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Abstract

In the high-level operations of computer vision it is taken for granted that image features have been reliably
detected. This paper addresses the problem of feature extraction by scale-space methods. There has been a
strong development in scale-space theory and its applications to low-level vision in the last couple of years.
Scale-space theory for continuous signals is on a firm theoretical basis. However, discrete scale-space theory
is known to be quite tricky, particularly for low levels of scale-space smoothing. The paper is based on two
key ideas: to investigate the stochastic properties of scale-space representations and to investigate the interplay
between discrete and continuous images. These investigations are then used to predict the stochastic properties
of sub-pixel feature detectors.

The modeling of image acquisition, image interpolation and scale-space smoothing is discussed, with partic-
ular emphasis on the influence of random errors and the interplay between the discrete and continuous represen-
tations. In doing so, new results are given on the stochastic properties of discrete and continuous random fields.
A new discrete scale-space theory is also developed. In practice this approach differs little from the traditional
approach at coarser scales, but the new formulation is better suited for the stochastic analysis of sub-pixel feature
detectors. The interpolated images can then be analyzed independently of the position and spacing of the under-
lying discretisation grid. This leads to simpler analysis of sub-pixel feature detectors. The analysis is illustrated
for edge detection and correlation. The stochastic model is validated both by simulations and by the analysis of
real images.

Mathematics Subject Classification: 68U10, 60D05, 60G60

1 Introduction

This work is motivated by an attempt to understand how well edges can be located in images. Study Figure 1a,
which contains a digital image taken with an ordinary CCD-camera. The scene contains a sharp discontinuity in

�
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Figure 1: Figure 1a illustrate a part of a digital image containing a high contrast edge. Figure 1b illustrate the result
from a traditional edge-detector. Figure 1c illustrate the edge as localized using the new methodology presented in
this paper. The result is not only the edge but also an estimate of its localization variance.
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Figure 2: Illustration of the image acquisition model. The original intensity distribution Wideal is blurred by the
kernel h ��� h2 	 h1 
 , corresponding to camera optics blur h1 and digitization blur h2. The blurred signal W is then
sampled to form a discrete signal w. Finally noise is added. The result is the measured discrete signal v � w � e.

contrast called an edge. It is the image of a white paper on a black background. Figure 1a contains a small section
of that high contrast edge. We would like to know how well that edge can be located. What does the magnitude of
these errors depend on?

A common misconception is that the edge can only be located on a pixel level, that the reason we cannot locate
the edge exactly is that we have only got a discrete set of measurements. In fact, most ’edge detector’ algorithms
[5, 8, 9, 10, 13, 20, 21, 27] as they are called in the image analysis literature give as output a binary image where
all the edge pixels are marked without any estimate of edge localization error, see Figure 1b.

In this paper we will try to present a simple model for image acquisition and image interpretation. This model
can be used to understand what is measured in digital images, how to construct simple feature detectors and how to
analyze their performance. Thus it will be shown that edges can be detected with sub-pixel accuracy and the edge
localization error can be predicted and estimated using image data. Figure 1c illustrates the edge as localized using
the new methodology presented in this paper. The edge localization errors are in the order of 1/100’th to 1/10’th
of a pixel.

Image acquisition is viewed as a composition of blurring, ideal sampling and added noise, similar to [24].
The discrete signal is analyzed after interpolation. This makes it possible to detect features on a sub-pixel basis.
Averaging, or scale-space smoothing, is used to reduce the effects of noise. To understand feature detection in this
framework, one has to analyze the effect of noise on interpolated and smoothed signals. In doing so a theory is
obtained that connects the discrete and continuous scale-space theories.

The paper is organized as follows. Section 2 treats the image acquisition model. In Section 3 a method for
image interpretation is proposed. The discrete scale-space is induced from the continuous scale-space theory. This
solves the problem of using fine scales and it also simplifies the theory. The main motivation for our formulation
of scale-space theory is, however, to simplify the stochastic analysis of low-level feature detectors. The stochastic
properties of the intensity error field are discussed in Section 4. A short introduction to stationary random fields
is given and some important results that are relevant for our model are demonstrated. The ideas are verified with
numerical experiments on real images. The sub-pixel edge detector is studied in Sections 5 and 6. Sub-pixel
correlation is investigated in Section 7.

A word should be said about the methodology of this paper. The image acquisition process and the properties
of image features are difficult, or impossible, to fully model a priori. Here we make a mathematical engineering
approach, starting with some simple assumptions from which the analysis starts. In the results obtained, further
approximations and assumptions will be made and motivated. These are thus part of the modeling, and make it
possible to give a stochastic analysis of two major problems in computer vision, edge-detection and correlation.
The validity of the modeling is tested afterward in simulations and experiments. The results turn out to justify the
theory.

2 Image acquisition

To model the image acquisition, the intensity distribution Wideal that would be caught by an ideal camera is first
affected by aberrations in the optics of the real camera, e.g. blurring caused by spherical aberration, coma and astig-
matism. Other aberrations deform the image, like Petzval field curvature and distortion, see [12]. Such distortion
can typically be handled by geometric considerations in mid-level vision and will not be commented upon here.
One way to model camera blur is to convolve the ideal intensity distribution with a kernel corresponding to the
smoothing caused by the camera optics. This process also removes some amount of the high spatial frequencies.

In a video-camera, the blurred image intensity distribution is typically measured by a CCD array. One can
think of each pixel intensity as the weighted mean of the intensity distribution in a window around the ideal pixel
position. Taking the weighted mean around a position is equivalent to first convoluting with the weighting kernel
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Figure 3: The figure illustrates the kernels h1, h2 and h � h1 	 h2, representing blurring and windowing, and their
corresponding Fourier transforms.

and then ideal sampling. This is illustrated in Figure 2. The ideal intensity distribution Wideal is first blurred to
form the smooth distribution W . This is sampled to form the discrete signal w. Finally, due to quantization and
other errors, stochastic errors are introduced in the measured discrete signal v.

The estimation of the original continuous intensity distribution Wideal using only the discretized and noisy
image v is a severely ill-posed inverse problem, that has to be regularised.

The following assumptions and notations will be used.

Assumption 2.1. The blur caused by camera optics can be modeled as convolution with a kernel h1, and the
“window blur” caused by weighted sampling, modeled as convolution with kernel h2, where both operations are
of low-pass type. Denote by h the convolution of these two kernels, h � h1 	 h2, where 	 denotes convolution. Thus
W � Wideal 	 h.

In the definition of the Fourier transform, we will use the formula

F W � f 
 �����
n
W � τ 
 e � i2π f � τdτ � (1)

where f � τ denotes the scalar product.

Assumption 2.2. All energy in the high spatial frequencies is cancelled before discretization. The function W �
Wideal 	 h is band-limited, i.e. the Fourier transform F W is zero outside a bounded interval.

The Assumption 2.2 says that we have no aliasing effects, when the function W is sampled. In the sequel the
function W will be sampled at integer positions. To avoid aliasing effects we will assume that W is band-limited
within frequency interval �	� 1 
 2 � 1 
 2 
 n. This makes it possible to reconstruct W from the sampled data, as will be
discussed later. For this purpose we introduce the class of functions

B ��� n 
 �� W � L2 ��� n 
�� suppF W � ��� 1 
 2 � 1 
 2 
 n � � (2)

where L2 denotes the class of square integrable functions, i.e. functions W such that � �W � x 
�� 2dx � ∞.

Assumption 2.3. The error can be modeled by the addition, after discretization, of a stationary, discrete random
field, defined in Section 4.

Experimentally it is verified that the errors in individual pixel intensities often can be modeled as independent
random variables with similar distribution.

Aliasing

Some interesting questions are: What is a reasonable model of the blur caused by camera optics and discretization,
i.e. what are the functions h1 and h2 above? Are high frequencies suppressed before discretization? A crude
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model of the camera and discretization blur will be presented, to obtain a feeling for how high frequencies are
attenuated before discretization. This is motivated in the one-dimensional case. The kernels in the general case
can be obtained by tensor multiplication.

The discussion that follows only serve the purpose of discussing and justifying Assumption 2.2. The exact
form of h1 and h2 below is not important and will not be used in the sequel.

The camera blur or point-spread function as it is also called is discussed in some detail in [12]. In a well
corrected system it can be modeled by the Airy irradiance distribution, see [12, p. 485]. Distortions in the camera
make it reasonable to model the camera blur as the convolution with a Gaussian kernel with some width a, i.e.

h1 � t 
 � 1�
2πa2

e � t2 � 2a2 �
(3)

The corresponding Fourier transform is

H1 � f 
 � e � 2π2a2 f 2 �
(4)

The measurement or discretization kernel at each pixel is modeled with a rectangular kernel,

h2 � t 
 � θ � t � 1 
 2 
 � θ � t � 1 
 2 
 �
where θ denotes the Heaviside function

θ � x 
 �
�

0 � if x � 0,

1 � if x � 0.
(5)

The Fourier transform of h2 is
H2 � f 
 � sinc � f 
 �

where sinc is the function

sinc � s 
 �
�

sin � πs �
πs � if s �� 0,

1 � if s � 0.

The corresponding interpolation operator is denoted Thus the total blur caused by optics and discretization is
modeled as a convolution with the kernel

h � h1 	 h2 �
whose Fourier transform is

H � H1H2
�

The kernels and their transforms are illustrated in Figure 3 where the parameter a in (3) has the value 0
�
6. The

result is clearly a filter of low-pass type. To quantify this we use the squared norms:

Alow � � 1 � 2

� 1 � 2
�H � 2d f �

Ahigh � � � 1 � 2

� ∞
�H � 2d f � � ∞

1 � 2
�H � 2d f

�
These quantities represents how the filter h attenuates energy at high and low spatial frequencies. For a width of
a � 0

�
6 pixels, we have Alow � 0

�
42 and Ahigh � 1

�
2 � 10 � 3. Thus the energy in the low frequencies is roughly

halved while the energy in the high frequencies is attenuated by a factor of 1000. To avoid aliasing, high frequency
components should be attenuated before discretization. Notice that this is done to a reasonable extent by the
camera. Aliasing effects are thus substantially reduced by the normal pre-smoothing in the camera system. The
effect is still larger when the kernel width a is increased, as is shown in the Table 1.

Thus pre-filtering before sampling is inherent in a camera system. The way it is done depends critically on
the properties of each individual camera and the resolution of the digitizer. To get the best effect, the camera blur
and the discretization grid should be chosen carefully to match each other. This is analogous to the design of
anti-aliasing filters in signal processing, see [4, p. 468]. Notice in particular that too sharp an image will give alias
effects which cannot be removed by the subsequent signal processing.
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a Alow Ahigh

0.6 0.42 1
�
210 � 3

1.0 0.27 1
�
110 � 6

1.5 0.18 3
�
010 � 12

2.0 0.14 7
�
110 � 20

Table 1: The table illustrates the attenuation of low versus high spatial frequencies for different levels of camera
blur.

3 Sampling, interpolation and smoothing

To formalize the image acquisition discussion of the previous section, some notation will be introduced. Let
upper case letters, W , denote signals with continuous parameters, whereas lower case letters, w, denote discrete
signals. Here, and often in the sequel, we use the word signal synonymously with function, and discrete signal
synonymously with sequence or function defined on � n, for some n.

Definition 3.1. The discretisation operator, or sampling operator, D : B ��� 2 
�� l2, is

w � i 
 � � DW 
 � i 
 � W � i 
 � � i ��� n (6)

where l2 denotes square summable sequences, i.e. sequences such that ∑i ��� n �w � i 
 � 2 � ∞. Note that the sampling
operator maps a continuous signal W onto a discrete signal w.

By assumptions 2.1 and 2.3, image acquisition is modeled as a composition of convolution, ideal discretization
and addition of noise:

Wideal
blur� � W � h2 	 � h1 	 Wideal 
 sampling� � w � DW

noise� � v � w � e
�

(7)

These assumptions will serve as an initial model. Further improvements can be made by a more detailed
camera acquisition model. Nevertheless, these assumptions will help us to model and analyze the next stage,
namely estimating the continuous image intensity distribution from the discrete image. Obviously, it is impossible
to reconstruct the original intensity distribution Wideal without some a priori knowledge. Compare with blind
deconvolution in which Wideal is estimated using the assumption that the convolution kernel has compact support,
[17].

It is, however, reasonable to try to estimate the blurred and distorted intensity distribution

W0 � h2 	 � h1 	 Wideal 
 � h 	 Wideal �
or to estimate an even more blurred version.

Scale-space smoothing

Scale-space theory and its application to computer vision is discussed briefly in this section. A more thorough
treatment is given in [18]. The idea is to associate to each signal f : � n � � a family  Tt f � t � 0 � of gradually
smoother signals. The original signal corresponds to the scale t � 0 and increasing the scale t should simplify the
image without creating spurious structure.

Each such signal captures the behaviour of the signal at one scale. This is illustrated in Figure 4. It is natural
to view image acquisition as a process that removes fine details. It will therefore be difficult (impossible) to
reconstruct the whole scale-space representation of Wideal . It is however possible to recontruct the signal at courser
scales. Scale-space is therefore a natural tool for image interpretation.

Smoothing is also useful in order to attenuate high-frequency noise without disturbing the low-frequency com-
ponents of the signal. There is a trade-off in choosing the smoothing parameter. The real strength in using the
scale-space approach is the possibility to study the whole scale-space representation, This will, however, not be
pursued in this paper. The emphasis will be made to study the stochastic properties of each scale-space represen-
tation separately.

In the continuous case, smoothing with the Gaussian kernel

Gb � x 
 � 1�
2πb2

e � x2 � 2b2
(8)
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Figure 4: Scale-space representation of a one-dimensional signal. The signal at different scales can be thought to
represent the signal at different levels of resolution or detail.

is very natural. In fact if we want to define a scale-space representation Tt f of a one-dimensional signal f with the
following properties:

� Tt is a linear and translation invariant operator for every t,

� Scale invariance. If the signal is enlarged by some factor λ, i.e. g � x 
 � f � x 
 λ 
 then there exists a scale
t
� � t

� � t � λ 
 such that Tt g � x 
 � Tt
� f � x 
 λ 
 ,

� Generalized Semi-group property: Tt1 � Tt2 f 
 � Tt1
�

t2 f ,

� Positivity preserving: f � 0 ��� Tt f � 0,

then the only choice is to define Tt f according to

Tt f � f 	 G � t �
cf. [14]. Alternate definitions and proofs can be found in [3, 15, 18, 28].

Here we will use an alternative scale parameter b � �
t.

Definition 3.2. The smoothing operator Sb represents convolution with the Gaussian kernel Gb.

A signal W is represented at scale b by its smoothed version Wb:

Wb � SbW � � Gb 	 W 
 �
(9)

The signal Wb is called the scale-space representation of W , at scale b. In the sequel subscripts are used to
denote different scales. This scale-space representation has several advantages. It can be shown that structure
decrease as scale parameter increase in the sense that local extrema are never enhanced, i.e. ∂t � Tt f 
 � x0 
 � 0 if x0

is a maximum and ∂t � Tt f 
 � x0 
 � 0 if x0 is a minimum. Another nice feature is that the smoothed function Wb

has continuous derivatives of arbitrary order. A third useful property is that the high frequency components of the
noise are attenuated as scale increases. By using multidimensional Gaussians, there is a natural generalization to
functions W of several variables.

Scale-space theory in the discrete time case has been investigated in [18]. It turns out that just by sampling a
continuous scale-space kernel, one obtains a discrete scale-space kernel. Sampling of the Gaussian kernel can thus
be used to obtain a discrete scale-space kernel. However, in doing so one does not obtain a scale-space theory with
all the nice features of the continuous scale-space theory.
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� There are difficulties with fine scales. In particular it is difficult to define higher order derivatives at fine
scale levels.

� For the same reason it is difficult to define local extremum and zero crossings for fine scales.

� The semi-group property is lost.

These questions are discussed in [18].

Interpolation and scale-space smoothing

The main idea of our approach is to induce the discrete signal, the scale spaces, etc. from the associated interpolated
quantities. By an interpolation or restoration method we mean an operator that maps a discrete signal, w, to a
continuous one, W . The ideal interpolation operator is of special interest:

Definition 3.3. Ideal interpolation I : l2 � w � W � L2 is defined by

W � s 
 � � Iw 
 � s 
 � ∑
i

sinc � s � i 
 w � i 
 � (10)

We propose to use ideal interpolation I, and discretization D as mappings between the continuous and discrete
signals to solve the restoration and discrete scale-space problems. In other words we relate the discrete and con-
tinuous signals through the operations of discretization and ideal low-pass interpolation. This is illustrated by the
diagram:

W
I�

D
w � (11)

where D is the discretization operator and I is the ideal interpolation operator.
Note that if the camera induced blur cancels the high frequency components in W as in Assumption 2.2, the

deterministic restoration W0 is equal to W , i.e. W0 � W . This can be stated more precisely using the sampling
theorem.

Theorem 3.1. A continuous time signal W with a Fourier transform with support within the interval ��� 1 
 2 � 1 
 2 
 n
is given uniquely by sampled signal w � D �W 
 . The continuous time signal is obtained by ideal interpolation
W � I � w 
 .

Proofs and further reading can be found in [16, 22, 26]. Thus ideal interpolation is the pseudo-inverse of
discretisation, i.e.

D � DID � (12)

I � IDI
�

(13)

Using these definitions, the discrete and continuous scale-space representations can be defined simultaneously
and consistently. We propose the following:

1. If the primary interest is the interpolated continuous signal, then restore the scale-space smoothed contin-
uous signal Wb from the discrete signal w first using ideal interpolation and then continuous scale-space
smoothing.

2. If the primary interest is a discrete scale-space representation, then use the induced representation from the
continuous scale-space, as defined in (11).

The procedure is illustrated by the diagram:

W0
I� ������� w0

Sb

�
�

�

�
�

� sb

Wb
D� ����� � wb

(14)
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Thus, from the discrete signal w0, the continuous scale-space smoothed signal Wb is obtained as as Wb �
Sb � I � w 
 
 The discrete scale-space signal wb � sb � w0 
 , is induced from the continuous scale-space signal, i.e.

wb � sb � w 
 def� D � Sb � I � w0 
 
 
 � (15)

where sb is introduced as the discrete scale-space smoothing operator. Notice that sb is a convolution with a kernel
gb,

gb � D � Gb 	 sinc 
 �
(16)

The differences between this approach and others, like the sampled Gaussian approach, is very small for large
scales but significant for small scales. This fact is quantified in the following lemma.

Lemma 3.1. For large scale parameter b, sinc 	 Gb is approximately equal to Gb, in the sense that

� � sinc 	 Gb � Gb � � 22 � 1
b

�
π

Φ ��� πb
�

2 
 � (17)

where Phi denotes the one-dimensional normal cumulative distribution function.

Proof. Consider the Fourier transforms
F Gb � f 
 � e � 2π2b2 f 2

and
F � sinc 	 Gb 
 � χ � � 1 � 2 � 1 � 2 � F Gb

�
These are almost equal because F Gb is small outside the interval � � 1 
 2 � 1 
 2 � when b is large. By Parseval’s
Theorem we have

� � sinc 	 Gb � Gb � � 22 � � � χ � � 1 � 2 � 1 � 2 � F Gb � F Gb � � 22 � ���
f
� �

1 � 2
� e � 2π2b2 f 2 
 2d f � 1

b
�

pi
Φ �	� πb

�
2 
 (18)

The main motivation for using ideal low-pass interpolation is, however, that the approach is well suited for stochas-
tic analysis as will be shown later. Observe that the interpolated signal W is smooth. Therefore, there is no difficulty
in defining higher order derivatives.

This scale-space theory has several theoretical advantages:

1. It works for all scales.

2. The semi-group property, s � as � b � s � a
�

b, holds.

3. The coupling to continuous scale-space theory gives a natural way to interpolate in the discrete space.

4. There are no difficulties in defining derivatives at arbitrary scales.

5. It is possible to calculate derivatives at arbitrary interpolated positions.

6. Operators which commute in the continuous theory automatically commute in the discrete theory.

7. The effect of additive stationary noise can easily be modeled.

8. It makes it possible to compare the real intensity distribution with the interpolated distribution.

There is, however, a price to pay. The discrete scale-space smoothing operator sb is a convolution with the discrete
function

gb � D � sinc 	 Gb 
 �
i.e. sb � w 
 � gb 	 sb. The discrete scale-space kernels gb for some values of b are illustrated in Figure 5. In practice
this scale-space theory is difficult to use for small scale parameters, because of the large tail of the sinc function.
However, the function sinc 	 Gb has a very small tail for larger scales. This makes it easy to implement. In
practise one may use the approximation sinc 	 Gb 	 Gb for large scales, according to Lemma 3.1. This simplifies
implementation substantially.
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Figure 5: The discrete scale-space kernels gb � D � sinc 	 Gb 
 for different scales b.

Comparison with other approaches

Discrete scale-space kernels of slightly different types have been used in the literature. In this section, two of these
will be compared to our approach.

Definition 3.4. The sampled Gaussian discrete scale-space kernel is defined as

gb � j 
 � 1�
2πb2

e � j2 � 2b �

Definition 3.5. The integrated Gaussian discrete scale-space kernel is defined as

gb � j 
 ��� j
�

1 � 2

j � 1 � 2

1�
2πb2

e � x2 � 2bdx
�

It is well known that these approaches are difficult to use for fine scales. The discrete scale-space theories can
be understood in the light of interpolation, smoothing and discretisation. We will try to analyse a choice of discrete
scale-space smoothing sb as a composition of some interpolation IF , Gaussian smoothing Sb and discretisation D.
We will use interpolations of type

W � s 
 � � IF w 
 � s 
 � ∑
i

F � s � i 
 w � i 
 � (19)

where IF is the interpolation operator using distribution F. The question is then what type of interpolation IF

corresponds to sampled Gaussian and interpolated Gaussian, i.e. How should F be chosen so that sb � DSb IF :

W0
IF� ������� w0

Sb

�
�

�

�
�

� sb

Wb
D� ����� � wb

(20)

It is straight forward to see that the operator sb is in fact discrete convolution with a kernel gb � D � Gb 	 F 
 .
Example 3.1. Discrete scale space using the sampled Gaussian is equivalent to interpolation with δ-distribution,
followed by Gaussian smoothing and discretization.

sb � D � Sb
� Iδ

�
gb � D � Gb 	 δ 
 �

This works well for large scales, but a poor approximation is obtained for small scales as is shown in Figure 6.
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scale parameter b. The approximation is, however, good for large scale parameter.

Definition 3.6. Piecewise constant interpolation is defined as interpolation with the function.

step � s 
 �
�

0 � � s � � 1 
 2 �
1 � � s � � 1 
 2

�

Example 3.2. Discrete scale space using the integrated Gaussian is equivalent to piece-wise constant interpolation,
followed by Gaussian smoothing and discretization, i.e.

sb � D � Sb
� Istep

�
gb � D � Gb 	 step 
 �

Although it gives better results than the sampled Gaussian it performs poorly at fine scales, cf. Figure 7.

Example 3.3. The proposed scale-space restoration is made by first doing ideal low-pass interpolation and then
scale-space smoothing for continuous signals. This is illustrated in Figure 8. Notice the good approximation
already at scale 0. Compare with Figures 6 and 7.

Remark. Observe that the reason why restoration in general, and restoration using the sinc function in particular,
works, is that the sampled function W has high regularity. All high frequency components have been attenuated by
camera and digitization blur.

4 The random field model

In this section the stochastic models are investigated. So far we have the following model for image acquisition

Wideal
blur� � W

D� � w0
noise� � v0 � w0 � e0 � (21)
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Figure 8: Illustration of ideal low-pass interpolation. The figure illustrate the signals Wb (dashed) and Sb � Isinc � w0 
 

(full) for b � 0, 0

�
2 and 0

�
4 The approximation Sb � Isinc � w0 
 
 	 Wb is good even for small scale parameter b. (In

fact the two curves are indistinguishable in the figure.)

where Wideal is the ideal intensity distribution entering the camera system. This intensity is first blurred. The result
W is assumed to have no frequency components outside the interval �	� 1 
 2 � 1 
 2 
 n, see Assumption 2.2. This signal
is then discretised and finally perturbed by additive noise.

The discrete image v0 � w0 � e0 is analyzed directly or through scale-space smoothing, as illustrated by the
diagram:

W0 � E0
I� ��� � � w0 � e0

Sb

�
�

�

�
�

� sb

Wb � Eb
D� � ��� � wb � eb

(22)

Note that all operations are linear. The stochastic and deterministic properties can, therefore, be studied separately
and the final result is obtained by superposition. Thus with an a priori model on Wideal, for example an ideal edge
or corner, it is possible to predict the deterministic parts Wb and wb. The stochastic properties of the error fields e0,
eb, E0 and Eb, will now be studied.

Stationary random fields

The theory of random fields is a simple and powerful way to model noise in signals and images. Stationary or
wide sense stationary random fields are particularly easy to use. Denote by E the expectation value of a random
variable.

Definition 4.1. A random field X � t 
 with t � � n is called stationary or wide sense stationary, if its mean m � t 
 �
mX � t 
 � E � X � t 
 � is constant and if its covariance function rX � t1 � t2 
 � E � � X � t1 
 � m � t1 
 
 � X � t2 
 � m � t2 
 
 � only
depends on the the difference τ � t1 � t2.

This should be compared with the notion of strict stationarity.

Definition 4.2. A random field X � t 
 with t � � n is called strictly stationary if for all � t1 � � � � � tn 
 and all τ the
stochastic variable � X � t1 
 � � � � � X � tn 
 
 has the same probability distribution as � X � t1 � τ 
 � � � � � X � tn � τ 
 
 .

For stationary fields we will use rX � s � t 
 and rX � s � t 
 interchangeably as the covariance function. The analo-
gous definition is used for a stationary field in discrete parameters. The notion of spectral density

RX � f 
 � � F rX 
 � f 
 � � rX � τ 
 e � i2π f � τdτ (23)

is also important. Again the same definition can be used for random fields with discrete parameters s � � n, but
whereas the spectral density for random fields with continuous parameters is defined for all frequencies f , the
spectral density of discrete random fields

RX � f 
 � ∑rX � k 
 e � i2π f � k (24)

is only defined on an interval f � � � 1 
 2 � 1 
 2 �n. Introductions to the theory of random processes and random fields
are given in [1, 6, 7]. These also contains proofs and comments to the following two useful theorems.
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Theorem 4.1 (Convolution of a random field). Let X be a stationary random field and let Y � h 	 X, with h � L2.
Then Y is a stationary random field with covariance

rY � τ 
 � �
u
�

v
h � u 
 h � v 
 rX � τ � u � v 
 dudv

�
(25)

If H is the Fourier transform of h, then the spectral density function RY is

RY � f 
 � RX � f 
 �H � f 
 � 2 �
(26)

Theorem 4.2 (Sampling of a random field). If X � t 
 is a stationary random field with continuous parameter t �� n and if x is the result of sampling X at times t � � n, i.e. x � D � X 
 , then x is a stationary discrete random field,
with covariance

rx � DrX (27)

and spectral density

Rx � f 
 � ∑
k � � n

RX � f � k 
 �
(28)

Consider the diagram:

E0
I� ����� � e0

Sb

�
�

�

�
�

� sb

Eb
D������� � eb

(29)

It follows from the Theorems 4.1 and 4.2 that the operators D, Sb and sb preserve stationarity. We will now
show that the ideal interpolation I preserves stationarity as well. First we will analyze the one-dimensional case.
To do this we need a lemma concerning an infinite series:

Lemma 4.1.

∑
i

sinc � s � i 
 sinc � t � i 
 � sinc � s � t 
 �
(30)

Proof. The proof follows from a simple calculations and a formula for summation of a standard series

πcotπz � lim
m � ∞

m

∑
n � � m

1
z � n

�
see [2, p. 188]. Hence,

∑
i

sinc � s � i 
 sinc � t � i 
 �

� ∑
i

sin � π � s � i 
 
 sin � π � t � i 
 

π2 � s � i 
 � t � i 
 �

� ∑
i

�	� 1 
 2i sin � πs 
 sin � πt 

π2 � s � i 
 � t � i 
 �

� sin � πs 
 sin � πt 

π2 ∑

i

1
� s � i 
 � t � i 
 �

� sin � πs 
 sin � πt 

π2 ∑

i

�
1

� s � t 
 � t � i 
 � 1
� s � t 
 � s � i 
�� �

� sin � πs 
 sin � πt 

π2

π
s � t
� cot � πt 
 � cot � πs 
 
 �

� sin � πs 
 cos � πt 
 � sin � πt 
 cos � πs 

π � s � t 
 �

� sin � π � s � t 
 

π � s � t 
 � sinc � s � t 
 �

(31)
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This lemma will now be used in the proof of the following theorem, which describes the stochastic properties
of the restored signal at scale zero. In the theorem l p is used to denote sequences w such that ∑ �w � i 
 � p � ∞.

Theorem 4.3 (Interpolation of a random process). If e � i 
 is a stationary discrete stochastic process with zero
mean and covariance function

re � i � j 
 � re � i � j 
 �
such that

re � lp � for some p � ∞ �
then the ideal interpolation at scale zero,

E � s 
 � ∑
i

sinc � s � i 
 e � i 
 � (32)

is a well defined random process, with convergence in quadratic mean. Moreover, E is stationary with covariance
function

rE � τ 
 � I � re 
 � τ 
 � ∑
k

re � k 
 sinc � τ � k 
 �
(33)

Proof. To prove that E � s 
 is well defined we need to prove that∑i sinc � s � i 
 e � i 
 converges in the quadratic mean
for every s. Let

Sm � ∑�
i
� �

m

sinc � s � i 
 e � i 
 �
Convergence in quadratic mean can be established using the Cauchy criterion by showing that

E � � Sm � Sn � 2 � � 0 � as m � n � ∞
�

Here

E � � Sm � Sn � 2 � � ∑
n

� �
i
� �

m
n

� �
j
� �

m

sinc � s � i 
 sinc � s � j 
 E � eie j � � ∑
n

� �
i
� �

m
n

� �
j
� �

m

sinc � s � i 
 sinc � s � j 
 re � i � j 
 �
(34)

This tends to zero as m � n � ∞ if the double sum

∑
i � j sinc � s � i 
 sinc � s � j 
 re � i � j 


is absolutely convergent. Making the change of variables, k � i � j � l � s � i, the double sum can be rewritten as

∑
i � j � sinc � s � i 
 sinc � s � j 
 re � i � j 
�� � ∑

k � i � j
l � s � i

� sinc � l 
 sinc � k � l 
 re � k 
 � � ∑
k
� re � k 
 � ∑

l
� sinc � l 
 � � sinc � k � l 
�� �

(35)

The second sum is the discrete convolution of � sinc � s � � 
�� and � sinc � s � � 
 � . Both sequences lie in l p for every
p � 1. Since, by Young’s inequality, see [11], the convolution of two functions of type l p and lq is lr with
1 
 p � 1 
 q � 1 � 1 
 r, the convolution is of type lr for every r � p 
 � 2 � p 
 , with p � 1. Hence the sequence f given
by

f � k 
 � ∑
l
� sinc � l 
 � � sinc � k � l 
 �

belongs to l p for every p � 1. Hölder’s inequality then gives that

∑
k
� re � k 
 � � f � k 
 � (36)

is absolutely convergent if re � lq for some q � ∞.
It now follows that mE � s 
 � E �∑i sinc � s � i 
 e � i 
 � � ∑i sinc � s � i 
 E � e � i 
 � � 0. To prove that E � s 
 is stationary

we need to prove that the covariance rE � s � t 
 only depends on the difference s � t. The covariance of E � s 
 and E � t 

is given by

rE � s � t 
 � E �E � s 
 E � t 
 � � ∑
i � j sinc � s � i 
 sinc � t � j 
 E � eie j � �

� ∑
i � j sinc � s � i 
 sinc � t � j 
 re � i � j 
 � ∑

i
k � i � j

sinc � s � i 
 sinc � t � k � i 
 re � k 
 �

� ∑
k

re � k 
 ∑
i

sinc � s � i 
 sinc � t � k � i 
 � ∑
k

re � k 
 sinc � s � t � k 
 �

� I � re 
 � s � t 
 � (37)
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where we have used Lemma 4.1 to obtain the last but one equality. Thus the continuous random process E � s 
 is
stationary with covariance function as described.

Remark. The covariance function is smooth, i.e. infinitely differentiable. Therefore the random field is C∞ in
quadratic mean.

The corresponding theorem in higher dimensions can be proved in exactly the same manner.

Theorem 4.4 (Interpolation of a random field). Let e � i1 � � � � � in 
 be a stationary discrete random field with zero
mean and covariance function

re � � i1 � � � � � in 
 � � j1 � � � � � jn 
 
 � re � i1 � j1 � � � � � in � jn 
 �
such that

re � lp � for some p � ∞
�

Then the ideal interpolation (Definition 3.3) of the discrete random field,

E � I � e 
 � (38)

is a well defined random field in quadratic mean and E is stationary with covariance function

rE � τ 
 � I � re 
 � τ 
 �
(39)

Thus, all operations in the commutative diagram (29) preserve stationarity. This simplifies the modeling of
errors in scale-space theory. The effects of the operators I, D, Sb and sb on covariance r and spectral density R are
all known by now.

It is often convenient to assume that the discrete noise e0 can be modeled as white noise, i.e.

re � k 
 �
�

σ2 � if k � 0,

0 � if k �� 0.

Theorem 4.5. Assume that the discrete image v0 has been obtained by ideal sampling of the blurred image W with
added white noise e0, i.e.

v0 � D �W 
 � e0
�

Also assume that supp � F W 
 � � 1 
 2 � 1 
 2 
 n. Define the restored intensity distribution at scale b according to

Vb � � I v0 
 	 Gb �
where I denotes ideal interpolation and Gb is the Gaussian kernel

Gb � s 
 � 1�
2πb2

e � � s � 2 � 2b2 �
Then Vb can be written as

Vb � �W 	 Gb 
 � Eb � Wb � Eb �
where Eb is a stationary random field with covariance function

rEb � sinc 	 Gb � 2
�

(40)

Remark. The theorem states that it is possible to estimate the original continuous distribution W at scale b using
our methodology. The error Eb in this estimate is a stationary random field with known covariance function.

Proof. It follows from the linearity of interpolation and convolution that

Vb � Gb 	 � I v0 
 � Gb 	 � I w0 
 � Gb 	 � I e0 

It follows from Theorem 3.1 that � I w0 
 � W . The interpolated error field E0 has covariance function

rE0 � τ 
 � σ2 sinc � τ 
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at scale 0 according to Theorem 4.4. Using Theorem 4.1 and the fact that Gb is symmetric, it follows that

rEb � τ 
 � σ2 �
u
�

v
Gb � u 
 Gb � v 
 sinc � τ � u � v 
 dvdu �

� σ2 �
u

Gb ��� u 
 � Gb 	 sinc 
 � τ � u 
 du �
� � Gb 	 � Gb 	 sinc 
 
 � τ 
 �
� � � Gb 	 Gb 
 	 sinc 
 � τ 
 � � Gb � 2 	 sinc 
 � τ 
 �

(41)

Remark. The restored image intensity distribution Vb is a sum of a deterministic part Wb and a stationary random
field Eb. Notice that the restoration and the residual are invariant of the position of the discretization grid. The
effect of discretization is thus removed.

One advantage of the idea of restoring a continuous scale-space representation using the discrete image is
that it enables us to calculate high order derivatives of the image at arbitrary positions and at any scale. Local
features can thus be defined in precise mathematical terms, and their position can be calculated with a high degree
of numerical precision. The main motivation of our formulation is, however, that it simplifies the analysis of the
stochastic properties of the feature location. To do this we must know the stochastic properties of derivatives of
wide-sense stationary random fields. This problem is solved in standard texts on random fields such as [1]. We
have:

Theorem 4.6 (Partial derivatives of a random field). Let X be a stationary random field with twice differen-
tiable covariance function rX . Then X is differentiable in mean squares sense. If Y � ∂t1 X is a partial derivative
of X, then Y is also a stationary random field with covariance

rY � τ 
 � � ∂2
t1rX � τ 
 �

(42)

The spectral density function RY is

RY � f 
 � RX � f 
 � 2π f1 
 2 �
(43)

5 One-dimensional edge detection

Stochastic analysis of sub-pixel edge detectors, is one application of this theory. One-dimensional edge detection
is treated in this section.

The problem we want to attack is the following:

Problem 5.1. (One-dimensional edge detection).
Let Wideal be a one-dimensional signal which is smooth except for a finite set of step-discontinuities. Let v0 �
D � h 	 Wideal 
 � e0 be the result after smoothing with kernel h, discretization and added noise. Estimate the position
of the discontinuity and the uncertainty in this estimate, using the discrete signal v0.

The analysis below can be extended to any function Wideal. For simplicity, it will be modeled as a ideal step
function, i.e. as the Heaviside function, cf. (5).

According to the previous sections, the scale-space analysis is invariant to the position of the discretization
grid. Thus, without loss of generality, we can assume that the discontinuity is at position 0. The kernel h is
assumed to fulfill Assumption 2.2, and to be approximately a Gaussian of width a,

h 	 Ga
�

(44)

Here, we have implicitly assumed that a is large. The noise will be modeled as discrete white noise with standard
deviation ε. Some of the results that holds exactly using ideal interpolation, can be shown to hold approximately
using the sampled Gaussian approach, for larger scales, see Lemma 3.1. The following sub-pixel edge detector
will be analyzed.

Definition 5.1 (Edge detection). Using the discrete signal v0 as defined in Problem 5.1. Define edge positions as
points were the magnitude of the derivative

� ∂
∂x

Vb � � � ∂
∂x

Sb � I � v0 
 
 � �
attains a local maximum.
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Figure 9: Illustration of one-dimensional sub-pixel edge detection, using scale-space smoothing. a: The ideal step
edge. b: The discretized ’image’ without noise w0 (o) and with noise v0 � w0 � e0 (+). c-f: The scale space
interpolations at scale b and their first three derivatives. The deterministic signal is shown as full lines, whereas the
perturbed signal is shown as a broken line. The sub-pixel edge position is defined as the position of the maximum
of the first derivative.

As pointed out in the previous section the problem can be decomposed into a deterministic part and a random
part. The calculations are then used to predict the stochastic properties of one-dimensional edge detectors. The
results are then verified both with simulated and real data.

Deterministic part

First consider the deterministic part of image acquisition. The gray level profile that hits the CCD-array can be
modelled as a gray-level function.

� � x �� Wideal � x 
 � A θ � x 
 � � � (45)

where θ denotes the Heaviside function, cf. (5).
According to the image acquisition model the measured deterministic signal is

w0 � D � h 	 Wideal 
 (46)

Using (44) we get w0 � D � h 	 Wideal 
 	 DSaWideal:

� � i �� w0 � i 
 	 A Φa � i 
 � � � (47)

where Φa is the cumulative distribution function of the normal probability density function with variance a2.
The discrete signal w0 is analyzed with interpolation and scale-space smoothing. This gives the continuous

signal Wb � Sb � I � w0 
 
 �
It was assumed that W has no energy outside the frequency interval ��� 1 
 2 � 1 
 2 
 . Thus we

have Wb � Sb �W0 
 � Sb � h 	 Wideal 
 	 SbSaWideal � ScWideal, where c � �
a2 � b2.

Remark. The approximation Wb 	 Wideal 	 Gc holds for large b even if we use the sampled Gaussian approach.
This can be justified using a Riemann sum as an approximation of an integral.

Wb � x 
 � ∑
i

w0 � i 
 Gb � x � i 
 � ∑
i

� Wideal 	 Ga 
 � i 
 Gb � x � i 
 	 � �Wideal 	 Ga 
 	 Gb 
 � x 
 �
� �Wideal 	 � Ga 	 Gb 
 
 � x 
 � �Wideal 	 Gc 
 � x 
 �

(48)
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Again notice that after scale-space interpolation of the discretized image w0, we obtain the same result as by
smoothing the original intensity Wideal distribution with Gc. The result is invariant of the position of the discretiza-
tion grid. In the following analysis we will need Wb and its first three derivatives:

Wb � x 
 � �W 	 Gc 
 � x 
 � A Φc � x � d 
 � (49)

W
�

b � x 
 � A Gc � x � d 
 � (50)

W
� �

b � x 
 � � A
x � d

c2 Gc � x � d 
 � (51)

W
� � �

b � x 
 � A �	� 1
c2 �

� x � d 
 2
c4 
 Gc � x � d 
 �

(52)

Note that

W
� �

b � d 
 � 0 � (53)

which implies that Wb has a local extremum at x � d. We will need the quantity

W
� � �

b � d 
 � � A

c3
�

2π
(54)

to determine the stability of this local extrema.

Random part

In this subsection we will derive the effect of additive random noise to the signal. The noise e0, is modeled as a
white noise Gaussian process with mean 0 and variance ε2. That is

ei � N � 0 � ε 
 � (55)

C � ei � e j 
 �
�

ε2 � if i � j �
0 � if i �� j

� (56)

After scale space interpolation we obtain

Eb � Sb � I � e0 
 
 �
(57)

According to Theorem 4.5 this is a stationary process with with zero mean and covariance function

rEb � τ 
 � ε2 sinc 	 Gb � 2
�

(58)

According to Lemma 3.1, for coarse scales this can be approximated as

rEb � τ 
 � ε2 sinc 	 Gb � 2 	 ε2 1
2b

�
π

e � � τ � 2 � � 4b2 � � (59)

according to Lemma 3.1.
Remark. If we use the sampled Gaussian scale-space approach, the approximation

rEb � τ 
 	 ε2 1
2b

�
π

e � � τ � 2 � � 4b2 �
can be justified with explicit calculations.

C � s � t 
 � E � � X � s 
 � E �X � s 
 � 
 � X � t 
 � E � X � t 
 � 
 � �
� E

���
∑

i

1

b
�

2π
e � � s � i � 2 � � 2b2 � ei � �

∑
j

1

b
�

2π
e � � t � j � 2 � � 2b2 � e j ��� �

� ∑
i � j

1

b
�

2π
e � � s � i � 2 � � 2b2 � 1�

2πb
e � � t � j � 2 � � 2b2 � C � ei � e j 
 �

� ∑
i

1

b
�

2π
e � � s � i � 2 � � 2b2 � 1

b
�

2π
e � � t � i � 2 � � 2b2 � ε2 �

� ε2 1
2πb2 e � � s � t � 2 � 4b2 ∑

i
e � � i � s � t

2 � 2 � b2 �

(60)
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As expected, the sampled Gaussian approach gives an error process Eb which is non-stationary. However, if b is
large we can approximate the last term

Θ � s � t
2 
 � ∑

i
e � � i � s � t

2 � 2 � b2

(a Jacobi theta-function) and regard it as a Riemann sum of the integral,

Θ � s � t
2

� b 
 � b∑
i

1
b

e � � i � b � s � t
2b � 2 	 b � � ∞

� ∞
e � � z � s � t

2b � 2
dz � b

�
π

�
(61)

The value of the integral is obtained by variable substitution. The function Θ � x � b 
 is periodic in x with period
one. The maximum is obtained for x � � and the minimum for x � � � 1 
 2. The approximation is reasonable for
b � 0

�
5 and good for b � 1. We have

� Θ � x � 0 �
5 


b
�

π
� 1 � � 0

�
17 �

� Θ � x � 1 

b

�
π

� 1 � � 2 � 10 � 4 �
� Θ � x � 1 �

5 

b

�
π

� 1 � � 10 � 9 �
Combining (60) and (61) gives

C � s � t 
 	 ε2 1
2πb2 e � � s � t � 2 � � 4b2 � b �

π � ε2 1
2b

�
π

e � � s � t � 2 � � 4b2 � �
(62)

This is a covariance function of a stationary random process, Eb, since it only depends on s � t, cf. (59).
Scale-space interpolation of the discrete random process is a stationary random process. The stationarity means

that the interpolated error process is independent of the underlying discretization grid. Using Theorem 4.6 the
covariance function of the first three derivatives of Eb are given by������ �����

r
E
�
b
� t 
 � � r

� �
Eb
� t 
 �

r
E
� �
b
� t 
 � r � iv �

Eb
� t 
 �

r
E
� � �
b
� t 
 � � r � vi �

Eb
� t 
 �

(63)

where rE � t 
 � C � E � s 
 � E � s � t 
 
 , cf. [1]. Calculating the derivatives of

rE � t 
 � ε2 1
2b

�
π

e � t2 � � 4b2 � (64)

gives

r
E
�
b
� t 
 � ε2 1�

π
e � t2 � � 4b2 � � 1

4b3 � 1
8b5 t2 
 �

r
E
� �
b
� t 
 � ε2 1�

π
e � t2 � � 4b2 � � 3

8b5 � 3
8b7 t2 � 1

32b9 t4 
 �
r

E
� � �
b
� t 
 � ε2 1�

π
e � t2 � � 4b2 � � 15

16b7 � 45
32b9 t2 � 15

64b11 t4 � 1
128b13 t6 
 �

(65)

The variances which are needed later are given by�������� �������

r
E
�
b
� 0 
 � ε2 1

4b3
�

π
�

r
E
� �
b
� 0 
 � ε2 3

8b5
�

π
�

r
E
� � �
b
� 0 
 � ε2 15

16b7
�

π
�

(66)

Observe that the random fields of E
�
b, E

� �
b and E

� � �
b all have zero mean. It can also be shown that E

� �
b � 0 
 and E

� � �
b � 0 


are independent, cf. [1].
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Analysis of one-dimensional edges

The deterministic and stochastic analysis will now be used to analyze the distribution the edge-location in the one-
dimensional case. As before the measured signal v0 is modeled as a sum of a deterministic part w0 and a random
error process e0, i.e.

v0 � w0 � e0
�

The edge position is defined as the position where the scale-space interpolation Vb � Sb � I � v0 
 
 has maximal deriva-
tive, i.e. as the zero crossing of V

� �
b � x 
 . Again, due to the invariancy of this approach, we can assume, without loss

of generality, that the true edge is located at d � 0. Using (53) and (54), the undisturbed second order derivative of
the edge, W

� �
b � x 
 , can be approximated near the zero crossing by the linear function

W
� �

b � x 
 	 W
� � �

b � 0 
 x � � A

c3
�

2π
x

�
(67)

Near the zero crossing, the second order derivative calculated from the noisy image is approximated by the line

V
� �
b � x 
 � Kx � M � (68)

where �
K � V

� � �
b � 0 
 �

M � V
� �
b � 0 


(69)

are random variables whose first and second moments are given by

����������� ����������

E �K � � W
� � �
b � 0 
 � � A

c3
�

2π
�

V �K � � rE
� � � � 0 
 � ε2 15

16b7
�

π
�

E �M � � W
� �
b � 0 
 � 0 �

V �M � � rE
� � � 0 
 � ε2 3

8b5
�

π
�

(70)

The line given by (68) has the zero-crossing

X � � M
K

� (71)

which again is a random variable. The probability distribution of X can be calculated explicitly or numerically.
Notice that the mean and the variance of X is undefined. Nevertheless the probability distribution of X can be
approximated by a normal distribution N � m � σ 
 with

m � � E �M �
E �K � � 0 �

σ2 � V �M �
E �K � 2

� (72)

Here Gauss’ approximation formulas are used together with the fact that M and K are independent, and that
E �M � � 0 according to (70). Combining (70) and (72) gives

σ2 	 V �M � 
 E �K � 2 � ε2 3 � a2 � b2 
 3
�

π
4A2b5 (73)

which is the estimated variance of the detected edge. The approximations were made to obtain a simple expression
for the edge localization variance. Notice that (73) is only valid when a and b are fairly large and when σ �M � � �
E �K � . It is straightforward to calculate the distribution of X numerically and to get results which are valid for a
greater range in the parameters. Nevertheless, (73) is a short analytical expression which describes the localization
variance for a large range of the parameters. The variance is inversely proportional to the square of the edge height
A. The variance also decreases with increasing scale parameter b at low levels and increases at high levels. This is
illustrated in Figure 10. In fact the choice of scale parameter b that minimizes the variance is b � a

�
5.
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Figure 10: Theoretical standard deviation of edge localization error versus scale parameter b at different camera
blur parameter a � 0

�
4 � 0 �

5 � � � � � 1 �
0. The intensity jump is A � 50 and the standard deviation in each pixel is ε � 3.

The approximations in the calculations are good when b is larger than 0
�
8.

Simulations and experiments

The whole process of image formation and edge detection was simulated using the model developed in the previous
sections. The detected edge positions for 500 different realizations are shown in Figure 11. This simulation
indicates that the assumptions and the approximations used are reasonably valid. Preliminary results also indicate
that sharp edges can be detected with a standard deviation of about 1 
 20’th of a pixel.

0 50 100 150 200 250 300 350 400 450 500
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 11: Result after simulating and detecting 500 one-dimensional edges using parameters A � 100, a � 0
�
8,

b � 1
�
1, ε � 2. The theoretical mean and the middle 95% of the theoretical distribution are shown. This band

was derived from the calculations above. In this simulation 23 of 500 detected edge positions fall outside the this
region.

The one-dimensional analysis above can be applied directly to horizontal and vertical edges in a two-dimensional
image. Each row or column is analyzed separately. This is illustrated in Figure 12, in which a real image con-
taining a sharp edge between a light paper and a dark background has been studied. The sub-pixel edge location
was found for each of 170 rows, independently of the others. The x positions for the different rows are denoted
x � k 
 � k � 230 � � � � � 400. Since we a priori know that the edge has small curvature we can use standard regression
techniques to fit a low order polynomial � x0 � x1k � x2k2 
 to the sub-pixel edge positions x � k 
 . The residual

r � k 
 � x � k 
 � � x0 � x1k � x2k2 
 �
can then be used to estimate the standard deviation of the edge locations. This was repeated for several choices
of scale parameter b. This empirical standard deviation will now be compared to the theoretical. Some of the
parameters of (73) are easy to estimate, e.g. the intensity jump A. In this image the jump was approximately A �
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Figure 12: The figure illustrates the application of the one-dimensional edge detector to an almost vertical edge
in a real image of a white paper against a dark background. The one-dimensional analysis is applied to each row,
230

�
k
�

400, in the image independent of the others. a: A mesh plot of the original discrete image v0. b: A
continuous interpolation vb is done for each row. c: For each row the x coordinate of the edge is estimated. A low
order polynomial x̃ � k 
 is fitted to the edge positions x � k 
 . using a 	 0

�
6, b � 2, A 	 150 and ε 	 3. The figure

shows the polynomial x̃ � k 
 , the estimated positions x � k 
 with a 95% confidence interval for each row k. d: The
figure shows the original image and the estimated edge-points positions.

150. The standard deviation of image intensity can also be estimated in regions where the intensity is approximately
constant. In this image we had ε 	 3. The camera blur parameter a is more difficult to estimate. Using a � 0

�
6, a

good fit is obtained between the standard deviation computed from (73) and its empirical value. This is shown in
Figure 13. This strongly supports that the model and the approximations are valid. It is also one way to estimate
the unknown parameter a in the image acquisition model.

6 Two-dimensional edge detection

The one-dimensional analysis can be generalized to two dimensions in a straightforward manner. As before image
acquisition is modeled as convolution with kernel h followed by discretization and added noise: v0 � D � h 	 Wideal 
 �
e0

�
The discrete image is then analyzed through ideal interpolation and smoothing: Vb � Sb � I � v0 
 
 �
It is quite popular to define edges as points where the gradient magnitude is maximal in the direction of the

gradient, i.e.

� ∇Vb 
 T � ∇2Vb 
 ∇Vb � 0 � (74)

cf. [18]. Several simplifications will be made. we will study the stability of edges with respect to a given search
direction ñ, i.e. edges are defined as points where

� ñ 
 T � ∇2Vb 
 ñ � 0
�

(75)

Using Assumptions 2.2 and 2.3, the smoothed signal Vb can be written as sum of a deterministic signal Wb and
a stationary random field Eb. These parts are studied separately.

Deterministic part

An ideal edge is modeled as

� 2 � � x � y 
 �� Wideal � x � y 
 � Aθ � x 
 � � �
(76)
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Figure 13: Edge localization error σ � X � versus scale parameter b. The curve shows the theoretical standard devia-
tion, cf. Equation 73 with a � 0

�
6, A � 150 and ε � 3. The stars show the empirical estimate using residuals from

a real image at smoothing scales b � 0
�
75 in steps of 0

�
25 up to b � 3. Notice the close fit.
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Figure 14: In this figure we illustrate the ideal intensity function Wideal defined at all points, the discrete image w0

defined at integer points and the scale space smoothed intensity distribution defined at all points Wb.
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The deterministic discretized image w0 of this edge is

� 2 � � i � j 
 �� w0 � D � h 	 Wideal 
 � i � j 
 	 AΦa � i 
 � � � (77)

where Φa is the one-dimensional normal cumulative distribution function. Below the scale-space interpolation
Wb � Sb � I � w0 
 
 will be studied.

Wb � Sb � h 	 Wideal 
 	 ScWideal � (78)

where c � �
a2 � b2. In the two-dimensional case we estimate the edge as the locus of the points where the

directional derivative has a local maxima on a line with direction ñ. If we approximate Wb as above we find that
it is constant along the edge. Consider the derivatives in the direction ñ ��� cos � α 
 � sin � α 
 
 , where α denotes the
angular difference between the search direction ñ and the normal n � � 1 � 0 
 to the edge. Introduce

F � t 
 � Wb � t cos � α 
 � t sin � α 
 
 �
In the following analysis we will need F and its first three derivatives:

F � t 
 � �W 	 Gc 
 � t cos � α 
 
 �
F
� � t 
 � Acos � α 
 Gc � t cos � α 
 
 �

F
� � � t 
 � Acos2 � α 
 ��� t cos � α 


c2 
 Gc � t cos � α 
 
 �
F
� � � � t 
 � Acos3 � α 
 ��� 1

c2 �
� t cos � α 
 
 2

c4 
 Gc � t cos � α 
 
 �
(79)

Notice that the first derivative has a maximum for t � 0, independently of α, since F
� � � 0 
 � 0 and the slope of the

second order derivative at the zero crossing is

F
� � � � 0 
 � � Acos3 � α 


c3
�

2π
� 0

�
(80)

Random part

Assume that discrete white noise e0 is added to the image. According to Theorem 4.5, the scale-space interpolated
error field Eb then is stationary with covariance

rEb � τ 
 � sinc 	 Gb � 2
�

(81)

Lemma 3.1 is used to simplify the calculations:

sinc 	 Gb � 2 	 ε2 1
4πb2 e � � τ � 2 � 4b2 �

(82)

The covariance function is the covariance between the intensity at two positions � x � y 
 and � x � τx � y � τy 
 . We
also need the covariance functions of the first three directional derivatives of Eb � s � t 
 . Since this random field
is approximately isotropic for large b, it is sufficient to calculate the directional derivatives in the s-direction.
Theorem 4.6 gives �������� �������

rE
�
s
� ρ 
 � � ∂2rE

∂2s
� s � t 
 �

rE
� �
ss
� ρ 
 � ∂4rE

∂4s
� s � t 
 �

rE
� � �
sss
� ρ 
 � � ∂6rE

∂6s
� s � t 
 �

(83)

Calculating the derivatives gives

rE
�
s
� s � t 
 � ε2 1

π
es2 � 4b2 � 1

8b4 � 1
16b6 s2 
 e � t2 � 4b2 �

rE
� �
ss
� s � t 
 � ε2 1

π
e � s2 � 4b2 � 3

16b6 � 3
16b8 s2 � 1

64b10 s4 
 e � t2 � 4b2 �
rE
� � �
sss
� s � t 
 � ε2 1

π
e � s2 � 4b2 � 15

32b8 � 45
64b10 s2 � 15

128b12 s4 � 1
256b14 s6 
 e � t2 � 4b2 �

(84)
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The variances are given by ������� ������
rE
�
s
� 0 � 0 
 � ε2 1

8b4π
�

rE
� �
ss
� 0 � 0 
 � ε2 3

16b6π
�

rE
� � �
sss
� 0 � 0 
 � ε2 15

32b8π
�

(85)

The random fields E
�
s, E

� �
ss and E

� � �
sss have zero mean. Furthermore, E

� �
ss � 0 � 0 
 and E

� � �
sss � 0 � 0 
 are independent, cf. [1].

The analysis above is only valid when we search in a direction perpendicular to the edge. If the search direction
forms the angle α with the edge normal, we have to evaluate rE

� �
ss
� s � t 
 and the other directional derivatives in � s � t 
 �

� τcos � α 
 � τsin � α 
 
 , just as in the deterministic case. This gives the following expressions for the dependencies of
the directional derivatives along the line

rE
�
s
� τ 
 � ε2 1

π
e � τ2 � 4b2 � 1

8b4 � 1
16b6 τ2 sin2 α 
 �

rE
� �
ss
� τ 
 � ε2 1

π
e � τ2 � 4b2 � 3

16b6 � 3
16b8 τ2 sin2 α � 1

64b10 τ4 sin4 α 
 �
rE
� � �
sss
� τ 
 � ε2 1

π
e � τ2 � 4b2 � 15

32b8 � 45τ2 sin2 α
64b10 � 15τ4 sin4 α

128b12 � τ6 sin6 α
256b14 


�
(86)

Analysis of two-dimensional edges

Similar to the one-dimensional case we now can calculate the distribution of the edge location. This time the
second order directional derivative, F

� �
� x 
 , also depends on the angle α between the search direction and the edge

normal. Close to the edge position, F
� �
� x 
 can be approximated by the line

y � kx � F
� � �
� 0 
 x � � Acos3 � α 


c3
�

2π
x

�
(87)

The second order derivative calculated from the noisy image is again approximated near the zero crossing by a line

V
� �
b � x 
 � Kx � M � (88)

where �
K � V

� � �
b � 0 � 0 
 �

M � V
� �
b � 0 � 0 
 (89)

are random variables with ����������� ����������

E �K � � W
� � �
b � 0 
 � � Acos3 � α 


c3
�

2π
�

V �K � � rE
� � � � 0 
 � rE

� � �
sss
� 0 � 0 
 � ε2 15

32b8π
�

E �M � � W
� �

b � 0 
 � 0 �
V �M � � rE

� �
ss
� 0 � 0 
 � ε2 3

16b6π
�

(90)

This line (88) has the zero-crossing

X � � M
K

� (91)

which is a random variable. The probability distribution of X can be approximated by the normal distribution
N � m � σ 
 with

m � � E �M �
E �K � � 0 �

σ � V �M �
E �K � 2 �

(92)
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Figure 15: Resulting residual histogram for simulated data. The theoretical standard deviation of 0
�
0499 agrees

with the experimentally estimated of 0
�
0498.
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Figure 16: The figure illustrates some notations used in the analysis of two-dimensional edge detection.

where Gauss approximation formulas are used together with the fact that M and K are independent, and E �M � � 0.
Combining (90) and (91) gives

V � X � 	 V �M � 
 E �K � 2 � ε2 3 � a2 � b2 
 3
8A2b6 cos6 � α 


�
(93)

This is the estimated variance of the detected edge. Observe that the variance decreases with increasing height, A,
of the edge. The variance also increases when α increases, that is when we do not search perpendicularly to the
line.

The detected edge as a random process

Let the true edge γ be parametrized by curve parameter τ. Apply the edge detector in search direction ñ from every
point γ � τ 
 . The detected edge can then be parametrized as γ̃ � τ 
 � γ � τ 
 � z � τ 
 ñ, where z describes the deviation of
the detected edge from the true edge. The deviation z � τ 
 can be approximated as

z � τ 
 � � Vb 

� �
ss � γ � τ 
 


�Wb 

� � �
sss � γ � τ 
 


(94)
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Figure 17: Results from two-dimensional edge detection with simulated data. Left: Edge position errors in a
direction roughly perpendicular to the edge at different positions along the edge. The result from four simulations
are shown. Distant errors are not correlated but there is a high correlation between edge position errors at spatially
close positions. The residuals can be modeled as samples of a random process with respect to the parametrization
of the curve. Right: Theoretical and estimated covariance functions for the residual error process.

where

�Wb 

� � �
sss � γ � τ 
 
 � � Acos3 � α 


c3
�

2π
�

Then the covariance between the deviations z � τ1 
 and z � τ2 
 is

C � z � τ1 
 � z � τ1 
 � � C � � Vb 

� �
ss � γ � τ1 
 
 � � Vb 


� �
ss � γ � τ2 
 
 � c62π

A2 cos6 α
� (95)

where
C � � Vb 


� �
ss � γ � τ1 
 
 � � Vb 


� �
ss � γ � τ2 
 
 � � rE

� � �
sss
� � τ1 � τ2 
 sinα � � τ1 � τ2 
 cosα 


in (86). Hence, z is a stationary process with covariance function

rz � τ 
 � rE
� �
ss
� τsin � α 
 � τcos � α 
 
 
 F

� � �
� 0 
 �

� ε2 2c6

A2 cos6 α
e � τ � � 4b2 � �

3
16b6 � 3

16b8 � τsin � α 
 
 2 � 1
64b10 � τsin � α 
 
 4 � � (96)

This could be used to extract the mean value of the random process related to the line. The mean value can be
used as the estimated location of the line. If we assume that the search direction differs at most 5 degrees from the
perpendicular direction to the edge we get the following estimate of the covariance function

rz � τ 
 	 1
�
1ε2 3 � a2 � b2 
 3

8A2b6 e � τ2 � � 4b2 � �
(97)

Notice that the parameter τ is measured as the arclength along the line.
Since the edge is detected as the solution to the equation

W
� �
b � 0 �

we can regard the edge as a level set to W
� �
. This makes it possible to use a more refined analysis than the

approximation with the tangent line described above. This is discussed in detail in [19].

Implementation and experiments

The two-dimensional edge detector described above has been implemented. Its performance on both simulated
and real images have been investigated. In the simulations the true edge was well defined. The deviations z were
studied both with respect to different realizations but also as a random process along the edge.

Figure 14 illustrates the original intensity W , the discrete measured intensity w0 and the smoothed image
intensity Wb. The discrete image was disturbed with simulated Gaussian uncorrelated noise. This image was then
used in the edge detection routines to calculate the edges along lines roughly perpendicular to the true edge. In
these simulations the search line was 0

�
022 radians off the normal. This was done at several positions along the
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Figure 18: Implementation on real image. Along curved parts with small curvature, the assumption that the curve
is approximately linear holds. The residual after fitting a low degree polynomial to the edge is an approximately
random process along the curve. The empirical covariance function is reasonably close to the theoretical one.
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Figure 19: Two real images of a highly textured floor. These are used to illustrate correlation.

true edge. Figure 15 shows a histogram of the residuals at one position for several realisations. The theoretical and
empirical standard deviations agree well. The figure also shows the edge positions with confidence intervals.

Figure 17 illustrates four different realizations of the deviation z in search direction, from the true edge as we
move along the edge. The deviation z � τ 
 is a stationary random processes. Edge position errors at distance τ have
covariance rz � τ 
 . The theoretical and empirical covariance functions agree well as can be seen in the figure.

The edge detector was also applied to a real image of a dark object against a light background, cf. Figure 18.a.
Part of the contour is smooth and has small curvature. The extracted curve at this patch was analyzed and the
residuals along the curve were estimated in the following way. The curved part, approximately 100 pixels long,
was rotated to become almost horizontal. The original object, which had been drawn on a high resolution laser
printer, was known to have very small variations in curvature. This motivated fitting a third order polynomial to the
curve. The residual is shown in Figure 18.b, and defines a stationary random process. The empirical covariance
function was estimated from the residuals using standard techniques. Figure 18.c shows the resulting empirical
covariance function together with the covariance computed from the model (96) using the following parameters:
A � 170, a � 0

�
7, b � 2, ε � 1

�
7, and α � 30 degrees. The theory agrees well with the empirical results in this

case.
Our analysis was based on ideal, straight step discontinuities. In this case the edge detector is unbiased. Bias

is expected for more realistic situations and at edge points with considerable curvature.

7 Sub-pixel correlation

Analysis of sub-pixel correlation is another application of the theory presented here theory. Correlation is usually
done on pixel level, where a regions of one image is translated in whole pixel units and matched to parts of a
second image so that the sum of squared differences are minimized. The result after least squares minimization in
a typical case is illustrated in Figure 20. The stochastic errors of pixel correlation is difficult to analyze, mainly
because the translation between the regions in the two images usually is of sub-pixel type.
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Figure 20: Regions in two images are correlated with pixel translations using least squares of the residuals.

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

Vb V̄b Vb
� V̄b

Figure 21: Regions in two images are correlated with sub-pixel translations using least squares of the residuals of
the restored continuous scale-space representation at scale b � 0

�
9. The accuracy of the sub-pixel translation can

be analyzed through stochastic models of the residual field. The residual W � W̄ can also be used to empirically
estimate the stochastic properties of the error field Eb. The gray level scale is different for the residual W � W̄ .

A substantial improvement is obtained by using scale-space restoration of continuous images. This makes it
possible to correlate regions in two images with sub-pixel translations with much higher precision than obtained by
ordinary methods. Furthermore, a proper modeling of the residual field makes it possible to analyze the stochastic
properties of the localization error. The idea is that, at least locally, the images only differ by an unknown transla-
tion h. Denote by V � W � E and V̄ � W̄ � Ē the restored intensity fields in two images for a fixed scale b. The
deterministic functions are identical except for a translation. For a fixed translation h � � h1 � h2 
 , we thus have

W � t 
 � W̄ � t � h 
 � � t
�

To determine the translation h with sub-pixel accuracy a least squares integral is minimized,

F � h 
 � �
t � Ω
� V � t 
 � V̄ � t � h 
 
 2dt

�
The result of such a minimization is shown in Figure 21.

Furthermore, the residual field V � t 
 � V̄ � t � h 
 can be used to empirically study the stochastic properties of the
camera noise e0.

Statistical analysis

The quality of the estimated sub-pixel translation,

ĥ � argminF � h 
 �
can be analyzed using the statistical model given above. Let X � ĥ � h be the error in estimated translation. Without
loss of generality we can assume that h is zero. The stochastic variable X is a result of minimising the function F ,
which in turn contains the random fields E andĒ. What is the the mean and covariance matrix of X? Ideally the
mean should be zero, indicating that ĥ is a non-biased estimate of h, and the covariance should hopefully be small.
Linearising F around the true displacement h � 0, we find that the squared residual F can be approximated as

F � X 
 	 XT AX � bX � f � (98)
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where A, b and f are stochastic variables
f � F � 0 
 �

b � ∇hF � 0 
 �
A � ∇2

hF � 0 
 �
The minimum of (98) is attained for

X � � A � 1b
�

Gauss’ approximation formula should be appropriate in this situation, since b is small and A is large with small
covariance. Hence

m � E �X � 	 E � A � � 1E � b � �
The gradient b at the correct displacement x is

b � ∇ �
t � Ω
�W � t 
 � E � t 
 � � W̄ � t � x 
 � Ē � t � x 
 
 
 2dt �

� ∇ �
t � Ω
� � W � W̄ 
 � � E � Ē 
 
 2dt �

� ∇ �
t � Ω
� � W � W̄ 
 2 � �W � W̄ 
 � E � Ē 
 � � E � Ē 
 2 
 dt �

� �
t � Ω

� � 2 �W � W̄ 
 ∇W̄ � �W � W̄ 
 ∇Ē �
� � E � Ē 
 ∇W̄ � 2 � E � Ē 
 ∇Ē 
 dt �
� �

t � Ω
� � � E � Ē 
 ∇W̄ � 2 � E � Ē 
 ∇Ē 
 dt

�
The expectation value of b is

E � b � � E � �
t � Ω

� � � E � Ē 
 ∇W̄ � 2 � E � Ē 
 ∇Ē 
 dt � �
� �

t � Ω
� � E � E � Ē � ∇W̄ � 2E � � E � Ē 
 � E �∇Ē � 
 dt � 0

�
This means that m � 0. Using the Gauss approximation formulas and the fact that E � b � � 0, we obtain

C � C � X � X � 	 E �A � � 1C � b � E � A � � T � terms involving E � b � � E � A � � 1C � b � E � A � � T �
The covariance of the gradient is

C � b � � E � bbT � � E � �
t1 � Ω

V � t1 
 � E � Ē 
 � ∇W̄ � ∇Ē 
 dt1 �

� �
t2 � Ω

V � t2 
 � E � Ē 
 � ∇W̄ � ∇Ē 
 T dt2 � �
� E ���

t1 � Ω
�

t2 � Ω
V � t1 
 V � t2 
 � E � Ē 
 � t1 
 � E � Ē 
 � t2 


� ∇W̄ � ∇Ē 
 � t1 
 � ∇W̄ � ∇Ē 
 T � t2 
 dt1dt2 � 	
	 �

t1 � Ω
�

t2 � Ω
V � t1 
 V � t2 
 rE � Ē � t1 � t2 
 ∇W̄ � t1 
 ∇W̄ T � t2 
 dt1dt2 �

� �
t1 � Ω
� V∇W̄ 
 � t1 
 � V ∇W̄ T 	 rE � Ē 
 � t1 
 dt1

�
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The Hessian A is given by

A � ∇2 �
t � Ω
� �W � W̄ 
 � � E � Ē 
 
 2 dt �

� ∇ �
t � Ω � �W � W̄ 
 2 � 2 �W � W̄ 
 � E � Ē 
 � � E � Ē 
 2 � dt �

� 2 �
t � Ω � ∇W̄ � ∇W̄ 
 T � �W � W̄ 
 �	� ∇2W̄ 
 � ∇W̄ � ∇Ē 
 T �
� �W � W̄ 
 ��� ∇2Ē 
 � ∇Ē � ∇W̄ 
 T � � E � Ē 
 �	� ∇2W̄ 
 �
� ∇Ē � ∇Ē 
 T � � E � Ē 
 ��� ∇2Ē 
 � dt �
� 2 �

t � Ω � ∇W̄ � ∇W̄ 
 T � ∇W̄ � ∇Ē 
 T � ∇Ē � ∇W̄ 
 T �
� � E � Ē 
 ��� ∇2W̄ 
 � ∇Ē � ∇Ē 
 T � � E � Ē 
 �	� ∇2Ē 
 � dt

�
The expectation value of the Hessian is

E � A � � 2 �
t � Ω � ∇W̄ � ∇W̄ 
 T � ∇W̄ � E �∇Ē � 
 T � E �∇Ē � � ∇W̄ 
 T �
� E � � E � Ē 
 � �	� ∇2W̄ 
 � E �∇Ē � ∇Ē 
 T � � E � � E � Ē 
 ��� ∇2Ē 
 � � dt �
� 2 �

t � Ω � ∇W̄ � ∇W̄ 
 T � dt
�

The simplifications are based on two facts. Firstly, the expectation value of the random fields and their derivatives
are zero. Secondly, we have

E � Ē∇2Ē � � � E �∇Ē � ∇Ē 
 T � � � r � �11 r
� �
12

r
� �
21 r

� �
22

� �
The method for doing sub-pixel correlation is thus unbiased:

E � X � � 0 �
and the covariance matrix of the residual is approximately given by

C � C �X � 	 E �A ��� 1C � b � E � A ��� T � (99)

where

E �A � � 2 �
t1 � Ω
� VW̄W̄ T 
 � t1 
 dt1 (100)

and

C � b � � �
t1 � Ω
� � VW̄ 
 	 rE � Ē 
 � t1 
 � VW̄ 
 � t1 
 dt1

�
(101)

Experimental validation

Since many approximations were made to obtain the expression for the covariance (99) of the sub-pixel estimate,
numerical simulations were made to validate the assumptions. The image in Figure 19 was used as a model
of the ideal intensity Wideal. The process of image formation was simulated with blur, discretization and added
stochastic errors as described previously. In these simulations the true displacement between the image W and W̄
was h � � 0 �

3 � 0 �
2 
 . A simulation of 1000 correlation events gave the following empirical covariance matrix

C � 10 � 3 � 0
�
1826 � 0

�
0061� 0

�
0061 0

�
3983

� �
This corresponds to a standard deviation of 0.02 pixels in the estimated translation. Evaluating (99) we obtain the
following estimate of the covariance matrix

C � 10 � 3 � 0
�
1829 � 0

�
0074� 0

�
0074 0

�
4022

� �
This agrees surprisingly well with the empirical result.
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Figure 22: The figure shows the empirical estimate of the covariance function r̂E � Ē � τ 
 and the theoretical covari-
ance function rE � Ē � τ 
 given by (40) under the assumption that e0 and ē0 are Gaussian white noise with standard
deviation ε � 1

�
67. The difference between empirical and theoretical covariance functions is also shown.

Residual analysis

In order to test our model and to gain further empirical knowledge about the error random field, several images
were taken of the same scene from almost the same view-point. The idea was that, at least locally, the ideal
intensity Wideal would be identical except for a translatory movement in the image plane. Thus we would have

W 1
b � t1 � t2 
 � W 2

b � t1 � ∆t1 � t2 � ∆t2 

for a fixed translation ∆t � � ∆t1 � ∆t2 
 . If our model describes the situation well, we should be able to estimate the
translation ∆t with sub-pixel accuracy by minimizing a least squares integral

F � ∆t 
 � �
t � Ω
�W 1

b � t 
 � W2
b � t � ∆t 
 
 2dt

as in the previous section. The residual field

E1
b � t 
 � E2

b � t � ∆t 

is then analyzed, to determine if it can be represented as a stationary random field. We should also be able to
estimate its covariance function.

These investigations have been performed with several real images. One case is illustrated in Figure 22. The
experiments indicate that the estimated covariance function is close to the theoretical covariance function using
ε � 1

�
67.

8 Conclusions

In this paper we have modeled the image acquisition process, taking into account both the deterministic and
stochastic aspects. In particular the discretization process is modeled in detail. This interplay between the contin-
uous signal and its discretization is very fruitful and the increased knowledge sheds light on scale-space theory,
feature detection and stochastic modeling of errors.

The relation between the continuous signal and its discretization is used to obtain an alternative scale-space
theory for discrete signals. It is also used to derive methods of restoring the continuous scale-space representation
from the discrete representation. This enables us to calculate derivatives at any position and of any scale.

Furthermore, the stochastic errors in images are modeled and new results are given that show how these errors
influence the continuous and discrete scale-space representations and their derivatives. This information is cru-
cial in understanding the stochastic behaviour of scale-space representations as well as fundamental properties of
feature detectors. In particular, we have analyzed a simple sub-pixel edge detector and a sub-pixel correlator in
detail.

From the covariance function it is possible to give confidence interval of the detected position of the edge.
We have shown that the location of the edge at different positions along the edge can be regarded as a random
process. Furthermore, the covariance function of this random process can be calculated and expressed in terms of
the variance of the noise, the widths of the Gaussian kernels and the search angle relative to the true normal of the
line.

In order to validate the theory, experiments and simulations both on real and simulated data have been pre-
sented. Good agreement with the theoretical model is achieved.
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The work can be extended in several directions. Edges were modeled as straight ideal step edges. It would
be interesting to study the effect (the bias) caused by other types of edges and the effect of high curvature edges.
The model of image acquisition, interpolation and scale space smoothing can also be used to analyze other feature
detectors.
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