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Abstract 

It is shown that it is possible to regard stochastic and fuzzy logics as being derived from two 

different constraints on a probability logic: statistical independence (stochastic) and logical 

implication (fuzzy). To contrast the merits of the two logics, some published data on a fuzzy-

logic controller is reanalysed using stochastic logic and it is shown that no significant difference 

results in the control policy. 

Fuzzy logic as probability logic 

The literature on fuzzy logic (Lee, 1972; Zadeh 1973) treats it very much as a new concept, 

distinct from that of probability logic (Rescher, 1969), even though both ascribe to events 

numbers in the interval [0, 1]. This suggests that a new theoretical framework is required in 

which to analyse the results of practical applications of fuzzy logic. This letter is to demonstrate 

that fuzzy logic may be treated in terms of probability theory. This is possible because 

probability logic is itself not truth functional (Rescher, 1969)—the truth value of a logical 

expression is not uniquely determined by those of its components, and additional assumptions 

are necessary to determine it. It will be shown that, if a relationship of logical implication is 

assumed between variables, the rules of fuzzy logic apply. Conversely, if these rules do apply, 

there is necessarily logical implication between the variables (if they are probabilistic). This is in 

contrast to the more common assumption of statistical independence of variables, giving what is 

here termed a stochastic logic. 

Fuzzy logic is an extension of Boolean logic based on Zadeh’s (1965) fuzzy set theory in which 

the usual binary truth values (0 and 1) are extended to include any degree of membership in the 

closed interval of reals [0, 1]. The normal logic operations are defined in terms of arithmetic 

functions on these degrees of membership. That is, taking a capital letter as a logic variable, and 

the corresponding lower case letter as its degree of membership, 

 C = A AND B => c = min(a, b) (1) 

 C = A OR B => c = max(a, b) (2) 

 C= NOT B => c =1-b (3) 

These definitions coincide with the normal logic functions for the two extreme values (TRUE = 

1, FALSE = 0). Using this notation, but regarding, for example, a as being not only a degree of 

membership but also the actual probability of occurrence of event A, one may derive the 

probabilistic equivalents of equations 1-3. It is assumed that the events themselves are binary in 

nature and either occur or do not occur. Equation 3 still applies (as usual ¬A means the 

nonoccurrence of A); for C = NOT B, 

 c = p(C) = p(¬B) = 1-p(B) = 1-b (4) 



 

2 

Consider now the expressions for a and b in terms of the joint probabilities of the events A and 

B: 

 a = p (A) = p (A ∧ B) + p (A ∧ ¬B) (5) 

 b = p (B) = p (A ∧ B) + p (¬A ∧ B) (6) 

From these equations, given that the probabilities lie in the interval [0, 1], we may derive the 

inequalities: 

 0 ≤ p(A ∧ B) ≤ min(a, b) (7)  

 0 ≤ ab ≤ min(a, b) (8) 

 max(a, b) ≤ p(A ∨ B) ≤ 1 (9) 

 max(a, b) ≤ a + b - ab ≤ 1 (10) 

Consider now the significance of each of the three values in these inequalities being attained: 

For C = A AND B, c = p(A ∧ B), the conditions are: 

(a) c = 0  p(A ∧ B) = 0 => A ⊃ ¬B and B ⊃ ¬A; i.e. A and B are mutually exclusive; 

(b) c = ab  p(A ∧ B) = p(A)p(B); i.e. A and B are statistically independent; 

(c) c = min(a, b)  p(A ∧ ¬B) = 0 or p(¬A ∧ B) = 0, i.e. one of A and B logically 

implies the other. 

For C = A OR B, c = p(A ∨ B) = 1-p(¬A ∧ ¬B), the conditions are: 

(i) c = 1  p(¬A ∧ ¬B) = 0  ¬A ⊃ B and ¬B ⊃ A; i.e. one of A and B must occur; 

(ii) c = a + b - ab  p(A ∧ B) = p(A)p(B); i.e. A and B are statistically independent; 

(iii) c = max (a, b)  p(A ∧ ¬B) = 0 or p(¬A ∧ B) = 0  A ⊃ B or B ⊃ A; i.e. one of A 

and B logically implies the other. 

It may be seen that conditions (a) and (i) are independent, and together imply that A = ¬B. 

Conditions (b) and (ii) are identical and together lead to a stochastic logic in which variables are 

assumed to be statistically independent. Conditions (c) and (iii) are identical and together lead to 

a fuzzy logic in which all variables are assumed to belong to a single chain of implication. Thus, 

informally, the assumptions that lead to stochastic and fuzzy logics are seen to be of opposite 

natures, but both, arise as constraints on an underlying probability logic. 

Practical comparison of fuzzy and stochastic logics 

The assumptions necessary to derive a fuzzy or stochastic logic from a probability logic clearly 

are semantic in nature and their relative merits may be contrasted only in the context of particular 

applications. Mamdani and Asillian have described a fuzzy-logic controller for a steam engine in 

which nonnumeric linguistic statements about appropriate control strategies are converted 

directly into a fuzzy control policy (Assilian, 1974; Mamdani, 1974; Mamdani & Assilian, 

1975). The policy based on a collection of some 29 rules of the form ‘if the pressure error is 

negative and big, and the change in pressure error is neither negative big nor negative medium, 

then the heat change should be positive and big’ was found to give markedly better performance 

than tuned 2- and 3-term linear controllers or nonlinear adaptive algorithms. 
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This application provides a clear test case where using fuzzy logic may be regarded as equivalent 

to postulating that, if two rules apply, the one with the lower degree of membership is subsumed 

by the other and may be neglected. Using stochastic logic is equivalent to postulating that the 

rules derive from independent considerations and both should be taken into account. One might 

suppose, in practice, that the actual state of affairs lies between these extremes. From a more 

concrete viewpoint, one might take the degrees of membership as representing the fraction of 

control engineers who agreed that a particular description, or rule, applied, i.e. the probability 

that a randomly selected engineer would agree this, and the question becomes one of whether the 

same engineers would choose the applicable rules, or whether the choices are distributed 

randomly among them. Note, however, that this is only one possible semantic interpretation of 

the degree of membership in this case. 

As an experiment, the 29 rules for the steam-engine throttle control (Assilian, 1974; Mamdani & 

Assilian, 1975) were used to generate a phase-plane portrait of the control policy using both the 

stochastic logic of conditions (b) and (ii) and the fuzzy logic of conditions (c) and (iii). The 

pressure error had been quantised at 14 levels and the change in pressure error to 13 levels, so 

that it was possible to compare the resulting policies in 182 cells. It was found that the two 

agreed completely in all except two cells. These were both on the switching line of the policy 

where the control action changed from positive to negative, and corresponded to the switching 

line being displaced by one cell. In both these cases, the degree of membership of the action 

selected by the fuzzy logic was only 0.2, compared with values of 0.6 to 1.0 in the majority of 

cases. Thus it may be concluded that no significant difference in control policy results from 

combining the linguistic statements about control rules using either the ‘fuzzy’ or the ‘stochastic’ 

variants of probability logic. 

Conclusions 

The results reported in this letter highlight the significant feature of applications of fuzzy logic. 

This is not the precise rules of the logic itself, but rather the use of qualitative statements to 

produce a quantitative result. This is one role of probability theory, particularly that part of it that 

deals with subjective probability and decision making, two areas that in recent years have 

become far better formally related to the more objective formulations of probability theory (Fine, 

1973). The control study cited may be regarded as a (highly successful) experiment in subjective 

probability applied to a real design problem. The probabilistic basis for the fuzzy logic used is an 

appropriate tool for the formal analysis of the controller’s stability etc. The robustness of the 

results to radical changes in the assumptions underlying the logical calculus used is an 

encouraging indication of the basic robustness of the technique. 
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