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Abstract

This paper describes a stochastic analysis method for
general periodic real-time systems. The proposed method
accurately computes the response time distribution of each
task in the system, thus making it possible to determine
the deadline miss probability of individual tasks, even for
systems with maximum utilization factor greater than one.
The method uniformly covers both fixed-priority schedul-
ing (such as Rate Monotonic) as well as dynamic-priority
scheduling (such as Earliest Deadline First) and can han-
dle arbitrary relative deadlines and execution time distribu-
tions. The accuracy of the method is proven by comparing
the results from the analysis with those obtained from sim-
ulations, as well as other methodologies in the literature.

1. Introduction

Traditional scheduling algorithms and analysis methods,
such as processor utilization analysis [16, 11] and response
time analysis [4, 19], focus on strict “hard” deadlines, by
which a system is deemed schedulable only if every in-
stance (called a job) of every task is guaranteed to meet its
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deadline. Although this deterministic timing guarantee is
needed in hard real-time systems, it is too stringent for so-
called soft real-time applications that require only a prob-
abilistic guarantee that the deadline miss ratio of a task is
below a given threshold. For such soft real-time applica-
tions, we need to relax the assumption that every instance
of a task requires the worst-case execution time and analyze
system behavior from a statistical point of view.

Progress has recently been made in the analysis of real-
time systems under the stochastic assumption that jobs from
a task require variable execution times. Research in this
area can be categorized into two groups depending on the
approach it takes to facilitate the analysis. The methods in
the first group introduce a worst-case assumption to sim-
plify the analysis (e.g., the critical instant assumption in
Probabilistic Time Demand Analysis [18] and Stochastic
Time Demand Analysis [7, 6]) or a restrictive assumption
(e.g., the heavy traffic condition in the Real-Time Queueing
Theory [12, 13]). Those in the second group, on the other
hand, assume a special scheduling model that provides iso-
lation between tasks so that each task can be analyzed inde-
pendently of other tasks in the system (e.g., the reservation-
based system addressed in [1] and Statistical Rate Mono-
tonic Scheduling [2]).

In this paper, we propose a stochastic analysis method
that does not introduce any worst-case or restrictive as-
sumptions into the analysis, and is applicable to general
priority-driven real-time systems. The method is general
in the sense that it covers general priority-driven systems
including both fixed-priority systems such as RM [16] and
DM [15] and dynamic-priority systems such as EDF [16]
(First In First Out is also covered since it is considered a
special case of EDF where all the jobs have a constant rela-
tive deadline). The analysis method can handle any periodic
task set consisting of tasks with arbitrary relative deadlines
(including relative deadlines greater than the periods) and
arbitrary execution time distributions.

The analysis method is based on Markov process mod-
eling, which enables us to reason probabilistically about
the steady-state behavior of the system even in the case of
possible overload. It provides both analytical and numeri-
cal solutions for the deadline miss probabilities of tasks by



computing the complete probability function (PF) of the re-
sponse time of each task.

The rest of the paper is organized as follows. In Sec-
tion 2, the related work is described in detail. In Section 3,
the system model assumed and the notations used through-
out the paper are given. Section 4 describes the stochas-
tic analysis method we propose and also explains various
approximation techniques to reduce its computational over-
heads. In Section 5, we compare experimental results from
the proposed analysis method with those obtained from sim-
ulations and other methodologies. Finally, in Section 6, we
conclude the paper with directions for future research.

2. Related work

Several studies have addressed the variability of task ex-
ecution times even in deterministic schedulability analysis.
For example, a multiframe model was proposed by Mok
and Chen [17] in which the execution time of a task may
vary greatly from one instance to another assuming that this
variation follows a known pattern. The pattern is given as
a finite list of numbers, and the execution times of succes-
sive instances are generated from the list. From this model,
new utilization bounds which improve those of Liu and Lay-
land [16] are derived for fixed-priority preemptive schedul-
ing. However, since this model is aimed at providing a de-
terministic timing guarantee, it is still pessimistic.

In the attempt to provide probabilistic guarantees to real-
time tasks with variable execution times, some reservation-
based models that provide isolation between tasks have
been studied. These models include the reservation-based
system addressed by Abeni and Buttazzo [1] and a modi-
fication of Rate Monotonic Scheduling proposed by Atlas
and Bestavros [2], which is called Statistical Rate Mono-
tonic Scheduling (SRMS). Both assume reservation-based
scheduling algorithms so that the analysis can be performed
as if each task had a dedicated (virtual) processor. That
is, for each task, a guaranteed budget of processor time is
provided in every period [1] or super-period (the period of
the next low-priority task which is assumed to be an integer
multiple of the period of the task in SRMS) [2]. There-
fore, the deadline miss probability of a task can be analyzed
independently of other tasks assuming the guaranteed bud-
get. However, the stochastic analysis methods developed
for these systems are not applicable to general priority-
driven systems due to the adoption of non-priority-driven
scheduling algorithms or the modification of the original
priority-driven scheduling rules.

A more general approach is to model the system as a
single server queue, and try to apply the results of classi-
cal queueing theory. The real-time system we are trying to
analyze is made up of periodic independent tasks scheduled
by a preemptive priority-driven scheduler on a uniprocessor.

Apparently, this system is a multiclass queue in which each
class has deterministic inter-arrival times and arbitrary ser-
vice times (D/G/1). However, this model cannot account for
the relative phases of the tasks, which influence the statisti-
cal distribution of the response times. Furthermore, the few
results available for multiclass queues assume specific dis-
tributions (Poisson, normal, etc.) for the inter-arrival times.
The case of general distributions of inter-arrival times is
usually addressed under “heavy-traffic” conditions (i.e., the
average utilization is close to one) and, even in this case,
the results are not valid for deterministic inter-arrival times,
because this is a special case of a general distribution.

One extension of the classical queueing theory to deal
with real-time issues was proposed in the Real-Time Queue-
ing Theory [12]. This analysis method is flexible in that it
is not limited to a particular scheduling algorithm and can
be extended to real-time queueing networks. However, the
analysis method assumes that the system is under heavy-
traffic conditions. In addition, it only considers one class
of clients, i.e., the interarrival times and execution times are
identically distributed for all the tasks. This model does not
fit well with the periodic task model.

Another approach to the statistical characterization of
real-time systems is to extend an existing response time
analysis, substituting the fixed execution times with ran-
dom variables. Following this approach, Tia et al. [18]
proposed the Probabilistic Time Demand Analysis (PTDA),
which substitutes the sums of fixed execution times in the
Time Demand Analysis [14] with convolutions of probabil-
ity functions (PFs). In this way they can obtain the PF of the
response time of a task assuming the worst-case scenario on
the task release times, i.e., the critical instant. The analy-
sis is restricted to the first activation of the task, since the
deadlines cannot be greater than the periods. This assump-
tion is also made in the Stochastic Time Demand Analysis
(STDA) by Gardner [6], which extends the PTDA to cover
systems where the deadlines may be greater than the peri-
ods. In this analysis, the probability of deadline misses is
computed for each job released in the first in-phase busy in-
terval, and the maximum of these probabilities is chosen as
an upper bound on the probability of deadline misses for the
corresponding task. Both analyses are based on the sum of
random variables, and thus the use of convolutions to deter-
mine its PF. However, the analyses cannot address systems
where the maximum system utilization is greater than one.
In this case, the assumption that the busy interval starting
at the critical instant will contain the worst-case response
time is no longer valid, so the deadline miss probabilties
computed by the analyses are not actual bounds.

Recently, Kim et al. [9] analyzed the stochastic behav-
ior of a dynamic-priority system combined with an over-
run handling mechanism calledrandomized dropping. Al-
though this stochastic analysis method was developed to



compute the deadline miss probabilities of tasks for such
a system, it can still be used for a “pure” dynamic-priority
system. By modeling the system as a Markov process, it
computes the stationary response time distributions of all
the jobs in a hyperperiod (which is defined as a period
whose length is equal to the least common multiple of the
periods of all the tasks) and thus the response time distri-
butions of all the tasks. However, it deals with dynamic-
priority systems only and the derivation of the Markov ma-
trix is complicated due to the abstraction ofjob groupsand
aggregated response times.

In this paper, we present a broader approach, which starts
from the ideas of [18], [6] and [9]. We provide a simple
derivation method for the Markov matrix and both analyti-
cal and numerical solutions for the response time distribu-
tions of all the tasks. We also describe a generalized frame-
work to deal with both fixed-priority and dynamic-priority
systems extending the concept presented in [9]. This model
can be more easily understood starting from a simpler one,
in which the system is not seen as a set of periodic tasks,
but as a set of jobs released in a given sequence. Based
on the simpler model, a systematic method to compute the
response time PF of any job is developed and precisely de-
scribed in [5, 8]. In Section 4.1, we will summarize this
method in the more general context of a periodic task sys-
tem, and will provide an overview of the whole stochastic
analysis. Finally, note that our stochastic analysis is use-
ful not only for soft real-time systems, but also for so-called
probabilistic hard real-time systems[3], where a probabilis-
tic guarantee close to 100% suffices.

3. System model and notation

The system is modeled as a set ofN independent peri-
odic tasksS= {τ1,τ2, ...,τN}, each taskτi being modeled
by (Ti ,Φi ,Ci ,Di), whereTi is the period of the task,Φi

its initial phase,Ci its execution time, andDi its relative
deadline. The execution time is a discrete random vari-
able* with a known probability function (PF), denoted by
fCi

(·), where fCi
(c) = P{Ci =c}. Since the value ofCi is

bounded, its PF can be stored as a finite vector of values
[ fCi

(Cmin
i ), . . . , fCi

(Cmax
i )].

Each task gives rise to an infinite sequence of jobs, and
we will denote thej-th job of taskτi by Γi, j . The release
time of jobΓi, j will be denoted byλi, j . This time is deter-
ministic and equal toΦi +( j−1)×Ti . Each job requires an
execution time which is a random variable whose distribu-
tion is given by fCi

(·), and it is assumed to be independent
of other jobs of the same task and those of other tasks.

The scheduling policy we assume is a general priority-
driven one that assigns each jobΓi, j a static priority and

* Throughout this paper we use a calligraphic typeface to denote random
variables, likeC, R, etc.

schedules jobs according to this priority. The scheduler
guarantees that the running job is the one with the highest
priority among the ready jobs. We are not concerned with
the policy used to assign priorities to jobs, as long as they
are assigned in a deterministic way. This model includes
well-known policies such asRate Monotonic(RM), Dead-
line Monotonic(DM) and Earliest Deadline First(EDF).
For fixed-priority policies, we will usePi to denote the pri-
ority assigned to taskτi .

The response time of the jobΓi, j will be represented by
Ri, j . This is a random variable, which can take different
values with different probabilities. In the next section we
outline a procedure which allows us to find the probability
of occurrence of each possible response time for a given
job, i.e. the probability function (PF) of the response time:
fRi, j

(r) = P{Ri, j =r}
From the job response time PFs, the response time PF for

any task can be obtained as the average of the response time
PFs of the jobs belonging to that task. The task response
time PF provides the analyst with significant information
about the stochastic behavior of the system. In particular, it
can be used to compute the probability of deadline misses
for each task. The deadline miss probabilityDMPτi of task
τi can be computed from its response time PF as follows:

DMPτi = P{Rτi
>Di}= 1−P{Rτi

≤Di}

4. Stochastic analysis

4.1. Overview

To compute the response time PF of each task, we have
to know the response time PFs of the jobs belonging to it.
However, since the number of jobs generated by a task may
be infinite, it is not possible to consider all of them for com-
putation of its response time PF. To address this problem,
we observe that the arrival pattern of jobs within a hyperpe-
riod is repeated for all the other hyperperiods. Thus, if some
stochastic regularity is found at the hyperperiod level, we
can restrict our analysis to a single hyperperiod, and say that
the derived job response time PFs are applicable for other
hyperperiods. In this case, the response time PFfRτi

(·) of
taskτi is represented by the average of the response time
PFs of all the jobs from the task in the hyperperiod. That is,

fRτi
(r) =

1
mi

mi

∑
j=1

fRi, j
(r) (1)

wheremi = T/Ti is the number of jobs fromτi released in a
hyperperiod of lengthT.

To address stochastic regularity in hyperperiods, we first
define theP-level backlogobserved at timet as the sum
of the remaining execution times of all the jobs that have



priorities higher than or equal toP and are not completed
up to the timet. This random quantity is denoted byWP

t .
Then, we focus on theP-level backlog observed at the be-
ginning of each hyperperiodk, denoted byBP

k = WP
kT, and

investigate the stochastic process defined as the sequence of
random variables{BP

1 ,BP
2 , ...,BP

k , ...}. We prove that this
stochastic process is a Markov chain. In addition, a sta-
tionary distribution of theP-level backlogBP

k exists as long
as the stability condition whereby the average system uti-
lization is less than one is met. By deriving the Markov
matrix that gives the transition probabilityP{(BP

k = t1) →
(BP

k+1 = t2) } for any two statest1 andt2, we compute the
exact stationaryP-level backlog PFf

BP
k
(·), observed at the

beginning of the hyperperiod.*

Once the stationaryP-level backlog PFf
BP

k
(·) is given,

the stationaryP-level backlog PF observed at any time
within the hyperperiod can easily be calculated using the
method explained in [5, 8]. Basically, by using two sim-
ple operations calledconvolutionandshrinking, theP-level
backlog PF f

WP
t′
(·) at any timet ′(> t) can be calculated

from theP-level backlog PFf
WP

t
(·) at timet. For example,

let us assume a simple scenario in which a job with a prior-
ity higher than or equal toP is released at timet and there is
no further release of jobs with a priority higher than or equal
to P in the interval [t, t ′). In this case, theP-level backlog
PF observed immediately after the release of the job, i.e.,
f
WP

t+
(·), is obtained by performing convolution between

f
WP

t
(·) and the execution time PF of the job. Then, the

P-level backlog PFf
WP

t′
(·) at timet ′ is obtained by shrink-

ing f
WP

t+
(·), that is, shiftingf

WP
t+

(·) to the left(t ′− t) units
and accumulating in the origin all the probability values de-
fined for the non-positive time values. These operations are
graphically shown through an example in Figure 1. There-
fore, by iteratively applying convolution and shrinking to
the stationaryP-level backlog PF observed at the beginning
of the hyperperiod, we can compute the stationary backlog
PFs for all the jobs with priorityP, observed at their release
times.

In order to compute the response time of a job, it is nec-
essary to know thejob-level backlog, defined as the back-
log due to jobs with priorities higher than or equal to the
priority of that job, observed at a given time (usually the re-
lease time of the job). It is clear that, under a fixed-priority
scheduling policy, the job-level backlog coincides with the
P-level backlog,P being the priority of the job under con-
sideration. However, for dynamic-priority policies such as
EDF the method for obtaining the job-level backlog is dif-
ferent. In Section 4.4 we will deal with the general case.

* It is possible to define a different hyperperiod length for each priority
level P by computing the LCM only for tasks with priority higher than or
equal toP. This would reduce the computational cost of the method, but
we will not use this approach in the text, in the interest of clarity.
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Figure 1. Example of the P-level backlog PF
at two different times, separated by 6 units of
time

For now it is sufficient to know that the job-level backlog
can be obtained from thesystem-level backlog, defined as
the backlog due to all the jobs released before a given time
(this can be regarded as a 0-level backlog). In the general
case, then, the job-level backlog is different from theP-level
backlog, so we need to introduce a new notation to differen-
tiate between them. We will represent byVi, j the job-level
backlog of the jobΓi, j present at its release time. Note that
in the particular case of fixed-priority tasks, (such as RM)
we can say thatVi, j = WPi

λi, j
, Pi being the priority of the task

τi to which the job belongs.
After the job-level backlog PFs of all the jobs in the hy-

perperiod have been computed, we compute their response
time PFs. For each jobΓi, j , the response time PF can easily
be calculated, since the response timeRi, j is defined by the
following equation

Ri, j = Vi, j +Ci + ∑
Γk,l∈H

Ck (2)

whereH is the set of all the jobs that may preemptΓi, j , i.e.,



the set of jobs released after timeλi, j with a priority higher
than that of jobΓi, j . Thus, the stationary response time PF
fRi, j

(·) of Γi, j can be computed from the stationary job-level
backlog PFfVi, j

(·) and the execution time PFfCi
(·) of Γi, j

and the execution time PFs of the higher-priority jobs that
preemptΓi, j .

The response time PF is computed as follows. LetΓ′k be
thek-th job inH (we assumeH to be ordered by the release
times), andλ ′

k the time that has elapsed between the release
of Γi, j and that ofΓ′k. First, we calculate the response time
PF not considering any possible preemptions by the higher-
priority jobs by convolving the job-level backlog PFfVi, j

(·)
and the execution time PFfCi

(·) of the jobΓi, j . Then, it-
eratively, we calculate the response time PF that reflects all
possible preemptions byΓ′1, Γ′2, ...,Γ′k, ... by convolving the
execution time PFs ofΓ′k’s, in turn (k = 1,2,3, ...), into the
response time PF ofΓi, j . At each step, sayk, the convolu-
tion is applied to the tail part of the response time PF being
calculated, which is defined in the range (λ ′

k, ∞), since the
higher-priority jobΓ′k may affectΓi, j only if Γi, j executes
up to the release time ofΓ′k. In other words, at stepk, the
response time PF ofΓi, j is calculated by (1) splitting the
response time PF obtained at stepk−1 into the tail part de-
fined for the range (λ ′

k, ∞) and the remaining head part, (2)
convolving the tail part and the execution time PFC′k of Γ′k,
and finally (3) merging the head part and the new tail part
resulting from the convolution. Figure 2 shows this process
graphically, for thek-th higher-priority job.

This process can also be more formally expressed
through the following notation: letf I (·) be a partial PF de-
fined as the part of the PFf (·) which takes values in the
intervalI , as follows.

f I (r) =
{

f (r) if r ∈ I
0 otherwise

Also, letR<k>
i, j be a random variable describing the response

time of job Γi, j that reflects all possible preemptions by
the higher-priority jobsΓ′1,Γ′2, . . . , Γ′k that can preemptΓi, j

(λ ′
1 ≤ λ ′

2 ≤ ·· · ≤ λ ′
k). Then the response time PFf

R<k>
i, j

(·)

can be calculated from the response time PFf
R<k−1>

i, j
(·) and

the execution time PFf
C′k

(·) of Γ′k as follows:

f
R<k>

i, j
(r) = f [0,λ ′k]

R<k−1>
i, j

(r)+( f (λ ′k,∞)
R<k−1>

i, j

⊗ f
C′k

)(r)

However, in order to obtain the deadline miss probability
for each jobΓi, j , it is not necessary to calculate the complete
response time PF, becauseP{Ri, j >Di} = 1−P{Ri, j ≤Di},
and the probabilityP{Ri, j ≤Di} can be computed from the
part of the response time PF defined in the range [0,Di ].
If, at stepk, we find thatDi ≤ λ ′

k in the calculation of the
response time PF, the calculation process can be stopped,
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(a) “Splitting” the response time PF obtained in stepk−1

f
R<k>

i, j

r0 1 2 3 4 5 6 7 8 9 10 11 12

1/4 1/4

1/8

1/4

1
24

1
24

1
24

f [0,λ ′k]
R<k−1>

i, j

r0 1 2 3 4 5 6 7

1/4 1/4

1/8

1/4

f (λ ′k,∞)
R<k−1>

i, j
⊗ fCk

r0 1 2 3 4 5 6 7 8 9 10 11

1
24

1
24

1
24

(b) Construction of the response time PF for stepk

Figure 2. Response time PF calculation

and the exact deadline miss probability can be computed.
Moreover, the calculation process can also be stopped when
the response time PF obtained at some stepk reveals that
the job Γi, j has a null probability of being running up to
the release time of the next higher-priority jobΓ′k+1 (i.e.,
f (λ ′k,∞)
R<k>

i, j

(·) is zero).

In the following subsection, we will describe how to
compute the stationaryP-level (or system-level) backlog PF
observed at the beginning of the hyperperiod, and then ex-
plain how to deal with dynamic-priority systems such as
EDF in the job-level backlog PF computation. In the fol-
lowing description, note that, whenever we omit the super-
scriptP in BP

k , a priority levelP is implicit in the notation.

4.2. Markovian modeling and stability

The backlog at the beginning of thek-th hyperperiod is a
random variable, whose distribution, in general, is different
for eachk. So, the sequence of random variables{Bk} is a
random process, which we will call the “backlog process”.
We will show that this process is a Markov chain.

The PF ofBk can be expressed in terms of the PF of



Bk−1 using conditional probabilities:

P{Bk= j}= ∑
i

P{Bk−1= i}P{Bk= j |Bk−1= i} (3)

Moreover, in our case, all hyperperiods receive the same
sequence of jobs, in the same order, so the conditional prob-
abilitiesP{Bk= j | Bk−1= i} do not depend onk. That is to
say,P{Bk= j | Bk−1= i} = P{B1= j | B0= i}. Then, the PF
of Bk depends only on the PF ofBk−1, and not on those
of Bk−2,Bk−3, . . . . This is the “memoryless” property of a
Markov chain.

In this way, we can write Equation (3) in matrix form:

bk = Pbk−1 (4)

wherebk is the PF ofBk in the form of an infinite col-
umn vector

[
P{Bk=0},P{Bk=1}, . . .

]ᵀ
, andP is the infi-

nite Markov matrix, whose elements we will callb j(i), de-
fined as:

P(i, j) = b j(i) = P{B1= i |B0= j}

Under stability conditions, the Markov chain is ergodic,
and in this case the PFs of the random variables{Bk}
converge towards a single stationary distribution ask ap-
proaches infinity.

The stability condition depends on theaverage system
utilizationŪ , which is defined as:

Ū =
N

∑
i=1

C̄i

Ti
(5)

C̄i being the expected value of the execution time for the
taskτi .

WheneverŪ < 1, the system is stable, and the sequence
of random variablesBk’s converges towards a single ran-
dom variable, whose PF is a vector usually denoted byπππ.
This vector can be obtained as the unique solution of the
equationπππ = Pπππ, with the additional restriction of∑πi = 1.

The conditionŪ < 1 assures the stability and conver-
gence of the system, and thus the existence and uniqueness
of πππ. This fact can be proved using Markov theory and
“drifting conditions”, but it is simpler to approximate our
model by a queue with a single server. A well-known result
of queueing theory (see for example [10]) is that the sys-
tem is stable ifρ < 1, ρ being a parameter of the queueing
model, which can be shown to be equivalent to ourŪ .

In order to obtain the steady state PF of the backlog, the
equationπππ = Pπππ needs to be solved. This, in general, is not
an easy task, because the matrixP is infinite. However, due
to the nature of our model, the matrix has a regular structure,
which will allow us to provide a general method to obtain
an analytical expression forπππ. Let us show the regularity
present inP.

Each columnP(·, j) in the matrixP is the PF of the back-
log at the end of the first hyperperiod, if the initial backlog
was j. Then, each columnj in P can be calculated by set-
ting the initial backlog equal toj, and using the algorithm
presented in Section 4.1 to obtain the PF of the backlog at
the end of the first hyperperiod. For each different initial
backlog value, we will expect to obtain a different PF for
the final backlog, and so we will expect each column inP to
be different. However, there exists an initial backlog value,
which we will call r, from which the PF of the final backlog
is always the same, only “shifted” one position to the right.
This means that after columnr, all the columns inP repeat
the same values, only shifted down by one position. The
general form of matrixP is thus:

P=



b0(0) b1(0) b2(0) . . . br (0) 0 0 0
b0(1) b1(1) b2(1) . . . br (1) br (0) 0 0
b0(2) b1(2) b2(2) . . . br (2) br (1) br (0) 0

.

.

.
.
.
.

.

.

. . . .
.
.
. br (2) br (1)

. ..

.

.

.
.
.
.

.

.

. . . .
.
.
.

.

.

. br (2)
. ..

b0(mr ) b1(mr ) b2(mr ) . . . br (mr )
.
.
.

.

.

.
. ..

0 0 0 . . . 0 br (mr )
.
.
.

. ..

0 0 0 . . . 0 0 br (mr )
. ..

0 0 0 . . . 0 0 0
...

r

.

.

.
.
.
.

.

.

. . . .
.
.
.

.

.

.
.
.
.

. ..


In particular,r is the maximum possible value of the idle

time in any hyperperiod. It can be calculated as:

r = T +Wmin−∑
i

Cmin
i (6)

whereWmin is the backlog at the end of the first hyperperiod
in which all the jobs are released, assuming that the initial
backlog is zero and all the jobs require their minimum exe-
cution time.Wmin is usually zero, unless most of the work
is concentrated at the end of the hyperperiod.

Then, ther-th column of the Markov matrixP represents
the PF of the final backlog in the case of the initial backlog
being equal to the maximum possible idle time. In this case,
the whole hyperperiod is busy, and so columnr of P will be
the convolution of the execution time PFs of all the jobs
released in the hyperperiod, shifted(T− r) units to the left.
An analogous reasoning applies when the initial backlog is
(r + 1), (r + 2), and so on, because in all these cases the
whole hyperperiod is a busy period. This is the reason for
the regularity of matrixP from columnr onwards.

Moreover,mr is the index of the last non-zero element of
column r in P, and thus represents the maximum possible
backlog which could appear when the initial backlog isr.
If the initial backlog is less thanr, the final backlog will be
less thanmr , and this is why the firstr columns have zeros
from rowmr onwards.



4.3. Solution approaches

Once the Markov matrixP has been derived, we can
compute the stationaryP-level (or system-level) backlog PF
observed at the beginning of the hyperperiod with either an
analytical or a numerical method. The analytical method
gives the exact solution for the stationaryP-level backlog
PF while the numerical method gives approximated solu-
tions. In the analytical method, we differentiate between
the case whereUmax < 1 from general cases, since in this
special case theP-level backlog PF is equal for all hyper-
periods, so there is no need to perform the Markov process
modeling described in the previous subsection. In this case,
we compute the exact solution without deriving the Markov
matrix. For the general case, on the other hand, we com-
pute the exact solution by deriving a finite set of equations
that can completely describe the infinite stationary back-
log distribution. To reduce the computational overheads
required to compute the exact solution, we also introduce
some approximation methods, which make a trade-off be-
tween analysis accuracy and computational overheads.

4.3.1 Exact solution whenUmax ≤ 1

We will define the maximum system utilizationUmax, as the
total utilization of the system calculated using the worst-
case execution times of the jobs:

Umax =
N

∑
i=1

Cmax
i

Ti
(7)

In the particular case whereUmax < 1, the maximum
amount of work generated in a hyperperiod will not exceed
the hyperperiod length. In this case, the backlog observed at
the end of the hyperperiod cannot increase without bounds.
In fact, it can be proved that the backlog present at the end
of the first hyperperiod in which all the tasks were released
at least once, will be repeated at the end of any subsequent
hyperperiod. In particular, if at timet = 0 all the tasks are
released in-phase, then no backlog will be present at the end
of the first hyperperiod, and thus all subsequent hyperperi-
ods will start with a zero initial backlog.

In these particular cases, the stationary PF of the backlog
observed at the end of the hyperperiods can be obtained by
simple calculation of the backlog PF at the end of the first
hyperperiod in which all the tasks are released at least once.
Moreover, the backlog PF obtained in this case has a finite
number of points.

Note that whenUmax< 1, the system can be analyzed us-
ing classical response time analysis. Using the worst-case
execution times of all the tasks, the worst-case response
time can be calculated, and comparing this response time
with each deadline, the feasibility of the system can be de-
termined. However, if a profile of the execution times is

Task Ti Priority Ci

τ1 4 High {1,2} with equal probability
τ2 6 Low {2,3,4} with prob 0.2, 0.3 and 0.5

Table 1. A system example with Umax > 1

used instead of a single worst-case value, the probability
of deadline misses can be found, and, if this probability is
small enough for its application, the system could still be
feasible. An example of the benefits of a statistical approach
to the problem is presented in [5]

4.3.2 Exact solution for the general case

Taking advantage of the regular structure ofP, we present a
method for finding the complete stationary PF of the back-
log, denoted byπππ. Since this distribution has an infinite
number of points, what we will obtain is the exact value of
some starting points, and then the expression in closed form
for the rest of the points.

The general form ofπππ consists of a set of initial points,
whose values depend on the parameters of the system, fol-
lowed by an infinite tail which approaches zero in a expo-
nential way. Actually, the tail is a sum of exponential func-
tions, whose parameters depend only on convolution of all
the execution times for all the jobs in the system. We call
this solution “analytical” in the sense that a closed form of
the solution is found. However, to obtain this solution, the
method requires the roots of a polynomial to be found, and
some numerical methods will be required nevertheless.

In order to make the method more understandable, we
will introduce an example system and solve it “by hand”,
giving indications about how the example can be general-
ized, instead of presenting a formal development of the gen-
eral solution.

Let us consider the system shown in Table 1. For this
system, the hyperperiod is 12. Taskτ1 is released three
times, andτ2 twice within the hyperperiod.

We will obtain the stationary distribution for the low-
priority-level backlog, i.e., the PF of the backlog present at
the beginning of any hyperperiod in the distant future. To
do so, we need to construct the Markov matrixP. This is
done by computing the PF of the backlog at timeT = 12,
for different initial backlogs 0,1,2, . . . up tor. Each of these
PFs will be a column inP. In this example, the maximum
possible idle time in a period,r, is 5. The resulting Markov



matrix is:

P =



0.8375 0.595 0.3275 0.13125 0.035 0.005 − . . .

0.13125 0.2425 0.2675 0.19625 0.09625 0.03 0.005

.
.
.

0.03125 0.13125 0.2425 0.2675 0.19625 0.09625 0.03

.
.
.

− 0.03125 0.13125 0.2425 0.2675 0.19625 0.09625

.
.
.

− − 0.03125 0.13125 0.2425 0.2675 0.19625

.
.
.

− − − 0.03125 0.13125 0.2425 0.2675

.
.
.

− − − − 0.03125 0.13125 0.2425

.
.
.

− − − − − 0.03125 0.13125

.
.
.

− − − − − − 0.03125

.
.
.

− − − − − − −
.
.
.

mr

r

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.
.
.


As expected, the numbers in columnr are repeated in the
following columns, shifted one position down. The index
of the last non-zero element in ther-th column is what we
calledmr in Section 4.2, and its value is 7 in this example.
Matrix P always presents another regularity: from rowmr +
1 onwards, the values in each row are the same, only shifted
one position to the right. Moreover, these values are the
same as the coefficients of ther-th column. In effect, for
this example this kind of regularity starts from row 2, but in
general it is only guaranteed for row(mr +1).

Equationπππ = Pπππ can be “developed” and gives rise to
an infinite set of equations with infinite unknowns, which
are the componentπi ’s of πππ. This infinite set of equations
can be divided into two subsets: a subset comprising the
first (mr +1) equations, and a second subset made up of the
remaining equations. The last subset defines a recurrence
relation between the components ofπππ.

In our example, the first(mr +1) equations are:

π0 = 0.8375π0 +0.595π1 +0.3275π2 +0.13125π3

+0.035π4 +0.005π5

...

π7 = 0.03125π5 +0.13125π6 +0.2425π7 +0.2675π8

+0.19625π9 +0.09625π10+0.03π11+0.005π12

This makes a system of 8 equations with 13 unknowns. In
general, there will be(mr +1) equations with(mr + r +1)
unknowns. The remaining equations, provided by rows
mr +1 and following, have a general form, due to their reg-
ularity. The general form, forj ≥mr +1 = 8, is

π j = 0.03125π j−2 +0.13125π j−1 +0.24250π j+

+0.26750π j+1 +0.19625π j+2 +0.09625π j+3

+0.03000π j+4 +0.00500π j+5

Finding π j+5 we obtain the following recurrence relation-

ship, which holds forj ≥ 8:

π j+5 =−6.25π j−2−26.25π j−1 +151.5π j −53.5π j+1

−39.25π j+2−19.25π j+3−6π j+4
(8)

The recurrence relation of Equation (8) can be put in ma-
trix form:

Q j+1 = AQ j j ≥ 8

where

Q j = (π j−2,π j−1,π j ,π j+1,π j+2,π j+3,π j+4)ᵀ

A =


0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

−6.25 −26.25 151.5 −53.5 −39.25 −19.25 −6


The elements of the last row of matrixA are the coefficients
of Equation (8). Note that they are easily obtained from =
the r-th column ofP. Using the matrix form, it is easy to
see thatQ9 = AQ8, Q10 = A2Q8, and in general, forn≥ 8,
Qn = An−8Q8.

SinceA is diagonalizable, we can writeA = V−1DV,
whereV−1 is the matrix whose columns arev1,v2, . . . ,v7,
the eigenvectors ofA; D is the diagonal matrix whose ele-
ments areλ1,λ2, . . . ,λ7, the eigenvalues ofA, andV is the
inverse matrix ofV−1. Once diagonalized, the operation
An−8 is easy to compute, leading to the equation:

Qn = V−1Dn−8VQ8

= C1λ
n−8
1 v1 +C2λ

n−8
2 v2 +C3λ

n−8
3 v3 +C4λ

n−8
4 v4

+C5λ
n−8
5 v5 +C6λ

n−8
6 v6 +C7λ

n−8
7 v7

(9)

where

(C1C2C3C4C5C6C7)
ᵀ = V · (π6π7π8π9π10π11π12)ᵀ

The characteristic polynomial ofA is very easy to find,
even without obtainingA, directly from the elements of col-
umnr in P. It can be proved that its general form is:

f (λ ) =
( mr

∑
i=0

br(i)λ mr−i)−λ
mr−r = 0 (10)

Note that the degree of this polynomial ismr , which can be
proved to be equal toT(Umax−Umin)+Wmin.

In our example, the roots of this polynomial are
λ1 = (−3.2976+ 1.825i), λ2 = (−3.2976−1.825i), λ3 =
(−0.3099+ 3.0755i), λ4 = (−0.3099− 3.0755i), λ5 = 1,
λ6 = 0.3476 andλ7 =−0.1325. Some of these have modu-
lus greater than or equal to one. Looking at Equation (9) it
can be seen that, if allCi 6= 0, thenπn → ∞ asn→ ∞, due
to these eigenvalues, and the sum of the components ofπππ

will be infinite. This is not the case, because the Markov



chain is positive and thus the stationary solution has to be
summable. This implies that the coefficientsC1, C2, C3, C4
andC5 which multiply these eigenvalues in Equation (9),
must be equal to zero. This condition gives rise to five new
equations.

In general, in the case of stability, the polynomial in
Equation (10) hasr roots with modulus greater than or equal
to 1, and so it always providesr additional equations. This
fact can be proved by applying Rouche’s Theorem

To summarize, we now have a linear system with 13
equations, 8 from the firstmr rows of P and 5 from
the condition of someCi ’s being zero, and 13 unknowns
(π0, . . . ,π12). Nevertheless, the reader can check that the
equation derived fromC5 = 0 is a linear combination of
the others, and can be removed. In the general case, the
equation derived from the eigenvalue 1, is always a linear
combination of the others. Following the described method,
we will end up with a system of(mr + r) equations and
(mr + r + 1) unknowns. Since the number of unknowns is
one more than the number of equations, we can put each of
the first 12 components as a linear function of the first com-
ponentπ0. We will not write these expressions here for the
sake of brevity. The coefficientCi ’s are also a linear func-
tion of π0. In this example we obtainC6 = −0.00136π0,
C7 = −1.5057·10−6 π0 (the remainingCi ’s are zero, guar-
anteeing the summability ofπππ). If we use these values in
Equation (9) we find the following general expression for
any component ofπππ, valid for n≥ 8

Qn =−0.00136π0v6(0.3474)n−8

−1.5057·10−6
π0v7(−0.1325)n−8

(11)

Note thatv6 andv7 are two eigenvectors, which were cal-
culated directly from matrixA. So, the only unknown in
the above equation isπ0. For any value ofπ0, we obtain a
complete vectorπππ, which has the propertyπππ = Pπππ. How-
ever, only one of these possible vectors is a PF (has a sum
equal to 1). So, as a final condition, we impose∑∞

i=0 πi = 1,
and from this we can determine the required value forπ0.
This equation is easy to solve, despite the infinite summa-
tion, because the expression forπi is a convergent sum of
exponentials, fori > 6.

Solving this sum and equating it to 1, we find the value
of π0 for this example, which isπ0 = 0.738872. From this,
all the remaining values ofπππ can be computed. The first
13 components are obtained directly from the system of
equations, and their values are shown in the last column
of Table 2, rounded to the sixth decimal. The remaining
components are calculated from the formula given in Equa-
tion (11), which, after substituting the values ofπ0, v6 and
v7, and taking one of the components of vectorQn, leads to:

πn = 10−4(9.4311×0.3474n−6 +0.011× (−0.1325)n−6)
valid for n > 6.

B0 B1 B2 B3 B5 B10 B20 B∞
0 1 0.837500 0.789734 0.768523 0.750897 0.740816 0.738968 0.738872
1 − 0.131250 0.150109 0.155394 0.158160 0.158899 0.158919 0.158917
2 − 0.031250 0.050976 0.059129 0.065050 0.067794 0.068186 0.068203
3 − − 0.008203 0.013632 0.018639 0.021485 0.021964 0.021987
4 − − 0.000977 0.002906 0.005524 0.007464 0.007850 0.007869
5 − − − 0.000385 0.001372 0.002430 0.002690 0.002705
6 − − − 0.000030 0.000299 0.000779 0.000934 0.000944
7 − − − − 0.000053 0.000238 0.000321 0.000328
8 − − − − 0.000007 0.000069 0.000110 0.000114
9 − − − − 0.000000 0.000019 0.000037 0.000040
10 − − − − 0.000000 0.000005 0.000013 0.000014
11 − − − − − 0.000000 0.000004 0.000005
12 − − − − − 0.000000 0.000001 0.000001
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Table 2. Backlog PF convergence

4.3.3 Approximations

Truncation of matrix P One possible approximation
technique to compute the stationary system-level backlog
PF is to truncate the Markov matrixP to a sufficiently large
square matrixP′, which was first introduced in [1]. Assum-
ing that the infinite stationary distributionπππ can be modeled
with a finite vectorπππ ′ = [π ′0,π

′
1,π

′
2, ...,π

′
n], we can lead to

the following equation fromπππ = Pπππ:

πππ
′ = P′πππ ′

whereP′ is an (n+1)-by-(n+1) matrix consisting of the com-
ponentP(i, j)’s (0≤ i, j ≤ n) of the Markov matrixP. The
resulting equation is an eigenvector problem, from which
we can calculate the approximated solutionπππ ′ with a nu-
merical method. Among the calculated eigenvectors, we
can choose as the approximated solution an eigenvector
whose corresponding eigenvalue is equal to or sufficiently
close to 1. In order to obtain a good approximation of the
stationary distributionπππ, the truncation pointn should be
increased as much as possible, which makes the eigenvalue
converge to 1. Note that, by choosing an appropriate trun-
cation point, we can achieve a trade-off between analysis
accuracy and the computational overheads required to solve
the corresponding eigenvector problem. The choice of a
convenient truncation point is an open issue.

Iterative approximation Another approximation tech-
nique to obtain the stationary system-level backlog PF,
which does not require derivation of the Markov matrixP,
is the simple iteration of the algorithm which computes the
PF of the backlog at the end of the hyperperiod. For the ex-
ample presented in Section 4.3.2, the results of successive
iterations are shown in Table 2. It can be seen that each
point of the PF converges towards the analytical solution
(given in the last column). It can be proved that the conver-
gence is geometrically ergodic. However, it is not known in
advance how many iterations will be necessary to make the
backlog PF “close enough” to the stationary distribution. It
is clear that the rate of convergence depends on how closeŪ
is to 1, becoming slower as̄U approaches 1. However, we



have not yet found a bound, in terms ofŪ , of the number of
iterations required by the iterative method.

Another important point to consider is the effect of in-
troducing zero as the initial backlog for the system. In the
steady state the initial backlog is a random variable which
can take non-zero values. Thus, the response times in the
steady state will beworsethan those calculated for the first
hyperperiod. Indeed, they will be worse than that calcu-
lated for any hyperperiod. Using zero as the initial backlog
will lead to optimistic probabilities of deadline misses, so
design decisions based on the iterative method should be
taken carefully.

4.4. Extension to dynamic-priority systems

Although dynamic-priority systems seem considerably
different from fixed-priority systems, there exists one simi-
larity. The similarity is that, in a hyperperiod, there always
exists at least one job that always takes the system-level
backlogWλi, j observed at its release timeλi, j as its job-
level backlogVi, j , i.e., Vi, j = Wλi, j . Such a job is called
a ground job, and has a lower priority than all the jobs re-
leased before its release timeλi, j . Thus, once the stationary
system-level backlog PFf

B0
k
(·) observed at the beginning

of the hyperperiod is given, the stationary job-level backlog
PF fVi, j

(·) of every ground jobΓi, j can be calculated as ex-
plained in Section 4.1, by iteratively applying convolution
and shrinking tof

B0
k
(·) for each job released between the

beginning of the hyperperiod and the release timeλi, j of the
job Γi, j (for a fixed-priority system, this statement means
that the stationary job-level backlog PF of every job with
priority P, which is considered a ground job at the priority
levelP, can be calculated fromf

BP
k
(·)).

Therefore, the difference between dynamic-priority and
fixed-priority systems lies in how to compute the job-level
backlog PFs ofnon-ground jobs. For fixed-priority sys-
tems, this problem is solved by considering the higher pri-
ority level that each non-ground job belongs to. Since any
job classified as a non-ground job at a lower priority level
is bound to become a ground job at the priority level that
is equal to the priority of the job, its job-level backlog PF
can be calculated from the stationary system-level backlog
PF obtained at that priority level. However, for dynamic-
priority systems, we can avoid such an iterative analysis,
and compute the job-level backlog PF of the non-ground
job from that of a preceding ground job. The preceding
ground job is the last ground job that is released before the
non-ground job and has a higher priority, which is called the
base ground jobfor the non-ground job. Since the job-level
backlog PF of any ground job can be calculated from the
system-level backlog PFf

B0
k
(·) observed at the beginning

of the hyperperiod, this means that the job-level backlog
PFs of all the jobs including the non-ground jobs in the hy-
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Figure 3. A task set example
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Figure 4. Ground jobs and non-ground jobs
in a dynamic-priority system

perperiod can be calculated from the system-level backlog
PF f

B0
k
(·). For example, consider the task set shown in Fig-

ure 3. This task set consists of two tasksτ1 andτ2. The
periods ofτ1 andτ2 are 30 and 50, respectively, and the rel-
ative deadlineDi of each task is equal toTi . The phaseΦi ’s
of both tasks are 0.

In this example, there are seven ground jobsΓ1,1, Γ2,1,
Γ1,2, Γ2,2, Γ1,4, Γ2,3, andΓ1,5, and one non-ground jobΓ1,3,
as shown in Figure 4. If the stationary system-level backlog
PF f

B0
k
(·) observed at the beginning of the hyper-period is

given, the stationary job-level backlog PFs of all the ground
jobs can be calculated by applying convolution and shrink-
ing to f

B0
k
(·). That is, fV1,1

(w) = fWλ1,1
(w) = f

B0
k
(w),

fV2,1
(w) = fWλ2,1

(w) = ( fC1,1
⊗ fV1,1

)(w), and so on.

However, for the non-ground jobΓ1,3, the stationary
job-level backlog PFfV1,3

(·) is not equal to the station-
ary system-level backlog PFfWλ1,3

(·) observed at its re-
lease timeλ1,3. The stationary system-level backlog PF
fWλ1,3

(·) includes the contribution from a lower-priority job
Γ2,2 that must be excluded for the job-level backlog PF
fV1,3

(·). In this case, we observe that the job-level back-
log PF fV1,3

(·) of the non-ground jobΓ1,3 can be calcu-
lated from the system-level (or job-level) backlog PF of the
ground jobΓ1,2 that precedesΓ1,3 and has a higher priority
thanΓ1,3 (i.e.,Γ1,2 is the base ground job of the non-ground
job Γ1,3). It can be seen that the job-level backlogV1,3

of Γ1,3 depends only on the system-level backlogWλ1,2 of
Γ1,2 and the execution time ofΓ1,2. Thus, we calculate the
stationary job-level backlog PFfV1,3

(·) of the non-ground
job Γ1,3 from that of its base ground jobΓ1,2 by apply-
ing convolution and shrinking to the system-level backlog



PF fWλ1,2
(·) of the base ground jobΓ1,2 while ignoring the

lower-priority ground jobΓ2,2. This approach can be gener-
alized to compute the stationary job-level backlog PF of an
arbitrary non-ground jobΓi, j as follows.

Theorem 1. For any non-ground jobΓi, j , the stationary
job-level backlog PF fVi, j

(·) can be computed from the sta-
tionary system-level backlog PF fWλk,l

(·) of its base ground
job, (i.e., the last ground jobΓk,l that precedesΓi, j and has
a priority higher than that ofΓi, j ) by iteratively applying
convolution and shrinking to fWλk,l

(·) only for all the non-
ground jobs that are released in the time interval (λk,l , λi, j ]
and have priorities higher than that ofΓi, j . �

Note that, in a system scheduled by EDF, we can find
the base ground job for any non-ground job, since there al-
ways exists a ground job that has an earlier deadline than
the non-ground job. For a general dynamic-priority sys-
tem, we developed a systematic approach to finding the base
ground job for any non-ground job and computed the job-
level backlog PF of the non-ground job in a systematic way,
but we do not include it here for the sake of brevity. For
more information, refer to [8].

5. Experimental results

In this section, we give experimental results obtained by
the proposed stochastic analysis. First, we compare the re-
sults obtained from the proposed analysis method (both the
exact solution and the approximated solution based on the
Markov matrix truncation) with those obtained by Stochas-
tic Time Demand Analysis (STDA) [7, 6] using the exam-
ple given in [6]. Secondly, we compare the results obtained
using the truncation method with those obtained from simu-
lations while varying the average system utilization and the
number of tasks.

5.1. Comparison with STDA

To compare the proposed analysis method with STDA,
we used the same task sets given in [6], which are shown
in Table 3. All three task sets in Table 3 are assumed to
be scheduled by RM and have the same task parameters ex-
cept for the execution time PFs of tasks given by a uniform
PF that ranges fromCmin

i to Cmax
i (Cmax

i = 2× C̄i −Cmin
i )

for taskτi . For the task sets, the simulation results and the
analytical results given by STDA are copied from [6] and
compared with the results given by the proposed stochas-
tic analysis, using the exact solution and the approximation
obtained by the Markov matrix truncation. The results in
Table 4 show that there is a significant difference between
the deadline miss probability given by STDA and the one
obtained by the proposed method, which is almost identical
to the simulation result. This results from the critical instant

assumption made in STDA. The negative impact on the
degradation of analysis accuracy increases with an increase
in the (maximum) system utilization. In the case of taskτ2
in S2, the deadline miss probability given by STDA is more
than six times the one given by the proposed method.

S τi Ti Di Cmin
i C̄i Cmax

i Ū Umax

S1
τ1 300 300 72 100 128

0.708 0.997
τ2 400 400 72 150 228

S2
τ1 300 300 50 100 150

0.708 1.125
τ2 400 400 50 150 250

S3
τ1 300 300 1 100 199

0.708 1.411
τ2 400 400 1 150 299

Table 3. Task sets in [6]

S τi simulation STDA Exact analysis Approximation

S1
τ1 0.000± 0.000 0.000 0.000 0.000
τ2 0.047± 0.001 0.141 0.047 0.047

S2
τ1 0.000± 0.000 0.000 0.000 0.000
τ2 0.074± 0.002 0.489 0.074 0.074

S3
τ1 0.000± 0.000 0.000 0.000 0.000
τ2 0.192± 0.001 0.608 0.192 0.191

Table 4. Results for the task sets in Table 3

5.2. Sensitivity to the average system utilization and
the number of tasks

To assess the sensitivity of analysis accuracy to the aver-
age system utilization, we performed experiments with task
sets consisting of three and five tasks while varying the av-
erage system utilization from 0.70 to 0.96. For each exper-
iment, we also considered both RM and EDF scheduling to
investigate the effect of the scheduling policy on analysis
accuracy. The results (which we do not detail here due to
space limit), showed that the approximated solutions from
the Markov matrix truncation is almost equal to the simula-
tion results for most cases. In the case of the task sets con-
sisting of three tasks, the error between the approximated
solution and the simulation result of the deadline miss prob-
ability for a task ranges from 0 to 0.006 for RM, and from
0 to 0.008 for EDF. In the case of the task sets consisting
of five tasks, the error ranges from 0 to 0.015 for RM, and
from 0 to 0.028 for EDF. According to the results, the error
increases as the average system utilization increases. For
example, in the case where the task set consisting of five
tasks are scheduled by EDF, the error was 0, 0.002, 0.016,
0.028 when the average system utilization was 0.7, 0.8, 0.9,
0.96, respectively. The inaccuracy is due to the Markov ma-
trix truncation, which converts the Markov matrix with an
infinite dimension to one with a finite dimension. When the
stationary system-level backlog PF we are trying to obtain
has a non-negligible tail distribution beyond the truncation
point, the Markov matrix truncation inevitably introduces
approximation errors in the analysis. To reduce these er-
rors, it is necessary to preserve the tail distribution as much



as possible by choosing a larger truncation point at the cost
of greater computational overheads. For more information,
the reader is referred to [8].

6. Conclusions and future work

In this paper we have introduced a model and a concep-
tual framework which allows statistical analysis of the re-
sponse time of periodic tasks in a general priority-driven
real-time system. The model requiresa priori knowledge
of the probability function (PF) of the execution time re-
quired by each job. We have derived formulae for calcu-
lating the backlog PF at any time, and the response time
PF of any task. The statistical information derived from the
analysis can be combined with deadlines, thus obtaining the
probability of deadline misses for any task in the system. If
this probability is zero for a task, then its deadline is guar-
anteed. In this sense the statistical analysis subsumes the
classical response-time analysis. The analysis also allows
for systems withUmax> 1, which would not be feasible us-
ing classical analysis. Whenever̄U < 1, the long-term sta-
tistical behavior can be described by modeling the backlog
process as a Markov chain.

The model still has some limitations which can be
investigated. It does not allow for uncertainty in the release
times of the jobs, and assumes all tasks to be independent,
so it does not allow for blocking in shared resources.
Furthermore, the assumed independence is also statistical,
i.e. the execution time distribution of a task is assumed to
be independent of the values observed for the other tasks, or
for previous instances of the same task. This assumption is
often violated in real-world cases. When the number of jobs
in a hyperperiod is large, finding the stationary distribution
analytically is too expensive (although possible), so some
numerical methods have been provided as approximations.
In future work, the error introduced for such methods
should be studied, and the development of a numerical
method that can bound the error is needed.
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[5] J. L. D́ıaz, J. M. Ĺopez, and D. F. Garcı́a. Prob-
abilistic Analysis of the Response Time in a Real-
Time System. InProc. of the 1st CARTS Workshop
on Advanced Real-Time Technologies, Aranjuez, Spain,
Oct. 2002. Also available as Technical Report at
http://www.atc.uniovi.es/research/PART01.pdf.

[6] M. K. Gardner. Probabilistic Analysis and Scheduling of
Critical Soft Real-Time Systems. PhD thesis, University of
Illinois, Urbana-Champaign, 1999.

[7] M. K. Gardner and J. W. Liu. Analyzing Stochastic Fixed-
Priority Real-Time Systems. InProc. of the 5th Interna-
tional Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, Mar. 1999.

[8] K. Kim, L. L. Bello, C.-G. Lee, S. L. Min, and O. Mirabella.
An Accurate Stochastic Analysis of General Priority-Driven
Real-Time Systems. Technical report, School of Computer
Science and Engineering, Seoul National University, 2002.
Also available at http://archi.snu.ac.kr/khkim/sapds02.ps.

[9] K. Kim, L. L. Bello, S. L. Min, and O. Mirabella. On Re-
laxing Task Isolation in Overrun Handling to Provide Prob-
abilistic Guarantees to Soft Real-Time Tasks with Varying
Execution Times. InProc. of the 14th Euromicro Confer-
ence on Real-Time Systems, Jun. 2002.

[10] L. Kleinrock. Queueing Systems. John Wiley & Sons, 1975.
[11] J. P. Lehoczky. Fixed Priority Scheduling of Periodic Task

Sets with Arbitrary Deadlines. InProc. of the 11th IEEE
Real-Time Systems Symposium, pages 201–209, Dec. 1990.

[12] J. P. Lehoczky. Real-Time Queueing Theory. InProc. of the
17th IEEE Real-Time Systems Symposium, pages 186–195,
Dec. 1996.

[13] J. P. Lehoczky. Real-Time Queueing Network Theory.
In Proc. of the 18th IEEE Real-Time Systems Symposium,
pages 58–67, Dec. 1997.

[14] J. P. Lehoczky, L. Sha, and Y. Ding. The Rate-Monotonic
Scheduling Algorithm: Exact Characterization and Average
Case Behavior. InProc. of the 10th IEEE Real-Time Systems
Symposium, Dec. 1989.

[15] J. Leung and J. Whitehead. On the Complexity of Fixed Pri-
ority Scheduling of Periodic Real-Time Tasks.Performance
Evaluation, 2(4):237–250, 1982.

[16] L. Liu and J. Layland. Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environment.Journal of
ACM, 20(1):46–61, 1973.

[17] A. K. Mok and D. Chen. A Multiframe Model for Real-
Time Tasks. IEEE Transactions on Software Engineering,
23(10):635–645, Oct. 1997.

[18] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C.
Wu, and J.-S. Liu. Probabilistic Performance Guarantee for
Real-Time Tasks with Varying Computation Times. InProc.
of the Real-Time Technology and Applications Symposium,
pages 164–173, Chicago, Illinois, May 1995.

[19] K. Tindell, A. Burns, and A. J. Wellings. An Extendible Ap-
proach for Analyzing Fixed Priority Hard Real-Time Tasks.
Real-Time Systems, 6:133–151, 1994.


