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Abstract

A memristor is a nonlinear polarity-dependent fundamental circuit element. Due to these intrinsic properties of the 
device, analyzing a circuit that contains multiple memristors becomes complex. In this paper, we study the characteristics 
of multiple-memristor series (anti-series) and parallel (anti-parallel) connections, including their transient and stable state 
composite properties. Also, the existing phenomenological and physics-based memristor mathematical modeling tech-
niques have been discussed for use in SPICE simulation environment. For making a standardized comparison between 
memristor stochastic and deterministic models, all models presented in this paper have been implemented in a single 
SPICE program. In addition to the well-known previously reported Joglekar and Biolek window functions, a modified 
Biolek window function and a novel generic scalable window function have been used to model the intrinsic nonlinear-
ity of memristors effectively. Furthermore, electronic synapse circuits based on memristive devices in series and parallel 
connections and synaptic circuits based on CMOS transistor–memristor architecture have been presented and analyzed. 
Based on the obtained results, artificial synaptic circuit design limitation using a single memristor has been demonstrated.

Keywords Stochastic model · Deterministic model · Transient state · Steady state · Window function · Synapse

1 Introduction

As we are fast approaching the end of the conventional 
CMOS-based computing era, the search for new tech-
nologies has long been started. For the past, nearly half 
of a century, the performance of computers improved 
through CMOS transistor size scaling, usually known as 
Moore’s law [1–4]. However, due to design constraints 
a transistor scaling by itself is reaching its fundamental 
physical limit [1–4]. Besides, the performance of existing 
computing devices is not up to the level to address the 
demand of artificial intelligence (AI) application such as 
in machine learning and deep learning, since it typically 
involves the processing of high volume of data. Moreo-
ver, search for high throughput in communication and 

low-power computing devices is on high gears in both 
academia and industry. To address the current fast com-
puting device demand, researchers search for radical new 
device technology and computing paradigms simulta-
neously. In recent years, a radical novel device, termed 
memristor, has attracted researchers from both academia 
and industry to exploit its promising potential for future 
neuromorphic computing application as an alternative to 
the current von Neumann computing architecture and 
memory technology [5–9]. This emerging new nanoscale 
nonlinear device is a two-terminal passive device like a 
resistor, capacitor, an inductor with nonvolatile intrinsic 
memory property of retaining its current state as a form 
of its memristance (memory resistance) value [10, 11]. 
Professor Chua, in 1971, predicted the existence of this 
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memristive device as the fourth fundamental circuit ele-
ment, which is latter physically realized by HP Lab research 
teams after carefully studying the mathematical relation-
ship between the two basic circuit variables, namely elec-
tric charge q and magnetic flux linkage � [11]. HP Lab [1] 
did the initial memristor device fabrication, which consists 
of a stoichiometric TiO

2
 and an oxygen-deficient TiO

2−x
 

layers sandwiched between the two platinum electrodes 
of the device along the mathematical model for small-sig-
nal device operation [12–14]. Since the announcement of 
the first HP memristor, several different material compo-
sition memristors, including their mathematical models, 
have been proposed [12, 13]. From memristor taxonomy 
papers published in [14, 15], memristive devices can be 
classified as redox memristive devices usually fabricated 
in metal–insulator–metal (MIM) structure that relies on an 
oxidation or reduction process of cations or anions to alter 
the neighborhood chemical composition and the switch-
ing layer physical characteristics. The second categories 
are devices based on electronic effects that rely on elec-
tron trapping and insulator–metal transition process in a 
Mott insulator [14]. The third categories are phase change 
memristor (PCM) devices, based on noncrystalline chalco-
genide or crystalline chalcogenide thin-film layer micro-
structure restructuring to alter their memristance. The last 
categories are spin torque transfer (STT) and MEMS-based 
memristive devices. However, the redox (metal ion-based 
and oxygen ion-based) devices have encouraging resis-
tive switching properties and compatibility with the exist-
ing CMOS technology as well as practically proven ability 
to integrate within the computing system [14]. Because 
of these reasons, the paper presented here focuses on 
the SPICE modeling of such devices. Metal ion-based 
(conductive bridge/CBRAM and self-directed channel/
SDC) [14] and oxygen ion-based (valency change memory/
VCM and thermochemical memory/TCM) [15] memristor 
mathematical models exist in the literature and can be 
classified as indeterministic/stochastic and determinis-
tic device models. The initial HP memristor model and 
its variant, such as Joglekar memristor model [16], Biolek 
memristor model [17], modified Biolek memristor model 
[18], general novel scalable window function-based model 
[19], metal–insulator–metal (MIM) tunnel barrier model 
[20] and generic memristor model [21], discussed in this 
paper fall in the region of deterministic memristor model, 
whereas the general metastable switch (MSS) memristor 
model [22] is classified as stochastic memristor model. The 
MSS model is promising for the simulation of a neuromor-
phic processing system that works based on the ideas of 
AHaH (anti-Hebbian and Hebbian) Computing [23].

Nowadays, having a memristor hardware device for the 
experiment is difficult because of the fabrication cost and 
lack of the availability of the device in the market at an 

affordable price. Instead, several subcircuits have been 
proposed to accomplish memristive device SPICE mod-
eling [17–20]. To mention a few, based on the first HP Lab 
mathematical model [10] memristor device SPICE mod-
eling in [16–19, 24, 25], using the original professor Chua 
mathematical equations [11] a more advanced memristor 
SPICE modeling in [26], other than models based on [10, 
26], device hardware characterization data correlated 
models in [20, 27, 28] and more accurate physics-based 
models based on metal–oxide–metal junction [31] in [20, 
21, 29, 30] was done by different research groups so far. 
On the other hand, in neuromorphic computing, memris-
tor technology is used to mimic our biological synapse, 
which is massively available in the brain. The human brain 
contains an average of hundred trillion synapses [32]. In 
an effort to develop the synaptic circuit, the memristor 
is being used to store synaptic weight value within a 
memristor as its memristance value [33–42]. However, 
in memristor synaptic weights, nonvolatility, linearity 
and multilevel are still unsolved problems since there 
is no enjoyable report in the field yet proposed, which 
addresses these three demanding properties concurrently 
[32]. During the designing stage of the neuromorphic 
parallel computing unit, a memristor is placed between 
presynaptic and postsynaptic neurons, which then formed 
a memristor synaptic weight crossbar [32, 43–46]. Spike-
timing-dependent plasticity (STDP) learning rule is usually 
used for training each memristor placed in the crossbar. 
The crossbar network is trained using STDP rule to learn 
the synaptic weight determined by the spike time differ-
ence between post- and presynaptic neurons [43–46]. In 
this case, the synaptic value in the learning network gives 
nonlinear values [45]. Zheng and Mazumder recently have 
proposed weight-dependent STDP learning [45, 46]. How-
ever, in deep learning where output = weight × input , that 
is to say, vector–matrix multiplications for efficient parallel 
processing of the artificial neural network, synaptic weight 
linearity is mandatory. Normally, when the pulse train is 
applied to the input terminal of the neural network a lin-
ear increase in potentiation (that is, long-term potentia-
tion /LTP and short-term potentiation/STP) and a linear 
decrease in depression (that is, long-term depression/LTD 
and short-term depression/STD) of device memductance 
are necessary for the memristor in vector–matrix multipli-
cations processing [32]. For the memristor-based artificial 
neural network to learn effectively, the symmetry between 
the rise and fall of device memductance (memristor con-
ductance) is crucial. So far, to perform zero, negative and 
positive synaptic weight computation, different kinds 
of memristor-based synaptic circuits are implemented 
[34–39]. Since these three synaptic weight value computa-
tion implementations are not possible using a single mem-
ristor as a synapse, a composite of memristors is being 
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used to make a bipolarity weight [47]. To give an exam-
ple, a run-time programmable complementary bipolarity 
synapse crossbar was reported in [46]. Also, a memristor 
bridge synapse circuit which gives negative, zero and posi-
tive synaptic weight value designed from four intercon-
nected memristor elements is proposed in [43, 48]. The 
stochastic and deterministic mathematical models are 
presented in this paper selected based on their accuracy 
to model the device behavior, computational efficiency 
and generality to be used for many different fabricated 
devices as possible. Moreover, we have verified the vali-
dation of our memristor SPICE models presented in this 
paper by using the three distinctive fingerprints of the 
memristive device. That is, from the theory of memristor 
its three fingerprints are: pinched hysteresis loop in the 
current–voltage plane after the device excited by an alter-
native electrical signal, shrinking of the pinched hysteresis 
lobe area as the applied signal frequency increases, and 
the hysteresis loop becoming single-valued function as 
the frequency goes infinity [10–12]. Therefore, our mem-
ristor SPICE models presented in this paper have success-
fully demonstrated the above-mentioned three fingerprint 
characteristics of the device. To make a fair comparison 
between different memristor devices of stochastic and 
deterministic mathematical models discussed, subcircuit 
codes were developed. The subcircuit codes then used to 
generate accurate SPICE circuit simulation for composite 
memristor series (parallel) circuit network analysis and a 
wide range of memristor-based systems design such as 
electronic synaptic circuits.

Organization of the paper: Sect. 2 presents a general 
stochastic memristor device model. Sect. 3 discuss deter-
ministic models based on the initial HP Lab memristor 
model and its variant. Sect. 4 discuss the physics-based 
deterministic memristor model. Sect. 5 depicts a more 
general deterministic memristor model, which can be 
used to model the behavior of many memristor devices 
reported in the literature. Sect. 6 presents the series (anti-
series) and parallel (anti-parallel) connection of memristors 
in a memristive circuit with a detailed circuit analysis. In 
this section, the advantage and disadvantages of design-
ing electronic synapse from single memristor, multiple 
memristors and CMOS transistor–memristor architecture 
are presented along with their synaptic weight computing 
mathematical methods.

2  Memristor stochastic SPICE model

Molter and Nugent, in 2017 [22], proposed a semiem-
pirical memristor model they call which the generalized 
metastable switch model. In the generalized mean meta-
stable switch memristor model (MMSS), the total current 

passing through the device I is assumed to consist of 
a voltage-dependent stochastic current component I

m
 

and a voltage-dependent exponential Schottky diode 
current component I

s
 such as:

where � ∈ [0, 1], V (t) is the input voltage applied and 
I(t) is the total current value flow through the memristor. 
All the simulations are conducted in this paper with this 
definition of voltage and current in mind. For some fabri-
cated memristor devices, there may be no Schottky diode 
formed at a metal–semiconductor junction; in that case, 

� = 1 ; therefore, I
s
= 0 in (1) that means the total current 

of the device becomes solely dependent on the stochastic 
current component I

m
 . The Schottky barrier diode formed 

by the junction of a semiconductor with metal has a cur-
rent component I

s
:

In the right-hand side of (2), the first and the second terms 
represent the forward-biased and the reverse-biased cur-
rent components of a diode, respectively. The memory-
dependent current component I

m
 theory is formulated by 

assuming the memristive devices as a collection of two-
state conduction channels or MSS that switch probabilisti-
cally from ON state to OFF state and vice versa. As depicted 
in Fig. 1 for further illustration of the MSS concept, the 
diagram represents a two-state single conduction channel. 
The transition probability of a single conduction channel 
that is the metastable switch (MSS) to switch from a chan-
nel conducting ON state to that of nonconducting OFF 
state is denoted by P

ON→OFF
 , while the transition probabil-

ity of a single channel to change from the nonconducting 
OFF state to that of conducting ON state is indicated by 
P
OFF→ON

 . These transition probabilities of channel conduc-
tion states are mathematically expressed by equations 

labeled by (3) as:

where V is the voltage across the MSS, similar to the input 
voltage applied to the memristor physical device, 

� =
q

kBT
= (VT )

−1 , q is the charge in the channel, kB is uni-

versal Boltzmann constant, V
T
 is the thermal voltage, 

� (V , VON) is the logistic function that is used to bound the 
transition probability value between zero and unity, and 
� =

�t

tc

 is the ratio of the time step period �t obtained from 

the computer simulation to the characteristic timescale of 
the physical device t

c
 obtained from the characterization 

data of the fabricated memristor. As shown in Fig. 1, each 

(1)I = �I
m
+ (1 − �)I

s
(V )

(2)Is(V ) = �f e
�f V − �re

−�rV

(3)
PON→OFF = �

1

1 + e−�(V−VON)
= �� (V , VON)

POFF→ON = �(1 − � (V ,−VOFF))
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state has conductance denoted by G
ON

 for ON state and 
G
OFF

 for OFF state of conduction channels.
In the model, the memristor is assumed as a collection 

of N number of a two-state probabilistically switching 
channels or MSSs evolving in discrete time step �t . The 
memristor conductance G

mem
 can be given by:

The normalized state transition from MSS channel ON to 
MSS channel OFF is:

In the same manner the normalized state transition from 
MSS channel state OFF to MSS channel state ON is:

The normalized expression of the change in the number 
of switches �x that has a direct effect on the conductivity 

(4)G
mem

= G
ON
x(t) + (1 − x(t))G

OFF

(5)
N
ON→OFF

N
= P

ON→OFF

(

1 −
�N

OFF

N

)

(6)
N
OFF→ON

N
= P

OFF→ON

(

�N
OFF

N

)

of the memristor device, scaled between 0 and 1. Hence, 
�x is:

After plugging (3) into (7), this can be further expressed as:

where �X =

�NOFF

N
 . From the limit �t → 0 , the evolution of 

the memristive device state variable with time approxi-
mate to �x

�t
≈

dx

dt
 , and at any arbitrary time approximating 

the initial state variable to zero, that is, �X ≈ x , then the 
evolution of the normalized state variable for the two-
state probabilistically switching conduction channels or 
MSS model of memristor device can be predicted as:

Equation (10) is derived by assuming that an infinite num-
ber of switches existed in the channels.

The memory component current is thus given by:

As a result, in the generalized metastable switch (MSS) 
memristor model the total current passing through the 

device is obtained by summing (2) and (11) as:

The memristor SPICE model is shown in Fig. 3. This kind 
of SPICE subcircuit layout has been previously used in 
[17–25]. In the SPICE model, the voltage-controlled cur-
rent source is denoted by G

m
 generates a current based on 

Eqs. (11, 13, 38, 43). The output of the voltage-controlled 
current source denoted by G

m
 set equal to the right-hand 

side of Eqs. (10, 26, 37, 49). The state variable x(t) value 
can be radially obtained from the integrating capacitor C

x
 , 

which is connected in the circuit layout with 1 μF value.
In addition to Boise State University (Ag–chalcogenide) 

memristor devices, the stochastic MSS model (12) reported 
in [22] can also be used to model devices their range span 
from chalcogenides (AsxSy , AgInSbTe, GexSey , GexSy) to 

(7)�x = P
ON→OFF(1 − �X) − P

OFF→ON(�X)

(8)

�x = �

[

1

1 + e−�(V−VON)

]

(1 − �X)

− �

[

1 −
1

1 + e−�(V+VOFF)

]

.(�X)

(9)

�x

�t
=

1

�

[

1

1 + e−�(V−VON)

]

(1 − �X)

−
1

�

[

1 −
1

1 + e−�(V+VOFF)

]

.(�X)

(10)

dx

dt
=

1

�

[

1

1 + e−�(V−VON)

]

.(1 − x)

−
1

�

[

1 −
1

1 + e−�(V+VOFF)

]

.(x)

(11)I
m
(x, v) = Gmem(x)V

(12)I = �G
mem

(x)V + (1 − �)I
s
(V )

Fig. 1  Here a memristive device is modeled by multitude of MSSs 
or group of conduction channels that change as a function of time, 
which shows the main fingerprint property of memristor device 
called pinched hysteresis current–voltage curve. The application of 
excitation input voltage triggers the channel to switch between the 
ON state and OFF state of the device conductance with voltage V- 
and temperature T-dependent transition probability. In this model, 
each individual channel is considered as a metastable switch (MSS). 
From the ON state to the OFF state, the transition probability of a 
channel/MSS is denoted by PON→OFF, and from the OFF state to the 
ON state, the transition probability of a channel/MSS is denoted by 
P
OFF→ON
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metal oxides ( TiO
x
, WO

x
, HfO

x
, NiO

x
 , etc) and more. Fig-

ure 2 shows WO
x
 memristor device SPICE model result. 

For the simulation V
in
= sin(2�ft) , at f = 100 Hz, input is 

used. In the obtained result, the memristor distinctive 
pinched hysteresis property is observed, indicating no 
energy dissipation.

3  Memristor deterministic SPICE model

The memristor device model for small-signal input (lin-
ear model) and for large-signal input (nonlinear model) 
was proposed by different groups of scholars since the 
discovery of the HP Lab memristor [10, 16–19]. In 2008, 

HP Lab team published the first memristor model [10]. 
Their model provides a means to know the charge-
dependent memristance and flux linkage-dependent 
memductance of the memristor device. In this section, 
detailed mathematical analysis for molecular and ionic 
thin-film memristive deterministic models was carried 
out. The nonlinear model of the device was obtained 
using the Joglekar  [16] window function, Biolek [17] 
window function, modified Biolek window function 
[18] and a novel generic, scalable memristor window 
function [19].

The current-controlled generic memristor (where mem-
ristance depends only on the normalized state variable, 

x(t) = �(t)∕D) is represented as:

The boundary between the doped region (TiO
2−x) layer 

and undoped region (TiO
2
) layer moves at a constant 

speed, called ions drift velocity v
D

:

The I(t)–V(t) characteristic pinched hysteresis curve of 
memristor is determined using (13) and (14). The mem-
ristance from (13):

From the linear state variable dynamic equation (14):

The nonvolatile property of memristor is effortlessly con-
spicuous from (16). That is, when there is no current flow-
ing through the memristor, the accumulated charge within 
the device continues to exist without dissipation. Also, 
Eq. (16) signifies that the doped region width �(t) value 
was altered linearly for change in the number of charges 
accumulated within the device due to the current passed 
through it.

According to (13) through (17), the memristance (memris-
tor resistance) depends on the ratio between the physical 
device dynamic state variable �(t) (doped region thick-
ness) and the physical device total length D. From Eq. (17), 
assume the maximum value �

max
= D , its initial value 

�
o
(t = 0) = 0 and the maximum amount of charge the 

memristor could store at some arbitrary time t = � is 
q(�) = Qmax, and at t=0, the initial accumulated charge 
q(t=0)=0. Based on these assumptions in (17), 

Q
max

=
D2

��DRON
 is the limit or effective electric charge accu-

mulation range of the memristor device. To calculate the 
charge at any arbitrary time t < 𝜏 , the following integral 
equation can be used:

Equation (18) shows the relationship between electric 
charge q(�) and state variable � of memristor from its 
small-signal model.

(13)V (t) =

[

R
ON

�(t)

D
+ R

OFF

(

1 −
�(t)

D

)]

I(t)

(14)v
D
=

d�(t)

dt
= �

�
D
RON

D
I(t)

(15)M(�) =

[

R
ON

�(t)

D
+ R

OFF

(

1 −
�(t)

D

)]

(16)�� = ∫
�

�o

d� =
��DRON

D ∫
t

0

i(t)dt =
��DRON

D
q(t)

(17)�(t) = �
�DRON

D
q(t) + �o

(18)

q(𝜔) = ∫
t<𝜏

0

i(t)dt =
D

𝜂𝜇DRON ∫
𝜔

0

d𝜔 =
D

𝜂𝜇DRON
𝜔(t)

Fig. 2  Generalized metastable switch SPICE model result 
for WO

x
 memristor device. The SPICE model parameters are 

t
c
= 0.80s, GON = 0.25ms, GOFF = 0.004ms, VON = 0.8V , vOFF = 1.0V , 

� = 0.55, �f = 1 × 10−9, �f = 0.85, �r = 22 × 10−9 and �
r
= 6.2
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The change in state variable �� in (16) can be re-
expressed in terms of Q

max
:

Plug equation (19) in (15) to obtain memristance M(q) 
expression in terms of q(t) and Q

max

where in (20), M
o
= R

ON
(
�o

D
) + R

OFF
(1 −

�o

D
) is the device 

initial memristance or effective memristor resistance at 
initial time t = 0 and polarity coefficient � = ±1 . The con-
stant coefficient � physical interpretation is that when the 
memristor is connected in forward-biased mode, � = 1 , 
whereas in the case of reverse-biased connection � = −1 . 
Apply Kirchhoff’s voltage law in the simple memristive cir-
cuit shown in Fig. 4:

Rearranging Eq. (22), the final circuit equation in Fig. 4 has 
the form:

For the boundary condition q(t = 0) = 0 , the possible solu-
tion for (21) is

where the 𝜙(t) = ∫ t<𝜏

0
V (𝜏)d𝜏 is the magnetic flux link-

age. Equation  (24) reveals the nonlinear relationship 
between electric charge q(t) and magnetic flux linkage 

�(t) observed inside the memristive devices. To make the 
deterministic memristor model subcircuit code generation 
in consistence with the stochastic memristor model sub-
circuit code generation which is discussed in Sect. 1, the 
normalized state variable x(t), where x ∈ [0, 1] is defined. 
This is done by making a variable substitution x(t) = �(t)

D
 

in (13) owing to state variable �(t) update. In addition 
to titanium oxide memristor state dynamics, this way of 
representing device state variable x is useful to model 
other different material structure devices of state dynam-
ics [12–31, 49, 50]. Equations (13–24) only used to model 
the device when it is excited by minimal application of 

(19)�� = � − �o = �
Dq(t)

Q
max

(20)M(q) = Mo − �
�R

Q
max

q(t)

(21)M(q)
dq(t)

dt
− V = 0

(22)

(

Mo − �
�R

Qmax

q(t)

)

dq(t)

dt
= V

(23)V =
d

dt

[

Moq(t) − �
�R

2Qmax

]

q(t)2

(24)q(t) =
Q
max

Mo

�R

[

1 −

√

1 − �
2�R

Q
max

M2

o

�(t)

]

electrical input signal [10]. For the nonlinear ionic dopant 
drift phenomenon observed, that is, when large signal is 
applied on the memristor, an additional nonlinear window 
function F(x) reported in [16–18] and [19] has to be used in 
the right-hand side of Eqs. (14) and (26) to properly predict 
the device dynamics by assuming that x(t) values always 
fall in the range 0 ≤ x(t) ≤ 1.

Joglekar and Wolf [16] proposed the modifications to HP 
Lab-discovered memristor device initial equation [10]. In 
[16], the parameter � was used to model the device in both 
its forward-biased mode and its reverse-biased mode. Jogle-
kar and Wolf [16] modifications are defined as:

The modified device state variable dynamic definition pro-
posed in [16] can be seen in (26). The analytical solution 
of the above normalized state variable x(t) rate of change 
equation is difficult. However, the numerical solution of it 
can be given by

For the Joglekar and Wolf [16] window function, it can be 
expressed as:

The Joglekar windowing function in (25) has some draw-
back of boundary lock problem; that is, once the device 
memristance value reached either its lower value or its 
higher value, it becomes difficult to alter its value by exter-
nal excitation input signal.

Biolek et al. [17] have proposed an alternative win-
dowing function that can solve the problem associated 
with the model in [16], given from (25) through (28). 
This proposed windowing function only reduces drift 
speed of state variable at the device boundary where it 
is moving toward. Model in [17] overcomes boundary 
lock problem associated with window function model in 
[16] by adding memristor current i(t) term to it. Accord-
ing to the physical device experimental result presented 
in [28] that was published by HP Lab team, Boilek et al. 
[17] window function described in Eqs.  (29) and (30) 
appears to be more accurate assumption than that of 
Joglekar and Wolf [16].

(25)F(x) = 1 − (2x(t) − 1)2p

(26)
dx(t)

dt
=

��
D
RON

D2
I(t)F(x(t))

(27)x(t + �t) ≈ �D

R
ON

D
[F(x)]�q(t) + xo

(28)x(t + �t) ≈ �D

R
ON

D

[

1 − (2x(t) − 1)2p
]

�q(t) + xo

(29)F(x) = 1 − (x(t) − Stp(−I(t)))2p
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For the Biolek window function, the normalized state vari-
able rate of change equation numerical solution is:

For I(t) > 0 , the normalized state variable changes after a 
time step �t

For I(t) < 0 , the normalized state variable change after a 
time step �t

To model TiO
2
 memristor for considerably large input sig-

nal, a new modified Biolek model was proposed in [18]. 
The modified memristor model has the potential to 
expand the scale of the ionic drift nonlinearity. This modi-
fication is achieved by adding the weighted sinusoidal 
window function to the window function proposed in [17]. 
The modified Biolek window function: 

After substitution of (30) into the above equation, the fol-
lowing equations are derived:

where m ∈ [0, 1] . The modified Biolek model proposed in 
[18] is totally expressed by the following two equations 
labeled by (34d) and (34e).

For positive value device current I(t) > 0 , the normal-
ized state variable changes after a time step �t

For negative value device current I(t) < 0 , the state vari-
able changes after a time step �t

(30)Stp(−I(t)) =

{

1 I(t) > 0

0 I(t) < 0

(31)
x(t + �t) ≈�D

R
ON

D

[

1 − (x(t) − Stp(−I(t)))2p
]

�q(t) + xo

(32)x(t + �t) ≈ �D

R
ON

D

[

1 − (x(t) − 1)2p
]

�q(t) + xo

(33)x(t + �t) ≈ �D

R
ON

D

[

1 − (x(t))2p
]

�q(t) + xo

(34a)F(x, i) =

[

1 − [x − Stp(−i)]2p +m(sin
2
(�x))

1 +m

]

(34b)F(x, i) =

[

1 − [x − 1]2p +m(sin
2
(�x))

1 +m

]

, V (t) ≤ 0

(34c)F(x, i) =

[

1 − x2p +m(sin
2
(𝜋x))

1 +m

]

, V (t) > 0

(34d)

x(t + �t) ≈ �D

R
ON

D

[

1 − [x − 1]2p +m(sin
2
(�x))

1 +m

]

�q(t) + xo

V (t) ≤ 0

The window function reported in  [17] is the spe-
cial case of window function proposed in  [18], since 
for m = 0 and for zero memristor activation threshold 
voltage (i.e, Vth = 0) the modified Biolek memristor 
model  [18] is radially reduced to the original Biolek 
memristor model [17].

Shi et  al. proposed a more general novel scalable 
window function in [19] to HP Lab-discovered memris-
tor device initial equation [10], which has a potential to 
solve boundary lock problem and scalability issues asso-
ciated with Joglekar, and original Biolek, as well as modi-
fied Biolek window functions, respectively. The proposed 
novel generic window function is: 

After substitution of (30) in the above equation, the follow-
ing equations are derived:

 where h ∈ [0, 1] and p ∈ R+ . For the generic novel scalable 
window function, the approximate numerical solution for 
normalized state variable evolution equation is therefore: 

 
As shown in the inset in Fig. 3, the second both left- 

and right-hand side equations are used to model the 
memristor with the help of window functions proposed 
in  [16–18] and [19], the fourth equations are used to 
implement general model of memristor  [21, 49], the 
third equations are used to implement MIM memristor 
model [20], and the first equations are used to imple-
ment the mean metastable switch (MMSS) stochastic 
memristor model  [22] in SPICE computer simulation. 
In this SPICE model, the time evolution of the normal-
ized state variable ( dx

dt
) is modeled by controlled cur-

rent source G
x
 and its integral state variable x(t) which 

(34e)

x(t + 𝛥t) ≈ 𝜇D

R
ON

D

[

1 − x2p +m(sin
2
(𝜋x))

1 +m

]

𝛥q(t) + xo

V (t) >0

(35a)F(x) = 1 −
[

h2(x(t) − stp(−i))2 + (1 − h2)
]p

(35b)F(x) = 1 −
[

h2(x(t) − 1)2 + (1 − h2)
]p
, I > 0

(35c)F(x) = 1 −
[

(hx(t))2 + (1 − h2)
]p
, I < 0

(36a)
x(t + 𝛥t) ≈𝜇D

RON

D

[

1 −
[

h2(x(t) − 1)2 + (1 − h2)
]p
]

𝛥q(t) + xo, I > 0

(36b)
x(t + 𝛥t) ≈𝜇D

RON

D

[

1 −
[

(hx(t))2 + (1 − h2)
]p
]

𝛥q(t) + xo, I < 0
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is dimensionless quantity and equal to the voltage of 
node XSV in Fig. 3. The memristive top and bottom ports 
modeled by the current source G

x
.

3.1  Joglekar, Biolek, modified Biolek and novel 
general window functions simulation results

Figure 4 shows a test setup used to investigate the electri-
cal response of all kinds of memristor models discussed 
in this paper. Figure 5 shows the memristor simulation 
result for Joglekar window function (see also, Fig.  6). 

Fig. 3  Circuit layout for the memristor SPICE subcircuit. In the inset, equations used to generate SPICE subcircuit code are shown

Fig. 4  Circuit used as a test setup to carry out SPICE simulations of 
all kinds of memristor models discussed in this paper

Fig. 5  Sinusoidal input volt-
age response of Joglekar 
model for memristor param-
eters: RON = 1K , ROFF = 100K , 
x
o
= 0.5,D = 10nm,�

D
= 10×

10−14 , p = 7
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The device model feedback to the applied input voltage 

V (t) = sin(2�ft) is that when input applied voltage forced 
the state variable to move to the device boundary, its drift 
speed gets influenced by the windowing function; hence, 
hard switching result is observed as depicted in Fig. 5.

Figure  7 shows the memristor simulation result for 
Biolek window function. It shows the model response for 
applied sinusoidal input voltage of large amplitude that 
has the potential to move the device state variable into the 
device boundary where significant influence of window 
function seen. In contrast to the previous current–voltage 
characteristic curve (see Fig. 5), this memristive device 
model displays an asymmetric pinched hysteresis curve 
(see Fig. 7) with respect to the applied input voltage.

Figure 9 depicts simulation result of memristor SPICE 
model for novel general windowing function at h = 1 . 
Comparing the two well-known window functions, 

namely Joglekar and Biolek, shown in Figs.  5 and  7 
respectively, with this novel general window function 
proposed in [19], it can be conclude that, as h=1, the 
function (35a) is equal to function (25) and (29) by sub-
stituting (x(t) − Stp(−i)) into (2x(t) − 1).

The shortcoming of Joglekar window function 
revealed when the memristor memristance value 
drives into either R

ON
 or R

OFF
, and after that any exter-

nally applied signal cannot change its state value x(t) as 
depicted in Fig. 6; hence, boundary lock problems exist. 
The Biolek window function proposed [17] solved the 
boundary lock problem associated with Joglekar window 
function [16] as shown in Fig. 8. However, the common 
drawback of [16] and [17] is the lack of scalability due to 
the parameter p as it can only take positive integers. To 
make the memristor device model work well, it is worth 
having an effective window function (see Figs. 9, and 10). 
A window function is said to be effective, if it solves the 
boundary lock problem, it provides a linkage between 
the linear (small-signal) and nonlinear (large-signal) mod-
els, and it has a potential of flexibility scalability. A novel 
general scalable window function which possessed these 
properties proposed in [19] is presented in (35a).

The memristor models presented in [16–19] do not 
account the threshold voltage existed in most fabri-
cated memristor physical devices. From the characteri-
zation data of most memristive devices, current–volt-
age pinched hysteresis curve is not observed until the 
external excitation input voltage surpassed the mem-
ristor threshold voltage [12, 51–53]. In addition, Pick-
ett et al. at HP Lab [28] pointed out the dependency 
of the device state variable motion in both its magni-
tude value and polarity of the input applied signal of 
the device. This dependency suggests that the state 
variable dynamics is not exactly similar when it moves 
to both directions of the device boundaries. However, 
the model in [16–19] assumed that the dynamics of the 
state variable is perfectly identical for both the negative 
direction motion and positive direction motion, which 

Fig. 6  Normalized state variable with time for Joglekar model. For 
the simulation, the initial state variable value x

o
= 0.5 is used. The 

curve width between the upswing and downswing transition is 
large as shown in the figure. This indicate that boundary lock prob-
lem is associated with the Joglekar window function

Fig. 7  Sinusoidal input 
voltage response of Biolek 
model for memristor param-
eters: RON = 1K , ROFF = 100K , 
x
o
= 0.5,D = 10nm,�

D
= 10×

10−14 , p = 1
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is in contradiction with experimental results reported 
in [28].

4  HP Lab model based on the physical 
dynamics within a memristor device

From metal–insulator–metal (MIM) tunnel barrier the-
ory published in [31], HP Lab team researchers in [20] 
published a more accurate and more computationally 

Fig. 8  Normalized state variable with time for Biolek model. For the 
simulation, the initial state variable value x

o
= 0.5 is used. The curve 

width between the upswing and downswing transitions is consid-
erably minimized as shown in the figure; therefore, boundary lock 
problem is not associated with the Biolek window function

Fig. 9  Nonlinear ion drift model result of memristor using general 
scalable novel window function. For scale factor h = 1 , the pinched 
hysteresis curve identical with the one obtained in Fig. 7

Fig. 10  General novel scalable window function, modified 
Biolek window function,  and  original Biolek window func-
tion  based model  results. The  figure depict the device  mod-
els responses for input voltage V (t) = 4 sin(2�ft) at f = 25Hz, 
R
on

= 1K  Roff = 100K , x0 = 0.5,D = 10nm �
D
= 10 × 10−14 , 

p = 10, h = 0.5,� = 3.41,m = 0.2

Fig. 11  Schematic of TiO
2
 memristor. A titanium dioxide TiO

2
 thin 

film sandwiched between two platinum electrodes. TiO
2−x

 layer 
formed by electroforming process that shunt most of the TiO

2
 layer 

except for small tunnel barrier
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complex memristor device model. As shown in the 
schematic shown in Fig. 11, the model proposed in [20] 
assumed the undoped TiO

2
 region within the memristor 

device as insulating tunnel barrier, whereas that of the 
conductive doped TiO

2−x
 region as metallic layer with 

high conductivity. The electron tunnel barrier width x is 
time-dependent, and the derivative of it gives the drift 
velocity of the oxygen vacancy that is initially formed 
in the doped region of the memristor device. The time 
evolution of this electron barrier width x(t) model is pro-
posed in [28], and the equations are derived in the fol-
lowing way in (37) and (38).

When OFF switching occurs (i(t) > 0) [20],

with the fitting model parameters foff = 3.5 ± 1 μs,

ioff = 115 ± 4 μA, aoff = 1.2 ± 0.02 nm, b = 500 ± 70 μA and 

�
c
= 107 ± 4 pm.

When OFF switching occurs ( i(t) < 0) [20],

with the fitting model parameters [20] fon = 40 ± 10 μs, ion =

8.9 ± 0.3 μA, aon = 1.8 ± 0.01 nm, b = 500 ± 90 μA  a n d 

�c = 107 ± 3pm . In this paper, for SPICE model simulation 
the mean value of these parameters used.1

(37)

dx

dt
= f (x(t), I(t))

= foff sinh

(
|i(t)|
ioff

)
exp

(
−exp

(
x − aoff

�c

−
|i(t)|
b

)
−

x

�c

)

(38)

dx

dt
= f (x(t), I(t))

= fon sinh

(
|i(t)|
ion

)
exp

(
− exp

(
aoff − x

�c

−
|i(t)|
b

)
−

x

�c

)

The current through the device [28] is modeled as:

All the parameters A, e, v
D

 , m, h, k and �
o
 are constants.2

The model presented in this section is very specific to a 
single fabricated device. This model is widely accepted in 
terms of its modeling accuracy [20]. However, it is mathe-
matically complex and it generated computational conver-
gence problem during larger circuit computer simulation. 
If the modified Biolek model [18] was scaled well enough, 
obtaining similar simulation result as the one obtained 
in [20] Fig. 12 is possible. However, the main advantage of 
the modified Biolek model [18] over device model in [20] 

(39)

i(t) = GMIM(x, V )V (t)

=
joAe

�x2

�
�Ie

−B
√
�I − (�I + �vg�)�Ie

−B
√

�I+�vg�
�

(40)

�I = �o − |vg|
(
�1 + �2

x

)
−

(
1.15�x

�x

)
ln

(
�2(x − �1)

�1(x − �2)

)

(41)B =

4��x ∗ 10−9
√

2me

h

(42)�
2
= �

1
+ x

(
1 −

9.2�

(3�o + 4� − 2|vg|)

)

(43)� =
e ln(2)

8�k�ox ∗ 10−9

Fig. 12  I–V curve and device 
model response for the sinu-
soidal, input voltage. The input 
applied at the same amplitude 
V
in
(t) = 4 sin(2�ft) and differ-

ent frequencies (10 Hz, 100 Hz, 
1 kHz). For simulation, SPICE 
code of model proposed in [20] 
is created using (37)–(43)

1 �o = 0.95, � = 0.0998,�1 = 0.1261, foff = 3.5(106), ioff = 115(10−6),

aoff = 1.2, fon = 40(10−6), ion = 8.9(10−6), aon = 1.8, b = 500(10−6),

�
c
= 107(10−3), xinit = 1.2.

2 The constant parameters in the model have the following defi-
nitions: A denoted the memristor channel cross-sectional area, e 
denoted the electric charge carried by an electron, vg denoted the 
memristor electron tunnel barrier voltage, m denoted an electron 
mass, h denoted the universal Planck’s constant, k denoted the 
dielectric constant, and �

o
 denoted the electron barrier potential in 

electron volts (eV).
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is that the model in [18] gives no further simulation con-
vergence problem.

5  Generic memristor model

The generic memristor model captured HP Lab TiO
2
 

memristor device, the a-Si- and Ag-based memristor 
device and the Ag–chalcogenide memristor device prop-
erties successfully for both linearly increasing input and 
sinusoidal input types [49]. The model simulation results 
obtained from deterministic model presented in [49] can 
be faithfully reproduced using stochastic general mean 
metastable switch (MMSS) model discussed in Sect. 2 
from (1) through (12) [22]. The generic device model [49] 
discussed here is derived from three main physical char-
acteristics mostly seen in many fabricated memristor 
devices that are electron tunnel barrier due to metal/
insulator/metal formation, nonlinear drift and a voltage 
threshold. In this generic model, the tunneling effect was 
modeled by function I(t), the threshold effect by g(v(t)) 
and the nonlinear drift effect by function f(x(t)), as stated 
in (44), (45) and (46–47), respectively. The I–V relation-
ship stated in (44) is a previously proposed device cur-
rent–voltage relation equation in [21]. The hyperbolic 
sinusoid shape in the equation is due to MIM tunnel bar-
rier structure of memristive device [31]. The parameters 

a1, a2 and b are fitting parameters. Parameter b control 
device voltage threshold and its value vary from device 
to device. For instance, the memristive device in [12] 
has higher threshold ( b = 3 ) than the memristive device 
in [51] ( b = 0.7).

The function g(V(t)) in (45) and function f(x(t)) in (46–47) 

control the time evolution of the normalized state variable 
x(t). Here, x(t) bound within the limit 0 ≤ x(t) ≤ 1 . This defi-
nition of x is equivalent to the definition given in Sect. 2.

In this model, the memristor voltage threshold char-
acteristic is observed in most of the fabricated devices 
programmed using the function g(V(t)). Researchers in 
[12, 51–53] reported that unless the input applied to the 
memristor exceeded the device threshold voltage, the 
memristor displays no state change inside it. The pro-
gramming threshold was implemented using (45):

(44)I(t) =

{

a1x(t) sinh(bV (t)) V (t) ≥ 0

a2x(t) sinh(bV (t)) V (t) < 0

Equation (45) signifies the possibility of having two volt-
age thresholds in model [49]. For instance, when the input 
applied is positive voltage then the voltage threshold is 
positive Vp, whereas negative voltage threshold V

n
 will 

happen when the applied input becomes negative. The 
magnitudes Ap and A

n
 define how quickly the device state 

changes after the input crossed the threshold voltage.
Another function used to model x(t) is f(x(t)), 

described in (46) and (47).

The function f(x(t)) in Eqs. (46) and (47) introduced to the 
generic model  [49] for overcoming the boundary lock 
problem that is discussed in Sect. 3 [16, 17]. In addition, 
this function will give an extra degree of freedom to model 
the time evolution of the normalized state variable dif-
ferently based on the applied input signal polarity. How-
ever, such kinds of state variable time evolution equation 
formulation are not new since the applied input signal 
polarity dependence of the memristor dynamics was ini-
tially demonstrated in [28]. If 𝜂V (t) > 0 , the change in x(t) 
is described by (46); otherwise, for 𝜂V (t) < 0 it is described 
by (47).

The constant parameters xp and x
n
 control the dynamic 

state variable x(t) within the proposed model. In addition, 
for controlling exponential decay rate �

n
 and �p param-

eters are used.

The function f (x(t)) = 0 , when x(t) = 1 ; this condition 
is fulfilled in this model by the window function �p(x, xp) 
given in Eq. (48). Furthermore to prevent the state vari-
able x(t) value to not to less than zero due to the reversal 
device current flow, the function �n(x, xn) in Eq. (49) is also 
included in model [49].

(45)g(V (t)) =

⎧
⎪
⎨
⎪
⎩

Ap(e
V (t) − eVp ) V (t) > Vp

−An(e
−V (t) − eVn) V (t) < −Vn

0 − Vn ≤ V (t) ≤ Vp

(46)f (x(t)) =

{

e−𝛼p(x−xp)𝜔p(x,xp) x ≥ xp

1 x < −xp

(47)f (x(t)) =

{

e𝛼p(x+xn−1)𝜔n(x,xn) x ≤ xn

1 x > −xn

(48)�p(x, xp) =
xp − x

1 − xp

+ 1

(49)�n(x, xn) =
x

1 − xn
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Equation (50) can be used to model the state variable x(t) 
dynamics of multiple-memristor devices [49]. This equa-
tion is more generic than a model reported in [10], since 
that was developed to model TiO

2
 devices only [49].

(50)
dx

dt
= g(V (t))f (x(t))

5.1  Generic model result

In Figs. 13 and 14, the generic model sinusoidal input 
responses were observed. The model works well for 
both low and high amplitude and frequency values. The 
pinched hysteresis is observed from frequency lower 
than 10Hz up to 1KHz even further. Therefore, the generic 
model has the potential to be used for high-frequency 
memristor-based circuit design.

Fig. 13  Current and voltage as a function of time for generic model

Fig. 14  SPICE simulation results for memristor modeling of 
device in [53] using a sinusoidal input. Device parameters used 
are parameters 1 and 2. Parameter 1: Vp = 0.65;Vn = 0.56 . Param-
eter 2: Vp = 0.16;Vn = 0.15. For both device parameters 1 and 
2, the following values kept the same during the simulation. 
a1 = 0.17;a2 = 0.17;b = 0.05;Ap = 4000;An = 4000;xp = 0.3;xn = 0.5;

�p = 1;�n = 5;x0 = 0.11;� = 1
Fig. 15  Two memristors in series synaptic circuit
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6  Memristor synaptic circuit and weight 
computing

In the memristive circuit when two or more memris-
tors were connected to each others, two operating 
states that are transient composite memristance state 
and steady/stable composite memristance states are 
revealed within the circuit [54]. In the transient state, the 
transient composite behavior of the memristor devices 
is very intricate and usually difficult to predict since the 
individual memristor device connected in the circuit is 
intrinsically nonlinear circuit component and it is highly 
dependent on the input signal polarity that is externally 
applied to the circuit under investigation. On the con-
trary, predicting the composite behavior is possible in 
the steady (stable) operating state of memristive circuit. 
In this operating state, the composite magnetic flux link-
age curve does not vary and the memristive circuit acts 
as a single-memristor system. For making the analysis 
simple, it is assumed that all memristor circuits in this 
section are operating at stable composite state.

Figure 15 shows the memristor synaptic circuit with cur-
rent input mode. In this synaptic circuit, the memristors M

1
 

and M
2
 have anti-series connection; therefore, the output 

voltage this memristive synaptic circuit has can be calcu-
lated as:

where Meq. = M1 −M2 , from the two-memristor anti-series 
connection as a current mode synaptic circuit the weight-
ing role corresponds to the difference between memris-
tors M

1
 and M

2
 . If the two memristors M

1
 and M

2
 shown in 

Fig. 15 are connected in series, the synaptic weight would 
be Meq. = M1 +M2.

In Fig. 15, each memristors can be approximated math-
ematically in terms of the charge accumulated in the mem-

ristor ones the current passed through it.
Therefore, the memristance of M

1
 can be derived as:

In the same manner, memristance equation for M
2
 is:

(51)Vout = V+ − V− = (M1 −M2)Iin = Meq.Iin

(52)

M
1
(q) = Rh1

[

1 + xo

(

Rl1

Rh1
− 1

)

+ kF(x)

(

Rl1

Rh1
− 1

)

q(t)

]

=Rh1 − xo�R1 −
��DRl1F(x)

D2
�R

1
q(t)

(53)

M
2
(q) = Rh2

[

1 + xo

(

Rl2

Rh2
− 1

)

+ kF(x)

(

Rl2

Rh2
− 1

)

q(t)

]

=Rh2 − xo�R2 −
��DRl2F(x)

D2
�R

2
q(t)

When the two memristors M
1
 and M

2
 shown in Fig. 15 are 

connected in series, the equivalent memristance of the 
circuit would be:

However, the connection between M
1
 and M

2
 in Fig. 15 

is anti-series. Therefore, the value � = 1 in the above M
1
 

expression and � = −1 for M
2
 expression. This leads to the 

following equivalent memristance expression of two anti-
series connected memristive circuits:

According to Fig.  15, for the stable state of compos-
ite memristance, the net flux linkage and the net 
charge of memristive synaptic circuit can be given as 

� = �
1
+ �

2
 and q(t) = q1 = q2 = ∫ Iindt, respectively. 

Since the two memristors M
1
 and M

2
 are connected 

(Fig. 15) anti-serially, the current I
in

 passes through both 
memristors the same; hence, the charge accumulated 
in M

1
 and M

2
 is equal. The net flux linkage is given by 

� = ∫ vdt = ∫ v1dt + ∫ v2dt = ∫ M1dq + ∫ M2dq . From 
connection schematic in Fig. 15, the flux linkages �

1
 and 

�
2
 of memristance M

1
 and M

2
 , respectively, are:

where the stable state of composite memristance (i.e., a 
region where the memristors act as a single memristor) 
m a x i m u m  l i m i t  o f  t h e  o p e rat i o n  ra n g e  i s 

Q
maxi

=
D2

�vRli
(1 − xoi) and that of minimum range is 

Q
mini

=
D2

�vRli
(xoi) . The net flux linkage � for series connec-

tion between M
1
 and M

2
 is therefore:

The expression of the net flux linkage for anti-series con-
nection between M

1
 and M

2
 , that is  to say, when two 

memristors are connected in series but with the opposite 

(54)
Meq.(q) = 2

{[

Rh1 − xo�R1 −
�DRl1F(x)

D2
�R1q(t)

]}

for M1 = M2and� = 1

(55)
Meq.(q) =2

{

Rh1 − xo�R1
}

for M1 = M2

(56)

�
1
(q) = Rh1q(t) −

[

�Rl1F(x)

2D2
q(t)2 + xo1q(t)

]

�R
1
+ �o1

Q
min 1

≤ q(t) = q
1
≤ Q

max 1

(57)

�
2
(q) = Rh2q(t) −

[

�Rl2F(x)

2D2
q(t)2 + xo2q(t)

]

�R
2
+ �o2

Q
min 2

≤ q(t) = q
2
≤ Q

max 2

(58)

�(q) =2

{

Rh1q(t) −

[

Rl1F(x)

2D2
q(t)2 + xo1q(t)

]

�R1 + �o1

}

for,�1 = �2and� = 1
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polarity, can be given by making � = 1 in the above �
1
 

expression and � = −1 for �
2
 and by adding ( �

1
+ �

2
 ) the 

two expressions together. When a positive terminal of the 
composite device receives a charges due to the input cur-
rent, these applied charges could have positive and nega-
tive polarities in M

1
 and M2, respectively.

It is important to know that the magnetic flux linkage sign 
associated with each memristor in the composite circuit 
may not be all the same. However, based on the reference 
polarity initially defined for the composite device it is 
possible to know their sign; for instance, if the individual 
memristor device connected in the composite circuit is in 
the same polarity with the circuit reference polarity (polar-
ity of composite device), then the individual flux sign is 
positive; otherwise, if the individual memristor connected 
in opposite polarity with the reference polarity, the flux 
sign of that memristor is negative.

Furthermore, it is possible to know the evolution 
dynamics of memristors M

1
 and M

2
 in Fig. 15, with time 

by setting q(t) = ∫ Iindt = (
V

Meq.

)t . This plug-in shows that 

for anti-series connection between two memristors M
1
 

and M
2
 (see Fig.  15) the memristor synaptic weight 

update/memristance change is a linear function of time 
t (see Fig. 18). That is:

(59)�(q) = 2
{[

Rl1 − xo1�R1
]

q(t) + �o1

}

, for�1 = �2

  
Figure 17 shows the SPICE simulation result of a memris-

tive circuit containing two serially connected memristors. As 
predicted mathematically in (52) through (54), the compos-
ite memristance of two identical memristors with pinched 

(60)M1(t) =Rh1 − xo1�R1 −
��DRl1F(x)

D2
�R1

(

V

Meq.

)

t

(61)M2(t) =Rh2 − xo2�R2 −
��DRl2F(x)

D2
�R2

(

V

Meq.

)

t

Fig. 16  Input response of two parallel connected memristors

Fig. 17  Current–voltage pinched hysteresis curve of circuit contain-
ing two serially and in the same polarity connected memristors

Fig. 18  Memristance change with respect to time when a positive 
potential applied input signal exited a circuit which contains two 
memristors connected in series



Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:128 | https://doi.org/10.1007/s42452-019-1888-z

hysteresis curve is twice of an individual memristor. In 
Fig. 18, it is possible to see the time evolution of the memris-
tor weight, in which the memristor memristance M

1
 in Fig. 15 

shows a linear relationship with time. The result shown in 
Fig. 18 mathematically is predicted in (60) and (61). Fig-
ures 19 and 20 depict the response of two serially connected 
memristors (see Fig. 15) excited by external bipolar signal. 
As shown in the graph, the memristance shows linear incre-
ment and decrements as the excitation input signal more 
positive and negative, respectively. On the other hand, from 
Fig. 16, parallel (anti-parallel) connection between mem-
ductances G

1
=

1

M1

 and G
2
=

1

M2

 and using Kirchhoff current 

law, the net charge and flux linkage in the circuit are 

q(t) = q
1
(t) + q

2
(t) and �(t) = �1(t) = �2(t), respectively. 

The charge q
1
(t) accumulated in memductance G

1
:

The charge q
2
(t) accumulated in memductance G

2
 which 

is in parallel with G
1
:

The charge q
2
(t) accumulated in memductance G

2
 which 

is in anti-parallel with G
1
:

where the stable state of the composite memristance 

maximum limit of the operation range, �
maxi

=
(R2

oi
−R2

h
)

2�R

D2

Rl�v

 

and that of the minimum range, �
mini

=
(R2

oi
−R2

l
)

2�R

D2

Rl�v

 . The net 

meminductance G
�
=

dq1

d�
+

dq2

d�
 of the parallel (anti-paral-

lel) circuit:

   

6.1  Single‑memristor synaptic implementation

The single-memristor synaptic circuit in which the syn-
aptic weight is represented by a change in memristance 
of memristor is shown in Fig. 22. However, the synaptic 
weight change can be achieved in a single-memristor 
synapse which is a positive weight. The shortcoming of 
single-memristor synaptic circuit is its limitation in direct 

(62)
q
1
(t) =

Qo1Mo1

�R
1

[

1 −

√

1 −
2��R

1

Qo1M
2

o1

�
1
+ qo1

]

�
min 1

≤ �
1
≤ �

max 1

(63)
q
2
(t) =

Qo2Mo2

�R
2

[

1 −

√

1 −
2��R

2

Qo2M
2

o1

�
2
+ qo2

]

�
min 2

≤ �
2
≤ �

max 2

(64)
q
2
(t) = −

Qo2Mo2

�R
2

[

1 −

√

1 +
2��R

2

Qo2M
2

o1

�
2
+ qo2

]

�
min 2

≤ �
2
≤ �

max 2

(65)
G� =

2
∑

i=1

1

Moi

√

1 − �i
2�Ri

QoiM
2

oi

Fig. 19  Memristance change with respect to time when bipolar 
applied input signal exited a circuit which contains two memristors 
connected in series

Fig. 20  Memristance change with respect to time when a single-
pulse-cycle bipolar input signal exited a circuit which contains two 
memristors connected in series

Fig. 21  Single-memristor synaptic design. A topology with pre- 
and postsynaptic neuron connection
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realizing negative and zero synaptic weight. From single-
memristor synaptic design shown in Fig. 21, the memristor 
memristance M:

The derivative

(66)

M(t) = Rh

[

1 + xo

(

Rl

Rh
− 1

)

+
�Df (x)Rl

D2

(

1 −
Rl

Rh

)

q(t)

]

Substituting Iin =
V

M
, rearranging and integrating with the 

boundary condition, M(t = 0) = M
o
 , to obtain the non-

linear dependence of memristance in single-memristor 
synaptic circuit:

Or, Eq. (67) can be rewritten as:

  
Figure 21 shows the topology of pre- and postsynap-

tic neurons connected by a single memristor. The mem-
ristor role in the topology is acting as a synapse. From 
the mathematical result derived for single-memristor 
synapse in (68), and its simulation output in Fig. 22, the 
memristor weight update is not strictly linear rather its 
time evolution is nonlinear. Although the weight update 
is not linear, the bipolar signal positive and negative 
weight programming are possible. However, zero weight 
programming is not implementable in single-memristor 
synaptic circuit (Fig. 23).

(67)
dM

dt
=

�Df (x)�RRl

D2
Iin

(68)M(t) =

[

2�Df (x)�RRl

D2
Vt +M

2

o

]
1

2

(69)M(t) = Mo

√

1 +
2�RVt

QoM
2

o

Fig. 22  Positive pulse response of a single-memristor synapse

Fig. 23  Positive and negative input pulse responses of a single-
memristor synapse

Fig. 24  CMOS–memristor (1T1M architecture) synapse design
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6.2  Transistor–memristor architecture synaptic 
circuit

The synaptic circuit shown in Fig. 24 consists of an NMOS 
transistor Q and a memristor M (or 1T1M architecture). 
The circuit operation is as follows: When the applied input 
voltage V

in
 is below the transistor switching threshold that 

causes Q to enter into cutoff/turned off mode, the out-
put voltage V

out
 is directly connected to ground potential 

through a memristive device M. On the other hand, when 

V
in

 is above the transistor switching threshold that is suffi-
cient to turn on Q, memristance M and the saturated tran-
sistor Q equivalent resistance (drain source on resistance) 
RQon together controlled V

out
 . From basic MOSFET device 

physics, the NMOS transistor ON state/saturation equiva-
lent resistance RQon:

where �
n
 is the mobility of electron, (V

GS
− V

TH
) is the over-

drive voltage and W
L

 is the aspect ratio. The total equivalent 
resistance of single-transistor–single-memristor circuit 
architecture (1T1M) shown in Fig. 24 is Req. = RQon +M:

 
In Fig. 25, the output response of the synaptic circuit 

controlled by the ON resistance of the NMOS transis-
tor RQon , which also depends on the aspect ratio of the 

(70)
RQon =

1

�nCox
W

L
(V

GS
− V

TH
)
=

1
√

2�nCox
W

L
I
D

(71)

Req. =
1

√

2�nCox
W

L
ID

+ Rh − xo�R −
��DRF(x)

D2

�Rq(t)

transistor (W
L
) , is shown. This dependency of synaptic out-

put on the aspect ratio can also be seen in (71), via sweep-
ing the CMOS transistor aspect ratio (W

L
) from nanometer 

range to micrometer range. The SPICE simulation in Fig. 25 
shows that a large (W

L
) can result in wider range of synaptic 

output voltage V
out

 with poorer linearity.

7  Conclusion

In this paper, attempts have been made on generating 
SPICE code for stochastic and deterministic memristor 
models. For SPICE subcircuit code generation, phenom-
enological and physics-based memristor mathematical 
models have been used. For further testing the perfor-
mance of the SPICE subcircuit code validity, simulation 
results of single-memristor device and multiple-memristor 
device circuits have been demonstrated. The series (anti-
series), parallel (anti-parallel), single-memristor synapse 
and its limitation for neuromorphic system synaptic cir-
cuit implementation, CMOS transistor–memristor synaptic 
circuit and multiple-memristor synaptic circuit implemen-
tations have been discussed. When multiple memristors 
in series (anti-series) and parallel (anti-parallel) are con-
nected in the circuit, two modes operation states, namely 
transient and steady states, have been seen. The memris-
tive device circuit transient state mathematical analysis 
has not been found easy, and therefore, its steady-state 
analysis has been done in this paper. To effectively control 
the memristor device operation range using determinis-
tic nonlinear ion model, different window functions have 
been used and a fair comparison have been made. The 
Joglekar window function, Biolek window function, mod-
ified Biolek window function and a more general novel 
scalable window function have been used. From simu-
lated SPICE models, we obtained that the general novel 
scalable window function solved the dead lock/boundary 
lock problem associated with Joglekar window function, 
and the scalability problems associated with Biolek and 
modified Biolek window functions. As compared to dif-
ferent models discussed in this paper, a general scalable 
window function-based model has been found less com-
plex with nonconvergence issue for SPICE subcircuit code 
generation, implementation and multiple-memristor cir-
cuit analysis. Therefore, we used the general scalable win-
dow function-based device model for generating SPICE 
subcircuit code and using the developed code we have 
presented the series (anti-series) and parallel (anti-paral-
lel) circuit connections of multiple-memristor elements 
with detail memristive circuit analysis. From the obtained 
results, the pros and cons of designing electronic synapse 
from single memristor, multiple memristors and CMOS 

Fig. 25  1T1M architecture synapse output versus memristance
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transistor–memristor architecture are presented along 
with synaptic weight computation mathematical strate-
gies. As a matter of fact, the advantages of designing syn-
aptic circuit using memristor device rather than CMOS 
transistor are nonvolatile intrinsic memory property of the 
device, its nanoscale physical dimension and linear synap-
tic weight computing future. As presented in this paper, 
the synaptic weight evolution was nonlinear in the case of 
single-memristor synapse and CMOS transistor synapse. 
For positive, negative and zero synaptic weight setting and 
linear synaptic weight multiplication, a synapse made up 
of multiple memristors has to be used.
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