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Abstract deadline. Although this deterministic timing guarantee is

needed in hard real-time systems, it is too stringent for so-

This paper describes a stochastic analysis method forcalled soft real-time applications that require only a prob-
general periodic real-time systems. The proposed methodabilistic guarantee that the deadline miss ratio of a task is
accurately computes the response time distribution of eachbelow a given threshold. For such soft real-time applica-
task in the system, thus making it possible to determinetions, we need to relax the assumption that every instance
the deadline miss probability of individual tasks, even for of a task requires the worst-case execution time and analyze

systems with maximum utilization factor greater than one. system behavior from a statistical point of view.

The method uniformly covers both fixed-priority schedul- Progress has recently been made in the analysis of real-
ing (such as Rate Monotonic) as well as dynamic-priority time systems under the stochastic assumption that jobs from
scheduling (such as Earliest Deadline First) and can han- g task require variable execution times. Research in this
dle arbitrary relative deadlines and execution time distribu- 5,ea can be categorized into two groups depending on the
tions. The accuracy of the method is proven by comparing gpproach it takes to facilitate the analysis. The methods in
the results from the analysis with those obtained from sim- e first group introduce a worst-case assumption to sim-
ulations, as well as other methodologies in the literature. plify the analysis (e.g., the critical instant assumption in
Probabilistic Time Demand Analysis [18] and Stochastic
Time Demand Analysis [7, 6]) or a restrictive assumption
(e.g., the heavy traffic condition in the Real-Time Queueing
1. Introduction Theory [12, 13]). Those in the second group, on the other
hand, assume a special scheduling model that provides iso-
Traditional scheduling algorithms and analysis methods, lation between tasks so that each task can be analyzed inde-

such as processor utilization analysis [16, 11] and responsg®endently of other tasks in the system (e.g., the reservation-

time analysis [4, 19], focus on strict “hard” deadlines, by based system addressed in [1] and Statistical Rate Mono-

which a system is deemed schedulable only if every in- tonic Scheduling [2]).

stance (called a job) of every task is guaranteed to meet its In this paper, we propose a stochastic analysis method
: o . . . _that does not introduce any worst-case or restrictive as-
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computing the complete probability function (PF) of the re- Apparently, this system is a multiclass queue in which each
sponse time of each task. class has deterministic inter-arrival times and arbitrary ser-
The rest of the paper is organized as follows. In Sec- vice times (D/G/1). However, this model cannot account for
tion 2, the related work is described in detail. In Section 3, the relative phases of the tasks, which influence the statisti-
the system model assumed and the notations used througheal distribution of the response times. Furthermore, the few
out the paper are given. Section 4 describes the stochasresults available for multiclass queues assume specific dis-
tic analysis method we propose and also explains varioustributions (Poisson, normal, etc.) for the inter-arrival times.
approximation techniques to reduce its computational over-The case of general distributions of inter-arrival times is
heads. In Section 5, we compare experimental results fromusually addressed under “heavy-traffic” conditions (i.e., the
the proposed analysis method with those obtained from sim-average utilization is close to one) and, even in this case,
ulations and other methodologies. Finally, in Section 6, we the results are not valid for deterministic inter-arrival times,

conclude the paper with directions for future research. because this is a special case of a general distribution.
One extension of the classical queueing theory to deal
2. Related work with real-time issues was proposed in the Real-Time Queue-

ing Theory [12]. This analysis method is flexible in that it

Several studies have addressed the variability of task ex-S Nt limited to a particular scheduling algorithm and can
ecution times even in deterministic schedulability analysis. be extended to real-time queueing networks. However, the

For example, a multiframe model was proposed by Mok analysis method assumes that the system is under heavy-

and Chen [17] in which the execution time of a task may traffi.c conQitions. .In addi_tion,. it only considers one class
vary greatly from one instance to another assuming that this_Of cllents, ie., t_he interarrival times and executlon times are
variation follows a known pattern. The pattern is given as |glent|call_y dlstrlbut_ed for all the tasks. This model does not
a finite list of numbers, and the execution times of succes-f't well with the periodic task model.
sive instances are generated from the list. From this model, Another approach to the statistical characterization of
new utilization bounds which improve those of Liu and Lay- real-time systems is to extend an existing response time
land [16] are derived for fixed_priority preemptive schedul- analysis, Substituting the fixed execution times with ran-
ing. However, since this model is aimed at providing a de- dom variables. Following this approach, Tia et al. [18]
terministic timing guarantee, it is still pessimistic. proposed the Probabilistic Time Demand Analysis (PTDA),
In the attempt to provide probabiiistic guarantees to real- which substitutes the sums of fixed execution times in the
time tasks with variable execution times, some reservation- Time Demand Analysis [14] with convolutions of probabil-
based models that provide isolation between tasks havdty functions (PFs). In this way they can obtain the PF of the
been studied. These models include the reservation-basefesponse time of a task assuming the worst-case scenario on
system addressed by Abeni and Buttazzo [1] and a modi_the task release times, i.e., the critical instant. The analy-
fication of Rate Monotonic Scheduling proposed by Atlas sis is restricted to the first activation of the task, since the
and Bestavros [2], which is called Statistical Rate Mono- deadlines cannot be greater than the periods. This assump-
tonic Scheduling (SRMS). Both assume reservation-basedion is also made in the Stochastic Time Demand Analysis
scheduling algorithms so that the analysis can be performed STDA) by Gardner [6], which extends the PTDA to cover
as if each task had a dedicated (virtual) processor. Thatsystems where the deadlines may be greater than the peri-
is, for each task, a guaranteed budget of processor time i®ds. In this analysis, the probability of deadline misses is
provided in every period [1] or Super-period (the period of Computed for each jOb released in the first in-phase busy in-
the next |OW_pri0rity task which is assumed to be an integer terVal, and the maximum of these prObabi”tieS is chosen as
multiple of the period of the task in SRMS) [2]. There- anupper bound on the probability of deadline misses for the
fore, the deadline miss probability of a task can be analyzedcorresponding task. Both analyses are based on the sum of
independently of other tasks assuming the guaranteed budtandom variables, and thus the use of convolutions to deter-
get. However, the stochastic analysis methods developednine its PF. However, the analyses cannot address systems
for these Systems are not appiicabie to generai priority_ where the maximum SyStem utilization is greater than one.
driven systems due to the adoption of non-priority-driven In this case, the aSSUmption that the busy interval Starting
scheduling algorithms or the modification of the original at the critical instant will contain the worst-case response
priority-driven scheduling rules. time is no longer valid, so the deadline miss probabilties
A more general approach is to model the system as acomputed by the analyses are not actual bounds.
single server queue, and try to apply the results of classi- Recently, Kim et al. [9] analyzed the stochastic behav-
cal queueing theory. The real-time system we are trying toior of a dynamic-priority system combined with an over-
analyze is made up of periodic independent tasks scheduledun handling mechanism calledndomized droppingAl-
by a preemptive priority-driven scheduler on a uniprocessor.though this stochastic analysis method was developed to



compute the deadline miss probabilities of tasks for suchschedules jobs according to this priority. The scheduler
a system, it can still be used for a “pure” dynamic-priority guarantees that the running job is the one with the highest
system. By modeling the system as a Markov process, itpriority among the ready jobs. We are not concerned with
computes the stationary response time distributions of allthe policy used to assign priorities to jobs, as long as they
the jobs in a hyperperiod (which is defined as a period are assigned in a deterministic way. This model includes
whose length is equal to the least common multiple of the well-known policies such aRate Monotoni¢RM), Dead-
periods of all the tasks) and thus the response time distri-line Monotonic(DM) and Earliest Deadline First(EDF).
butions of all the tasks. However, it deals with dynamic- For fixed-priority policies, we will us& to denote the pri-
priority systems only and the derivation of the Markov ma- ority assigned to task.
trix is complicated due to the abstractionjob groupsand The response time of the jdi j will be represented by
aggregated response times Ri,j. This is a random variable, which can take different
In this paper, we present a broader approach, which startsvalues with different probabilities. In the next section we
from the ideas of [18], [6] and [9]. We provide a simple outline a procedure which allows us to find the probability
derivation method for the Markov matrix and both analyti- of occurrence of each possible response time for a given
cal and numerical solutions for the response time distribu- job, i.e. the probability function (PF) of the response time:
tions of all the tasks. We also describe a generalized frame-f, (1) =P{Rj j=r}
work to deal with both fixed-priority and dynamic-priority From the job response time PFs, the response time PF for
systems extending the concept presented in [9]. This modelany task can be obtained as the average of the response time
can be more easily understood starting from a simpler one,PFs of the jobs belonging to that task. The task response
in which the system is not seen as a set of periodic taskstime PF provides the analyst with significant information
but as a set of jobs released in a given sequence. Basedbout the stochastic behavior of the system. In particular, it
on the simpler model, a systematic method to compute thecan be used to compute the probability of deadline misses
response time PF of any job is developed and precisely defor each task. The deadline miss probabiliiP; of task
scribed in [5, 8]. In Section 4.1, we will summarize this 7 can be computed from its response time PF as follows:
method in the more general context of a periodic task sys-
tem, and will provide an overview of the whole stochastic DMP; =P{R;>Di} = 1-P{R,<Dj}
analysis. Finally, note that our stochastic analysis is use-
ful not only for soft real-time systems, but also for so-called 4. Stochastic analysis
probabilistic hard real-time systenfi3], where a probabilis-
tic guarantee close to 100% suffices. 4.1. Overview

3. System model and notation To compute the response time PF of each task, we have
to know the response time PFs of the jobs belonging to it.
The system is modeled as a sethdindependent peri-  However, since the number of jobs generated by a task may
odic tasksS= {71, 12, ..., v}, each task; being modeled  be infinite, it is not possible to consider all of them for com-
by (Ti,®;,Ci,Di), whereT; is the period of the taske®; putation of its response time PF. To address this problem,
its initial phase,C; its execution time, and®; its relative we observe that the arrival pattern of jobs within a hyperpe-
deadline. The execution time is a discrete random vari- riod is repeated for all the other hyperperiods. Thus, if some
ablé with a known probability function (PF), denoted by stochastic regularity is found at the hyperperiod level, we
fe.(+), wheref, (c) = P{Ci=c}. Since the value of; is can restrict our analysis to a single hyperperiod, and say that
bounded, its PF can be stored as a finite vector of valuesthe derived job response time PFs are applicable for other
[fe,(CM),..., fe, (CM®)]. hyperperiods. In this case, the response time‘gﬁF() of
Each task gives rise to an infinite sequence of jobs, andtask 7; is represented by the average of the response time

we will denote thej-th job of taskz by I'j j. The release  PFs of all the jobs from the task in the hyperperiod. That is,
time of job [ j will be denoted by j. This time is deter-

ministic and equal t@; + (j — 1) x T;. Each job requires an 10
execution time which is a random variable whose distribu- fr, (1) = m Zl EA) @)
tion is given byfe, (), and it is assumed to be independent =
The scheduling policy we assume is a general priority- hynerperiod of lengtiT.
driven one that assigns each jbb; a static priority and To address stochastic regularity in hyperperiods, we first
*Throughout this paper we use a calligraphic typeface to denote randomd€fine thePTIe_veI baCklo_Qpr.erved at time as the sum
variables, likeC, R, etc. of the remaining execution times of all the jobs that have




priorities higher than or equal 8 and are not completed
up to the timet. This random quantity is denoted by .
Then, we focus on thB-level backlog observed at the be-
ginning of each hyperperioki denoted byBf = WE;, and

investigate the stochastic process defined as the sequence of

random variable§BY, BS, ..., BE,...}. We prove that this
stochastic process is a Markov chain. In addition, a sta-
tionary distribution of thé>-level backlogBf, exists as long
as the stability condition whereby the average system uti-
lization is less than one is met. By deriving the Markov
matrix that gives the transition probabiliB{ (Bf =t,) —
(BR.1 =1,) } for any two states; andt,, we compute the
exact stationar-level backlog PFfBE(J, observed at the
beginning of the hyperperiod.

Once the stationarp-level backlog PFfBE(') is given,
the stationaryP-level backlog PF observed at any time
within the hyperperiod can easily be calculated using the
method explained in [5, 8]. Basically, by using two sim-
ple operations calledonvolutionandshrinking theP-level
backlog PFpr(-) at any timet’(> t) can be calculated

from theP-level backlog P':fwr(') at timet. For example,

let us assume a simple scenario in which a job with a prior-
ity higher than or equal tB is released at timeand there is

no further release of jobs with a priority higher than or equal
to P in the interval {, t'). In this case, th@®-level backlog

PF observed immediately after the release of the job, i.e.,
fwﬁ(')’ is obtained by performing convolution between
fwf(-) and the execution time PF of the job. Then, the
P-level backlog PFfWﬁ(-) at timet’ is obtained by shrink-
ing fw&(')’ that is, shiftingfWF (+) to the left(t’ —t) units
and accumulating in the origin all the probability values de-
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(a) At timet, just before the release of the job (the execution time
PF for that job is shown in the box)
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(b) At timet, just after the release of the job (convolution)
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(c) Attimet’ =t + 6 (shrinking)
Figure 1. Example of the P-level backlog PF

at two different times, separated by 6 units of
time

fined for the non-positive time values. These operations are

graphically shown through an example in Figure 1. There-
fore, by iteratively applying convolution and shrinking to
the stationaryr-level backlog PF observed at the beginning
of the hyperperiod, we can compute the stationary backlog
PFs for all the jobs with priority?, observed at their release
times.

In order to compute the response time of a job, it is nec-
essary to know thg@b-level backlogdefined as the back-
log due to jobs with priorities higher than or equal to the
priority of that job, observed at a given time (usually the re-
lease time of the job). Itis clear that, under a fixed-priority
scheduling policy, the job-level backlog coincides with the
P-level backlog P being the priority of the job under con-
sideration. However, for dynamic-priority policies such as
EDF the method for obtaining the job-level backlog is dif-
ferent. In Section 4.4 we will deal with the general case.

"It is possible to define a different hyperperiod length for each priority
level P by computing the LCM only for tasks with priority higher than or
equal toP. This would reduce the computational cost of the method, but
we will not use this approach in the text, in the interest of clarity.

For now it is sufficient to know that the job-level backlog
can be obtained from thgystem-level backloglefined as
the backlog due to all the jobs released before a given time
(this can be regarded as a O-level backlog). In the general
case, then, the job-level backlog is different fromEakevel
backlog, so we need to introduce a new notation to differen-
tiate between them. We will represent By; the job-level
backlog of the jolT; j present at its release time. Note that
in the particular case of fixed-priority tasks, (such as RM)
we can say tha¥; j = Wf{ii.j, P, being the priority of the task

7 to which the job belongs.

After the job-level backlog PFs of all the jobs in the hy-
perperiod have been computed, we compute their response
time PFs. For each jol j, the response time PF can easily
be calculated, since the response tifRyg is defined by the
following equation

Rij=Vij+C+ z Cy
rk‘|€H

)

whereH is the set of all the jobs that may preenfipt, ie.,



the set of jobs released after tirg; with a priority higher

than that of jol; ;. Thus, the stationary response time PF fﬂef,k*b
fjzl (-) of [’ j can be computed from the stationary job-level
backlog PFfVI (-) and the execution time P (-) of i

and the execution time PFs of the h|gher—pr|or|ty jobs that
preempt ;.

The response time PF is computed as follows. Lighe
thek-th job inH (we assuméi to be ordered by the release
times), andl,; the time that has elapsed between the release
of [ j and that of}. First, we calculate the response time
PF not considering any possible preemptions by the higher-
priority jobs by convolving the job-level backlog Pﬂg ( )

and the execution time PF, ( ) of the job T ;. Then it-
eratively, we calculate the response time PF that reflects all
possible preemptions by, 5, ...,T, ... by convolving the flOM] f;{«k ) ®fe,
execution time PFs df}’s, in turn k= 1,2,3,...), into the !

response time PF df; j. At each step, sak, the convolu-
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(a) “Splitting” the response time PF obtained in skepl

tion is applied to the tail part of the response time PF being 213 9
calculated, which is defined in the rangg,(), since the I IR S E S e e e

higher-priority jobl, may affectl; j only if I'; j executes
up to the release time d@f,. In other words, at stek, the
response time PF dfj j is calculated by (1) splitting the
response time PF obtained at skep1 into the tail part de-
fined for the rangeA, ) and the remaining head part, (2)
convolving the tail part and the execution time &Fof '},
and finally (3) merging the head part and the new tail part (b) Construction of the response time PF for step
resulting from the convolution. Figure 2 shows this process
graphically, for thek-th higher-priority job.

This process can also be more formally expressed
through the following notation: let' (-) be a partial PF de-
fined as the part of the PF(-) which takes values in the
intervall, as follows.

123 456 7

Figure 2. Response time PF calculation

and the exact deadline miss probability can be computed.
Moreover, the calculation process can also be stopped when

; the response time PF obtained at some &tegveals that
f'(r):{ f(r) ifrel

the job T ; has a null probability of being running up to

0 otherwise
the release time of the next higher-priority joR, , (i.e.,

Also, letR;~*> be a random variable describing the response f9(3<k>)( ) is zero).

time of JOb Fij that reflects all possible preemptions by iy the following subsection, we will describe how to
the higher-priority jobd™y, I, ..., T that can preemt; | compute the stationa-level (or system-level) backlog PF
M <A< < A). Then the response time F:f'3:1i<jk> () observed at the beginning of the hyperperiod, and then ex-
can be calculated from the response timefPF, ,_(-)and ~ Plain how to deal with dynamic-priority systems such as
i EDF in the job-level backlog PF computation. In the fol-
lowing description, note that, whenever we omit the super-
scriptP in B, a priority levelP is implicit in the notation.

)
the execution time PIFG{((-) of Iy as follows:

fe (0 = £, )+ <f;<k L@ fe)(n)
’ K 4.2. Markovian modeling and stability
However, in order to obtain the deadline miss probability

for each jold™; j, itis not necessary to calculate the complete  The backlog at the beginning of theth hyperperiod is a

response time PF, becauBgR; ;>Di} = 1—-P{R; j<D;}, random variable, whose distribution, in general, is different
and the probability’{R; j<D;} can be computed from the for eachk. So, the sequence of random variablék} is a
part of the response time PF defined in the rangeDiQ, random process, which we will call the “backlog process”.

If, at stepk, we find thatD; < A in the calculation of the ~ We will show that this process is a Markov chain.
response time PF, the calculation process can be stopped, The PF of Bk can be expressed in terms of the PF of



‘Bk_1 using conditional probabilities:

P{Bx=]j} = ) P{Bk-1=i}P{Bx=] | Bk-1=i} (3)

Each columrP(-, j) in the matrixP is the PF of the back-
log at the end of the first hyperperiod, if the initial backlog
wasj. Then, each columiin P can be calculated by set-
ting the initial backlog equal tg, and using the algorithm
presented in Section 4.1 to obtain the PF of the backlog at

Moreover, in our case, all hyperperiods receive the samethe end of the first hyperperiod. For each different initial
seguence of jobs, in the same order, so the conditional probbacklog value, we will expect to obtain a different PF for

abilitiesP{Bk=] | Bk_1=i} do not depend ok. That is to
say,P{Bk=] | Bk-1=i} = P{B1=j | Bo=i}. Then, the PF
of Bk depends only on the PF @&y_;1, and not on those
of Bk_2,Bk_3,.... This is the “memoryless” property of a
Markov chain.

In this way, we can write Equation (3) in matrix form:

(4)

whereby is the PF of By in the form of an infinite col-
umn vector[P{By=0},P{By=1},...]", andP is the infi-
nite Markov matrix, whose elements we will cal(i), de-
fined as:

by =Phbyx_1

P(i,J) = bj(i) = P{Ba=1| Bo=]}

Under stability conditions, the Markov chain is ergodic,
and in this case the PFs of the random variall&g}
converge towards a single stationary distributionkaep-
proaches infinity.

The stability condition depends on tla@erage system
utilizationU, which is defined as:

N &
g_ia

2.7 ®)

G being the expected value of the execution time for the

taskr.

the final backlog, and so we will expect each columP o

be different. However, there exists an initial backlog value,
which we will callr, from which the PF of the final backlog

is always the same, only “shifted” one position to the right.
This means that after colunmall the columns irP repeat
the same values, only shifted down by one position. The
general form of matriP is thus:

r
bo(0)  by(0)  bo(0) b(0) O 0 0
ne 6@ he 6@ ) no o
' ' : L b@ b
)
P=|bo(m) bum) by(m) br(m) '
0 0 0 0 b(m)
0 0 0 0 0 b(m)
0 0 0 0 0 0

In particulary is the maximum possible value of the idle
time in any hyperperiod. It can be calculated as:

r=T+wm -y (6)
1

whereW™n is the backlog at the end of the first hyperperiod

WhenevelJ < 1, the system is stable, and the sequence in which all the jobs are released, assuming that the initial

of random variable$y’s converges towards a single ran-
dom variable, whose PF is a vector usually denotedrby

backlog is zero and all the jobs require their minimum exe-
cution time.W™" is usually zero, unless most of the work

This vector can be obtained as the unique solution of theis concentrated at the end of the hyperperiod.

equationr = Px, with the additional restriction df m; = 1.
The conditionU < 1 assures the stability and conver-

Then, ther-th column of the Markov matrif represents
the PF of the final backlog in the case of the initial backlog

gence of the system, and thus the existence and uniquenedseing equal to the maximum possible idle time. In this case,
of w. This fact can be proved using Markov theory and the whole hyperperiod is busy, and so colunof P will be

“drifting conditions”, but it is simpler to approximate our

the convolution of the execution time PFs of all the jobs

model by a queue with a single server. A well-known result released in the hyperperiod, shiftéll—r) units to the left.
of queueing theory (see for example [10]) is that the sys- An analogous reasoning applies when the initial backlog is

tem is stable ipp < 1, p being a parameter of the queueing
model, which can be shown to be equivalent toQur

(r+1), (r+2), and so on, because in all these cases the
whole hyperperiod is a busy period. This is the reason for

In order to obtain the steady state PF of the backlog, thethe regularity of matriXP from columnr onwards.

equationm = P& needs to be solved. This, in general, is not

an easy task, because the makRis infinite. However, due

Moreover,my is the index of the last non-zero element of
columnr in P, and thus represents the maximum possible

to the nature of our model, the matrix has a regular structure,backlog which could appear when the initial backlog.is
which will allow us to provide a general method to obtain If the initial backlog is less than, the final backlog will be

an analytical expression far. Let us show the regularity
present irP.

less tharmmy, and this is why the first columns have zeros
from row m, onwards.



4.3. Solution approaches Task T, Priority G
71 4 High {1,2} with equal probability

Once the Markov matri® has been derived, we can 2 6 Low {234} withprob0.2,0.3and0.5
compute the stationaB-level (or system-level) backlog PF
observed at the beginning of the hyperperiod with either an
analytical or a numerical method. The analytical method
gives the exact solution for the stationdPylevel backlog
PF while the numerical method gives approximated solu-
tions. In the analytical method, we differentiate between ysed instead of a single worst-case value, the probability
the case whered ™ < 1 from general cases, since in this of deadline misses can be found, and, if this probability is
special case the-level backlog PF is equal for all hyper-  small enough for its application, the system could still be

periods, so there is no need to perform the Markov processfeasible. An example of the benefits of a statistical approach
modeling described in the previous subsection. In this caseio the problem is presented in [5]

we compute the exact solution without deriving the Markov

matrix. For the general case, on the other hand, we com-
pute the exact solution by deriving a finite set of equations
that can completely describe the infinite stationary back-
log distribution. To reduce the computational overheads 4.3.2 Exact solution for the general case
required to compute the exact solution, we also introduce
some approximation methods, which make a trade-off be-
tween analysis accuracy and computational overheads.

Table 1. A system example with U™ > 1

Taking advantage of the regular structurd®ofve present a
method for finding the complete stationary PF of the back-
] log, denoted byr. Since this distribution has an infinite
4.3.1 Exact solution wherly ™ < 1 number of points, what we will obtain is the exact value of
We will define the maximum system utilizatitH"® as the some starting points, and then the expression in closed form

total utilization of the system calculated using the worst- for the rest of the points.

case execution times of the jobs: The general form oft consists of a set of initial points,
N Gmax whose valueg d_e_pend_on the parameters of the _system, fol-
ymax _ i @) lowed by an infinite tail which approaches zero in a expo-
&G T nential way. Actually, the tail is a sum of exponential func-

tions, whose parameters depend only on convolution of all
the execution times for all the jobs in the system. We call
his solution “analytical” in the sense that a closed form of
he solution is found. However, to obtain this solution, the
method requires the roots of a polynomial to be found, and
ome numerical methods will be required nevertheless.

In the particular case whetd™@ < 1, the maximum
amount of work generated in a hyperperiod will not exceed
the hyperperiod length. In this case, the backlog observed a{
the end of the hyperperiod cannot increase without bounds.
In fact, it can be proved that the backlog present at the end
of the first hyperperiod in which all the tasks were released S
at least once, will be repeated at the end of any subsequent In order to make the method more understandable, we
hyperperiod. In particular, if at time= 0 all the tasks are  will introduce an example system and solve it “by hand”,
released in-phase, then no backlog will be present at the endjiving indications about how the example can be general-
of the first hyperperiod, and thus all subsequent hyperperi-ized, instead of presenting a formal development of the gen-
ods will start with a zero initial backlog. eral solution.

In these particular cases, the stat|_onary PF of the b_acklog Let us consider the system shown in Table 1. For this
observed at the end of the hyperperiods can be obtained by U .

. . . system, the hyperperiod is 12. Task s released three
simple calculation of the backlog PF at the end of the first times. ande, twice within the hvoereriod
hyperperiod in which all the tasks are released at least once.’ ' 2 tWice withl yperperiod.
Moreover, the backlog PF obtained in this case has a finite  We will obtain the stationary distribution for the low-
number of points. priority-level backlog, i.e., the PF of the backlog present at

Note that wheftu ™®* < 1, the system can be analyzed us- the beginning of any hyperperiod in the distant future. To
ing classical response time analysis. Using the worst-casedo so, we need to construct the Markov matix This is
execution times of all the tasks, the worst-case responsedone by computing the PF of the backlog at tihe= 12,
time can be calculated, and comparing this response timefor different initial backlogs 01,2, ... up tor. Each of these
with each deadline, the feasibility of the system can be de-PFs will be a column iP. In this example, the maximum
termined. However, if a profile of the execution times is possible idle time in a period, is 5. The resulting Markov



matrix is:

0.8375 0595 Q3275 013125 0035 Q005 -

0.13125 02425 02675 019625 009625 003 0005

0.03125 013125 02425 02675 019625 009625 003

- 0.03125 013125 02425 02675 019625 009625

0.03125 013125 02425 02675 019625

0.03125 013125 02425 02675

Pp=| - -
0.03125

m B . B .

013125 02425

0.03125 013125

0.03125

As expected, the numbers in columrare repeated in the
following columns, shifted one position down. The index
of the last non-zero element in tiheh column is what we
calledm, in Section 4.2, and its value is 7 in this example.
Matrix P always presents another regularity: from now+

ship, which holds forj > 8:

Tjy+5 = —6.257)_» — 26.257j_1 + 15157 — 53.57j 11

8
— 39.257T]'+2 — 19.257Tj+3 — 67l'j+4 ( )

The recurrence relation of Equation (8) can be putin ma-
trix form:

Qj+1=AQ); j>8
where

QJ = (ﬂjfzv ﬂ'j,l, ”j ) n’.j+17 ”j+27 ”j+37 Ej+4)T
1 0 0 0

0
0
0
1

corooo

0
0 0
1 0
0 0
0 0
0 1
—6

coooo

1
0
0
0
0

0
.25 —26.25 1515 —535 —3925 1925

The elements of the last row of matéxare the coefficients
of Equation (8). Note that they are easily obtained from =
ther-th column ofP. Using the matrix form, it is easy to
see thaQy = AQg, Q10 = A?Qg, and in general, fon > 8,

Qn=A"8Qs.

1 onwards, the values in each row are the same, only shifted SinceA is diagonalizable, we can writd = V-1DV,
one position to the right. Moreover, these values are thewhereV 1 is the matrix whose columns awg,v,,...,v,

same as the coefficients of thah column. In effect, for
this example this kind of regularity starts from row 2, but in
general it is only guaranteed for raimn, + 1).

Equationt = Pz can be “developed” and gives rise to
an infinite set of equations with infinite unknowns, which
are the component;’s of . This infinite set of equations

can be divided into two subsets: a subset comprising the
first (my + 1) equations, and a second subset made up of the
remaining equations. The last subset defines a recurrence

relation between the componentsmof
In our example, the firgim, + 1) equations are:

7o = 0.8375m0 + 0.595m; +0.32757, +0.1312573
+0.035m4 + 0.00575

77 = 0.03125t5 + 0.13125716 + 0.242517 + 0.26 7518
+0.19625t9 + 0.09625110+ 0.03711 4 0.005712

This makes a system of 8 equations with 13 unknowns. In

general, there will bém, 4+ 1) equations withm, +r + 1)

the eigenvectors oA; D is the diagonal matrix whose ele-
ments arel,, A,,...,4,, the eigenvalues ok, andV is the
inverse matrix ofV 1. Once diagonalized, the operation
A8 s easy to compute, leading to the equation:
Qn=V'D"®VQs
= CA] 8V, +CAS By, + CAS By + CAL By, (9)
+Cohg Vs +CeAg Vg +CrA7 By,

where

(C1C,C4C,CCeCy)T =V - (Mo Mg Mo 1011 7012) T

The characteristic polynomial & is very easy to find,
even without obtainind\, directly from the elements of col-
umnr in P. It can be proved that its general form is:

f(A) = (ibr(i)w—‘) —A™ =0 (10)

Note that the degree of this polynomialis, which can be

unknowns. The remaining equations, provided by rows proved to be equal t@ (UM — U ™in)  wmin,

my + 1 and following, have a general form, due to their reg-
ularity. The general form, fof > m, +1=8,is

7j = 0.031257 5+ 0.13125; 1 +0.24250;+
+0.26750t) 1 +0.196257) , 2 + 0.096257; , 3
+0.030007; .4 + 0.00500%) 1 5

Finding 7j5 we obtain the following recurrence relation-

In our example, the roots of this polynomial are
A = (—3.2976+1.825), A, = (—3.2976—-1.825), A; =
(—0.3099+ 3.0755), 4, = (—0.3099—3.0755), A5 = 1,

Ag =0.3476 andi, = —0.1325. Some of these have modu-

lus greater than or equal to one. Looking at Equation (9) it
can be seen that, if al; # 0, thenm, — c asn — o, due

to these eigenvalues, and the sum of the components of

will be infinite. This is not the case, because the Markov



B1 B2 B3 B5 B10 B20 B
0837500 0789734 0768523 0750897 0740816 0738968 0738872
0131250 0150109 0155394 0158160 0158899 0158919 0158917
0031250 0050976 0059129 (0065050 0067794 0068186 0068203
- 0008203 (0013632 0018639 0021485 0021964 0021987
- 0000977 0002906 0005524 0007464 0007850 0007869
0000385 0001372 0002430 0002690 0002705
0.000030 0000299 0000779 0000934 0000944
0.000053 0000238 0000321 (0000328
0.000007 0000069 0000110 0000114
0.000000 0000019 0000037 0000040
0.000000 0000005 0000013 0000014
- 0.000000 0000004 0000005
- 0.000000 0000001 0000001

chain is positive and thus the stationary solution has to be
summable. This implies that the coefficiets C,, C3, C,
andCy which multiply these eigenvalues in Equation (9),
must be equal to zero. This condition gives rise to five new
equations.

In general, in the case of stability, the polynomial in
Equation (10) hasroots with modulus greater than or equal
to 1, and so it always providesadditional equations. This
fact can be proved by applying Rouche’s Theorem

To summarize, we now have a linear system with 13 Table 2. Backlog PF convergence
equations, 8 from the firsm rows of P and 5 from
the condition of som&;’s being zero, and 13 unknowns
(mo,...,m2). Nevertheless, the reader can check that the
equation derived fronC; = 0 is a linear combination of
the others, and can be removed. In the general case, th@runcation of matrix P One possible approximation
equation derived from the eigenvalue 1, is always a lineartechnique to compute the stationary system-level backlog
combination of the others. Following the described method, PF is to truncate the Markov matrxto a sufficiently large
we will end up with a system ofmy +r) equations and  square matri¥’, which was first introduced in [1]. Assum-
(my +r 4+ 1) unknowns. Since the number of unknowns is ing that the infinite stationary distributiencan be modeled
one more than the number of equations, we can put each ofyith a finite vectorn’ = [, 77, 75, ..., 7], we can lead to
the first 12 components as a linear function of the first com- the following equation fronx = Prx:
ponentry. We will not write these expressions here for the . L
sake of brevity. The coefficieli};'s are also a linear func- m=Pz
tion of mp. In this example we obtai@; = —0.00136mp,

C, = —1.5057- 10 67y (the remainingC;’s are zero, guar-
anteeing the summability of). If we use these values in
Equation (9) we find the following general expression for
any component aof, valid forn > 8

L el®

N =
KhBboo~woubsrwnro

4.3.3 Approximations

whereP’ is an (n+1)-by-(n+1) matrix consisting of the com-
ponentP(i, j)'s (0 < i, j < n) of the Markov matrixP. The
resulting equation is an eigenvector problem, from which
we can calculate the approximated solutmnwith a nu-
merical method. Among the calculated eigenvectors, we

Qn = — 0.0013670V,(0 3474)n—8 can choose as the approximated solution an eigenvector
" ' ,% ’ - (11) whose corresponding eigenvalue is equal to or sufficiently
—1.5057-10 °mov,(—0.1329 close to 1. In order to obtain a good approximation of the

stationary distributiore, the truncation poinh should be
. . ; increased as much as possible, which makes the eigenvalue
fr:lela;%%\?;rzcﬂitfi:)%m malig)rAainSSélltS: c?ﬁ? lyvbjglf)%(::/iz '; converge to 1. Note that, by choosing an appropriate trun-

q 0. y 0 cation point, we can achieve a trade-off between analysis
complete vector, which has the propertg = Px. How- : :

. . accuracy and the computational overheads required to solve
ever, only one of these possible vectors is a PF (has a sumy di . bl The choi f
equal to 1). So, as a final condition, we impgge,m =1 the corresponding elgenvector problem. € choice ot a
9 Fo ) : A0 convenient truncation point is an open issue.

and from this we can determine the required valuerdgr
This equation is easy to solve, despite the infinite summa-

tion, because the expression faris a convergent sum of Iterative approximation Another approximation tech-
exponentials, fof > 6. nique to obtain the stationary system-level backlog PF,

Solving this sum and equating it to 1, we find the value Which does not require derivation of the Markov matfix
of 7o for this example, which isp = 0.738872. From this,  is the simple iteration of the algorithm which computes the
all the remaining values af can be computed. The first PF of the backlog at the end of the hyperperiod. For the ex-
13 components are obtained directly from the system of ample presented in Section 4.3.2, the results of successive
equations, and their values are shown in the last columniterations are shown in Table 2. It can be seen that each
of Table 2, rounded to the sixth decimal. The remaining point of the PF converges towards the analytical solution
components are calculated from the formula given in Equa- gjven in the last column). It can be proved that the conver-
tion (11), which, after substituting the valuesmf, vs and  gence is geometrically ergodic. However, it is not known in
vz, andtaking one of the components of vedg leads to: advance how many iterations will be necessary to make the

iy = 1074(9.4311X 0.34746 1 0.011x (70.1325)n—6) _backlog PF “close enough” to the stationary distribution. It

is clear that the rate of convergence depends on how dlose

valid for n > 6. is to 1, becoming slower d$ approaches 1. However, we

Note thatvg andv, are two eigenvectors, which were cal-



have not yet found a bound, in termsléf of the number of
iterations required by the iterative method. _ 3
Another important point to consider is the effect of in- 0 30 60 90 120 50
troducing zero as the initial backlog for the system. In the
steady state the initial backlog is a random variable which % |

. . IPX3 M2 M3
can take non-zero values. Thus, the response times in the —; = T 0
steady state will bavorsethan those calculated for the first
hyperperiod. Indeed, they will be worse than that calcu- Figure 3. A task set example
lated for any hyperperiod. Using zero as the initial backlog
will lead to optimistic probabilities of deadline misses, so Hyperperiod
design decisions based on the iterative method should be .
taken carefully. ;
4.4. Extension to dynamic-priority systems BN D) e | i
Wisy WT;: Wgzzwl3 l/‘\;LTWA23 Wl: Wi
Wizs Wizt

Although dynamic-priority systems seem considerably
different from fixed-priority systems, there exists one simi-
larity. The similarity is that, in a hyperperiod, there always  Figure 4. Ground jobs and non-ground jobs
exists at least one job that always takes the system-level in a dynamic-priority system
backlogW,, ; observed at its release tindg; as its job-
level backlogVi j, i.e., Vi j = Wy,;. Such a job is called
aground jobh and has a lower priority than all the jobs re-
leased before its release tirg;. Thus, once the stationary
system-level backlog P'FBQ(') observed at the beginning
of the hyperperiod is given, the stationary job-level backlog
PFf, J( ) of every ground joli'; j can be calculated as ex-
plalned in Section 4.1, by iteratively applying convolution
and shrinking tOf'BE( ) for each job released between the

beginning of the hyperperiod and the release thineof the
job Iy j (for a fixed-priority system, this statement means o :
that the stationary job-level backlog PF of every job with as shown in Figure 4. [fthe stgtlo_nary system-level ba_lcklt_)g
priority P, which is considered a ground job at the priority F7 fp() Observed at the beginning of the hyper-period is
level P, can be calculated frorfy,p (). given, the stationary job-level backlog PFs of all the ground
k d jObS can be calculated by applying convolution and shrink-

perperiod can be calculated from the system-level backlog
PF f39(~). For example, consider the task set shown in Fig-

ure 3. This task set consists of two tagksand .. The
periods ofr; andt, are 30 and 50, respectively, and the rel-
ative deadlind; of each task is equal f§. The phaseb;’s
of both tasks are 0.

In this example, there are seven ground jols, 21,
rlﬁz, r2)2, r174, F2,3, andF1,5, and one non—ground jdb]_,:;,

Therefore, the difference between dynamic-priority an
fixed-priority systems lies in how to compute the job-level N9 © fpp(-). Thatiis, fy (W) = fyy, (W) = fp(w),
backlog PFs ofon-ground jobs For fixed-priority sys-  fy,,(W) =y, (W)= (fo @ fy,,)(w), and so on.
tems, this problem is solved by considering the higher pri-  However, for the non-ground job13, the stationary
ority level that each non-ground job belongs to. Since any job-level backlog PFf,, 3(.) is not equal to the station-
job classified as a non-ground job at a lower priority level ary system-level backlog PF,,, _(-) observed at its re-
is bound to become a ground job at the priority level that |ease timed;3. The statlonarylgystem level backlog PF
is equal to the priority of the job, its job-level backlog PF £ .  (.)includes the contribution from a lower-priority job
can be calculated from the stationary system-level backlogrzzlthat must be excluded for the job-level backlog PF
PF obtained at that priority level. However, for dynamic- f 13(.)_ In this case, we observe that the job-level back-
priority systems, we can avoid such an iterative analysis, jog’ PF f,. .(-) of the non-ground job 1 3 can be calcu-
and compute the job-level backlog PF of the non-ground |ated from the system-level (or job-level) backlog PF of the
job from that of a preceding ground job. The preceding ground jobrl'; » that precedeE; 3 and has a higher priority
ground job is the last ground job that is released before thethanr13 (i.e.,I 12 is the base ground job of the non-ground
non-ground job and has a higher priority, which is called the job I'; 3). It can be seen that the job-level backitgs
base ground jolfor the non-ground job. Since the job-level of 1.3 depends only on the system-level backiay, , of
backlog PF of any ground job can be calculated from the ', , and the execution time df; 2. Thus, we calculate the
system-level backlog PF,,(-) observed at the beginning  stationary job-level backlog PF, ,(-) of the non-ground
of the hyperperiod, this means that the job-level backlog job I'; 3 from that of its base ground job1, by apply-
PFs of all the jobs including the non-ground jobs in the hy- ing convolution and shrinking to the system-level backlog



PF fWl 2( ) of the base ground job; > while ignoring the assumption made in STDA. The negative impact on the
lower- prlorlty ground jold 2 ». This approach can be gener- degradation of analysis accuracy increases with an increase
alized to compute the stationary job-level backlog PF of an in the (maximum) system utilization. In the case of tagk
arbitrary non-ground job; j as follows. in S,, the deadline miss probability given by STDA is more

. ) than six times the one given by the proposed method.
Theorem 1. For any non-ground jold'; j, the stationary X given by the prop

job-level backlog PF .f (-) can be computed from the sta- [STs ] T D JG™]C [G™] U [Uu™]
tionary system-level backlog PRyf,, () of its base ground s ] 300|300 72 | 100 | 128 | 05| o gq7
job, (i.e., the last ground joBy that precedeﬁ. ;j and has Zj ‘3‘88 ;‘88 ;g 138 fég

a priority higher than that of"; ;) by iteratively applying > [, [ 400 | 400 | 50 | 150 | 250 | 0708 | 1125
convolution and shrinking to,§, (-) only for all the non- S 2 S I8 | 2 0708 | 1411
ground jobs that are released in the time interval (, 4i ;]

and have priorities higher than that of ;. O Table 3. Task sets in [6]

Note that, in a system scheduled by EDF, we can find
the base ground job for any non-ground job, since there al- [ S [ 4 [ simulation [ STDA [ Exactanalysis| Approximation |

ways exists a ground job that has an earlier deadline than | s |- 8-8231 3-882 8-22(1’ 8-823 8-833
the non-ground job. For a general dynamic-priority sys- [ 0.000£ 0,000 | 0.000 0.000 0.000
tem, we developed a systematic approach to finding the base % [%, [ 0074 0.002 | 0.489 0.074 0.074
ground job for any non-ground job and computed the job- | S % 8:2821 8:882 8:282 8:282 8:232
level backlog PF of the non-ground job in a systematic way,

but we do not include it here for the sake of brevity. For Table 4. Results for the task sets in Table 3

more information, refer to [8].

. 5.2. Sensitivity to the average system utilization and
5. Experimental results the number of tasks

In this section, we give experimental results obtained by  To assess the sensitivity of analysis accuracy to the aver-
the proposed stochastic analysis. First, we compare the reage system utilization, we performed experiments with task
sults obtained from the proposed analysis method (both thesets consisting of three and five tasks while varying the av-
exact solution and the approximated solution based on theerage system utilization from 0.70 to 0.96. For each exper-
Markov matrix truncation) with those obtained by Stochas- iment, we also considered both RM and EDF scheduling to
tic Time Demand Analysis (STDA) [7, 6] using the exam- investigate the effect of the scheduling policy on analysis
ple given in [6]. Secondly, we compare the results obtained accuracy. The results (which we do not detail here due to
using the truncation method with those obtained from simu- space limit), showed that the approximated solutions from
lations while varying the average system utilization and the the Markov matrix truncation is almost equal to the simula-

number of tasks. tion results for most cases. In the case of the task sets con-
sisting of three tasks, the error between the approximated
5.1. Comparison with STDA solution and the simulation result of the deadline miss prob-

ability for a task ranges from 0 to 0.006 for RM, and from

To compare the proposed analysis method with STDA, 0 to 0.008 for EDF. In the case of the task sets consisting
we used the same task sets given in [6], which are shownof five tasks, the error ranges from 0 to 0.015 for RM, and
in Table 3. All three task sets in Table 3 are assumed tofrom 0 to 0.028 for EDF. According to the results, the error
be scheduled by RM and have the same task parameters exncreases as the average system utilization increases. For
cept for the execution time PFs of tasks given by a uniform example, in the case where the task set consisting of five
PF that ranges frorg™" to CMa (CM& = 2 x C. —C™") tasks are scheduled by EDF, the error was 0, 0.002, 0.016,
for taskt;,. For the task sets, the simulation results and the 0.028 when the average system utilization was 0.7, 0.8, 0.9,
analytical results given by STDA are copied from [6] and 0.96, respectively. The inaccuracy is due to the Markov ma-
compared with the results given by the proposed stochas-rix truncation, which converts the Markov matrix with an
tic analysis, using the exact solution and the approximationinfinite dimension to one with a finite dimension. When the
obtained by the Markov matrix truncation. The results in stationary system-level backlog PF we are trying to obtain
Table 4 show that there is a significant difference betweenhas a non-negligible tail distribution beyond the truncation
the deadline miss probability given by STDA and the one point, the Markov matrix truncation inevitably introduces
obtained by the proposed method, which is almost identicalapproximation errors in the analysis. To reduce these er-
to the simulation result. This results from the critical instant rors, it is necessary to preserve the tail distribution as much



as possible by choosing a larger truncation point at the cost [3] G.Bernat, A. Colin, and S. Petters. WCET Analysis of Prob-

of greater computational overheads. For more information,

the reader is referred to [8].

6. Conclusions and future work

In this paper we have introduced a model and a concep-
tual framework which allows statistical analysis of the re-
sponse time of periodic tasks in a general priority-driven

real-time system. The model requiragriori knowledge

of the probability function (PF) of the execution time re-
quired by each job. We have derived formulae for calcu-
lating the backlog PF at any time, and the response time
PF of any task. The statistical information derived from the
analysis can be combined with deadlines, thus obtaining the
probability of deadline misses for any task in the system. If
this probability is zero for a task, then its deadline is guar-

(4]

(5]

(6]

(7]

(8]

anteed. In this sense the statistical analysis subsumes the

classical response-time analysis. The analysis also allows
for systems withy ™ > 1, which would not be feasible us-
ing classical analysis. Whenevdr< 1, the long-term sta-

tistical behavior can be described by modeling the backlog [€]

process as a Markov chain.

The model still has some limitations which can be
investigated. It does not allow for uncertainty in the release

times of the jobs, and assumes all tasks to be independent[lo]
so it does not allow for blocking in shared resources. [11]
Furthermore, the assumed independence is also statistical,

i.e. the execution time distribution of a task is assumed to

be independent of the values observed for the other tasks, of12]

for previous instances of the same task. This assumption is
often violated in real-world cases. When the number of jobs
in a hyperperiod is large, finding the stationary distribution
analytically is too expensive (although possible), so some

(13]

numerical methods have been provided as approximations.[14]

In future work, the error introduced for such methods
should be studied, and the development of a numerical

method that can bound the error is needed.
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