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Stochastic and Deterministic Networks for Texture 

Segmentation 

Abstract-This paper describes several texture segmentation algo- 

rithms based on deterministic and stochastic relaxation principles, and 

their implementation on parallel networks. The segmentation problem 

is posed as  an optimization problem and two different optimality cri- 

teria a re  considered. The first criterion involves maximizing the pos- 

terior distribution of the intensity field given the label field (maxi- 

mum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa posteriori (MAP) estimate). The posterior distribution of the 

texture labels is derived by modeling the textures as  Gauss Markov 

random field (GMRF) and characterizing the distribution of different 

texture labels by a discrete multilevel Markov model. Fast approxi- 

mate solutions for MAP a re  obtained using deterministic relaxation 

techniques implemented on a Hopfield neural network and are  com- 

pared with those of simulated annealing in obtaining the MAP estimate. 

A stochastic algorithm which introduces learning into the iterations of 

the Hopfield network is proposed. This iterated hill-climbing algorithm 

combines fast convergence of deterministic relaxation with the sus- 
tained exploration of the stochastic algorithms, but is guaranteed to 

find only a local minimum. The second optimality criterion requires 

minimizing the expected percentage of misclassification per pixel by 

maximizing the posterior marginal distribution, and the maximum 

posterior marginal (MPM) algorithm is used to obtain the correspond- 

ing solution. All these methods implemented on parallel networks can 

he easily extended for hierarchical segmentation and we present rewlts  

of the various schemes in classifying some real textured images. 

I. INTRODUCTION 

HIS PAPER describes several algorithms, both de- T terministic and stochastic, for the segmentation of 

textured images. Segmentation of image data is an im- 
portant problem in computer vision, remote sensing, and 

image analysis. Most objects in the real world have tex- 

tured surfaces. Segmentation based zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon texture informa- 

tion is possible even if there are no apparent intensity 

edges between the different regions. There are many ex- 

isting methods for texture segmentation and classifica- 

tion, based on different types of statistics that can be ob- 
tained from the gray level images. The approach we use 

stems from the idea of using Markov random field models 

for textures in an image. We assign two random variables 
for tbe observed pixel, one characterizing the underlying 

Manuscript received September 19, 1988; revised August 2. 1989. This 
work was supported in part by the AFSOR under Grant 86-0196. 

B. S. Manjunath and R.  Chellappa are with the Department zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Electrical 

Engineering-Systems, University of Southern California. Los Angeles. CA 

90TSirnchony was with the Department of Electrical Engineering-Sys- 

terns, University of Southern California, Los Angeles, CA 90089. He is 
now with ECI Telecom, Rafael, Israel. 

IEEE Log Number 9034989. 

intensity and the other for labeling the texture correspond- 

ing to the pixel location. We use the Gauss Markov ran- 

dom field (GMRF) model for the conditional density of 

the intensity field given the label field. Prior information 

about the texture label field is introduced using a discrete 

Markov distribution. The segmentation can then be for- 

mulated as an optimization problem involving minimiza- 

tion of a Gibbs energy function. Exhaustive search for the 

optimum solution is not possible because of the large di- 

mensionality of the search space. For example, even for 

the very simple case of segmenting a 128 X 128 image 

into two classes, there are 2*'' possible label configura- 

tions. Derin and Elliott [ I ]  have investigated the use of 

dynamic programming for obtaining an approximation to 

the maximum a posteriori (MAP) estimate while Cohen 

and Cooper [2] give a deterministic relaxation algorithm 

for the same problem. The optimal MAP solution can be 
obtained by using stochastic relaxation algorithms such as 

simulated annealing [3]. Recently there has been consid- 

erable interest in using neural networks for solving com- 

putationally hard problems and the main emphasis in this 

paper is on developing parallel algorithms which can be 

implemented on such networks of simple processing ele- 

ments (neurons). 

The inherent parallelism of neural networks provides an 

interesting architecture for implementing many computer 

vision algorithms [4]. Some examples are image restora- 

tion [5], stereopsis [6], and computing optical flow [7]- 
[9]. Networks for solving combinatorially hard problems 

such as the traveling salesman problem have received 

much attention in the neural network literature [lo]. In 

almost all cases, these networks are designed to minimize 

an energy function defined by the network architecture. 

The parameters of the network are obtained in terms of 

the energy (cost) function it is designed to minimize and 

it can be shown [ 101 that for networks having symmetric 

interconnections, the equilibrium states correspond to the 

local minima of the energy function. For practical pur- 

poses, networks with few interconnections are preferred 

because of the large number of processing units required 

in any image processing application. In this context Mar- 

kov random field (MRF) models for images play a useful 

role. They are typically characterized by local dependen- 

cies and symmetric interconnections which can be ex- 

pressed in terms of energy functions using Gibbs-Markov 
equivalence [3]. 
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We look into two different optimality criteria for seg- 

menting the image. The first corresponds to the label con- 

figuration which maximizes the posterior probability of 

the label array given the intensity array. As noted before. 

an exhaustive search for the optimal solution is practically 

impossible. An alternative is to use stochastic relaxation 

algorithms such as simulated annealing 131. which asymp- 

totically converge to the optimal solution. However the 

computational burden involved because of the theoretical 

requirements on the initial temperature and the impracti- 

cal cooling schedules overweigh their advantages in many 

cases. Fast approximate solutions can be obtained by such 

deterministic relaxation algoritms as the iterated condi- 

tional mode rule [ 1 11. The energy function corresponding 

to this optimality criterion can be mapped into a Hopfield- 

type network in a straightforward manner and it can be 

shown that the network converges to an equilibrium state, 

which in general will be a local optimum. The solutions 

obtained using this method are sensitive to the initial con- 

figurations, and in many cases starting with a maximum 

likelihood estimate is preferred. Stochastic learning can 

be easily introduced into the network, and the overall sys- 

tem improves the performance by learning while search- 

ing. The learning algorithms used are derived from the 

theory of stochastic learning automata [ 121 and we be- 

lieve that this is the first time such a hybrid system has 

been used in an optimization problem. The stochastic na- 

ture of the system helps in preventing the algorithm from 

being trapped in a local minimum and we observe that this 

improves the quality of the solutions obtained. 

The second optimality criterion minimizes the expected 

percentage of classification error per pixel. This is equiv- 

alent to finding the pixel labels that maximize the mar- 

ginal posterior probability given the intensity data [ 131. 
Since calculating the marginal posterior probability is very 

difficult, Marroquin [ 141 suggested the MPM algorithm, 

which asymptotically computes the posterior marginal. In 

[14] the algorithm is used for image restoration, stereo 

matching, and surface interpolation. Here we use this 

method to find the texture label that maximizes the mar- 

ginal posterior probability for each pixel. 

The organization of the paper is as follows: Section I1 

describes the image model. A neural network model for 

the relaxation algorithms is given in Section I11 along with 

a deterministic updating rule. Section IV discusses the 

stochastic algorithms for segmentation and their parallel 

implementation on the network. A learning algorithm is 

proposed in Section V and the experimental results are 

provided in Section VI. 

11. IMAGE MODEL 

The use of MRF models for image processing applica- 

tions has been investigated by many researchers (see e .g . ,  

Chellappa [15]). Cross and Jain 1161 provide a detailed 

discussion on the application of MRF in modeling tex- 

tured images. Geman and Geman [3] discuss the equiva- 

lence between MRF and Gibbs distributions. The GMRF 

model for the texture intensity process has been used in 

Fig. I .  Structure 0 1  the G M R F  model. The numbers indicate the order of 
the niodel relative to.\ 1161. 

[ I ] ,  (21, and [ 171. The MRF is also used to describe the 

label process in [ l ]  and 121. In this paper we use the 

fourth-order GMRF indicated in Fig. 1 to model the con- 

ditional probability density of the image intensity array 

given its texture labels. The texture labels are assumed to 

obey a first- or second-order discrete Markov model with 

a single parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ,  which measures the amount of clus- 

tering between adjacent pixels. 

Let R denote the set of grid points in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM x M lattice, 

i . e . , R  = { ( i , j ) ,  1 I i , j  I M } .  FollowingGemanand 

Graffigne [ IS] ,  we construct a composite model which ac- 

counts for texture labels and gray levels. Let { L,,, s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ }  
and { Y,,  s E R }  denote the labels and zero mean gray 

level arrays respectively. The zero mean array is obtained 

by subtracting the local mean computed in a small win- 

dow centered at each pixel. Let N ,  denote the symmetric 

fourth-order neighborhood of a site s. Then, assuming that 

all the neighbors of s also have the same label as that of 

s, we can write the following expression for the condi- 

tional density of the intensity at the pixel site s: 

P( Y\ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY,\ I Yr = Y r ,  r E N.\, L\ = I )  

- ~ X P  [ -U (  Y\ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy,s I Yr Y r ,  r E Ns, L., = l ) ]  - 

~ ( 1  I Y r ,  r E ~ . s )  

(1)  

where Z (  I I J,.,  r E N, , )  is the partition function of the con- 

ditional Gibbs distribution and 

u ( Y , = ~ , ( Y , . = ~ , . , ~ E N . , , L , = I )  
/ \ 

I c / 1 \  ' " I  \ 

In ( 2 ) ,  (T/ and 8' are the GMRF model parameters of 

the I th  texture class. The model parameters satisfy el,, = 

We view the image intensity array as composed of a set 

of overlapping k x k. windows W,,  centered at each pixel 

s E R.  In  each of these windows we assume that the tex- 

ture label L, is homogeneous (all the pixels in the window 

belonging to the same texture) and compute the joint dis- 

tribution of the intensity in the window conditioned on L,. 
The corresponding Gibbs energy is used in the relaxation 

process for segmentation. As explained in the previous 

paragraph, the image intensity in the window is modeled 

by a fourth-order stationary GMRF. The local mean is 

er-\  I = e:_,  = 8; .  
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computed by taking the average of the intensities in the 

window zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW, and is subtracted from the original image to 

get the zero mean image. All our references to the inten- 

sity array correspond to the zero mean image. Let Y,* de- 

note the 2-D vector representing the intensity array in the 

window W,.  Using the Gibbs formulation and assuming a 
free boundary model, the joint probability density in the 
window W, can be written as [2] 

where Z , (  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) is the partition function and 

The label field is modeled as a first- or second-order 

discrete MRF. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, denotes the appropriate neighborhood 

for the label field, then we can write the distribution func- 

tion for the texture label at site s conditioned on the labels 

of the neighboring sites as 

e - U ? ( l s  1 1 I )  

2 2  

P ( L ,  1 L, ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY E f l \ )  = 

U ~ ( L \ \ L , ,  r E f l , )  = -6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. 6 ( ~ ,  - L ) ) ,  

where Z ,  is a normalizing constant and 

6 > 0. 
,EN!  

( 4 )  

In (4), 0 determines the degree of clustering, and 6 ( i  - 
j )  is the Kronecker delta. Using the Bayes rule, we can 

write 

P(L\ I y: ,  L,, y E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfl,) 

write 

Note that the second term in (7) relates the observed pixel 

intensities to the texture labels and the last term specifies 
the label distribution. The bias term w ( L , )  = log Z,(L, , )  
is dependent on the texture class and it can be explicitly 

evaluated for the GMRF model considered here using the 

toroidal assumption (the computations become very cum- 

bersome if toroidal assumptions are not made). An alter- 

native approach is to estimate the bias from the histogram 

of the data as suggested by Geman and Graffigne [ 181. 
Finally, the posterior distribution of the texture labels for 

the entire image given the intensity array is 

Maximizing (8) gives the optimal Bayesian estimate. 

Though it is possible in principle to compute the right- 

hand side of (8) and find the global optimum, the com- 

putational burden involved is so enormous that it is prac- 

tically impossible to do so. However, we note that the 

stochastic relaxation algorithms discussed in Section IV 
require only the computation of (6) to obtain the optimal 
solution. The deterministic relaxation algorithm given in 

the next section also uses these values, but in this case 

the solution is only an approximation to the MAP esti- 

mate. 

111. A NEURAL NETWORK FOR TEXTURE 

CLASSIFICATION 

We describe the network architecture used for segmen- 
tation and the implementation of deterministic relaxation 

algorithms. The energy function which the network min- 

imizes is obtained from the image model discussed in the 

previous section. For convenience of notation let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,( i, j ,  
I )  = U , ( Y , * ,  L, = I )  + w ( l ) ,  wheres = ( i , j ) d e n o t e s  

a pixel site and U,(  . ) and w ( I  ) are as defined in (7). The 

network consists of K layers, each layer arranged as an M 
X M array, where K is the number of texture classes in 
the image and M is the dimension of the image. The ele- 

ments (neurons) in the network are assumed to be binary 

and are indexed by ( i ,  j ,  I ) where ( i ,  j ) = s refers to 

their position in the image and I refers to the layer. The 

( i ,  j ,  1)th neuron is said to be ON if its output V,,, is 1 ,  
indicating that the corresponding site s = ( i ,  j ) " i n  the 

strength between 

be the input bias current. Then a general form for the en- 

Since ',* is known' the denominator in  ( 5 )  is just a 'On- 
image has the texture label 1. Let Tcj/: j: j ,/, be the connection 

stant. The numerator is a product of two exponential func- 
tions and can be expressed as ( i, j ,  I ) and j , ,  ) and 

ergy of the network is [ IO]  

M M K M M K  

M M K  

- f c c c I / / /  V///.  where Z,, is the partition function and U,,( ) is the pos- 

terior energy corresponding to (5). From ( 3 )  and (4) we I =  I / = I  / =  I 
(9 )  



From our discussion in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, we note that a so- 

lution for the MAP estimate can be obtained by minimiz- 

ing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8). Here we approximate the posterior energy by 

and the corresponding Gibbs energy to be minimized can 

be written as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. M  M K 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI = )  / = I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/= I  

K M M  

2 / = I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi =  I , /= I  ( j ' . / ' ) € N , ,  

yhere zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANil is the neighborhood of site ( i ,  j )  (same as the 

N ,  in Section 11). In ( I l ) ,  it is implicitly assumed that 

each pixel site has a unique label; i .e.,  only one neuron 

is active in each column of the network. This constraint 

can be implemented in different ways. For the determin- 

istic relaxation algorithm described below, a simple 

method is to use a winner-takes-all circuit for each col- 

umn so that the neuron receiving the maximum input is 

turned on and the others are turned off. Alternatively, a 

penalty term can be introduced in ( 1  1 )  to represent the 

constraint as in [lo]. From (9) and ( 1  I )  we can identify 

the parameters for the network: 

and the bias current 

plement. We observe that in general an algorithm based 

on MRF models can be easily mapped onto neural net- 

works with local interconnections. The main advantage of 

this deterministic relaxation algorithm is its simplicity. 

Often the solutions are reasonably good and the algorithm 

usually converges within 20-30 iterations. In  the next 

section we study two stochastic schemes which asymp- 

totically converge to the global optimum of the respective 

criterion functions. 

Iv. STOCHASTIC ALGORITHMS FOR TEXTURE 

SEGMENTATION 

We look at two optimal solutions corresponding to dif- 

ferent decision rules for determining the labels. The first 

one uses simulated annealing to obtain the optimum MAP 

estimate of the label configuration. The second algorithm 

minimizes the expected misclassification per pixel. The 

parallel network implementation of these algorithms is 

discussed in Section IV-C. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Searching fo r  MAP Solution 

The MAP rule [ 181 searches for the configuration L that 

maximizes the posterior probability distribution. This is 

equivalent to maximizing P (  Y *  1 L )  P ( L )  as P (  Y * )  is 

independent of the labels and Y *  is known. The right- 

hand side of (8) is a Gibbs distribution. To maximize (8) 
we use simulated annealing 131, a combinatorial optimi- 

zation method which is based on sampling from varying 

Gibbs distribution functions: 

A. Deterministic Relaxation 

of the network to that of the image model. The connection 

matrix for the above network is symmetric and there is no 

self-feedback; i.e., Tl l / . l / /  = 0,  Vi,;, 1. Let ul,/ be the PO- 

tential of neuron ( i ,  j ,  I ). With 1 the layer mmber Cor- 
responding to texture class I ,  we have 

in order to maximize 

The above equations (12) and (13) relate the parameters e -U, , (L  1 Y * )  

Z 

TA being the time-varying parameter, referred to as the 

temperature. We used the following cooling schedule: 

M M K  

In order to minimize ( 1  I ) ,  we use the following updating 

rule: 

This updating scheme ensures that at each stage the en- 

ergy decreases. Since the energy is bounded, the conver- 

gence of the above system is ensured but the stable state 

will in general be a local optimum. 

This network model is a version of the iterated condi- 

tional mode (ICM) algorithm of Besag [ 1 I ] .  This algo- 

rithm maximizes the conditional probability P (  L,  = 

1 I Y:, L\,, s' E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi\) during each iteration. It is a local 

deterministic relaxation algorithm that is very easy to im- 

where k is the iteration number. When the temperature is 

high, the bond between adjacent pixels is loose, and the 

distribution tends to behave like a uniform distribution 

over the possible texture labels. As Th decreases, the dis- 

tribution concentrates on the lower values of the energy 

function, which correspond to points with higher proba- 

bility. The process is bound to converge to a uniform dis- 

tribution over the label configuration that corresponds to 

the MAP solution. Since the numer of texture labels is 

finite, convergence of this algorithm follows from [ 3 ] .  In 

our experiment, we realized that starting the iterations 

with TO = 2 did not guarantee convergence to the MAP 

solution. Since starting at a much higher temperature will 

slow the convergence of the algorithm significantly, we 

use an alternative approach, viz., cycling the temperature 
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[13]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWe follow the annealing schedule until Tk reaches a 

lower bound; then we reheat the system and start a new 

cooling process. By using only a few cycles, we obtained 

results better than those with a single cooling cycle. Par- 
allel implementation of simulated annealing on the net- 

work is discussed in Section IV-C. The results we present 

in Section VI were obtained with two cycles. 

B. Maximizing the Posterior Marginal Distribution 

The choice of the objective function for optimal seg- 

mentation can significantly affect its result. The choice 

should be made depending on the purpose of the classifi- 

cation. In many implementations the most reasonable ob- 

jective function is the one that minimizes the expected 

percentage misclassification per pixel. The solution to the 

above objective function is also the one that maximizes 

the marginal posterior distribution of L,, given the obser- 

vation Y*  for each pixel s: 

P { L ,  = I Y* = y*}  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc P ( Y *  = y* I L = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ )  P ( L  = 1 ) .  

11 L,  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, 

The summation above extends over all possible label 

configurations keeping the label at site s constant. This 

concept was thoroughly investigated in [ 141. Marroquin 

[19] discusses this formulation in the context of image 

restoration and illustrates the performance on images with 

few gray levels. He also mentions the possibility of using 

this objective function for texture segmentation. In [ 1 I] 
the same objective function is mentioned in the context of 

image estimation. 

To find the optimal solution we use the stochastic al- 

gorithm suggested in [14]. The algorithm samples out of 
the posterior distribution of the texture labels given the 

intensity. Unlike the stochastic relaxation algorithm, 

samples are taken with a fixed temperature T = 1.  The 

Markov chain associated with the sampling algorithm 
converges with probability 1 to the posterior distribution. 

We define new random variables g:' for each pixel ( s  E 

a) :  
1 L { = I  

0 otherwise 
g ! ' { L ; }  = 

where L: is the class of the s pixel, at time t ,  in the state 
vector of the Markov chain associated with the Gibbs 

sampler. We use the ergodic property of the Markov chain 

[20] to calculate the expectations for these random vari- 

ables using time averaging: 

where N is the number of iterations performed. To obtain 

the optimal class for each pixel, we simply chose the class 

that occurred more often than the others. 

The MPM algorithm was implemented using the Gibbs 

sampler [3]. A much wider set of sampling algorithms, 

such as Metropolis, can be used for this purpose. The al- 

gorithms can be implemented sequentially or in parallel, 

with a deterministic or stochastic decision rule for the or- 

der of visiting the pixels. In order to avoid the dependence 

on the initial state of the Markov chain, we can ignore the 

first few iterations. In the experiments conducted we ob- 
tained good results after 500 iterations. The algorithm 

does not suffer from the drawbacks of simulated anneal- 

ing. For instance we do not have to start the iterations 

with a high temperature to avoid local minima, and the 

performance is not badly affected by enlarging the state 

space. 

C. Network Implementation of the Sampling Algorithms 

All the stochastic algorithms described in the Gibbs for- 

mulation are based on sampling from a probability distri- 

bution. The probability distribution is constant in  the 

MPM algorithm [I41 and is time varying in the case of 

annealing. The need for parallel implementation is due to 

the heavy computational load associated with their use. 

The issue of parallel implementation in stochastic al- 

gorithms was first addressed by Geman and Geman [3]. 
They show that the Gibbs sampler can be implemented by 

any deterministic or stochastic rule for choosing the order 

in which pixels are updated, as long as each pixel is vis- 

ited infinitely often. An iteration is the time required to 

visit each pixel at least once (a full sweep). Note that the 

stochastic rules have a random period and allow us to visit 

a pixel more than once in a period. They consider the new 

Markov chain one obtains from the original by viewing it 

only after each iteration. Their proof is based on two es- 

sential elements. The first is the fact that the embedded 

Markov chain has a strictly positive transition probability 

pi, for any possible states i ,  j ,  which proves that the chain 
will converge to a unique probability measure regardless 

of the initial state. The second is that the Gibbs measure 

is an invariant measure for the Gibbs sampler, so that the 

embedded chain converges to the Gibbs measure. The 

proof introduced in 131 can be applied to a much larger 

family of sampling algorithms satisfying the following 

properties [20] : 

1) The sampler produces a Markov chain with a pos- 

tive transition probability p i ,  for any choice of states 

2 )  The Gibbs measure is invariant under the sampling 

The Metropolis and heat bath algorithms are two such 

sampling methods. To see that the Metropolis algorithm 
satisfies property 2,  we look at the following equation for 

updating a single pixel: 

i ,  j .  

algorithm. 

1 
( i )  = - C ~ " ( j )  Pll+ I 

m * ( J ) < r ( l )  

1 ,  . . a f i l  



where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis the number of values each pixel can take. The 

first term corresponds to the cases when the system was 

in s ta te j  and the new state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi has higher probability. The 

second term corresponds to a system in state i and a new 

statej  that has lower probability. The given probability is 

for staying in state i. The third term corresponds to a sys- 

tem in s ta te j  and a new state i with lower probability. If 

we now replace P'" I (  i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) and PI'( i ) with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT (  i ) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPI'( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ), 
we see that the equality holds, implying that the Gibbs 

measure is invariant under the Metropolis algorithm. The 

first property is also satisfied. Note that the states now 

correspond to the global configuration. To implement the 

algorithm in parallel, one can update pixels in parallel as 

long as neighboring pixels are not updated at the same 

time. A very clear discussion on this issue can be found 

in [14]. 

We now describe how these stochastic algorithms can 

be implemented on the network discussed in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111. 
The only modification required for the simulated anneal- 

ing rule is that the neurons in the network fire according 

to a time-dependent probabilistic rule. Using the same no- 

tation as in Section 111, the probability that neuron ( i ,  j ,  
f ) will fire during iteration k is 

e - I /TL)I,<,/ 

P(  VI,, = 1 ) = (17)  
ZTk 

where U,,/ is as defined in (14) and TL follows the cooling 

schedule ( 16). 
The MPM algorithm uses the above selection rule with 

Tk = 1 .  In addition, each neuron in the network has a 

counter which is incremented every time the neuron fires. 

When the iterations are terminated the neuron in each col- 

umn of the network having the maximum count is selected 

to represent the label for the corresponding pixel site in 
the image. 

We have noted before that for parallel implementation 

of the sampling algorithms, neighboring sites should not 

be updated simultaneously. Some additional observations 

are made in Section VI. 

V. STOCHASTIC LEARNING A N D  NEURAL NETWORKS 

In the previous sections purely deterministic and sto- 

chastic relaxation algorithms were discussed. Each has its 

own advantages and disadvantages. Here we consider the 

possibility of combining the two methods using stochastic 

learning automata and we compare the results obtained by 

this new scheme with those of previous algorithms. 

We begin with a brief introduction to the stochastic 

learning automaton [12]. An automation is a decision 

maker operating in a random environment. A stochastic 

automation can be defined by a quadruple (a, Q,  T,  R ) ,  
where a = { aI, , aN } is the set of available actions 

to the automaton. The action selected at time t is denoted 

by a ( t ) .  Q ( t )  is the state of the automaton at time t and 

consists of the action probability vector p (  t )  = [ pI (  t ) ,  
. . .  , p N ( t ) ] ,  w h e r e p , ( r )  = prob ( a ( t )  = a,) and Cl  
p, ( t )  = 1 v t .  The environment responds to the action 

(Y ( t )  with a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX ( I )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE R ,  R being the set of the environment's 

responses. The state transitions of the automaton are gov- 

erned by the learning algorithm T ,  Q (  t + 1 ) = T (  Q (  t ) ,  
c u ( r ) ,  h ( t ) ) .  Without loss of generality, it can be as- 

sumed that R = [0, 1 ]; i .e.,  the responses are normalized 

to lie in the interval [0,  I ] ,  1 indicating a complete suc- 
cess and 0 total failure. The goal of the automaton is to 

converge to the optimal action, i .e . ,  the action which re- 

sults in the maximum expected reward. Again without loss 
of generality let aI be the optimal action and d ,  = 

E [  X ( r )  1 a l l  = max, { E [  X ( r )  1 a,]}. At present no 
learning algorithms exist which are optimal in the above 

sense. However we can choose the parameters of certain 

learning algorithms so as to realize a response as close to 

the optimum as desired. This condition is called E opti- 

mality. If M ( r )  = E [  h ( t )  I p ( t ) ] ,  then a learning algo- 

rithm is said to be E optimal if it results in an M ( t )  such 

that 

for a suitable choice of parameters and for any t > 0. 

One of the simplest learning schemes is the linear reward- 

inaction rule, L R P l .  Suppose at time r we have a ( t )  = 

a,; if X (  t )  is the response received, then according to the 

L, - , rule 

PI ( r  + 1 )  = P l ( t )  + a h ( r )  [ 1 - P l ( 0 ]  

where a is a parameter of the algorithm controlling the 

learning rate. Typical values for a are in the range 0.01- 
0. I .  It can be shown that this LR - I  rule is E optimal in all 

stationary environments; i.e., there exists a value for the 

parameter U so that condition ( I  8)  is satisfied. 

Collective behavior of a group of automata has also 
been studied. Consider a team of N automata A;  ( i  = 1, 

. . .  , N ) ,  each having r, actions a' = {a ' ,  * . . a:.,}. 
At any instant t each member of the team makes a deci- 

sion a ( t ) .  The environment responds to this by sending 

a reinforcement signal h ( r )  to all the automata in the 

group. This situation represents a cooperative game 

among a team of automata with an identical payoff. All 

the automata update their action probability vectors ac- 

cording to (19) using the same learning rate, and the pro- 

cess repeats. Local convergence results can be obtained 

for the case of stationary random environments. Varia- 

tions of this rule have been applied to complex problems 

such as decentralized control of Markov chains [21] and 

relaxation labeling [22]. 

The texture classification discussed in the previous sec- 

tions can be treated as a relaxation labeling problem and 

stochastic automata can be used to learn the labels (tex- 

ture class) for the pixels. A learning automaton is as- 

signed to each of the pixel sites in the image. The actions 

of the automata correspond to selecting a label for the 

pixel site to which i t  is assigned. Thus for a K-class prob- 

lem each automaton has K actions and a probability dis- 
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tribution over this action set. Initially the labels are as- 
signed randomly with equal probability. Since the number 

of automata involved is very large, it is not practical to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 )  Generate a new configuration from this updated la- 
bel probabilities, increment the iteration counter, 

and go to step 3. 
update the action probability vector at each iteration. In- 

stead we combine the iterations of the neural network de- 

scribed in the previous section with the stochastic learning 

algorithm. This results in an iterative hill-climbing-type 

algorithm which combines the fast convergence of deter- 

ministic relaxation with the sustained exploration of the 

stochastic algorithm. The stochastic part prevents the al- 

gorithm from getting trapped in local minima and at the 

same time “learns” from the search by updating the state 

probabilities. However, in contrast to simulated anneal- 

ing, we cannot guarantee convergence to the global opti- 

mum. Each cycle now has two phases: the first consists 

of the deterministic relaxation network converging to a 

solution; the second consists of the learning network up- 

dating its state, the new state being determined by the 

equilibrium state of the relaxation network. A new initial 

state is generated by the learning network depending on 

its current state and the cycle repeats. Thus relaxation and 

learning alternate with each other. After each iteration the 

probability of the more stable states increases and because 

of the stochastic nature of the algorithm the possibility of 

getting trapped in bad local minima is reduced. The al- 

gorithm is summarized below. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A.  Learning Algorithm 

Let the pixel site be denoted by s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and the number 

of texture classes be K .  Let A, be the automaton assigned 

to site s and the action probability vector of A, be p ,  ( t )  
= [P , , I (~ ) ,  * * 9 P s . k  ( t ) ]  and C j P s , ,  ( t )  = 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVs, t ,  where 
p S , /  ( t )  = prob (label of site s = 1 ). The steps in the 

algorithm are as follows: 

1) Initialize the action probability vectors of all the au- 

tomata 

~ , . , ( o )  = 1/K, VS, 1. 

Initialize the iteration counter to 0. 
2) Choose an initial label configuration sampled from 

the distribution of these probability vectors. 

3) Start the neural network of Section 111 with this con- 
figuration. 

4) Let I ,  denote the label for site s at equilibrium. Let 

the current time (iteration number) be t .  Then the 

action probabilities are updated as follows: 

PI., ( t  + 1 )  = P.,,, ( t )  [ 1 - a w l ,  

V j  # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, and Vs. (20 )  

The response h ( r )  is derived as follow: Suppose the 

present label configuration resulted in a lower en- 

ergy state than the previous one. Then it results in 

X ( t )  = XI, and if the energy increases we have X ( t )  
= X 2  with XI > A,. In our simulations we used X I  
= 1 and h2 = 0.25. 

Thus the system consists of two layers, one for relax- 

ation and the other for learning. The relaxation network 

is similar to the one considered in Section 111, the only 

difference being that the initial state is decided by the 

learning network. The learning network consists of a team 

of automata and learning takes place at a much lower 

speed than the relaxation, with fewer updatings. The 

probabilities of the labels corresponding to the final state 

of the relaxation network are increased according to (20). 

Using these new probabilities a new configuation is gen- 

erated. Since the response does not depend on time, this 

corresponds to a stationary environment, and as we have 

noted before this L R - /  algorithm can be shown to con- 

verge to a stationary point, not necessarily to the global 

optimum. 

VI. EXPERIMENTAL RESULTS A N D  CONCLUSIONS 

The segmentation results using the above algorithms are 

given on two examples. The parameters U /  and corre- 

sponding to the fourth-order GMRF for each texture class 

were precomputed from 64 x 64 images of the textures. 

The local mean (in an 11 X 1 1  window) was first sub- 

tracted to obtain the zero mean texture, and the least- 

square estimates [17] of the parameters were then com- 
puted from the interior of the image. The first step in the 

segmentation process involves computing the Gibbs ener- 

gies U , (  Y,* I L , )  in ( 3 ) .  This is done for each texture class 

and the results are stored. For computational convenience 

these U , (  * ) values are normalized by dividing by k ’ ,  
where k is the size of the window. To ignore the boundary 

effects, we set U ,  = 0 at the boundaries. We have exper- 

imented with different window sizes; larger windows re- 

sult in more homogeneous texture patches but the bound- 

aries between the textures are distorted. The results 

reported here are based on windows of size 1 1  x 1 1  pix- 

els. The bias term w(1,)  can be estimated using the his- 
togram of the image data [ 181 but we obtained these val- 

ues by trial and error. 

In Section IV we observed that neighboring pixel sites 

should not be updated simultaneously. This problem oc- 

curs only if digital implementations of the networks are 

considered, as the probability of this happening in an an- 

alog network is zero. When this simultaneous updating 

was tested for the deterministic case, it always converged 

to limit cycles of length 2. (In fact it can be shown that 

the system converges to limit cycles of length at most 2.) 
The choice of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 plays an important role in the segmen- 

tation process and its value depends on the magnitude of 

the energy function VI(  . ). Various values of 0 ranging 

from 0.2-3.0 were used in the experiments. In the deter- 

ministic algorithm it is preferable to start with a small (3 
and increase it gradually. Large values of beta usually de- 
grade the performance. We also observed that slowly in- 

creasing f l  during the iterations improves the results for 
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the stochastic algorithms. It should be noted that using a 

larger value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp for the deterministic algorithm (com- 

pared to those used in the stochastic algorithms) does not 

improve the performance. 
The nature of the segmentation results depends on the 

order of the label model. It is preferable to choose the 

first-order model for the stochastic algorithms if we know 

a priori that the boundaries are either horizontal or ver- 

tical. However, for the deterministic rule and the learning 

scheme the second-order model results in more homoge- 

neous classification. 

The MPM algorithm requires the statistics obtained 

from the invariant measure of the Markov chain corre- 

sponding to the sampling algorithm. Hence it is preferable 

to ignore the first few hundred trials before starting to 

gather the statistics. The performance of the deterministic 

relaxation rule of Section I11 also depends on the initial 

state and we have looked into two different initial condi- 

tions. The first one starts with a label configuration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL such 

that L, = 1, if U,(  Y,* I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI,) = min,, { U, (  Y,* I IL ) } .  This 

corresponds to maximizing the probability P( Y *  I L )  
[23]. The second choice for the initial configuration is a 
randomly generated label set. Results for both cases are 

provided and we observe that the random choice often 

leads to better results. 

In the examples below the following learning parame- 

ters were used: learning rate a = 0.05 and reward/penalty 

parameters A ,  = 1.0 and A ?  = 0.25. 

Example I :  This is a two-class problem consisting of 

grass and calf textures. The image is of size 128 X 128 

and is shown in Fig. 2(a). In Fig. 2(b) the classification 

obtained by the deterministic algorithm discussed in Sec- 

tion I11 is shown. The maximum likelihood estimate was 

the initial state for the network, and Fig. 2(c) gives the 

result with random initial configuration. Notice that in this 

case the final result has fewer misclassified regions than 

in Fig. 2(b) and this was observed to be true in general. 

Parts (d) and (e) of the figure give the MAP solution using 

simulated annealing and the MPM solution respectively. 

The result of the learning algorithm is shown in Fig. 2(f)  

and there are no misclassifications within the homoge- 

neous regions. However the boundary is not as good as 

those of the MAP or MPM solutions. In all the cases we 

used p = 0.6. 

Example 2: This is a 256 X 256 image (Fig. 2(a)) hav- 

ing six textures: calf, grass, wool, wood, pig skin, and 

sand. This is a difficult problem in the sense that three of 

the textures (wool, pig skin, and sand) have almost iden- 

tical characteristics and are not easily distinguishable, 

even by the human eye. The maximum likelihood solution 

is shown in Fig. 3(b), and part (c) of the figure is the 

solution obtained by the deterministic relaxation network 

with the result in part (b) as the initial condition. Fig. 3(d) 

gives the result with random initial configuration. The 

MAP solution using simulated annealing is shown in part 

(e). As was mentioned in Section IV-A, cycling of 

temperature improves the performance of simulated an- 

nealing. The segmentation result ws obtained by starting 

with an initial temperature T,, = 2.0 and cooling accord- 

ing to the schedule (16) for 300 iterations. Then the sys- 

tem was reset to To = 1.5 and the process was repeated 

for 300 more iterations. In the case of the MPM rule the 

first 500 iterations were ignored and Fig. 3(f)  shows the 

result obtained using the last 200 iterations. As in the pre- 

vious example, the best results were obained by the sim- 

ulated annealing and MPM algorithms. For the MPM case 

there were no misclassifications within homogeneous re- 

gions but the boundaries were not accurate. In fact, as 
indicated in Table I, simulated annealing has the lowest 

percentage error in classification. Introducing learning in  

deterministic relaxation considerably improves the per- 

formance (Fig. 3(g)). Table I gives the percentage clas- 

sification error for the different cases. 

It is noted from the table that although learning im- 

proves the performance of the deterministic network al- 

gorithm, the best results were obtained by the simulated 

annealing technique, which is to be expected. 

A .  Hierarchicul Segmentation 

The various segmentation algorithms described in the 

previous sections can be easily extended to hierarchical 

structures wherein the segmentation is carried out at dif- 

ferent levels-from coarse to fine. The energy functions 

are modified to take care of the coupling between the ad- 

jacent resolutions of the system. Consider a K-stage hi- 

erarchical system, with stage 0 representing the maximum 

resolution level and stage K - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 being the coarsest level. 

The energy corresponding to the kth stage is denoted by 

U! ( s ,  1 ) and U: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s ) (eqs. (3) and (4)). The size of the 

window used in computing the joint energy potential 

U!(  * ) increases with the index k .  The potential U,  is 

modified to take care of the coupling as follows: 

+ PL(6(L"(S) - L " ' ( s ) ) )  + \ v ( L ( s ) ) ,  

(21 1 O < k < K - l  

where L " ( s )  is the label for the site s in the kth stage, and 

f lL is the coupling coefficient between the stages zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk + 1 
and k.  D L ( s )  is the appropriate neighborhood set for the 

kth stage. The result of segmentation on the six-class 

problem with K = 2 and using the learning algorithm is 

shown in Fig. 3(h). 

B. Conclusion 

In this paper we have looked into different texture seg- 

mentation algorithms based on modeling the texture in- 
tensities as a GMRF. It is observed that a large class of 

natural textures can be modeled in this way. The perfor- 
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Fig. 2.  (a) Original image consisting o f  two textures. The cia\\ 
textures are coded by gray levels.) ( h )  Deterministic relaxation 
with random init ial  condition. (d)  MAP c\tiniatc using s1iiitiIat 

learning 

mance of several algorithms for texture segmentation is 

studied. The stochastic algorithms obtain nearly optinxi1 

results, as can be seen from the examples. We noted that 

the MRF model helps us to trivially map the optimization 
problem onto a Hopfield-type neurd network. This deter- 

ministic relaxation network converges extremely fast to a 

solution, typically in 20-30 iterations for the 256 x 256 
image. Its performance, however. is sensitive to the in i -  

tial state of the system and often is not very satisfactory. 

ification using d i f t ren t  algorithms i\ \hewn i n  ( b ) - ( t ) .  (The 

u i t h  tiiaxiiiiuin Iihelihood \il ltition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiis initial condition and ( c l  
ed annealing. (e) MPM \elution. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0 Network w i t h  \tochastlc 

To overcome the disadvantagts of the network. a new al- 

gorithm, which introduces stochastic learning into the it- 

erations of the networh. was proposed. This helps to 

maintain a sustained search of the solution space while 
learning from the past experience. This algorithm coni- 

bines the advantages of deterministic and stochastic relax- 

ation schemes and i t  would be interesting to explore its 

performance in solving other computationally hard prob- 

lems in computer vision. 



Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  (a)  Original image consisting of six textures. (b)  Maximum likelihood solution. (c) Deterministic relaxation with (b )  as 

initial condition and (d) with random initial condition. (e) MAP estimate using simulated annealing. ( f )  MPM solution, (g) 
Network with stochastic learning. (h) Hierarchical network solution 
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TABLE I 

PERCENTAGE M I ~ C L A S S I I : I C ~ ~ - I O N  I O K  ESAMPLI.. 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(SIX CLASS PKOHLI-.M) 

Algorithm 

Maximum Likelihood Estimate 

Neural network (MLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas initial state) 

Neural network (Random initial state) 

Simulated annealing (MAP) 

MPM algorithm 

Neural network with learning 

Hierarchical network 

Percentage Error 

22.17 

16.25 

14.74 

6.72 

7.05 

8.7 

8.21 

ACKNOWLEDGMENT 

The authors wish to thank the reviewers for the many 
useful comments and suggestions which helped to im- 

prove the presentation of this paper. 

REFERENCES 

[ I ]  H. Derin and H. Elliott, "Modeling and segmentation of noisy and 

textured images using Gibbs random fields," IEEE Truns. Puttern zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Anul. Muchine Infell. . vol. PAMI-9. pp. 39-55. Jan. 1987. 

121 F. S .  Cohen and D. B. Cooper, "Simple parallel hierarchical and 
relaxation algorithms for segmenting noncausal Markovian fields." 

IEEE Trans. Pattern Ariul. Machine In te l l . ,  vol. PAMI-9. pp. 195- 
219. Mar. 1987. 

[3] S .  Geman and D. Geman. "Stochastic relaxation. Gibbs distribu- 
tions, and Bayesian restoration of images," zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE Trtms. Pattern Anal. 
Machine Intell.. vol. PAMI-6. pp. 721-741. Nov. 1984. 

141 T. Poggio. V. Torre, and C. Koch. "Computational vision and re- 
gularization theory.'' Nhture. vol. 317. pp, 314-319. Sept. 1985. 

[5] Y. T. Zhou. R. Chellappa. A. Vaid. and B. K .  Jenkins. "Image res- 

toration using a neural network," IEEE Truris. Au~u.sr.,  Speech. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASix- 
nal Process. .  vol. 36. pp. 1141-1 151. J u l y  1988. 

161 Y. T. Zhou and R. Chellappa, "Stereo matching using a neural net- 

work." in h o c .  IEEE I n { .  Conf Acousr. , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASprech. Signul  Proc~ess. 
(New York. NY). Apr. 1988. pp. 940-943. 

171 C. Koch, J. Luo. C. Mead. and J. Hutchinson. "Computation motion 
using resistive networks." in Proc. Neurrrl Injiwm. Prowss.  S w .  
(Denver. CO). 1987. 

[8] Y. T .  Zhou and R. Chellappa. "Computation of optical flow using a 
neural network." in Proc,. IEEE I n t .  Con& N w r u l  N e t i l w k s .  vol. 2 
(San Diego, CA), pp. 71-78. 

191 H. Bulthoff, .I. Little. and T. Poggio. "A parallel algorithm for real- 
time computation of optical flow." Nufur(,. vol. 337. pp. 549-553. 
Feb. 1989. 

[IO] J .  J. Hopfield and D. W. Tank. "Neural computation of decisions in 
optimization problems.'' Biolog. Cyhernrt.. vol. 52. pp. I 14- 152. 
1985. 

[ I  I] J. Besag, "On the statistical analysis of dirty pictures," J .  Ro!. Stcr- 
tist. Soc. B .  vol. 48. pp. 259-302. 1986. 

1121 K. S .  Narendra and M. A. L. Thathachar. "Learning automata-A 
survey," IEEE Trans. S w . ,  M u n ,  C\herri., pp. 323-334, July 1974. 

1131 U. Grenander. Lectures i n  Puttern Theory. vols. 1-111. New York: 
Springer-Verlag. 198 I .  

[ 141 J .  L. Marroquin. "Probabilistic solution of inverse problems.'' Ph.D. 

thesis, M.I.T., Artificial Intelligence Laboratory. Sept. 1985. 
151 R. Chellappa. "Two-dimensional discrete Gaussian Markov random 

field models for image processing." in P r o g r ~ s s  i n  Puttcrn Recog-  
nitiori 2 .  L. N. Kana1 and A. Rosenfeld, Eds. New York: Elsevier. 

1161 G. R. Cross and A.  K. Jain, "Markov random field texture models.'' 
IEEE Trans. Pcctti,rri Anirl. Mtrchirw I n t d l .  . vol. PAMI-5. pp. 25-39. 
Jan. 1983. 

fication of textures using 
Gaussian-Markov random fields." Trurrs. Acofrst. , Speech. 
Signul Process. .  vol. ASSP-33. pp. 959-963. Aug. 1985. 

[ 181 S .  Geman and C. Gratfigne. "Markov random fields image models 
and their application to computer vision." in Pro(..  I r i r .  Congress of' 
Mathrmuticun.s 1986 (Providence). 

1191 J .  Marroquin. S.  Mitter. and T. Poggio. "Probabilistic solution o f  

1985. pp. 79-1 12. 

1171 R. Chellappa and S .  Chatterjee. ' *  

i I I -posed pro hlc tiis in  conipu Icr v is ion, ' . in  Proc,. Irnugc, Unckrsfund- 
ing Wo,-k.\hq, (Miami Beach. FL). Dcc. 1985. pp. 293-309. 

1201 B. Gidas. "Non-stationary Markov chains and convergence of the 
annealing algorithm." J .  Stuti.\t. P h ~ s . ,  vol. 39. pp. 73-131. 1985. 

1211 R .  M. Whcelcr. J r . .  and K .  S.  Narcndra. "Decentralized learning in 
linitc Markov chains." IEEE Truns. Automtrt. G n i t r . .  vol. AC-3 I ,  

pp. 519-526. Junc 1986. 
1221 M. A. L. Thathachar and P. S .  Sastry. "Relaxation labeling with 

learning automata." IEEE Trans. Ptrtrcrn Anul. Muchine I n / e / / .  , vol. 

PAMI-8. pp. 526-268. Mar. 1986. 

1231 S.  Chatterjec and R .  Chellappa. "Maximum likelihood texture seg- 
mentation using Gaushian Markov random field models." in Pro<.. 
Cornpurcr Vision und Putrcrrt Recoxnition Con& (San Francisco. CA). 

Junc 1985 

B. S. Manjunath (S'88) received the bachelor of 
engineering degree in electronics from Bangalore 
University in 1985, and the master of engineering 
degree in systems science and automation from the 
Indian Institute of Science in 1987. Since 1987 he 

has been a Research Assistant at the Signal and 

Image Processing Institute, University of South- 
ern California, Los Angeles, where he is currently 

working toward the Ph.D. degree in electrical en- 
gineering. His research interests include stochas- 

tic learning, self-organization, neural networks, 

and computer vision. 

Tal Simchony (S'86-M'89) was born in Tel Aviv, 

Israel, on January 18, 1956. He received the B.S. 
degree in mathematics and computer science and 

the M.S. degree in applied mathematics from Tel 
Aviv University in 1982 and 1985, respectively. 

He then received the Ph.D. degree in electrical 

engineering from the University of Southern Cal- 

ifornia, Los Angeles, in 1988. 
In 1982 he joined ECI Telecom as a Software 

and Systems Engineer. During the years 1985- 

1988 he was a Research Assistant at the Signal 

and Image Processing Institute, USC. He is currently at ECI Telecom as 
Deputy Chief Engineer working on speech compression algorithms on dig- 
ital networks. His research interests include optimization, learning, and 
computer vision. 

Rama Chellappa (S'79-M'81-SM'83) was born 
in Madras, India. He received the B.S. degree 
(honors) in electronics and communications en- 
gineering from the University of Madras in 1975 

and the M.S. degree (with distinction) in electri- 

cal communication engineering from the Indian 
Institute of Science in 1977. He then received the 
M.S. and Ph.D. degrees in electrical engineering 
from Purdue University, West Lafayette, IN, in 

1978 and 1981, respectively. 
During the years 1979-1981, he was a Faculty 

Research Assistant at the Computer Vision Laboratory, University of 

Maryland, College Park. Since 1986. he has been an Associate Professor 
in the Electrical Engineering-Systems, University of Southern California, 

Los Angeles, and in September 1988 he became the Director of the Signal 

and Image Institute there. His current research interests are in.signal and 
image processing, computer vision, and pattern recognition. 

Dr. Chellappa is a member of Tau Beta Pi and Eta Kappa Nu. He is a 
coeditor of two volumes of selected papers on image analysis and process- 

ing, published in the autumn of 1985. He was an Associate Editor for the 
IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, A N D  SIGNAL PROCESSING and 
he is a coeditor of Computer Vision, Graphics, and Image Processing: 
Graphic Models and Image Processing, published by Academic Press. He 

was a recipient of a National Scholarship from the Government of India 
during the period 1969-1975. He was the recipient of the 1975 Jawaharlal 

Nehru Memorial Award from the Department of Education, Government 
of India, the 1985 Presidential Young Investigator Award, and the 1985 
IBM Faculty Development Award. He served as the General Chairman of 

the I989 IEEE Computer Society Conference on Computer Vision and Pat- 

tern Recognition and the IEEE Computer Society Workshop on Artificial 
Intelligence for Computer Vision. He was also Program Cochairman of the 
NSF-sponsored Workshop on Markov Random Fields for Image Processing 
Analysis and Computer Vision. 


