individually considered as 
classically damped subsystems. In Eq. (1), the damping matrix C  of the coupled system is defined 
as: 

1 T− −=C Γ Ξ Γ  (3) 

where Γ  is a convenient transformation matrix while Ξ  is the modal damping matrix. 
 
Imprecise power spectral density function 
The model of the IPSD function of ground motion acceleration recently proposed in [3] is assumed:  
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where 0β
I  is defined so as to ensure that the interval stochastic process g ( )IU t  possesses 

variance ( )g

2 ,
I
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H  are, respectively, the interval 

frequency control of the second order low-pass and first order high-pass butterworth filters, that in 
turn depend on the interval predominant circular frequency 0ΩI  and frequency bandwidth 0ρ

I  of 
the filtered stationary process [5]. Since the one-sided PSD function in Eq. (4) depends linearly on 

( )g

2
I

Uσ  , this variable could be set a posteriori. 

In Eq. (4), the generic interval variable I
iz  is expressed by using the Improved Interval Analysis 

[4] as follows: 
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where the symbols iz  and iz  denote the lower bound (LB) and the upper bound (UB) of the 

interval, respectively; [ ]ˆ 1,1I
ie = −  is the so-called extra unitary interval (EUI) associated with the 

i-th interval variable. In Eq. (5), mid,iz  and iδ∆  are the midpoint value (mid) and the normalized 
deviation amplitude of I

iz , given, respectively, by:  
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where ( ) / 2i i iz z z∆ = −  is the deviation amplitude (dev) of I
iz . In Eq. (5), ˆI I

i i ieδ δ= ∆  denotes 
the dimensionless interval fluctuation  around mid,iz  such that 1iδ∆ < . 

Interval reliability analysis 
The interval displacement vector ruled by Eq. (1) is described by an interval zero-mean stationary 
Gaussian random vector process, completely characterized in the frequency domain by the 
knowledge of the interval one-sided PSD function matrix, given by: 

1* T T 2( ) ( ) ( ) ( ); ( ) j ;I I
UGω ω ω ω ω ω ω

−
 = = − + = − gU H pp H   H K M C   p MG  τ  (7) 

where ( )ωH  is transfer matrix; j 1= − ; the asterisk means complex conjugate. 
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To perform structural safety assessment under seismic excitation, the IPSD function is herein 
incorporated into the formulation of the classical first-passage problem. Let I

hU  be the interval 

displacement process of interest and max, 0
( ) max ( )I I

h ht T
U T U t

≤ ≤
=  the associated extreme value process. 

Adopting the Vanmarcke’s failure criterion [6], the interval cumulative distribution function 
(ICDF) or interval reliability function ( )

max,
,
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UL b T  can be expressed as [3]: 
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where , h

I
i Uλ  ( 0,1, 2i = ) are the interval spectral moments of the response process 

g
( ) ( ) /I I I

h h UU t U t σ= 
  under unit variance seismic acceleration; 

h

I
Uδ  is the interval bandwidth 

parameter; b  represents the barrier level; T is the observation time. The LB and UB of the ICDF 
can be evaluated by performing global optimization for each value of the barrier level b  under the 
constraint that the uncertain spectral parameters range within the pertinent intervals. Alternatively, 
accurate estimates of the bounds of the ICDF can be efficiently obtained as [3]: 
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where , hi Uλ  and , hi Uλ  are the bounds of the interval spectral moments , h

I
i Uλ  ( 0,1, 2i = ). Since 

the monotonic behaviour is not guaranteed, such bounds might correspond to intermediate values 
of the interval spectral parameters 0ΩI  and 0ρ

I , and can be evaluated by optimization. 

Numerical application and discussion 
A six-storey shear-type frame equipped with a DSF consisting of two independent panels is 
considered [2]. The primary building, having a fundamental period of vibration 1 0.582 sT = , is 
characterized by the following parameters: floor mass 20000 kgm = , lateral stiffness

74 10 N/mk = × ; inter-storey height 3.32 mh = ; constant viscous damping ratio 0 0.02ζ =  for all 
modes of vibration. The total mass of the two panels is assumed as 10% of the mass of the primary 
building [2]. For the two panels, 0.392υ =  and 0.13Pζ =  are considered. Different values of the 
stiffness of the links to the frame kα  are considered such that min maxα α α≤ ≤ , with 

3
min 1.72 10α −= ×  and 3

max 5.16 10α −= × . The value 3
0 3.44 10α −= × is assumed as the nominal 

one. The displacement of the first floor of the primary structure, 1 ( )IU t , is selected as response 

quantity of interest. The bounds of the interval parameters 0ΩI , 0ρ
I , ( )g

2σ
I

U  entering the IPSD 

function in Eq. (4) are estimated by analysing 10 site-compatible accelerograms, recorded on rigid 
soil deposits, downloaded from PEER [8] and Engineering Strong Motion [9] database. All the 
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selected accelerograms are scaled to the target peak ground acceleration value 23.33 m/sga = . 
Table 1 lists the LB, UB, mid and percentage ratio (dev/mid)% of the spectral parameters. 

 
Table 1: Main characteristics of the interval spectral parameters. 

Parameter LB UB mid (dev/mid) % 
2 2 4m /s

gUσ     0.64 1.47 1.06 39.09  

0 [rad/s]Ω  23.91 45.22 34.57 30.82 

0[rad/s]ρ  12.10 22.56 17.33 30.17 

The realizations of the IPSD function ( )g g g
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  pertaining to the extreme 

values of the interval parameters 0ΩI  and 0ρ
I  along with the nominal spectrum are reported in Fig. 

2a. The ratio 
1 1 1

2 2
,c ,u/U U UJ σ σ=    between the variance of the displacement 

g1 1( ) ( ) /I I I
UU t U t σ= 

  of 

the primary structure with and without the DSF [2] is herein taken as representative of structural 
performance under seismic excitation. The subscripts “c” and “u” stand for controlled and 
uncontrolled. Fig. 2b displays the ratio 

1UJ  versus the coefficient α  for all possible combinations 

of the endpoints of the interval spectral parameters 0ΩI  and 0ρ
I  as well as for the nominal values. 

The value of the dimensionless coefficient α  which minimizes 
1UJ  is nearly 0.00392Mα =  in all 

the considered cases. Furthermore, over the whole range of α , the smallest value of the ratio 
1UJ  

pertains to 0Ω  and 0ρ  which indeed provide the LB, 
10,Uλ , of 

10,
I
Uλ . 

 

 
Figure 2: a) some realizations of the IPSD function of ground motion acceleration; b) associated 

ratios between the variance of 
g1 1( ) ( ) /I I I

UU t U t σ= 
  with and without DSF versus α. 

 
Fig. 3a shows the LB and UB of the ICDF, ( )

max,1
,I

UL b T , of the extreme value process max,1( )IU T , 

along with the nominal solution for 30sT =  and 0α α= . Notice that the proposed bounds (Eq. (9)
) are in excellent agreement with the “Exact” ones obtained by applying the scanning method. As 
expected, neglecting the uncertainties affecting the main parameters of the IPSD function of 
ground motion acceleration may lead to serious overestimation of the safety level. To ensure a 
conservative design, the worst-case scenario, corresponding to the LB of the ICDF, needs to be 
considered [3]. To assess the influence of the DSF on structural reliability, in Fig. 3b the bounds 
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of the ICDF, ( )
max,1

,I
UL b T , provided by Eq. (9) for min max, ,Mαα α α=  are contrasted with the ones 

pertaining to the frame without DSF. It can be noticed that the DSF significantly improves the 
seismic performance of the primary structure. In particular, the DSF with link stiffness Mkα  
ensures the highest safety level.  

 

 
Figure 3: ICDF of max,1( )IU T : a) comparison between the proposed and “Exact” bounds ( 0α α= ); 

b) proposed bounds for different configurations. 
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