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STOCHASTIC AND DETERMINISTIC TREND MODELS 

E. Bee Dagum, C. Dagum 

1. INTRODUCTION 

Most information in social sciences, biology, and many other sciences occurs 
in the form of time series where their main property is that the observations are 
dependent and the nature of this dependence is of interest in itself. A time series 
is a finite realization of a stochastic process and is often compiled for consecutive 
and equal periods, such as weeks, months, quarters, and years. In time series de-
composition, four types of movements have been traditionally distinguished, 
namely, the trend, the cycle, the seasonal variations (for sub annual data), and the 
irregular fluctuations. As a matter of statistical description, a given series can al-
ways be represented by one of these components or a sum of several of them. 
The four components are usually interrelated and for most series, they influence 
one another. 

The trend corresponds to sustained and systematic variations over a long pe-
riod of time. It is associated with the structural causes of the phenomenon in 
question, for example, population growth, technological progress, new ways of 
organization, capital accumulation. For the majority of socioeconomic time series, 
the trend is very important because it dominates the total variation of the series. 
The identification of trend has always posed a serious statistical problem. The 
problem is not one of mathematical or analytical complexity but of conceptual 
complexity. This problem exists because the trend as well as the remaining com-
ponents of a time series are latent (no observables) variables, and therefore, as-
sumptions must be made on their behavioural pattern. The trend is generally 
thought of as a smooth and slow movement over a long term. The concept of 
“long” in this connection is relative and what is identified as trend for a given se-
ries span might well be part of a long cycle once the series is considerably aug-
mented, such as the Kondratieff economic cycle. Kondratieff (1925) estimated 
the length of a long cycle to be between 47 and 60 years. Often, a long cycle is 
treated as a trend because the length of the observed time series is shorter than 
one complete face of this type of cycle. 

To avoid the complexity of the problem posed by a statistically vague defini-
tion, statisticians have resorted to two simple solutions: One consists of estimat-
ing trend and cyclical fluctuations together calling this combined movement trend-
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cycle; the other consists of defining the trend in terms of the series length, denot-
ing it as the longest non periodic movement. The estimation of the time series 
trend can be done via a specified model applied to the whole data called the global 
trend, or by fitting a local polynomial function in such a way that, at any time 
point, its estimates depend on only the observations at that point and some speci-
fied neighbouring points. Local polynomial fitting has a long history in the 
smoothing of noisy data. Henderson (1916), Whittaker and Robinson (1924) and 
Macaulay (1931) are some of the earliest classical references. These authors were 
very much concerned with the smoothing properties of linear estimators, being 
Henderson (1916), the first to show that the smoothing power of a linear filter 
depends on the shape and values of its weighting system. 

On the other hand, more recent contributions (among others, Cleveland and 
Devlin, 1988; Hardle, 1990; Fan, 1992 and 1993; Fan and Gijbels, 1996; Wand 
and Jones, 1995; Simonoff, 1995; Green and Silverman, 1994; Eubank, 1999) 
concentrated on the asymptotic statistical properties of optimally estimated 
smoothing parameters. Optimality being defined in terms of minimizing a given 
loss function, usually, the mean square error or the prediction risk. 

In this paper we will review some of the stochastic and deterministic trend 
models formulated for global and local estimation. 

2. DETERMINISTIC AND STOCHASTIC GLOBAL TREND MODELS 

Deterministic and stochastic global trend models are based on the assumption 
that the trend or nonstationary mean of a time series can be approximated closely 
by simple functions of time over the entire span of the series. 

The most common representation of a deterministic trend is by means of 
polynomials and transcendental functions. The time series from which the trend 
is to be identified is assumed to be generated by a nonstationary process where 
the nonstationary property results from a deterministic trend . A classical model is 
the regression or error model (Anderson, 1971) where the observed series is 
treated as the sum of a systematic part or trend and a random part or irregular. 
This model can be written as  

t t tZ Y  ! "  (1) 

where  t is a purely random process, that is,  t ~i.i.d. 2(0, ) # (independent and 

identically distributed with expected value 0 and variance, 2 .) #  

In the case of a polynomial trend, 

2
0 1 2 ... ,n

t nY a a t a t a t! " " " "  (2) 

where generally n 3. The trend is said to be of a deterministic character because 
it is not affected by random shocks which are assumed to be uncorrelated with 
the systematic part. 
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Model (1) can be generalized by assuming that  t is a second-order linear sta-
tionary stochastic process, that is, its mean and variance are constant and its auto-
covariance is finite and depends only on the time lag. 

Besides polynomials in time, other suitable mathematical functions are used to 
represent deterministic trends. Three of the most widely applied functions, 
known as growth curves, are the modified exponential, the Gompertz, and the 
logistic. 

The modified exponential trend can be written as 

, , 0, 0, 1t
tY a bc a real b c c! " $ % $  (3) 

For a=0, model (3) reduces to the unmodified exponential trend 

0 0; , logt t
tY bc Y e b Y c& &! ! ! !  (4) 

when b>0 and c>1, and so &>0, model (4) represents a trend that increases at a 
constant relative rate &. For 0<c<1, the trend decreases at the rate &. Models (3) 
and (4) are solutions of the differential equation 

/ ( ), log ,t tdY dt Y a c& &! ' !  (5) 

which specifies the simple assumption of no inhibited growth. 
Several economic variables during periods of sustained growth or rapid infla-

tion, as well as population growths measured in relative short periods of time, can 
be well approximated by trend models (3) and (4). But in the long run, socioeco-
nomic and demographic time series are often subject to obstacles that slow their 
time path, and if there are no structural changes, their growth tend to a stationary 
state. Quetelet made this observation with respect to population growth and Ver-
hulst (1838) seems to have been the first to formalize it by deducing the logistic 
model. Adding to eq. (5) an inhibit factor proportional to –Y2, the result is 

2/ (1 / ),

/ , , 0

t tdY dt Y Y Y Y k

k

& ( &

& ( & (

! ' ! '

! %
 (6) 

which is a simple null form of the Ricatti differential equation. Solving eq. (6), we 
obtain the logistic model, 

1(1 ) ,t
tY k ae &' '! "  (7) 

where a>0 is a constant of integration. 
Model (7) belongs to a family of S-shaped curves generated from the differen-

tial equation (see Dagum, 1985): 

/ ( ) ( / ), (1) 0.t t tdY dt Y t Y k) * *! !  (8) 
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Solving eq. (8) for  =log c and *=log(Yt/k), we obtain the Gompertz curve 
used to fit mortality table data; that is, 

, 0, 1,0 1,
tc

tY kb b b c! % $ + +  (9) 

where b is a constant of integration. 
It should be noted that differencing will remove polynomial trends and suit-

able mathematical transformations plus differencing will remove trends from 
nonlinear processes; e.g., for (7) using 

log[ /( )]t t tZ Y k Y! '  

and then taking differences gives ,Zt=&. 
The second major class of global trend models is the one that assumes the 

trend to be a stochastic process, most commonly that the series from which the 
trend will be identified follows a homogeneous linear nonstationary stochastic 
process (Yaglom, 1962). Processes of this kind are nonstationary, but applying a 
homogeneous filter, usually the difference filter, we obtain a stationary process in 
the differences of a finite order. In empirical applications, the nonstationarity is 
often present in the level and/or slope of the series; hence, the order of the dif-
ference is low. An important class of homogeneous linear nonstationary proc-
esses are the ARIMA (autoregressive integrated moving average processes) which 
can be written as (Box and Jenkins, 1970) 

2

( ) ( ) ,

~i.i.d.(0, )

d
p t q t

t a

B Y B a

a
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 (10) 

where B is the backshift operator such that BnYt=Yt-n; -p(B) and .q(B) are polyno-
mials in B of order p and q, respectively, and satisfy the conditions of stationarity 
and invertibility; ,d=(1-B)d is the difference operator of order d and at is a purely 
random process. Model (10) is also known as an ARIMA process of order (p,d,q). 
If p=0, the process follows an IMA model. 

Two common stochastic trend models are the IMA(0,1,1) and IMA(0,2,2) 
which take the form, respectively, 

2
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or, equivalently, 

1 1 ,t t t tY Y a a.' '! " '  (12) 

and 
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or equivalently, 

1 2 1 1 2 22 .t t t t t tY Y Y a a a. .' ' ' '! ' " ' '  (14) 

The a’s may be regarded as a series of random shocks that drive the trend and 
./ can be interpreted as measuring the extent to which the random shocks or “in-
novations” incorporate themselves into the subsequent history of the trend. For 
example, in model (11), the smaller the value of ., the more flexible the trend; the 
higher the value of .0/the more rigid the trend (less sensitive to new innovations). 
For q=1, model (11) reduces to one type of random walk model which has been 
used mainly for economic time series such as stock market price data (Granger 
and Morgenstern,1970). In such models, as time increases the random variables 
tend to oscillate about their mean value with an ever increasing amplitude. The 
use of stochastic models in business and economic series has received consider-
able attention during the last twenty years (see, for example, Nelson and Plosser, 
1982, Harvey, 1985, Harvey and Jaegger 1993, Kaiser and Maravall, 1999 and 
2001). 

3. COMMON LOCAL TREND PREDICTORS 

Economists and statisticians are often interested in the “short” term trend of 
socio-economic time series. The short term trend generally includes cyclical fluc-
tuations, and is referred to as trend-cycle. In recent years, there has been an in-
creased interest to use trend-cycle estimates or smoothed seasonally adjusted data 
to facilitate recession and recovery analysis. Among other reasons, this interest 
originated from major economic and financial changes of global nature which 
have introduced more variability in the data, and consequently, in the seasonally 
adjusted numbers. This makes very difficult to determine the direction of the 
short-term trend, particularly to assess the presence or the upcoming of a turning 
point. The local polynomial regression predictors developed by Henderson (1916) 
and LOESS due to Cleveland (1979) are the most widely applied to estimate the 
short-term trend of seasonally adjusted economic indicators. Particularly, the 
former is available in nonparametric seasonal adjustment software such as the 
U.S. Bureau of the Census X11 method (Shiskin et al., 1967) and its variants the 
X11ARIMA (Dagum, 1980) and X12ARIMA (Findley et al., 1998), the latter, in 
STL (Cleveland et al., 1990). 

The basic assumption is that the input series {yt, t = 1, 2, ...,N} can be decom-
posed into the sum of a systematic component called the signal (or nonstationary 
mean) gt, plus an erratic component called the noise ut, such that 
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 yt = gt + ut. (15) 

The noise component ut is assumed to be either a white noise, WN(0, #2
u ), or, 

more generally, to follow a stationary and invertible Autoregressive Moving Av-
erage (ARMA) process. 

Assuming that the input series {yt, t = 1, 2, ...,N} is seasonally adjusted or 
without seasonality, the signal gt represents the trend and cyclical components, 
usually referred to as trend-cycle for they are estimated jointly. The trend-cycle 
can be represented locally by a polynomial of the time distance j, between yt and 
the neighboring observations yt+j. 

Hence, given ut for some time point t, it is possible to find a local polynomial 
trend estimator 

gt(j) = a0 + a1j + ... + ap j 
p + 1t(j), (16) 

where a0, a1, ..., ap are real and 1t is assumed to be purely random and mutually 
uncorrelated with ut. The coefficients a0, a1, ..., ap can be estimated by ordinary or 

weighted least squares or by summation formulae. The solution for 0â  provides 

the trend-cycle estimate ˆ (0)tg , which equivalently is a weighted average (Kendall, 

Stuart, and Ord, 1983), applied in a moving average, such that 

ˆ ˆ(0)
m

t t j t j
j m

g g w y '
!'

! ! 2  (17) 

where wj , j < N, denotes the weights to be applied to the observations yt+j to get 

the estimate ˆtg  for each point in time t = 1, 2, ...,N. 

The weights depend on: (1) the degree of the fitted polynomial, (2) the ampli-
tude of the neighborhood, and (3) the shape of the function used to average the 
observations in each neighborhood. 

Once a (symmetric) span 2m+1 of the neighborhood has been selected, the wj’s 
for the observations corresponding to points falling out of the neighborhood  
of any target point are null or approximately null, such that the estimates of the  
N ! 2m central observations are obtained by applying 2m + 1 symmetric weights 
to the observations neighboring the target point. The missing estimates for the 
first and last m observations can be obtained by applying asymmetric moving av-
erages of variable length to the first and last m observations, respectively. The 
length of the moving average or time invariant symmetric linear filter is 2m+1, 
whereas the asymmetric linear filters length is time varying. 

Using the backshift operator B, such that Bnyt = yt!n, equation (17) can be writ-
ten as 

ˆ ( ) 1, 2, ...,
m

j
t j t t

j m

g w B y W B y t N
!'

! ! !2  (18) 
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where W(B) is a linear nonparametric estimator. 
The nonparametric estimator W(B) is said to be a second order kernel if it sat-

isfies the conditions 

1, 0
m m

j j
j m j m

w jw
!' !'

! !2 2  (19) 

hence it preserves a constant and a linear trend. On the other hand, W(B) is a 
higher order kernel if 

1, 0
m m

i
j j

j m j m

w j w
!' !'

! !2 2  (20) 

for some i = 1, 2, ..., p"2. In other words, it will reproduce a polynomial trend of 
degree p ! 1 without distortion. 

The nonparametric function estimators are based on different assumptions of 
smoothing. For example, the locally weighted regression smoother (LOESS) fits 
local polynomials of a degree d where the parameters are estimated either by or-
dinary or weighted least squares. Thus, it satisfies the property of best fit to the 
data.  

Given a series of equally spaced observations and corresponding target points 
{(yj , tj), j = 1, ...,N}, t1 < ... < tN, where tj denotes the time the observation yj is 
taken, Loess produces a smoothed estimate as follows 

ˆT
j jy (! t  (21) 

where tj is a (d+1)-dimensional vector of generic component p
jt , p = 0, ..., d; d = 0, 

1, 2, ... denotes the degree of the fitting polynomial, and ˆ
j(  is the (d+1)-

dimensional least squares estimate of a weighted regression computed over a 
neighborhood of tj constituting a subset of the full span of the series. 

The weights of the regression depend on the distance between the target point 
tj* and any other point belonging to its neighborhood, through a weight function 
W(t).  

The weighting function more often used is the tricube proposed by Cleveland 
et al. (1990), i.e. 

3 3
[ 1,1]( ) (1 ) ( )W t t I t'! '  (22) 

In particular, at each point in the neighborhood of the target point tj*, N(tj*), 
has assigned a weight 
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with D(tj*) representing the distance of the furthest near-neighbor from tj*. 
Each neighborhood is made of the same number of points chosen to be near-

est to tj*, and the ratio between the amplitude of the neighborhood, k, and the 
full span of the series, N, defines the bandwidth or smoothing parameter. 

Cleveland (1979) derived the filters for the first and last observations by 
weighting the data belonging to an asymmetric neighborhood which contains the 
same number of data points of the symmetric one.  

On the other hand, the Cubic Smoothing Spline searches for an optimal solu-
tion between both fitting and smoothing of the data under the assumption that 
the signal follows, locally, a second degree polynomial. Hence, 

2

2 '' 2

1

1
min [ ( )] [ ( )]

N b

j jf C a
i

y f t f u du
N

; ;
;

;
8

!

' "2 <  (24) 

where ; is a smoothing parameter that balances the trade-off between the fit to 
the data (left hand) and the smoothness of the final estimates (right hand). 

In matrix form 

ˆ ( ) ,y S y;!  (25) 

where S(;) is called the influential matrix. 
The well known Hodrick-Prescott (1997) trend filter applied to economic and 

financial series is a cubic spline where for quarterly series lambda is equal to 1600, 
indicating that the output data will be very smooth. These authors framework is 
that a given time series yt is the sum of a growth component and a cyclical com-
ponent ct : 

 yt = gt + ct, for t=1,2,...,T. (26) 

The measure of the smoothness of the {gt} path is the sum of the squares of 
its second order difference. The ct are deviations from gt and the conceptual 
framework is that over long time periods, their average is near zero. These con-
siderations lead to the following programming problem for determining the 
growth components 

1

2 2
1 1 2{ }

1 1

min [( ) ( )]T
t t

T T

t t t t tg
t t

c g g g g;
!

' ' '
! !

= >
" ' ' '? @

A B
2 2  (27) 

where ct=yt-gt. The parameter ; is a positive number which penalizes variability in 
the growth component series. The larger the value of ;, the smoother is the solu-
tion series. For a sufficiently large ;, at the optimum all the gt+1-gt must be arbi-
trarily near some constant ( and therefore for gt arbitrarily near g0+(t. This im-
plies that the limit of solution to (27) as ; approaches infinity is the least squares 
fit of a linear time trend model. 

Kaiser and Maravall (1999) showed that under certain restriction the Hodrick-
Prescott filter can be well approximated by a IMA model of order 2. 
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A Kernel is a locally weighted average with a weighting function that follows a 
probability distribution. 

1

ˆ
N
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j
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are the weights from a non parametric kernel Kb(x)=Kb(-x), i.e. a nonnegative 
function such that b>0 is a smoothing parameter. 

An example is provided by the Gaussian kernel given by 

1
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 (29) 

The Henderson smoothing filters are derived from the graduation theory, 
known to minimize smoothing with respect to a third degree polynomial within 
the span of the filter. It consists of locally fitting a cubic trend by weighted least 
squares where the weights are chosen to minimize the sum of squares of their 
third differences (smoothing criterion). The objective function to be minimized is 

2 3 2
0 1 2 3[ ] ,

m

j t j
j m

W y a a j a j a j"
!'

' ' ' '2  (30) 

where the solution for the constant term 0â  is the smoothed observation 

ˆ ,t j jg W W'!  and the filter length is 2m + 1. 

The solution is a local cubic smoother with weights 

2 2 2 2 2 2{( 1) }{( 2) }{( 3) }jW m j m j m jE " ' " ' " '  (31) 

and the weight diagram known as Henderson’s ideal formula is obtained, for a 
filter length equal to 2m!3, 

2 2 2 2 2 2 2 2
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Important studies related to these kind of trend-cycle estimators have been 
made, among many others, by Pearce (1975), Burman (1980), Cleveland and Tiao 
(1976), Box et al. (1978), Kenny and Durbin (1982), and Dagum and Luati (2000 
and 2001). 

Recently, Dagum and Bianconcini (2006 and 2007) have found Reproducing 
Kernels in Hilbert Spaces (RKHS) of the Henderson and LOESS local polyno-
mial regression predictors with particular emphasis on the asymmetric filters ap-
plied to most recent observations. These authors show that the asymmetric filters 
can be derived coherently with the corresponding symmetric weights or from a 
lower or higher order kernel within a hierarchy, if preferred. In the particular case 
of the currently applied asymmetric Henderson and LOESS filters, those ob-
tained by means of the RKHS are shown to have superior properties relative to 
the classical ones from the view point of signal passing, noise suppression and 
revisions. 
 
Dipartimento di Scienze Statistiche “Paolo Fortunati” ESTELA BEE DAGUM 
Università di Bologna CAMILO DAGUM 
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RIASSUNTO 

Modelli stocastici e deterministici per la stima del trend 

Nel lavoro proponiamo una rassegna di alcuni modelli per la stima di trend globali e 
locali. Modelli per la stima globale del trend si basano sull’assunzione che la media non 
stazionaria della serie storica possa essere ben approssimata da semplici funzioni del tem-
po sull’intero campo di osservazione della serie. Le rappresentazioni più comuni di trend 
deterministici e stocastici sono quindi introdotte. In particolare, nel contesto dei trend de-
terministici vengono analizzate funzioni polinomiali e trascendentali, mentre per la stima 
di trend stocastici assumiamo che la serie originale segua un processo stocastico non sta-
zionario, ma lineare omogeneo. Recentemente, una maggiore attenzione è stata orientata 
all’analisi del trend di breve periodo, caratterizzato da fluttuazioni cicliche e generalmente 
noto come trend-ciclo. A tale riguardo, nel lavoro consideriamo il classico filtro sviluppa-
to da Henderson (1916) e la LOESS ideato da Cleveland (1979), che sono i predittori 
maggiormente utilizzati per la stima del trend locale di breve periodo di serie storiche de-
stagionalizzate. 

SUMMARY 

Stochastic and deterministic trend models 

In this paper we provide an overview of some trend models formulated for global and 
local estimation. Global trend models are based on the assumption that the trend or non-
stationary mean of a time series can be approximated closely by simple functions of time 
over the entire span of the series. The most common representation of deterministic and 
stochastic trend are introduced. In particular, for the former we analyze polynomial and 
transcendental functions, whereas for the latter we assume that the series from which the 
trend will be identified follows a homogeneous linear nonstationary stochastic process. 
Recently more attention has been oriented on the analysis of the short term trend, that 
includes cyclical fluctuations and is referred to as trend-cycle. At this regard, we analyze 
the local polynomial regression predictors developed by Henderson (1916) and LOESS 
due to Cleveland (1979), which are the most widely applied to estimate the short term lo-
cal trend of seasonally adjusted economic indicators. 


