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Stochastic and deterministic assembly processes in
subsurface microbial communities

James C Stegen, Xueju Lin1, Allan E Konopka and James K Fredrickson
Fundamental and Computational Sciences Directorate, Biological Sciences Division, Pacific Northwest
National Laboratory, Richland, WA, USA

A major goal of microbial community ecology is to understand the forces that structure community
composition. Deterministic selection by specific environmental factors is sometimes important, but
in other cases stochastic or ecologically neutral processes dominate. Lacking is a unified
conceptual framework aiming to understand why deterministic processes dominate in some
contexts but not others. Here we work toward such a framework. By testing predictions derived from
general ecological theory we aim to uncover factors that govern the relative influences of
deterministic and stochastic processes. We couple spatiotemporal data on subsurface microbial
communities and environmental parameters with metrics and null models of within and between
community phylogenetic composition. Testing for phylogenetic signal in organismal niches showed
that more closely related taxa have more similar habitat associations. Community phylogenetic
analyses further showed that ecologically similar taxa coexist to a greater degree than expected by
chance. Environmental filtering thus deterministically governs subsurface microbial community
composition. More importantly, the influence of deterministic environmental filtering relative to
stochastic factors was maximized at both ends of an environmental variation gradient. A stronger
role of stochastic factors was, however, supported through analyses of phylogenetic temporal
turnover. Although phylogenetic turnover was on average faster than expected, most pairwise
comparisons were not themselves significantly non-random. The relative influence of deterministic
environmental filtering over community dynamics was elevated, however, in the most temporally
and spatially variable environments. Our results point to general rules governing the relative
influences of stochastic and deterministic processes across micro- and macro-organisms.
The ISME Journal (2012) 6, 1653–1664; doi:10.1038/ismej.2012.22; published online 29 March 2012
Subject Category: microbial population and community ecology
Keywords: community assembly; distance decay; evolutionary niche conservatism; neutral theory;
niche theory; phylogenetic beta diversity

Introduction

A long-standing challenge is to understand pro-
cesses governing the composition of ecological
communities (Clements, 1916; Gleason, 1927;
Diamond, 1975; Weiher and Keddy, 1995; Chesson,
2000; Hubbell, 2001). It is broadly recognized that
community assembly is simultaneously influenced
by factors that are relatively deterministic and
factors that are more stochastic (for example,
Dumbrell et al., 2010; Ofiteru et al., 2010;
Langenheder and Szekely, 2011). The deterministic
class includes selection imposed by the abiotic
environment (‘environmental filtering’) and both
antagonistic and synergistic species interactions.

In contrast, the stochastic class includes unpredict-
able disturbance, probabilistic dispersal and random
birth-death events (see Chase and Myers, 2011).
The most immediate goals are to uncover how and
why the relative influences of stochastic and
deterministic factors vary through space and time
(Chase, 2007, 2010; Chase et al., 2009; Myers and
Harms, 2009, 2010; Chase and Myers, 2011).

Although there is a rich literature examining
microbial community composition across disparate
habitats, few studies examine how the relative
influences of stochastic and deterministic processes
change with environmental conditions (but see
Horner-Devine and Bohannan, 2006; Bryant et al.,
2008; Kembel et al., 2011). Approaches commonly
applied to microbial communities generally lead to
inferences regarding whether or not community
composition is significantly related to specific
environmental factors (for example, Fuhrman
et al., 2006; Sun et al., 2006; Bork et al., 2009;
Zinger et al., 2011; Gilbert et al., 2012). These
inferences are clearly important, but we suggest that
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applying the concepts and statistical tools that are
more commonly used in macroorganism ecology
provides a complementary approach that can sig-
nificantly extend the understanding of microbial
communities. We specifically couple phylogenetic
community composition with randomization proce-
dures, referred to as ‘null models’ (Webb, 2000;
Webb et al., 2002; Graham and Fine, 2008), and
examine deviations from null model expectations
across temporal and spatial environmental gradi-
ents. Doing so characterizes how the relative
influences of stochastic and deterministic processes
change with environmental conditions (Chase and
Myers, 2011; Chase et al., 2011).

Using phylogenetic information to infer ecological
processes requires that phylogenetic distance
between taxa approximate their ecological niche
difference (for example, the difference in habitat
requirements). When phylogenetic distance does
approximate niche difference, niches are said to
have ‘phylogenetic signal’ and to be ‘phylogeneti-
cally structured’ (Losos, 2008). Previous work
suggests that closely related bacteria have similar
habitat associations (Andersson et al., 2010) and
that bacteria may be ecologically coherent even at
the phylum level (Fierer et al., 2007, Philippot
et al., 2010). On the other hand, horizontal gene
transfer can move ecological attributes among
bacteria (Doolittle, 1999a,b; Welch et al., 2002).
Wiedenbeck and Cohan (2011) draw from Haldane’s
(1932) classical work to demonstrate that horizontal
gene transfer does not, however, ‘scramble’ ecolo-
gical niches among taxa (see also Cohan and
Koeppel, 2008; Philippot et al., 2010). Horizontal
gene transfer should instead improve the perfor-
mance of recipients (Cohan and Koeppel, 2008;
Wiedenbeck and Cohan, 2011). Rates of adaptive
evolution may therefore increase because advanta-
geous functions can be acquired from other taxa,
instead of relying on mutation (Cohan and Koeppel,
2008). Rapid adaptive evolution suggests that bacterial
niches should have phylogenetic signal only among
close relatives. There should be no phylogenetic signal
across deep evolutionary time because adaptive
evolution fueled by horizontal gene transfer should
not consistently direct all members of a given clade
toward a specific niche. We test this expectation before
examining phylogenetic community composition.

If across recent evolutionary time more closely
related taxa are more ecologically similar, ecological
theory links specific patterns of phylogenetic com-
munity composition to specific types of processes
(Kraft et al., 2007; Fine and Kembel, 2011; Pei et al.,
2011). First, if community structure and dynamics
are primarily stochastic, community phylogenetic
composition and dynamics should not differ sig-
nificantly from expectations based on random
community assembly. Second, if environmental
filtering is the most influential process, coexisting
taxa should be more closely related than expected
by chance at a given point in time. Third, if

environmental change deterministically shifts com-
munity composition, phylogenetic turnover
between assemblages should be greater than
expected after controlling for observed turnover in
operational taxonomic units (OTUs) composition
(referred to as ‘taxonomic turnover’). Fourth, if
competition is strong whereby coexisting taxa must
be ecologically differentiated from each other,
coexisting taxa should be more distantly related
than expected by chance for a given point in time.
This mechanism of competition is not, however,
related to patterns of phylogenetic turnover.

We apply these pattern-to-process linkages to
better understand factors governing (i) the composi-
tion of subsurface microbial communities; and
(ii) changes in the relative influences of stochastic and
deterministic processes. Our study further evaluates
the utility of including phylogenetic information
and associated randomization procedures into
analyses of microbial systems. This is achieved
through comparison with a companion study (Lin
et al., 2012), which examines the same data set
from a conceptual and statistical perspective more
commonly applied to microbial systems.

Materials and methods

Data collection
A detailed description of sampling methods is
provided in Lin et al. (2012). Briefly, nine wells
spread across three clusters of three wells each
were sampled within the Hanford Integrated Field
Research Challenge site (http://ifchanford.pnnl.
gov/); North of Richland, WA (Bjornstad et al.,
2009). Clusters were B30m apart, forming vertices
of an equilateral triangle, and the three wells within
each cluster were within 0.6m of each other.
Clusters A, B and C were B270m, 250m and
280m, respectively, from the Columbia River. All
wells were B15 cm in diameter and each well
within each cluster was screened at one depth: 10,
13 or 17m below ground surface. An extensive
characterization of all environmental variables
potentially relevant to bacterial physiology is not
yet available for our system. However, it is known
that sediment texture varies vertically (Bjornstad
et al., 2009) and that the magnitude of river water
intrusion varies with depth and with horizontal
distance from the Columbia River (McKinley et al.,
in review). From December 2009 to September 2010,
354 samples were taken across 41 points in time.
Sampling interval varied from biweekly to every two
weeks. Water table elevation was also monitored
(McKinley et al., in review; Vermeul et al., 2011).
Sampled groundwater (4 l) was passed through a
0.2-mm polyethersulfone filter (Supor200, Pall Cor-
poration, Port Washington, NY, USA). DNA was
extracted from half of each filter using a PowerSoil-
htp 96-well DNA isolation kit (MoBio Laboratories,
Carlsbad, CA, USA). PCR was conducted following
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Costello et al. (2009) and Fierer et al. (2008), and
pyrosequencing was carried out on a Roche FLX 454
(Roche Diagnostics, Indianapolis, IN, USA). Sequences
were analyzed in QIIME (Caporaso et al., 2010),
using PyNast (http://pynast.sourceforge.net) and the
Greengenes core set (http://greengenes.lbl.gov) for
alignment and FastTree (http://www.microbesonline.
org/fasttree/) to estimate a phylogeny containing all
OTUs observed across all samples. OTUs were defined
using a 97% sequence similarity cutoff. Each sample
was rarefied to 500 sequences and, subsequently, the
1000 most abundant OTUs were retained for analyses.

Phylogenetic signal
To ask whether closely related OTUs have similar
habitat associations (that is, to test for phylogenetic
signal in habitat associations), the abundance-
weighted mean subsurface depth and water table
elevation were first found for each OTU. For
example for depth, we took all records of a given
OTU, recorded the depth of each record and the
OTU’s abundance in each record, and then found
the abundance-weighted mean of depth. This is the
OTU’s ‘niche value’ for depth. The analogous
procedure was used to estimate OTU niche values
for water elevation. The niche values estimate the
depth and the water elevation where each OTU is
most abundant, thereby characterizing two axes of
each OTU’s niche in terms of the habitats where it
occurs (for similar approaches in plant and micro-
bial ecology, see Andersson et al., 2010; Pei et al.,
2011; Hardy et al., 2012). For each niche axis,
between-OTU niche differences were related to
between-OTU phylogenetic distances. To summar-
ize major trends in this relationship, between-OTU
niche differences were placed in phylogenetic
distance bins and median niche difference was
found in each bin. Median niche differences were
then regressed against phylogenetic distance bin
mid-points (similar to Andersson et al., 2010).
Maximum phylogenetic distance was 3.64 (arbitrary
units) and a bin interval of 0.01 units was used,
proving good resolution of the niche difference-to-
phylogenetic distance relationship. This allowed
identification of the phylogenetic distance threshold
beyond which niche differences no longer increased
with phylogenetic distance (Figure 3). Using all data
(not medians) we then conducted Mantel tests with
999 randomizations above and below the phyloge-
netic distance threshold (see also Diniz-Filho et al.,
2010). We further compared the niche difference-to-
phylogenetic distance linear regression slopes above
and below the phylogenetic distance threshold to
the expectations under Brownian niche evolution.
For both niche axes 999 replicates of Brownian
niche evolution were run across the empirical
phylogeny using ‘sim.char’ in package ‘geiger’.
Variance of the evolving niche values was set equal
to the empirically observed variance in niche values
for each niche axis. In Brownian evolution, moving

from the root to the tips of the phylogeny, niche
values evolve via Brownian motion: niche values take
a random walk across the niche axis, where descen-
dants have niche values similar to their ancestor.

Phylogenetic community composition
To characterize phylogenetic community composi-
tion within each sample (unique point in space and
time), we quantified mean-nearest-taxon-distance
(MNTD) and the nearest-taxon-index (NTI) (Webb
et al., 2002) using ‘mntd’ and ‘ses.mntd’ in package
‘picante’. Note that NTI is the negative of the output
of ‘ses.mntd.’ MNTD finds the phylogenetic distance
between each OTU within a sample and its closest
relative also found in the sample. The abundance
weighted mean is then taken across these phylo-
genetic distances.

MNTD¼
Xnk

ik ¼1

fikminðDik jk Þ

where fik is the relative abundance of OTU i in
community k, nk is the number of OTUs in k, and
minðDik jk Þ is the minimum phylogenetic distance
between OTU i and all other OTUs j that are also
in k.

To evaluate the degree of non-random phyloge-
netic community structure, OTUs and their relative
abundances were randomized across the tips of
phylogeny (null.model¼ ‘taxa.labels’ in ‘ses.mntd’).
Good Type I and Type II error rates have been found
when using this randomization under conditions
similar to our natural system (see Figure 3 in
Kembel, 2009). NTI quantifies the number of
standard deviations that the observed MNTD is from
the mean of the null distribution (999 randomiza-
tions) (Figure 1). For a single community, NTI
greater than þ 2 indicates coexisting taxa are more
closely related than expected by chance (phyloge-
netic clustering). NTI less than � 2 indicates
coexisting taxa are more distantly related than
expected by chance (phylogenetic overdispersion).
A mean NTI taken across all communities that is
significantly different from zero indicates clustering
(NTI40) or overdispersion (NTIo0) on average
(Figure 1; Kembel, 2009).

Turnover in phylogenetic composition through
time (phylogenetic b-diversity) was quantified using
Beta Mean Nearest Taxon Distance (bMNTD) and
Beta Nearest Taxon Index (bNTI), which are the
between-assemblage analogs of MNTD and NTI,
respectively (Figure 2; Fine and Kembel, 2011;
Webb et al., 2011). Instead of examining bMNTD
and bNTI across all possible pairwise comparisons,
we quantified these metrics for pairwise compar-
isons through time within each well. This was done
to specifically relate temporal dynamics of commu-
nity composition to the temporal dynamics of river
elevation. bMNTD is the abundance-weighted-mean
phylogenetic distance among closest relatives
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occurring in two different communities (Figure 2).

bMNTD¼ 0:5
Xnk

ik ¼1

fik min Dik jm

� �
þ

Xnm

im ¼ 1

fim min Dimjk

� �" #

where minðDik jmÞ is the minimum phylogenetic
distance between OTU i in community k and all
OTUs j in community m (see above for other
variables). A null distribution of bMNTD is found
by randomizing OTUs across the phylogeny and
recalculating bMNTD 999 times. bNTI is the number
of standard deviations that the observed bMNTD is
from the mean of the null distribution. bNTIo� 2
or4þ 2 indicates less than or greater than expected
phylogenetic turnover, respectively, for one pairwise
comparison. A mean bNTI taken across all pairwise
comparisons that is significantly different from zero
indicates greater (bNTI40) or less (bNTIo0) than
expected turnover on average (Figure 2; Fine and
Kembel, 2011; Webb et al., 2011).

Importantly, the randomizations for bNTI control
for observed taxonomic turnover. High levels of
taxonomic turnover (for example, large Bray–Curtis
dissimilarity) may be associated with less than
expected, greater than expected, or as expected
(random) levels of phylogenetic turnover. For a

single pairwise comparison, bNTI4þ 2, therefore
indicates observed phylogenetic turnover is above
what is expected given observed taxonomic
turnover.

Parametric and non-parametric tests were used to
ask whether the mean (or median) of NTI and bNTI
distributions were significantly different from zero.
To ask whether NTI showed systematic trends
through time or with river water elevation we
examined linear regressions of NTI against Julian
day and against water elevation. Significant regres-
sions would imply systematic changes in the
influence of niche-based processes, but non-signifi-
cant regressions do not imply static community
composition: there can be significant turnover in
phylogenetic composition (large bNTI) with no
change in NTI. To evaluate the influence of changes
in river water elevation on phylogenetic turnover,
we regressed bMNTD and bNTI against temporal
differences in river elevation. Two sets of regression
analyses were applied to the bMNTD and bNTI data.
The first set examined data across all comparisons
within a well. The second examined only compar-
isons between samples taken in mid-May and
each subsequent sample until early-July, which
is the time period before and during river water

=> MNTDobs = 2
=> MNTDnull = 8
=> MNTDnull = 4

(1) Characterize overall phylogeny and one 
 community; then conduct randomizations

(2) Calculate MNTD
values

(3) Calculate NTI
for one community

(4) NTI distribution
across all communities

NTI
0 +2-2

Closely Related: NTI > 0
Distantly Related: NTI < 0

MNTDnull - MNTDobs

sd(MNTDnull)

MNTD
2 6 10

Empirical = Grey; Randomizations = Blue/Red

Fig. 4

Step 1 Step 2 Step 3 Step 4

1 2
1 2

2 1

Step 1:  Accounting for phylogenetic distances among OTUs provides information on the degree of ecological (niche)
similarity among OTUs within a community. This information allows inference of the ecological processes governing
community composition. Randomizing the phylogenetic position of OTUs provides a ‘null’ expectation.

Step 4:  Quantifying NTI for each community (Steps 1-3) provides an NTI distribution (Fig. 4). The further mean NTI
departs from zero, the stronger the influence of niche-based processes, on average. Gradients in NTI (e.g. across
environmental conditions imply gradients in the strength of niche-based processes (not shown, see Figs. S1,S2).

Step 3:  Repeating the randomization 999 times (in Step 1) provides a distribution of MNTDnull values. The further
MNTDobs departs from the mean of this distribution, the greater the influence of niche-based processes (e.g. selection
by the environment). The departure for one community is quantified by the nearest-taxon-index (NTI).

Step 2: Within a single community, mean-nearest-taxon-distance (MNTD) quantifies phylogenetic distances. 
Phylogenetic distances for the observed community = MNTDobs. Phylogenetic distances from one
randomized community = MNTDnull.

1 branch length unit=

Figure 1 Summary of methods characterizing within community phylogenetic composition. After estimating a phylogeny that includes
all OTUs across all sampled communities, only the OTUs within a given community are retained (observed OTUs shown as gray circles;
numbers are OTU identities). In the example, there are two observed OTUs in the community and the phylogenetic distance between
them is two branch length units (sum of gray branches). Abundances are not shown, but are assumed equal so that MNTDobs is 2 units. To
generate a null expectation for MNTD the observed OTUs and their relative abundances are randomly placed on the phylogeny (red
circles; note that OTU identities are the same, only their positions on the phylogeny have changed). MNTD is then re-calculated,
providing one null MNTD value (MNTDnull). Red branches connect the two (randomly placed) OTUs and their sum is 8, so MNTDnull¼ 8
units. The randomization is repeated (blue circles), providing a second MNTDnull value (4 units), and so on until 999 randomizations are
completed. This provides a distribution of MNTDnull values to which MNTDobs is compared (Step 3). In the example, MNTDobs (vertical
dashed line) is much smaller than the average MNTDnull value. The equation for the NTI is given under Step 3 and measures the
difference between MNTDobs and mean MNTDnull (given as MNTDnull) in units of standard deviations, where standard deviation is
measured on the MNTDnull distribution. Repeating Steps 1–3 across all communities provides the NTI distribution in Step 4 (actual
distribution shown in Figure 4). An NTI distribution with a mean greater (less) than zero indicates niche-based processes cause OTUs to
be, on average, more closely (distantly) related than expected under random community assembly.
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intrusion into the sampled well field (Lin et al.,
2012). For both sets, three statistical models were
fit (1-exponential, logarithmic, and linear) using
maximum likelihood, and the model with the
smallest Bayesian Information Criterion (Schwarz,
1978) was chosen as the best model. Although our
data come from time series, characterizations of
community structure and turnover in community
structure are quantified as deviations from a null
model. The assumption of statistical independence
is therefore upheld.

Previous studies use other metrics such as mean
pairwise distance (Webb et al., 2002; Webb et al.,
2011), Unifrac (Knight and Lozupone, 2005), and
phylosor (Bryant et al., 2008). These metrics account
for deep evolutionary relationships among taxa,
and are relevant when there is phylogenetic signal
in OTU niches through both recent and deep
evolutionary time. In our system phylogenetic
signal occurs over relatively short phylogenetic
distances (see Results). By quantifying phylo-
genetic distances only between nearest relatives,

the ðbÞMNTD and ðbÞNTI metrics provide the most
appropriate ecological inferences for our system.

Results

Regressing between-OTU niche differences against
between-OTU phylogenetic distances showed a
steep positive relationship across relatively short
phylogenetic distances (B13–15% of the maximum
phylogenetic distance across the entire tree), but no
systematic relationship thereafter (Figure 3). Mantel
tests showed that across short phylogenetic dis-
tances (o13% of maximum), habitat differences
increased significantly with phylogenetic distances
for both depth (r¼ 0.14; Po0.002) and river eleva-
tion (r¼ 0.12; Po0.002). The rates (i.e., linear
regression slopes) at which habitat differences
increased with phylogenetic distances followed the
Brownian evolution expectation (PX0.18 for both
habitats). Across longer phylogenetic distances
(413% of maximum) the rates at which niche

=> βMNTDobs = 8
=> βMNTDnull = 3 
=> βMNTDnull = 8 

(1) Characterize overall phylogeny and two
communities; then conduct randomizations

(2) Calculate βMNTD
values

(3) Calculate βNTI
for one comparison

(4) βNTI distribution
across all comparisons

βNTI
0 +2-2

High turnover: βNTI > 0
Low turnover: βNTI < 0

βMNTDobs - βMNTDnull

sd(βMNTDnull)

βMNTD
3 5.5 8

Empirical = Grey; Randomizations = Blue/Red
Community k = Closed; Community m = Open

Fig. 4

Step 1 Step 2 Step 3 Step 4

1 2 3 4
1 234

43 2 1

Step 1: Accounting for phylogenetic distances among OTUs that occur in two different communities allows inference
of the ecological processes governing temporal or spatial turnover in community composition (β-diversity).
Randomizing the phylogenetic position of OTUs in both communities provides a ‘null’ expectation.

Step 4: Quantifying βNTI for each pairwise comparison provides a βNTI distribution (see Fig. 4). The further mean
βNTI departs from zero, the more strongly turnover is governed by niche-based processes, on average. Increasing
βNTI with increasing elapsed time or environmental differences between communities implies that the influence of
niche-based processes grows with increasingly large shifts in environmental conditions (not shown, see Fig. 5).

Step 3: Repeating the randomization 999 times (in Step 1) provides a distribution of βMNTDnull values. The further
βMNTDobs departs from the mean of this distribution, the greater the influence of niche-based processes on turnover
in community compostion. The departure for one pairwise comparison is quantified by β-nearest-taxon-index (βNTI).

Step 2: β-mean-nearest-taxon-distance (βMNTD) quantifies phylogenetic distances between two communities. 
Phylogenetic distances between two observed communities = βMNTDobs.Phylogenetic distances from one
randomization, where both communities are randomized = βMNTDnull.

=1 branch length unit

Figure 2 Summary of methods for characterizing turnover in community phylogenetic composition between a given pair of
communities. After estimating a phylogeny that includes all OTUs across all sampled communities, only the OTUs within a given pair of
communities (k and m) are retained (observed OTUs shown as gray circles; numbers are OTU identities). In the example there are two
OTUs in each community. The mean of (gray) branch lengths connecting each OTU in community k with its closest relative in
community m (and vice versa) gives bMNTDobs¼ 8 branch length units (abundances assumed equal). To generate a null expectation for
bMNTD the observed OTUs are randomly placed on the phylogeny (red circles) and bMNTD is re-calculated, always using minimum
phylogenetic distances (red branches) connecting OTUs between the two communities. In the example OTU1 and OTU4 are closest
relatives (4 units apart) and OTU3 and OTU2 are closest relatives (2 units apart). Taking the mean gives bMNTDnull¼3 units. The
randomization is repeated (blue circles), providing a second MNTDnull value (8 units, using blue branches connecting closest relatives
between communities), and so on until 999 randomizations are completed. This provides a distribution of bMNTDnull values to which
bMNTDobs is compared. In the example, bMNTDobs (vertical dashed line) is larger than the average bMNTDnull value. bNTI measures the
difference between bMNTDobs and mean bMNTDnull (given as bMNTDnull) in units of standard deviations (equation shown in Step 3).
Repeating Steps 1–3 across all pairwise comparisons provides the bNTI distribution in Step 4 (actual distribution shown in Figure 4). A
bNTI distribution with a mean greater (less) than zero indicates that niche-based processes cause phylogenetic turnover between
communities to be, on average, greater (less) than expected under random community assembly.
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differences changed with phylogenetic distances
were much slower than the Brownian evolution
expectation (Po0.002 for both habitats).

NTI across all local assemblages was significantly
different from zero (t353¼ � 31.7, P)0.0001), with a
mean of þ 2 (Figure 4). bNTI showed a skewed
distribution with a long tail stretching beyond the
threshold value of þ 2, and a median of 0.16 that
was significantly different from zero (Wilcoxon
signed-rank test, V¼ 13711837, P)0.0001) (Figure 4).

Testing for depth and well cluster effects with
analysis of variance (ANOVA) showed that mean
NTI varied across well clusters (F2,349¼ 8.2,
P¼ 0.0003) but not across depths (F2,349¼ 2.2,
P¼ 0.11). Mean NTI values for well clusters A, B
and C were, þ 1.81, þ 1.84 and þ 2.36, respectively,
and all were significantly greater than zero
(P)0.0001 for all). Note that depth and well cluster
are used as categorical variables.

Distributions of bNTI within sites were skewed,
and a robust non-parametric alternative is not
available for two-way ANOVA with multiple sam-
ples from each treatment. As such, we used the non-
parametric alternative to one-way ANOVA (that is,
the Kruskal–Wallis test) to test for differences in
bNTI medians across depths and well clusters. bNTI
medians differed significantly across well clusters
and depths (P)0.0001 for both), with the largest
medians consistently observed at the shallowest
(10m) sampling depth (Table 1).

Within most sites (one cluster, one depth),
NTI did not vary with river water elevation or
through time (Supplementary Figures S1 and S2).
Notably, however, at the shallow depth within
cluster A (see Figure 1 in Lin et al., 2012) the
degree of phylogenetic clustering increased with
water elevation and through time (Supplementary
Figures S1A and S2A).

Relating bMNTD and bNTI to change in river
elevation between sample pairs revealed generally
weak relationships, although some were statistically
significant (Figure 5, Supplementary Figures S3 and
S4). Examining comparisons between samples taken
in mid-May to subsequent samples up to early-July
revealed relatively strong or weak relationships
between river elevation and, respectively, bMNTD or
bNTI (Figure 5, Supplementary Figures S3 and S4).
One important exception for the May-to-July compar-
isons was the shallow depth within cluster A. In this
site, increasing differences in river elevation were
associated with very rapid increases in bMNTD
(Figure 5a) and an increase followed by saturation of
bNTI above þ 2 (Figure 5d).

Discussion

Overall, we found that environmental filtering
strongly determines local community composi-
tion of subsurface microbes, and that stochastic
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factors have an important but secondary role. The
influence of stochastic factors over changes in
community composition is, in comparison, much
greater. However, the influence of stochastic pro-
cesses relative to deterministic processes varies

through space and time (see also Caruso et al.,
2011). Our results further suggest that general rules
may govern spatial and temporal changes in the
relative influences of stochastic and deterministic
processes.

0.0 0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A−shallow A−shallow

Water Elevation Difference Water Elevation Difference

B
et

aM
N

T
D

a

0.0 0.5 1.0 1.5 2.0

−2

0

2

4

6

B
et

aN
T

I

d

0.0 0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5

0.6

B−shallow

Water Elevation Difference Water Elevation Difference

Water Elevation Difference Water Elevation Difference

B
et

aM
N

T
D

b

0.0 0.5 1.0 1.5 2.0
−4

−2

0

2

4

6

8
B−shallow

B
et

aN
T

I

e

0.0 0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

C−shallow

B
et

aM
N

T
D

0.1

0.3

0.5

0.7

0.9

c

0.0 0.5 1.0 1.5 2.0

0

5

10

C−shallow

B
et

aN
T

I

−4

−2

2

4

6

8

12
f

Figure 5 (a–c) Beta Mean Nearest Taxon Distance (bMNTD) or (d–f) Beta Nearest Taxon Index (bNTI) as a function of difference in
Columbian River water elevation. Each panel shows data for the shallow sampling depth (10m) across one of the three well clusters (see
panel headers). Gray squares represent all comparisons from a given well cluster, and solid gray lines show best-fit regression models
(linear, exponential or logarithmic). Solid black squares show results from comparing a sample in each well from mid-May to later
sampling dates until early-July, and solid black lines are best-fit regression models to those data. Only significant regressions are shown.
Horizontal dashed lines in (d–f) indicate bNTI values of �2 and þ2, the values beyond which an individual bNTI value is considered
statistically significant.
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Phylogenetic signal in ecological niches
Using phylogenetic information to make ecological
inferences required that we first test for phyloge-
netic signal in OTU niches. Drawing on established
evolutionary theory (specifically Haldane, 1932;
Wiedenbeck and Cohan, 2011), we predicted that a
positive relationship between bacterial ecological
differences and phylogenetic distances should only
occur among close relatives. Our results and
previous work in bacterial systems (Andersson
et al., 2010) are consistent with this expectation:
beyond B13–15% of the maximum phylogenetic
distance observed between any two OTUs, there was
no systematic relationship between ecological dif-
ference and phylogenetic distance (Figure 3). In
addition, across close relatives, the rate at which
ecological differences increased with phylogenetic
distances was consistent with Brownian niche
evolution. Across more distant relatives, however,
there was effectively no relationship between eco-
logical differences and phylogenetic distances.
Ecological niches of bacteria have therefore evolved
in a Brownian-like manner across recent evolution-
ary time, but in a phylogenetically random manner
across deeper evolutionary time (see also Andersson
et al., 2010; Diniz-Filho et al., 2010; Hardy et al.,
2012). Kembel (2009) found that phylogenetic
community composition provides robust inferences
of ecological processes for systems like ours, where
(i) phylogenetic signal is consistent with Brownian
evolution; (ii) the environment is heterogeneous;
and (iii) more than one aspect of organismal
physiology determines OTU relative performance
across environmental conditions, which we assume
to be true. We therefore suggest that metrics
quantifying phylogenetic distances among close
relatives, such as NTI, provide information useful
for understanding processes that assemble bacterial
communities.

Processes governing local community composition
To infer the relative influences of stochastic and
deterministic processes over local community com-
position we coupled the observation of phylogenetic
signal in habitat associations with patterns of NTI.
The term ‘local’ refers to a sample from one point in
time and space, in contrast to turnover in commu-
nity composition, which is discussed in the next
section. Mean NTI across all communities was þ 2
and was significantly greater than zero. This
provides good evidence for a dominant role of
deterministic environmental filtering (Kembel,
2009). The key inference is that one or more
environmental variables limit community member-
ship whereby closely related and ecologically
similar taxa coexist to a greater degree than expected
if stochastic factors such as random birth-death
events and ecological drift governed community
composition (Kraft et al., 2007; Fine and Kembel,
2011; Pei et al., 2011). This inference is consistent

with previous work on microbial communities in
general and subsurface systems in particular
(Horner-Devine and Bohannan, 2006; Bryant et al.,
2008; Vamosi et al., 2009; Dumbrell et al., 2010;
Herrera et al., 2010; Jones and Hallin, 2010; Amaral-
Zettler et al., 2011).

Although environmental filtering is a dominant
process on average, phylogenetic composition of
some communities was statistically random and the
relative influence of environmental filtering varied
spatially. More specifically, 32% of communities
had phylogenetic composition that did not
differ significantly from the null expectation
(� 2oNTIoþ 2). Stochastic or ecologically neutral
factors therefore have an important, but secondary
role in the communities studied here. NTI distribu-
tions also differed significantly across well groups:
well groups A, B and C had mean NTI values of
þ 1.81, þ 1.84 and þ 2.36, respectively. In addition,
63%, 67% and 73% of individual communities were
significantly phylogenetically clustered (NTI4þ 2)
in groups A, B and C, respectively. These results
suggest that the relative influence of environmental
filtering over local community composition varies
through space and is strongest in group C. In
addition, there was generally no relationship
between mean NTI and depth, sampling date or
river elevation. These patterns collectively suggest it
is environmental factors varying horizontally, as
opposed to vertically or temporally, that lead to
changes in the relative influence of environmental
filtering. An important exception was the shallow
depth within group A, where phylogenetic compo-
sition transitioned from random to significantly
clustered with increasing river elevation and
through time.

Why is environmental filtering the strongest in
group C, and why does its influence increase with
river elevation and through time only in the shallow
depth of group A? One explanation is that these
two locations represent opposite extremes along a
gradient of environmental variation through time
and space. River water intrusion is a potentially
important environmental driver, and the degree
of intrusion varies across wells and through time
due to changes in river elevation (McKinley et al.,
in review). Of the three well groups examined
here, group C is the furthest from the river and
receives the least amount of river water during
intrusion events (Lin et al., 2012; McKinley et al.,
in review). Relative to group C, the shallow
depth within group A is environmentally variable
through time and space: The shallow-A well
receives more river water during intrusion events
(Lin et al., 2012) and is more geologically hetero-
geneous. In terms of geology, the shallow-A
well is partially screened within a ‘rip-up clast’
(Bjornstad et al., 2009), which is a meters-
thick piece of fine-grained, relatively impermeable
material related to the Ringold formation that
otherwise underlies the more permeable Hanford
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formation (in which our sampling locations lie).
Rip-up clasts are physically and chemically distinct
‘islands’ within the Hanford formation (Bjornstad
et al., 2009). Their presence creates a local environ-
ment that is more structurally and potentially more
chemically heterogeneous than the surrounding
Hanford formation.

Owing to its distance from the river, group C may
receive relatively small and infrequent river-water-
supplied inputs of limiting resources such as
organic carbon and nutrients. It may therefore
represent a relatively extreme, low resource envir-
onment. Group C was also characterized by the
strongest signal of deterministic processes govern-
ing local community composition, and previous
work also shows greater determinism in extreme or
low resource environments (Chase, 2007, 2010;
Gerisch et al., 2011; Horner-Devine and Bohannan,
2006; Kembel et al., 2011; van der Plas et al., 2012).
Stronger deterministic processes in more extreme
environments may therefore be a general phenom-
enon across both micro- and macro-organism sys-
tems (see also Weiher et al., 2011).

At the other end of the ‘variation continuum’,
unique microbial and geological aspects of the
shallow-A well point to important interactions
between river water intrusion and geological hetero-
geneity. In particular, intruding river water may
significantly change the resource environment
experienced by microbial communities, and this
change may be especially large in conjunction with
unique rip-up clast geochemistry. The lack of
change in mean NTI with river elevation within
group B, which received more river water than
group A (Lin et al., 2012) but is not within a rip-up
clast (Bjornstad et al., 2009), is consistent with
this hypothesis. Additional characterization of
the physical and chemical environment presented
by rip-up clasts will be necessary to directly
evaluate their influence over microbial commu-
nities. More generally, it appears that the relative
influence of environmental filtering can increase
toward environmental extremes (group C) and
in response to shifting environmental conditions
(shallow-A well).

Processes governing community dynamics
An important influence of environmental filtering
over temporal community dynamics was indicated
by a skewed bNTI distribution with a long tail
extending beyond the þ 2 significance threshold. In
addition, the median of this distribution was
significantly greater than zero, suggesting that on
average environmental filtering deterministically
governs community dynamics (for a similar
approach see Fine and Kembel, 2011; Kembel
et al., 2011). It is interesting to note that across
all comparisons 84% were consistent with random
(� 2obNTIoþ 2) phylogenetic turnover. This is a
much larger fraction than for NTI (32% consistent

with random assembly). Together these results
suggest that although, on average, deterministic
factors govern composition within and turnover
between communities, stochastic ecological drift
has a stronger influence on turnover, relative to its
influence on within community composition.

Uncovering the environmental factors causing
non-random community dynamics is a key chal-
lenge, and our analyses provide some insight. Our
analyses of phylogenetic community dynamics
suggest that the relative influence of environmental
filtering over community dynamics (i) is generally
stronger in the shallow subsurface and (ii) can
increase through time in response to environmental
change in geologically heterogeneous regions.
Specifically, the bNTI median was largest in
the shallow sites across all three well groups
(Table 1), where environmental variation was great-
est (Lin et al., 2012). Higher levels of temporal
environmental variation may therefore determinis-
tically drive community dynamics, consistent with
recent studies linking cyclical environmental con-
ditions to cyclical patterns in microbial community
composition (Fuhrman et al., 2006; Gilbert et al.,
2012). In the shallow-A well bNTI increased to
above the significance threshold of þ 2 with
increasing differences in river elevation as the river
rose from mid-May to early-July. In all other sites
bNTI either did not vary with river elevation or did
not increase to above þ 2, suggesting a unique
environmental feature of the shallow-A well. As
discussed above, the shallow-A well is indeed
geologically unique in that it is partially within a
rip-up clast (Bjornstad et al., 2009). The unique
geology and bNTI patterns found within the shal-
low-A well point to an important interaction
between intruding river water and geological hetero-
geneity. That is, river water intrusion into geologi-
cally heterogeneous regions of the subsurface may
alter the abiotic environment in ways that impose
strong directional selection (sensu Vellend, 2010) on
microbial community composition.

The bNTI patterns found here complement and
extend patterns found in Lin et al. (2012). Most
importantly, Lin et al. uncovered large temporal
changes in community composition, and found
that changes in the relative abundance of specific
taxa were especially marked in the shallow-A
well (see their Supplementary Figure S6). These
dynamics could be driven by deterministic processes

Table 1 Medians for Beta Nearest Taxon Index (bNTI)
distributions from each depth within each well cluster.

A-Cluster B-Cluster C-Cluster

Shallow (10m) 0.674 0.589 0.354
Intermediate (13m) 0.243 0.120 � 0.035
Deep (17m) �0.490 0.124 0.166

Cluster and depth effects are significant. Note consistently larger
values at the shallow depth.
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associated with river water intrusion, but may
also arise from random fluctuations in population
sizes due to stochastic factors. The phylogenetic
analyses carried out here provide an additional
layer of support for the hypothesis that the
river intrusion deterministically shifted community
composition. However, this was true only for the
shallow-A well, suggesting that in all other sites
the deterministic influence of river water intrusion
did not overwhelm the influence of stochastic
factors. This result highlights the fact that determi-
nistic and stochastic processes simultaneously
influence community assembly, that their relative
influences vary through space and time, and that
using phylogenetic tools in microbial community
ecology can provide insights not accessible via
standard methods.

In summary, understanding gradients in the
identity and strength of ecological processes is at
the forefront of current ecological research (Chase
and Myers, 2011), yet this paradigm has not been
broadly embraced in microbial ecology. We argue
that simultaneously addressing similar questions
and concepts in both microbial and ‘macrobial’
systems will lead to a more general and unified
theory of ecological communities. Here we work
toward such unification by asking questions and
applying statistical tools more common in studies of
macro-organisms. Our results collectively suggest
that the relative roles of deterministic and stochastic
processes follow patterns that may generalize across
systems. Further work with both micro- and macro-
organisms aimed at understanding what drives
gradients in the relative influences of stochastic
and deterministic processes will be critical for
ultimately predicting the response of communities
to environmental change.
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