Stochastic and Chaotic Oscillations

by

Yu. I. Neimark

Faculty of Computational Mathematics, Gorky University, Gorky, Russia

and

P. S. Landa

Faculty of Physics, Moscow University, Moscow, Russia

KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON

CONTENTS

SERIES EDITOR'S PREFACE	v
PREFACE	xi

CHAPTER 1

MATHEMATICAL MODELS OF DETERMINISTIC DISCRETE	AND
CONTINUOUS DYNAMICAL SYSTEMS	1
1. Simplest typical models of discrete dynamical systems	2
2. Chaotic motions of deterministic dynamical systems	19
3. Simplest mathematical models of continuous dynamical systems	25
4. Discrete version of continuous dynamical systems	31
5. Models for locally active continuous media	37

CHAPTER 2

ORDER AND CHAOS AS TWO GENERAL BASIC TRENDS IN	THE
EVOLUTION OF DYNAMICAL SYSTEMS	40
1. Order and chaos: stability and instability	41
2. Time synchronization phenomena	49
3. Spatial and temporal order and chaos	52

CHAPTER 3

STOCHASTICITY TRANSFORMERS, AMPLIFIERS AND GENERATORS

1. Stochasticity transformers	57
2. Stochasticity amplifiers	62
3. Stochasticity generators	70
4. Is the stochasticity of stochastic and chaotic motions of determinist	tic
dynamical systems real?	78

57

CHAPTER 4

BRIEF SURVEY OF STUDIES RELATED TO THE APPEARANCE OF THE PROBLEM OF CHAOTIC AND STOCHASTIC MOTIONS AND TO TURBULENCE THEORY 81

CHAPTER 5

LOC	AL PHASE	PORTRAITS	OF	THE	SIMPLEST	STEADY-STATE	£
мот	IONS AND 7	THEIR BIFURC	ATIO	ONS		9'	7
1. Eq	uilibrium state	s				9	7
2. Bi	furcations of eq	juilibrium states				10	03
3. Ph	ase portraits in	the vicinity of per	iodic	motions	5	1	15
4. Bi	furcations of pe	eriodic motions				1	16
5. To	roidal integral	manifolds				1	27

CHAPTER 6

STOCHASTIC AND CHAOTIC ATTRACTORS	132
1. Auxiliary mappings and sequences of point mappings	134
2. Transition from the "negative" to the "positive" and investigation of typical	
appearance of chaos	145
3. Conditions for the appearance of chaotic and stochastic attractors	173
CHAPTER 7	
BIFURCATIONS AND ROUTES TO CHAOS AND STOCHASTICITY	177
1. General description of the tree of possible bifurcations	179
2. Series of bifurcations	183
3. Bifurcations and the stochastic attractor in a Lorenz system	201
4. Bifurcations and the phase portrait of parametrically excited oscillator or	
rotator	215
5. On the appearance of chaos and stochasticity in dissipative dynamical	
systems	231

CHAPTER 8

QUANTITATIVE CHARACTERISTICS OF STOCHASTIC AND CHAOTIC MOTIONS. SOME UNIVERSAL PROPERTIES IN ORDER-CHAOS AND INVERSE TRANSITIONS 241

1. Statistical characteristics	241
2. Lyapunov exponents. Dimension and entropy of a stochastic attractor	252
3. Synchronization threshold as a quantitative characteristic of chaotic mot	ions 264
4. Certain universal laws in order-chaos transitions, and analogy with phase	se
transitions	266

CHAPTER 9

EXAMPLES OF MECHANICAL, PHYSICAL, CHEMICAL, ANDBIOLOGICAL SYSTEMS WITH CHAOTIC AND STOCHASTICMOTIONS293

1. Non-linear impact negative-friction oscillator and other systems with	
discontinuous characteristics	293
2. Tunel-diode generators	295
3. Non-linear oscillators with periodis external force	298
4. Lorenz equations and other systems of order three	322
5. Action of a harmonic external force on periodic and chaotic oscillation	
generators	351
6. Interaction of oscillation generators of various kinds	368
7. Certain discrete models of turbulence	373
8. Examples of models for chemical kinetics	383
9. Systems with delay and other continuous systems	401
10. Stochasticity in quantum systems	430
BIBLIOGRAPHY	443

INDEX

499