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CHAPTER 1 Introduction

1.1 Background and Main Issues

This dissertation focuses on stochastic approximation algorithms with some applications. In
many real-world problems, the difficulties lie in the uncertainty in information. For example,
in system identification the unknown system coefficients are estimated on the basis of input-
output data of the control system; in adaptive control systems the adaptive control gain
should be defined based on observation data in such a way that the gain asymptotically tends
to the optimal one; researchers at a pharmaceutical form design laboratory experiments to
extract the maximum information about the efficacy of a new drug, and more examples may
be added to this list.

Many of these problems can be transformed to a root-seeking problem for an unknown
function. To see this, let us consider a problem about estimating unknown parameters based
on observation data containing information about the parameters. Let 1, denote the obser-
vation at time n i.e., the information available about the unknown parameters at time n. It
can be assumed that the parameter under estimation denoted by z* is a root of some un-
known function f(-) with f(2*) = 0. This is not a restriction, because, for example, ||z —z*||?
may serve as such a function. Let x,, be the estimate for x* at time n. Then the available

information vy, 41 at time n + 1 can formally be written as

Yn+1 = f(xn> + En+1,

where

En+l = Yn+1 — f(xn)



Therefore, by considering y,.1 as an observation on f(-) at z,, with observation error €, 1,
the problem has been reduced to seeking the root z* of f(-) based on {y,}.

If f(-) and its gradient can be observed without error at any desired values, then nu-
merical methods such as Newton-Raphson method among others can be applied to solving
the problem. However, this kind of methods cannot be used here, because in addition to the
obvious problem concerning the existence and availability of the gradient, the observations
are corrupted by errors which may contain not only the purely random component but also
the structural error caused by inadequacy of the selected f(-).

Aiming at solving the stated problem, Robbins and Monro proposed the following recur-
sive algorithm

Tn4+1 = T + AnYn+1, Ay > O>

to approximate the sought-for root x*, where a,, is the step size. This algorithm is now called
the Robbins-Monro (RM) algorithm. Following this pioneer work of stochastic approxima-
tion, there have been a large amount of applications to practical problems and research works
on theoretical issues.

At beginning, the probabilistic method was the main tool in convergence analysis for
stochastic approximation algorithms, and rather restrictive conditions were imposed on both
f(-) and {e,}. For example, it is required that the growth rate of f(z) is not faster than
linear as ||z|| tends to infinity and {e,} is a martingale difference sequence [1]. Though the
linear growth rate condition is restrictive, as shown by simulation it can hardly be simply
removed without violating convergence for RM algorithms. To weaken the noise conditions
guaranteeing convergence of the algorithm, the ODE (ordinary differential equation) method

was introduced in [3,79] and further developed in [78]. Since the conditions on noise required



by the ODE method may be satisfied by a large class of {¢,} including both random and
structural errors, the ODE method has been widely applied for convergence analysis in

different areas. In some applications people prefer to using constant step size

Tn4+1 = T + NYn+1,

where a constant 1 > 0 stands for a,. The tool to deal with this situation, which was
developed by Kushner [77,90], called weak convergence method.

The development of stochastic approximation methods has been closely related to a wide
range of applications in stochastic optimization, identification, adaptive control, estimation,
detection, signal processing, management sciences, and many other related fields. As can
be seen that many control and optimization tasks can be recast into a form that results
in the use of stochastic approximation procedures. In this dissertation, we present three

applications of stochastic approximation methods.

1.2 Outline of the Dissertation

The remainder of the dissertation is arranged as follows. In Chapter 2, we use stochastic
approximation to analyze Particle Swarm Optimization (PSO) algorithm. We introduce four
coefficients and rewrite the PSO procedure as a stochastic approximation type iterative algo-
rithm. Then we analyze its convergence using weak convergence method. It is proved that a
suitably scaled sequence of swarms converge to the solution of an ordinary differential equa-
tion. We also establish certain stability results. Moreover, convergence rates are ascertained
by using weak convergence method. A centered and scaled sequence of the estimation errors

is shown to have a diffusion limit.



In Chapter 3, we study a class of stochastic approximation algorithms with regime switch-
ing which is modulated by a discrete Markov chain having countable state spaces and two-
time-scale structures. In the algorithm, the increments of a sequence of occupation measures
are updated using constant step size. It is demonstrated that least squares estimates from
the tracking errors can be developed. Under the assumption that the adaptation rates are
of the same order of magnitude as that of times-different parameter, it is proven that the
continuous-time interpolation from the iterates converges weakly to some system of ordinary
differential equations (ODEs) with regime switching, and that a suitably scaled sequence of
the tracking errors converges to a system of switching diffusion. This work is an extension
of the work in [92].

In Chapter 4, we developed asynchronous stochastic approximation (SA) algorithms for
networked systems with multi-agents and regime-switching topologies to achieve consensus
control. There are several distinct features of the algorithms studied in the dissertation.
(1) In contrast to the most existing consensus algorithms, the participating agents compute
and communicate in an asynchronous fashion without using a global clock. (2) The agents
compute and communicate at random times. (3) The regime-switching process is modeled
as a discrete-time Markov chain with a finite state space. (4) The functions involved are
allowed to vary with respect to time hence nonstationarity can be handled. (5) Multi-scale
formulation enriches the applicability of the algorithms. In the setup, the switching process
contains a rate parameter € > 0 in the transition probability matrix that characterizes how
frequently the topology switches. The algorithm uses a step-size u that defines how fast
the network states are updated. Depending on their relative values, three distinct scenarios
emerge. Under suitable conditions, it is shown that a continuous-time interpolation of the

iterates converges weakly to a system of randomly switching ordinary differential equations



modulated by a continuous-time Markov chain, or to a system of differential equations (an
average with respect to certain measure). In addition, a scaled sequence of tracking errors
converges to a switching diffusion or a diffusion. Simulation results are presented to demon-

strate these findings.



CHAPTER 2 Analyzing Convergence and Rates of Con-

vergence of Particle Swarm Optimiza-
tion Algorithms

2.1 Introduction

Recently, optimization using particle swarms have received considerable attention owing to
the wide range of applications from networked systems, multi-agent systems, and autonomous
systems. Particle swarming refers to a computational method that optimizes a problem by
trying recursively to improve a candidate solution with respect to a certain performance
measure. Swarm intelligence from bio-cooperation within groups of individuals can often
provide efficient solutions for certain optimization problems. When birds are searching food,
they exchange and share information. Each member benefits from all other members owing
to their discovery and experience based on the information acquired locally. Then each
participating member adjusts the next search direction in accordance with the individual’s
best position currently and the information communicated to this individual by its neighbors.
When food sources scattered unpredictably, advantages of such collaboration was decisive.
Inspired by this, Kennedy and Eberhart proposed a particle swarm optimization (PSO)
algorithm in 1995 [26]. A PSO procedure is a stochastic optimization algorithm that mimics
the foraging behavior of birds. The search space of the optimization problem is analogous to
the flight space of birds. Using an abstract setup, each bird is modeled as a particle (a point
in the space of interest). Finding the optimum is the counterpart of searching for food. A PSO
can be carried out effectively by using an iterative scheme. The PSO algorithm simulates
social behavior among individuals (particles) “flying” through a multidimensional search

space, where each particle represents a point at the intersection of all search dimensions.



The particles evaluate their positions according to certain fitness functions at each iteration.
The particles share memories of their “best” positions locally, and use the memories to
adjust their own velocities and positions. Motivated by this scenario, a model is proposed to
represent the traditional dynamics of particles.

To put this in a mathematical form, let F': R” — R be the cost function to be minimized.
If we let M denote the size of the swarm, the current position of particle 7 is denoted by X*
(i =1,2,..., M), and its current velocity is denoted by v*. Then, the updating principle can

be expressed as

id  _id i,d i,d i,d i,d i,d i,d
Upt1 = Uy _'_Clrl,n[Prn - Xn ]+02T2,n[Pgn - Xn ]7

(2.1)
id i, id
Xn+1 = Xnd + Un+1s
where d = 1, ..., D; % ~ U(0,1) and 75 ~ U(0, 1) represent two random variables uni-

formly distributed in [0, 1]; ¢; and ¢, represent the acceleration coefficients; Pr’, represents
the best position found by particle i up to “time” n, and Pg’ represents the “global” best

position found by particle ¢’s neighborhood 11;, i.e.,

Pr, =arg min F(X}),

. ) (2.2)
Pg' = Pr/

n

where j* = arg min F(Pr’).
J€El;

In artificial life and social psychology, v’ in (2.1) is the velocity of particle i at time n, which
provides the momentum for particles to pass through the search space. The clri’i [Pr;’d — X4
is known as the “cognitive” component, which represents the personal thinking of each

particle. The cognitive component of a particle takes the best position found so far by

this particle as the desired input to make the particle move toward its own best positions.



027“% [Pgh? — X9 is known as the “social” component, which represents the collaborative
behavior of the particles to find the global optimal solution. The social component always
pulls the particles toward the best position found by its neighbors.

In a nutshell, a PSO algorithm has the following advantages: (1) It has versatility and does
not rely on the problem information; (2) it has a memory capacity to retain local and global
optimal information; (3) it is easy to implement. Given the versatility and effectiveness of
PSO, it is widely used to solve practical problems such as artificial neural networks [23,43],
chemical systems [17], power systems [5, 6], mechanical design [28], communications [71],
robotics [32,63], economy [45,47], image processing [46], bio-informatics [53,64], medicine [58],
and industrial engineering [40,60]. Note that swarms have also been used in many engineering
applications, for example, in collective robotics where there are teams of robots working
together by communicating over a communication network; see [38] for a stability analysis
and many related references.

To enable and to enhance further applications, much work has also been devoted to
improving the PSO algorithms. Because the original model is similar to a mobile multi-agent
system and each parameter describes a special character of natural swarm behavior, one can
improve the performance of PSO according to the physical meanings of these parameters
(39, 48,52, 54, 72]. The first significant improvement was proposed by Shi and Eberhart in

4

[59]. They suggested to add a new parameter w as an “inertia constant”, which results in

fast convergence. The modified equation of (2.1) is

id _ id id rpid id id 1 id id
Upy1 = WU, _'_Clrl [Prn - Xn ]+02T2 [Pgn - Xn ]7

)T v

(2.3)
Xt o= Xt o

n



Another significant improvement was due to Clerc and Kennedy [16]. They introduced a
constriction coefficient x and then proposed to modify (2.1) as
ik = x(el + exrf [P — Xi) 4 o [Pait — Xi),

(2.4)

i,d i,d i,d
Xn+1 - Xn + Un—l—l'

This constriction coefficient can control the “explosion” of the PSO and ensure the conver-
gence. Some researchers also considered using “good” topologies of particle connection, in
particular adaptive ones (e.g., [14,42,44]).

There has been much development on mathematical analysis for the convergence of PSO
algorithms as well. Although most researchers prefer to use discrete system [13, 16,62, 66],
there are some works on continuous-time models [18,41]. Some recent work such as [15,
19,24, 37,51, 65] provides guidelines for selecting PSO parameters leading to convergence,
divergence, or oscillation of the swarm’s particles. The aforementioned work also gives rise to
several PSO variants. Nowadays, it is widely recognized that purely deterministic approach
is inadequate in reflecting the exploration and exploitation aspects brought by stochastic
variables. However, as criticized by Pedersen [50], the analysis is often oversimplified. For
example, the swarm is often assumed to have only one particle; stochastic variables (namely,
T1n, T2,) are not used; the points of attraction, i.e., the particle’s best known position Pr and
the swarm’s best known position Pg, are normally assumed to remain constant throughout
the optimization process.

In this chapter, we study convergence of PSO by using stochastic approximation methods.
In the past, some authors have considered using stochastic approximation combined with

PSO to enhance the performance or select parameters (e.g., [27]). But to the best of our
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knowledge, the only chapter using stochastic approximation methods to analyze the dynamics
of the PSO so far is by Chen and Li [15]. They designed a special PSO procedure and
assumed that (i) Pr’ and Pg’ are always within a finite domain; (ii) with P* representing
the global optimal positions in the solution space, and || P*|| < oo. lim, . Pr, — P* and
lim, .o, Pg, — P*. Using assumption (i), they proved the convergence of the algorithm
in the sense of with probability one. With additional assumption (ii), they showed that the
swarm will converge to P*. Despite the interesting development, their assumptions (i) and (ii)
appear to be rather strong. Moreover, they added some specific terms in the PSO procedure.
So their algorithm is different from the traditional PSOs (2.1)-(2.4). In this chapter, we
consider a general form of PSO algorithms. We introduce four coefficients ¢, k1, ko, and x
and rewrite the PSOs in a stochastic approximation setup. Then we analyze its convergence
using weak convergence method. We prove that a suitably interpolated sequence of swarms
converge to the solution of an ordinary differential equation. Moreover, convergence rates
are derived by using a sequence of centered and scaled estimation errors.

The rest of the chapter is arranged as follows. Section 2.2 presents the setup of our algo-
rithm. Section 2.3 studies the convergence and Section 2.4 analyzes the rate of convergence.

Section 2.5 proceeds with several numerical simulation examples to illustrate the convergence

of our algorithms. Finally, Section 2.6 provides a few further remarks.

2.2 Formulation

First, we will introduce some notations used in this chapter. We use |- | to denote a Euclidean
norm. A point € in a Euclidean space is a column vector; the ith component of 6 is denoted
by 0% diag(f) is a diagonal matrix whose diagonal elements are the elements of @; I denotes

the identity matrix of appropriate dimension; 2z’ denotes the transposition of z; the notation
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O(y) denotes a function of y satisfying sup, |O(y)|/|y| < oo, and o(y) denotes a function of
y satisfying |o(y)|/|y| — 0, as y — 0. In particular, O(1) denotes the boundedness and o(1)
indicates convergence to 0. Throughout the chapter, for convenience, we use K to denote
a generic positive constant with the convention that the value of K may be different for
different usage.

In this chapter, without loss of generality, we assume that each particle is a one-dimensional
scalar. Note that each particle can be a multi-dimensional vector, which does not introduce
essential difficulties in the analysis; only the notation is a bit more complex. We introduce
four parameters €, k1, ko, and y. Suppose there are r particles, then the PSO algorithm can

be expressed as

Unt1 Uy, N kil —x(crdiag(r,) + codiag(ra,y,)) Uy,
= €
Xny1 Xn kol  —x(crdiag(ri ) + codiag(ray)) Xn (2.5)
Cldiag<rl,n> C2diag(r2,n) Pr(envnn>
+X )
Cldiag<rl,n> C2diag(r2,n) Pg(emnn>
where ¢; and ¢y represent the acceleration coefficients, X,, = [X! ... X" € R", v, =

vy, ...,or)] € R, 0, = (Xn,v,), 71, ro are r-dimensional random vectors in which each
component is uniformly distributed in (0,1), and Pr(6,n) and Pg(#,n) are two non-linear
functions depending on 0 = (X, v)" as well as on a “noise” 7, and € > 0 is a small parameter

representing the stepsize of the iterations.

Remark 2.1. Note that for a large variety of cases, the structures and the forms of Pr(6,n)
and Pg(f,n) are not known. This is similar to the situation in a stochastic optimization
problem in which the objective function is not known precisely. Thus, stochastic approxima-

tion methods are well suited. As it is well known that stochastic approximation methods are
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very useful for treating optimization problems in which the form of the objective function is
not known precisely, or too complex to compute. The beauty of such stochastic iteratively
defined procedures is that one need not know the precise form of the functions.

If there is no noise term 7, let ¢ = 0.01, y = 72.9, k1 = —27.1, and kg = 72.9, then (2.5) is
equivalent to (2.3) when w = 0.729 or (2.4) when y = 0.729. Thus (2.5) is a generalization
of (2.1)-(2.4). So a lot of approaches of tuning parameters (e.g., [10,49,70]) could also be

applied.

Remark 2.2. In the proposed algorithm, we use a constant stepsize. The stepsize ¢ > 0
is a small parameter. As is well recognized (see [11,90]), constant stepsize algorithms have
the ability to track slight time variation and is more preferable in many applications. In the
convergence and rate of convergence analysis, we let ¢ — 0. In the actual computation, ¢ is
just a constant. It need not go to 0. This is the same as one carries out any computational
problem in which the analysis requires the iteration number going to infinity. However, in

the actual computing, one only executes the procedure finitely many steps.

In (2.5), ; and ry are used to reflect the exploration of particles. Rearranging terms of

(2.5) and considering that E[c;diag(r,)] = 0.5¢;1] and FElcodiag(ra,)] = 0.5¢21, it can be
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rewritten as

Un1 Un, kil —0.5x(c1 + )] Un,
= +€

Xn+1 Xn '%2] _05X(Cl + 02)] Xn

0.5¢11 0.5¢ol Pr(6,,, 1)
+x

0.5¢11 0.5¢51 Pg (0, mn)

0 —(cidiag(ry,,) + codiag(re,) — 0.5¢11 — 0.5¢21) Uy,
+ X

0 —(cidiag(ry,,) + codiag(re,) — 0.5¢11 — 0.5¢21) X |

cpdiag(ry,) — 0.5¢11  codiag(ra,) — 0.5c21 Pr(0,,m,)
+ X

cpdiag(ry,) — 0.5¢11  codiag(ra,) — 0.5c21 Pg(6,, 1) |

Denote
O, = [n, X,] € R,

kil —0.5x(c1 4+ co)l

HQI —05)((01 + Cg)] (27)

0.5¢,1  0.5¢51 Pr(6,,, 1)
P(HTL’T]TL) = X )
0.501] 0.502] Pg(emnn)

and W (0,71, r2.n, n) to be the sum of the last two terms in the curly braces of (2.6). Then

(2.6) can be expressed as a stochastic approximation algorithm

Op1 = 0 +€[MO,, + P(0n, 1) + W (O, 105 T2, )] (2.8)

One of the challenges in analyzing the convergence of PSO is that the concrete forms
of Pr(6,,n,) and Pg(6,,n,) are unknown. However, this will not concern us. As mentioned

before, stochastic approximation methods are known to have advantages in treating such
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situations. We shall use the following assumptions.

(A1) The Pr(-,n) and Pg(-,n) are continuous for each 7. For each bounded 0, E|P(0,n,)* <

oo and E|[W (0,71, 79m, 7n)|? < 0o. There exist continuous functions Pr(6) and Pg(6)

such that

n+m—1
Z E,Pr(0,m;) — Pr() in probability,
g=m (2.9)

n+m—1
Z E,Pg(0,m;) — Pg(6) in probability,

j=m

1
n
1
n
where E,, denotes the conditional expectation on the o-algebra F,, = {0y, r;;,i =

1,2,n; : 5 < m}. Moreover, for each 6 in a bounded set,

S IEaPr(6,m;) = Pr(O)] < oo,
j=n

(2.10)
> |E.Pg(6,n,) — Pr(9)] < oo.
j=n
(A2) Define
_ 0.5¢0 —0.5c51 | | Pr(s)
() = x _
0.501] —0.502] Pg(@)
The ordinary differential equation
de(t —
% = MO(t)+ P(0(t)) (2.11)
has a unique solution for each initial condition 6(0) = (f;,...,03")".

(A3) Fori=1,2, {r;,} and {n,} are mutually independent; {r;,, } are i.i.d. sequences of

random variables with each component being uniformly distributed in (0, 1).
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Remark 2.3. Condition (A1) is satisfied by a large class of functions and random variables.
The continuity is assumed for convenience. In fact, only weak continuity is needed so we can
in fact deal with indicator type of functions whose expectations are continuous.

In fact, (2.9) mainly requires that {Pr(6,7,)} is a sequence that satisfies a law of large
number type of condition, although it is weaker than the usual weak law of large numbers.
Condition (2.10) is modeled by the mixing type condition. For instance, we may assume that

for each bounded random vector 6 and each T < oo, either

lim FE sup [Pr(0+Y,n;) —Pr(6,n;)] =0, or
J=00,8=0 1y <A

m+n—1

1
lim Z E sup |Pr(8 +Y,n;) —Pr(é,n;)| =0.

n—oo,A—0 N [v|<A

Apparently, the second alternative is even weaker. With either of this assumption, all of
the subsequent development follows, but the argument is more complex. Under the above
condition, one can treat discontinuity involving sign function or indicator function among
others. For the corresponding stochastic approximation algorithms, see [106, p. 100]; the
setup in [90] is even more general, which allows in addition to the discontinuity, the functions
involved to be time dependent. Inserting the conditional expectation is much weaker than
without. For example, if {n,} is a sequence of ii.d. random variables with distribution
function F,,, then for each 0, Pr(0) = EPr(0,m) = [ Pr(0,¢)F,(d¢), so (2.9) is easily verified.
Likewise, if {n,} is a martingale difference sequence, the condition is also satisfied. Next, if
{n. } is a moving average sequence driven by a martingale difference sequence, (2.9) is also
satisfied. In addition, if {7, } is a mixing sequence [97, p.166] with the mixing rate decreasing
to 0, the condition is also satisfied. Note that in a mixing sequence, there can be infinite

correlations and the remote past and distant future are only asymptotically uncorrelated.
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In the simplest additive noise case, i.e., Pr(6,n7) = Pr(f) + n, then the condition is
mainly on the noise sequence {n,}. Condition (2.10) is modeled after the so-called mixing
inequality; see [106, p.82] and references therein. Suppose that {Pr(6,7,)} is a stationary
mixing sequence with mean Pr() and mixing rate ¢, such that > o> < oo, then (2.10)
is satisfied.

With these assumptions, we proceed to analyze the convergence and rates of convergence
of PSO algorithms with general form (2.8). The scheme is a constant-step-size stochastic
approximation algorithm with step size . Our interest lies in obtaining convergence and
rates of convergence as ¢ — (0. We emphasize that in the actual computation, it is not
necessary to modify it as the generalized PSO form (2.8). This generalized PSO form is
simply a convenient form that allows us to analyze the algorithm by using methods of

stochastic approximation.

2.3 Convergence

This section is devoted to obtaining asymptotic properties of algorithm (2.8). In relation
to PSO the word “convergence” typically means one of two things, although it is often not
clarified which definition is meant and sometimes they are mistakenly thought to be identical.
(i) Convergence may refer to the swarm’s best known position Pg approaching (converging
to) the optimum of the problem, regardless of how the swarm behaves. (ii) Convergence
may refer to a swarm collapse in which all particles have converged to a point in the search
space, which may or may not be the optimum. Since the convergence may rely on structure
of the cost function if we use the first definition of convergence, we use the second one as the

definition of convergence in this study. Our first result concerns the property of the algorithm
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as € — 0 through an appropriate continuous-time interpolation. We define
0°(t) =6, for t e [en,en+¢).

Then 6°(-) € D([0,T] : R?"), which is the space of functions that are defined on [0, T] taking
values in R?", and that are right continuous and have left limits endowed with the Skorohod

topology [90, Chapter 7].

Theorem 2.4. Under (A1)-(A3), 6°(-) is tight in D([0,T] : R*). Moreover, as ¢ — 0,

0°() converges weakly to 0(-), which is a solution of (2.11).

Remark 2.5. An equivalent way of stating the ODE limit (2.11) is to consider its associated

martingale problem [106, pp. 15-16]. Consider the differential operator associated with 6(-)
Lf(O) = (V) (M0 + P(0)),
and define

My (1) = £(0(t)) — F(6(0)) ~ / L1(6(s))ds.

If Mf() is a martingale for each f(-) € Cj (C' function with compact support), then 6(-)
is said to solve a martingale problem with operator £. Thus, an equivalent way to state the
theorem is to prove that 6°(-) converges weakly to 6(-), which is a solution of the martingale

problem with operator L.

Proof of Theorem 2.4. To prove the tightness in D([0,7T] : R?"), we first need to show

im limsup P{sup|0°(t)| > K} =0 (2.12)

|
K—oo -0 t<T
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To avoid verifying (2.12), we define a process 65V (-) satisfies 6=V (t) = 6°(t) up until the
first exit from Sy = {x € R* : |z| < N} and satisfies (2.12), the 6=V(-) is said to be an
N-truncation of 0°(-). Introduce a truncation function ¢ (-) that is smooth and that satisfies
¢V (0) =1 for [9] < N, ¢™(0) =0 for |§] > N + 1. Then the discrete system (2.8) is defined
as

erjzv—i-l - 6)27 + 5[M9£LV + P(eéva nn) + W(ey];[’ 1y T2,n, ﬁn)]qN(eyjy), (213)

using the N-truncation. Moreover, the N-truncated ODE and the operator £V of the asso-

ciated martingale problem can be defined as

T~ o™ 1)+ PO 1)) (00)), (214)
and

LYf(O) = (Vf(0))'[M0 + P(0)lg" (), (2.15)
respectively.

To prove the theorem, we proceed to verify the following claims: (a) for each N, {05V (-)}
is tight. By virtue of the Prohorov theorem [90, p.229], we can extract a weakly convergent
subsequence. For notational simplicity, we still denote the subsequence by {6="(-)} with
limit denoted by 6V (-).

(b) OV () is a solution of the martingale problem with operator £V.

Using the uniqueness of the limit, passing to the limit as N — oo, and by the corollary
in [106, p.44], {6°(-)} converges weakly to 6(-).

Now we start to prove claims (a) and (b).

(a) Tightness. For any 6 > 0, let ¢ > 0 and s > 0 such that s < §, and ¢, ¢t + 6 € [0, 7.
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Note that
(t+s)/e—1
Nt +s) =07V ()= > (MOY + POY m) + WO 1k raks me))g™ (6.
k=t/e

In the above and hereafter, we use the conventions that t/e and (¢ + s)/e denote the corre-
sponding integer parts |t/e] and [(t + s)/e], respectively. For notational simplicity, in what
follows, we will not use the floor function notation unless it is necessary.

Using the Cauchy-Schwarz inequality,

2

(t+s)/e—1 (t+s)/e—1
e e 2
SE | Y MOYV(OY)| <eKs > Ef 0NN O))| (2.16)
k=t/e k=t/e

where Ej denotes the expectation conditioned on the o-algebra F;. Likewise,

2

(t+s)/e—1
e E; Z WO r1 g ragne)d (6)] < Ks?, (2.17)
k=t/e
and ,
(t+s)/e—1
eE | Y. PO m)dV(0))| < K (2.18)
k=t/e
So we have
(t+s)/e—1

E; |67 (¢ + s) —QE’N(t)‘2 < Kes Z sup EFOY g™ (0M))? + Ks*. (2.19)

k=t /e t/e<k<(t+s)/e—1

As a result, there is a ¢°(d) such that

EZ|65N (t + 5) — 05N (1)|* < ES5(8) forall 0 < s <4,
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and that lims_.qlimsup,_, , E<*(6) = 0. The tightness of {#=Y(-)} then follows from [106,
p.47].

(b) Characterization of the limit. To characterize the limit process, we need to work
with a continuously differentiable function with compact support f(:). Choose m. so that

m. — 00 as € — 0 but §. = ¢ m. — 0. Using the recursion (2.13),

(t+s)/de
FON(E+5) = FON @) = > [f i) — F(O)]
=t/
(t+s)/de lmg—i-mg—l o
ey (VfOm)) Y [MOY+PON)eV(6))

1=t/ k=lm.
(t+s)/0e Ime+me—1 o

+e Y (VO D PO m) — PO))aN (6F)
I=t/dc k=lme
t+8 /65 Ime+me—1

+e Z A ACA) Z W (0, 1 g o, i) g™ (OF)
= t/és k=lm.
(t+s)/0e

ey { FONT) — VN
1=t/

Ime+mes—1

x> [MOY + PO i)
k=Ilm.

+W (6, Tl,k,rzk,ﬁk)]qN(%v)},
(2.20)
where Q{Xnt is a point on the line segment joining QlN and 9{; L
Our focus here is to characterize the limit. By the Skorohod representation [90, p.230],
with a slight abuse of notation, we may assume that 0=V (-) converges to 8~ (-) with probabil-

ity one and the convergence is uniform on any bounded time interval. To show that {6="(-)}

is a solution of the martingale problem with operator £, it suffices to show that for any
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f(-) € C}, the class of functions that are continuously differentiable with compact support,
0

M (1) = f(6V (1) = f(V(0)) —/ LY f(O (u))du

0

is a martingale. To verify the martingale property, we need only show that for any bounded

and continuous function A(-), any positive integer k, any ¢, s > 0, and ¢; < t with i < &,

Bh(ON(t:) =i < w)[MN(t +5) — MY (t)]
= Eh(OV(t:) i < k) x [f(0V(t +5)) = F(OV (1) — /t LY f (0 (u))du] (2.21)

= 0.

To verify (2.21), we begin with the process indexed by e. For notational simplicity, denote
h=hON(t) i <kK), h°=h0"N):i<k). (2.22)

Then the weak convergence and the Skorohod representation together with the boundedness

and the continuity of f(-) and h(-) yield that as e — 0,

ER[f(07N(t + ) = f(0°N (1)) — ER[F(O™(t + 5)) = F(ON())]:

For the last term of (2.20), as e — 0, since f(-) € Cj,

(t+s)/0s Ime+me—1

Eh'e ) {(Vf(@%t)—Vf(@ffns))’x > MOy + PO )
I=t/6. k=lme

2.23
—l—W(@;iV,T’l,kﬂ’z,kaUk)]qN(eliV)} ( )

=0(e) — 0.
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For the next to the last term of (2.20),

(t+s)/de Ime+me—1
lim B¢ ¢ Z/ GREEDY WX o o e (0))]
1=t/ =tme
) R (2:24)
=l BR[ S S (VAOR)) % o D B WO e e (6))]
I=t/5. k=lm.
Using (A1) and (A3),
1 Ime+me—1
- > EmWOh 1 r25m)¢" (O,) — 0
c Jj=lme
in probability, we obtain that
" (t+s)/0e Ime+me—1
Ezf[g S e x> W(&{j,m,rz,k,nk)qN(e,QV)] 0. (2.25)
1=t /6. ke=lme.
Using (A1), we obtain
" (t+s)/0e Ime+me—1 -
Bl S0 (VIO x Y (POY.m) - PO O] —0. (2.26)
l:t/(Sg k=Ilm.
Next, we consider the first term. We have
" (t+s)/0e Ime+me—1 -
lim R [e Y (VF(0.)) % > sy + PO)a" (6]
l=t/65 =lme
)/ Imetme—1 B (2.27)
— lim E* = Z/ (VHERI xS + PO )a" 03.)]
I=t/5: =lme

Thus, to get the desired limit, we need only examine the last two lines above. Let ¢ Im, — u

as ¢ — 0. Then for all k satisfying Im. < k < Im.+m.—1,e k — wu since 6. — 0. As a
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result,

" (t+s)/0e Ime+me—1 -

lim E0[e 7 (VAONDY x> (MO, + PO, )a" 03)]
I=t/5: k=Um. (2.28)
. t+s -
— BR[| (V6" ()Y (16" () + PU6(w))g" (O(u))du]
t

The desired result then follows. O

To proceed, consider (2.11). For simplicity, suppose that there is a unique stationary
point #*. Denote Pr(6*) = Pr* and Pg(*) = Pg*. By the inversion formula of partitioned

matrix [61], solving M@* + P(6*) = 0 yields that the equilibrium point of the ODE satisfies

) kil —0.5x(c1 + o)l —0.5x (1 Pr* 4 coPg")
* %
| 2l —0.5x(c1 + o)1 —0.5x (1 Pr* 4 coPg")
(2.29)
0
o c1 Pr* 4+coPg*
L ci+c2

Corollary 2.6. Suppose that the stationary point 0* is asymptotically stable in the sense of
Lyapunov and that {0,,} is tight. Then for any t. — oo ase — 0, 0°(- +1t.) converges weakly

to 6*.

Proof. Define 65(-) = 6°(- + t.). Let T > 0 and consider the pair {#°(-),6°(- — T)}. Using
the same argument as in the proof of Theorem 2.4, {#( -), 6= (- — T )} is tight. Select a
convergent subsequence with limit denoted by (6(-),07(:)). Then 6(0) = 607(T). The value
of 07(0) is not known, but all such 07(0), over all 7" and convergent subsequences, belong to
a tight set. This together with the stability and Theorem 2.4 implies that for any A > 0,

there is a Ta such that for T > Tx, P(Or(T) € Ua (0*) ) > 1 — A, where Ux(0*) is a
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A-neighborhood of #*. The desired result then follows. O

In Corollary 2.6, we used the tightness of the set {6, }, which can be proved using the
argument of Lemma 2.9. The result indicates that as the stepsize ¢ — 0 and n — oo with
ne — oo, 0, converges to 6* in the sense in probability. Note that if * turns out to the

optimum of the search space, then 6,, converges to the optimum.

Remark 2.7. Note that for notational simplicity, we have assumed that there is a unique
stationary point of (2.11). As far as the convergence is concerned, one need not assume that
there is only one #*. See how multimodal cases can be handled in the related stochastic
approximation problems in [90, Chpaters 5, 6, 8]. In fact, for the multimodal cases, we can
show that 6°(- + t.) converges in an appropriate sense to the set of the stationary points.
Thus Corollary 2.6 can be modified. In the rate of convergence study, [25] suggested an
approach using conditional distribution, which is a modification of a single stationary point.
If multiple stationary points are involved, we can simply use the approach of [25] combined
with our weak convergence analysis. The notation will be a bit more complex, but main idea
still rest upon the basic analysis method to be presented in the next section. It seems to be

more instructive to present the main ideas, so we choose the current setting.

2.4 Rate of Convergence

Once the convergence of a stochastic approximation algorithm is established, the next task
is to ascertain the convergence rate. To study the convergence rate, we take a suitably scaled
sequencez, = (0, — 0%)/e*, for some a > 0. The idea is to choose « such that z, converges
(in distribution) to a nontrivial limit. The scaling factor « together with the asymptotic
covariance of the scaled sequence gives us the rate of convergence. That is, the scaling tells

*

us the dependence of the estimation error 6, — 6* on the step size, and the asymptotic
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covariance is a mean of assessing “goodness” of the approximation. Here the factor a« = 1/2
is used. To some extent, this is dictated by the well-known central limit theorem. For related
work on convergence rate of various stochastic approximation algorithms, see [31,67].

As mentioned above, by using the definition of the rate of convergence, we are effectively
dealing with convergence in the distributional sense. In lieu of examining the discrete iteration
directly, we are again taking continuous-time interpolations. Three assumptions are provided

in what follows.

(A4) The following conditions hold:

(i) in a neighborhood of 6%, Pr(-,n) and Pg(-,n) are continuously differentiable for
each 7, and the second derivatives (w.r.t. ) of W (-, ry,75,7n) and P(-,n) exist and

are continuous.
(i) denoting by E,, the conditional expectation on the o-algebra F,,, = {6y, 715,72,
j < m}, and by (y the first partial derivative w.r.t. § of ( = W or P, resp., for

each positive integer m, as n — 00,

Ms

E mPre(0,n;) — Prg(f) in probability,

I
|

E mwPgy(0,m;) — Pgy(0) in probability,

I
3

(2.30)

Mg 3|>—‘ 2>|>—‘

Wo(0" T1,J,7‘2],nj)| < 00,

Z|E Py(6°,m;) — Po(67)] < oo.

(iii) The matrix M + Py(6*) is stable in that all of its eigenvalues are on the left half

of the complex plane.
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(iv) There is a twice continuously differentiable Lyapunov function V(-) : R* — R
such that
— V(0) — 00 as |0] — oo, and Viy(+) is uniformly bounded.
= [Va(0)] < K(1+V2(9)).
— |MO+PO) < K(1+V(0)) for each 6.

— V3(0) (MO + P(9)) < —AV () for some A > 0 and each 6 # 6*.

(AB) N 1EW (B, P1ams T2ms )W (07,715, 72,5, 1) | < 00, where W (8,71, 72,m) = P(0,n) —

m

=
P( ) + W(9>7’1a7°2>77)-

(A6) The sequence B(t) = \/Ezz/jo_l W(é’*, 1, T2, 1;) converges weakly to B(-), a Brow-

nian motion whose covariance ¥t with 3 € R**2" given by
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X = EW(H*a 71,05 72,05 nO)W’(G*, 71,05 72,05 70)

+y EW (0", 710,720, 70) W (07, 71 1, T2, 1) (2.31)

k=1
00

+ Z EW(9*7 T1k> T2,k ﬁk)wl(e*, 71,0, 72,0, M0)-

k=1

Remark 2.8. Note that (A4)(ii) is another noise condition. The motivation is similar to
Remark 2.3. The main difference of (2.9) and (2.10) and (2.30) is that (2.30) is on the
derivative of the functions evaluated at the point 6*. In fact, we only need the derivative exists
in a neighborhood of this point only. This is because that we are analyzing the asymptotic

normality locally. In view of this condition and condition of {r;,},

1 m4n—1 . ' -

- E, Wy(0%,r1,72,m;) — 0 in probability,

1 m]:nnil

" E..Py(6",m;) — Py(8") in probability.
j=m

The traditional PSO algorithms do not allow non-additive noise, here we are treating a more
general problem. Nonadditive noise can be allowed.

(A4)(iv) assumes the existence of a Lyapunov function. Only the existence is needed; its
precise form need not be known. For simplicity, we have assumed the convergence of the
scaled sequence to a Brownian motion in (A6); sufficient conditions are well known; see for
example, [90, Section 7.4]. Before proceeding further, we first obtain a moment bound of

O,

Lemma 2.9. Assume that (A1)-(A6) hold. Then there is an N. such that for all n > N,
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Proof. To begin, it can be seen that

E.V(0pi1) =V (0,) < —eXV(0,) +eE, Vi (00)W (0ny T1.0s T2, 1)

(2.32)
+O(3) (1 +V(6,)),

where 6 is on the line segment joining 6,, and 6,,,1. The bound in (2.32) follows from the
growth condition in (A4)(iv), the last inequality follows from (A1l). To proceed, we use the
methods of perturbed Lyapunov functions, which entitles to introduce small perturbations

to a Lyapunov function in order to make desired cancelation. Define a perturbation

VEO,n) =Y BV OW (0, 715,72, 1m5)-

j=n
Note that
[VE(O,n)| = K e(1+V(0)). (2.33)
Moreover,
E.Vi(0ni1,n+1)—=V7(0,,n
¢ (Ong1,m ) T ( ) N (2.34)
= 0(82)(‘/(9”) + 1) —€ En‘/@/(en)w(em Tl,m T2,n7 77n)
Define V=(0,n) = V(0) + V£(0,n).Using (2.32) and (2.34), we obtain
EVE(lpi,n+1) < (1 —=eNV(b,,n) + 0D+ VE(On,n)). (2.35)

Choosing N, to be a positive integer such that (1 — (\e/2)) < Ke. Iterating on the

recursion (2.35), taking expectation, and using the order of magnitude estimate (2.33), we
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can then obtain
V (9n+1, n -+ 1)

E
< (1- 5)\)EV€(9n, n) + O(e*)(1+ VE(0,,n)) (2.36)
< (1- —)"EVa(QO, 0) +O(e) = Ofe).

when n > N.. The second line of (2.36) follows from 1 — Xe + O(e?) < 1 — 4 for sufficiently
small . Now using (2.33) again, we also have EV(0,.1) = O(e). Thus the desired estimate

follows. a

Define z,, = (6,, — 0*)/+/c. Then it is readily verified that

Zni1 = Zn +e(M + Pg(0)) 2z,
HVE(P(O" 1) — P(07) + W (0", 710, P20, 1))
+e(Po(0",mn) — Po(07)
+Wo (0% 715 Toms M) ) 20 + 0(|20]2).

(2.37)

Corollary 2.10. Assume that (A1)-(A6) hold. If the Lyapunov function is locally quadratic,
1.€.,

V() = (0 —07)Q(0 — 07) + 0|0 — 0"*).

Then EV (z,) = O(1) for alln > N..

Now we are in a position to study the asymptotic properties through weak convergence of
appropriately interpolated sequence of z,. Define 2°(t) = z, for t € [(n— N.)e, (n— N.)e +¢].
We can introduce a truncation sequence. That is, in lieu of 2°(+), we let N be a fixed but
otherwise arbitrary large positive integer and define 25V (:) as an N-truncation of z°(-).
That is, it is equal to 2°(-) up until the first exit of the process from the sphere Sy = {|z| :

|z] < N} with radius N. Also define a truncation function ¢"(z) = 1if 2 € Sy, = 0 if

z € R" =Sy, and is smooth. Corresponding to such a truncation, we also have a modified
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operator with truncation (i.e., the functions used in the operator are all modified by use of
q"(2)). Then we proceed to establish the convergence of 25 (-) as a solution of a martingale
problem with the truncated operator. Then finally, letting N — oo, we use the uniqueness
of the martingale problem to conclude the proof. The argument is similar to that of Section
2.3. For further technical details, we refer the reader to [90, pp. 284-285]. Such a truncation

device is also widely used in the analysis of partial differential equations. For notational
simplicity, we choose to simply assume the boundedness rather than go with the truncation
route. Thus merely for notational simplicity, we suppose z°(t) is bounded. For the rate of
convergence, our focus is on the convergence of the sequence z°(-). We shall show that it
converges to a diffusion process whose covariance matrix together with the scaling factor will
provide us with the desired convergence rates. Although more complex than Theorem 2.4,
we still use the martingale problem setup. To keep the presentation relatively brief, we shall
only outline the main steps needed.

For any t,s > 0,

(t+s)/e—1
Ft+s)—22(t)=e > (M+Py(67))z

j=t/e
(t+s)/e

Ve Z WO, 71,72, m5) (2.38)

j=t/e
(t+s)/e

+e Z We(e*,ﬁ,jarzjv%)zj’

j=t/e

Note that for any 6 > 0, t,s > 0 with s < 4,

Ef |\e Z W(0",r1j,r25,m;)| < Ke

(t+s)/e—1 <t 1 "
j=t/e
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and similarly,
(t+s)/e—1 N
Z Wg(@*,m’j,rg,j,nj)zj S KS S K5

j=t/e
Using Corollary 2.10 and similar argument as that of Theorem 2.4, we have the following

result.
Lemma 2.11. Assume conditions of Corollary 2.10, {z°(+)} is tight on D(]0,T] : R*").

Next we can extract a convergent subsequence of {2°(-)}. Without loss of generality, still
denote the subsequence by 2°(-) with limit z(-). For any ¢,s > 0, (2.38) holds. The way
to derive the limit is similar to that of Theorem 2.4 using martingale problem formulation
although the analysis is more involved. We proceed to show that the limit is the unique

solution for the martingale problem with operator

Lf(z) = %tr(Efzz(Z)) +(Vf(2)) (M + P(6.)), (2.39)

for fe C2, C? functions with compact support.

Using similar notation as that of Section 2.3, redefine

h=h(zt;):i<k), h°=h(z(t):i<k). (2.40)
y (A4) (ii), ase — 0
- (s)/e
Eha [E Z W(Q*, 7“17j, 7’27]', 7’]j)ij|
j=t/e

(t45)/0c Ime+me—1

:Eﬁa[ Z Z W@ rlj,rgj,n])z]}ﬁ().

I=t/dc j=lme
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Using the notation as in Section 2.3,

(t+s) /55 lmg—i-mg—l

[ Z Z W‘g T3> 72,5, 15) % Zlms]]

I=t/5. Me Time

— 0 as ¢ — 0.

Moreover, by (A6) we have
(t+s)/e o Its
VES WO e~ [ d B
j=t/e t
as ¢ — 0. For the first term of (2.38), we have
(t+s)/e—1

Eﬁa[e Z (M+Fe(9*))zj]

j=t/e

— /t Torg Py(0"))=(u)du]

as € — (. Putting the aforementioned arguments together, we have the following theorem.

Theorem 2.12. Under conditions (A1)-(AT7), {2°(-)} converges to z(-) such that z(-) is a

solution of the following stochastic differential equation
dz = [M + Py(6))zdt + SV2dB (1), (2.41)

where B(-) is a standard Brownian motion.

Remark 2.13. To see what kind of functions and the associated ODE and SDE we are
working with, we look at two simple examples. In the first example we use F(z) = 2%, take

2 particles, x = 1, k1 = —0.271, Ky = 1, ¢; = ¢ = 1.5, and assume {7} is an i.i.d. sequence
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with mean [0, 0,0, 0]" and variance 1. Then

—0.271 0 —-1.5 0
0 —0.271 0 —-1.5
M = (2.42)
1 0 —-1.5 0
0 1 0 —-1.5
and the limit ODE is given by
O(t) = MO(t).

Thus 6* = [0, 0,0, 0] is the minimizer of the swarm, and Py (6 * ) = 0 € R*** (a 4x4 matrix
with all entries being 0). In the standard optimization algorithm, one processor is running
to approximate the optimum. Here, we have two particles running simultaneously. Note that
0 has four components. Two of them represent the particles’ positions, and the other two
are the particles’ speeds. At the end, both of the particles reach the minimum, representing
something that might be called “overlapping.” In addition, eventually the speeds of both
particles reach 0 (or at resting point). As far as the rate of convergence is concerned, we
conclude that 6, —#* decades in the order of 1/ (in the sense of convergence in distribution).
Not only is the mean squares error of (6, — 6*) of the order ¢, but also the interpolation of

the scaled sequence z, has a limit represented by a stochastic differential equation

dz = Mzdt + dB(t).

That is, (2.41) is satisfied with Pp(6*) = 0 and ¥ = I. As illustrated in [90], the scaling
factor \/c together with stationary covariance of the SDE gives us the rate of convergence. In

terms of the swarm, loosely, we have 6, —6* ~ N(0, € Z) [that is, (0, — %) is asymptot-
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ically normal with mean 0 € R* and covariance matrix & =], where = is the asymptotic

covariance matrix that is the solution of the Lyapunov equation M = + =y M' = — 1.
Likewise, in the second example, F(z) = sin = with x € [0, 1]. We still take 2 particles,

same parameters setting, and assume {7} is the same i.i.d. sequence as before. Then M is

as in (2.42), and

0.7 0 07 0 10

0 07 0 0.75 01
Py(0*) =
0.7 0 07 0 10

o o o O
o o o O

0 07 0 0.75 01

It follows that (2.41) holds with

1229 0 —-15 0

_ 0 1.229 0 —1.5
M + Py(0%) =
2.5 0 —1.5 0

0 2.5 0 —15

and > = [. Similar to the previous example, we have that 6, — 6* is asymptotically normal
with mean 0 and covariance 5%, where = is the asymptotic covariance satisfying the Lyapunov

equation (M + Pg(6*))Z + Z(M + Pe(67)) = —1.

2.5 Numerical Examples

We use two simulation examples to illustrate the convergence properties. Using (2.5), we
take e = 0.01, x =1, kg = —0.271, ko = 1, ¢; = ¢ = 1.5. For simplicity, we take the additive
noise Pr(0,,n,) = Pr(0,) + n, and Pg(0,,n,) = Pg(0,) + n,, where 7, is a sequence of

i.i.d. random variables with a standard normal distribution A/(0,1). In addition, we set the
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Trajectories Centered and Scaled Tracking Errors
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Figure 1: Particle swarm of one-dimensional X using F; defined in (2.43).
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Figure 2: Graphs of Pr and Pg using F; defined in (2.43).

number of swarms to be 5.

Example 2.14.  Consider the sphere function:

Pi(z) =« (2.43)

where D is the dimension of the variable x. Its global optimum is (0,0,...,0)". First, the
dimension of X is set to be 1. Figures 1 and 2 show the state trajectories (top) and the
centered and scaled errors of the first component 01 (bottom). The graphs of Pr (top) and
Pg (bottom) are also provided.

Next, we consider the 2-dimension case of X. Figures 3 and 4 illustrate the state trajec-
tories (top) and the centered and scaled errors of the first component 0% (bottom), and the

graph of Pr (top) and Pg (bottom), respectively.
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Trajectories Centered and Scaled Tracking Errors
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Figure 3: Particle swarm of two-dimensional X using F defined in (2.43).
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Figure 4: Graphs of Pr and Pg using F} defined in (2.43).

Example 2.15. Consider the Rastrigin function [57]

Fy(x) = 10D + ) [a? — 10 cos(27 7)), (2.44)

i=1
where D is the dimension of the variable x.

This function has many local minima. Its global optimum is given by (0,0, ...,0)". Same
as Example 2.14, we set the dimension of X to be 1 and 2, respectively. The particle swarm
trajectories, the centered and scaled errors of the first component, and graphs of Pr and Pg
are given in Figures 5 to 8, respectively.

From these figures, we can conclude that all the swarms converge to a point in the
searching space. These results were obtained without assuming that r{, ro, Pr, and Pg are

fixed. Our numerical results confirm our theoretical findings in Sections 2.3 and 2.4.

Remark 2.16. We use the definition of convergence here that a swarm collapse in which
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Trajectories Centered and Scaled Tracking Errors
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Figure 5: Particle swarm of one-dimensional X using F; defined in (2.44).
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Figure 6: Graphs of Pr and Pg using F5 defined in (2.44).
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Figure 7: Particle swarm of two-dimensional X using F, defined in (2.44).
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Figure 8: Graphs of Pr and Pg using F» defined in (2.44).
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all particles have converged to a point in the search space. Sometimes we observe (e.g., in
the second example) that the convergence point is not the global or even local optimum.
This problem, referred to as premature in literatures, occurs commonly in evolutionary algo-
rithms such as PSOs, genetic algorithms, evolutionary strategies, etc. Based on our numerical
experiments, we found that if the cost function is unimodal and with low dimensions, the
equilibrium coincides with the proper parameter choice. The problem of under what con-
ditions the equilibrium coincides with the optimum deserves to be carefully studied in the

future.

2.6 Further Remarks

In this chapter, we considered a general form of PSO algorithms using a stochastic approx-
imation scheme. Different from the existing results in the literature, we have used weaker
assumptions and obtained more general results without depending on empirical work. In
addition, we obtained rates of convergence for the PSO algorithms for the first time.
Several research directions may be pursued in the future. We can use stochastic approx-
imation methods to analyze other schemes of PSO, for example, the SPSO2011 considered
in [69]. We can set up a stochastic approximation similar to (2.8) and analyze its conver-
gence and convergence rate. Finding ways to systematically choose the parameter values
K1, Ko, C1, and ¢y is a practically challenging problem. One thought is to construct a level
two (stochastic) optimization algorithm to select best parameter value in a suitable sense.
To proceed in this direction requires careful thoughts and consideration. In addition, we
can consider that some parameters such as x, ki, etc. are not fixed but change randomly
during iterations or change owing to some random environment change (for example, see

[134]). The problem to study is to analyze the convergence and convergence rates in such
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a case. Furthermore, using another definition of convergence, i.e., the swarm’s best known
position Pg approaching (converging to) the optimum of the problem, is another possible
study direction.

To conclude, this chapter demonstrated convergence properties of a class of general PSO
algorithms and derived the rates of convergence by using a centered and scaled sequence of
the iterates. This study opens new arenas for subsequent studies on determining convergence

capabilities of different PSO algorithms and parameters.
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CHAPTER 3 Infinite Dimensional Regime-Switching
SA Algorithms

3.1 Introduction

This chapter is concerned with a class of stochastic approximation (SA) algorithms for
tracking the invariant distribution of a Markov chian with has countable state space and is
conditioned on another Markov chain also having countable state space. We will evaluate
the tracking capability of the SA algorithm in terms of mean squares tracking error, char-
acterize the dynamic behavior of the iterates, reveal the structure of a scaled sequence of
tracking errors, and obtain the asymptotic covariance of the associated limit process. Based
the discussion in [91], we assume that such a Markov chain with infrequent jumps as a slow
Markov chain for simplicity. Since if the parameter changes too fast, there is no chance one
can track the time-varying properties using an SA algorithm.

Motivation. This chapter is an extension of the work in [92]. The authors in [92] consid-
ered the case that discrete Markov chains have finite state space. We refer the reader to [92]
and its references for the background and survey of the problem. In this chapter, we consider
the case that the state space of discrete Markov chains is countable. The motivation stems
from reduction of computational complexity for large-scale systems, e.g., queueing network
models, communication networks, internet traffic controls, and computer systems. Many of
these systems are either modeled directly as Markovian systems or can be recast in such a
form. In reality, the networks are often quite large with many nodes. Thus the computational
complexity is often an important issue and has drawn much attention. We refer the work

[93] for more information about discrete-time Markov chains with a countable state space.

Outline. This chapter is devoted to an SA algorithm with constant step size and updates
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that are essentially of the form of occupation measures. We focus on the analysis of tracking
error bounds. First, we derive mean squares type error bounds using perturbed Lyapunov
function methods [90] based on stability analysis. Then we show that an associated system of
ODEs with regime switching can be obtained via a combined use of the updated treatment
on SA [90] and two-time-scale Markov chains [80,83]. The system of ODEs with regime
switching, different from a single ODE derived from some usual SA algorithms in the existing
literatures, is modulated by a continuous-time Markov chain. By this system of switching
ODEs, we further analyze the rate of convergence. To do this, we need to examine a sequence
of suitably normalized errors. We use a special norm to avoid analysis infinite covariance
matrix. We can demonstrate that if the true parameter is a fixed constant, then the norm of
this suitable scaled sequence of estimation errors has a Gaussian diffusion limit. Moreover,
the limit of the norm is a system of diffusions with regime switching. That means the diffusion
coefficient depends on the modulating Markov chain in the limit system,, which reveals the
distinctive time-varying nature of the underlying system.

The rest of the chapter is organized as follows. The formulation of the problem is presented
in Section 2. Obtaining mean squares error bounds and a weak convergence result of an
interpolated sequence of the iterates are showed in Section 3. A norm of suitably scaled
tracking error sequence of the iterates and derives a switching diffusion limit are examined
in Section 4. Section 5 presents an example of an adaptive discrete stochastic optimization
algorithm.

Before proceeding further, a bit of notation is in order. Throughout the chapter, 1 denotes
an infinite dimensional column vector with all components being 1. For a vector z and
a matrix H, we use 2’ and H’ to denote their transposes, and use 2’ to denote the ith

component of z and H¥ to denote the ijth entry of H, respectively. However, for a real
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number r, 7¥ denotes the kth power of r (e.g., € for ¢ > 0 used in what follows), and | r|
denotes the integer part of . K denotes a genetic positive constant whose values may vary
for different usage (the conventions K + K = K and KK = K will be used without notice).
For a given matrix H = (h"),xs with infinite columns and infinite rows, we define H, to

be a matrix given by H, = (1, H). In addition, we use a subscript to index a sequence.

3.2 Formulation

The following conditions are used throughout the chapter. Condition (M) characterizes the
time-varying underlying parameter as a Markov chain with infrequent transitions, while

condition (S) characterizes the observed signal.

(M) Let {a,} be a discrete-time Markov chain with infinite state space

M = (@1, T, ...} (3.1)

and transition probability matrix

P"=14+nQ, (3.2)

where 1 > 0 is a small parameter, [ is an infinite dimensional identity matrix, and
@ = (¢ij)ooxoco 18 & generator of a continuous-time Markov chain (i.e., () satisfies ¢;; > 0
fori # jand 2;11 ¢ij = 0foreach i =1,2,...). For simplicity, suppose that the initial
distribution P(ag = @;) = po; is independent of 7 for each i = 1,2,..., where py; > 0

and > 7 po,; = 1. Q is irreducible.

(S) Let {Y,,} be an infinite state conditional Markov chain (conditioned on the parameter
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process). The state space of {Y,} is S = {s1, $2, ...}, where s; for i = 1,2, ... denotes
the ith standard unit vectors, with the ith component being 1 and the rest of the
component being 0. For each a € M, A(a) = (a;;(@))ocoxco, the transition probability

matrix of Y,, is defined by

aij(a) = P(Yoi1 = s5|Yn = 83, = a) = P(Y1 = s[Yo = 1,00 = ),

where 7,7 € {1,2,...}. For « € M, A(«) is irreducible and aperiodic.

By the assumptions, we know that A(«) is irreducible and aperiodic. So there exists a

unique stationary distribution ¢ (a) € R* ! satisfying

Y (a) = ¢ (a)A(a) and ¥'(a)l = 1.

We focus on using an SA algorithm to track the time-varying distribution ¢ (cv,) that depends

on the underlying Markov chain a,.
3.2.1 Adaptive Algorithm

We use a stochastic approximation algorithm with constant step size

{b\n—l—l = {b\n + 5(Yn+1 - {b\n)a (33)

where £ denotes the step size. This is an adaptive algorithm of least mean squares (LMS) type

which can construct a sequence of estimates {@En} of the time-varying distribution ¥ (cv,),
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Define v, = 1, — EvY(ay,). Then (3.3) can be rewritten as

Unit = U — el + e(Yars — B(an)) + E(¥(an) = $(ntn))- (3.4)

Note that @En, 1 (ar), and hence @Zn are infinite column vectors (i.e., they take values in R>*1).
The underlying parameter «, is called a hypermodel in [91]. Although the dynamics of
the hypermodel «,, is used in our analysis, it does not explicitly enter the implementation of
the LMS algorithm (3.3).
Now we will derive a mean square error bound by examining an interpolated sequence of

the iterations, and derive a limit result for a scaled sequence in the following sections.

3.3 Asymptotic Properties

3.3.1 Mean Square Error

We consider a mean square estimate for E[¢,|> = E[¢, — Ev(a,)|? first. Lyapunnov-type
functions are often required to analyze SA algorithms for proving stability, see [73,90]. In
what follows, we establish the desired estimate via a stability argument using the perturbed
Lyapunov function method [90]. Use E,, to denote the conditional expectation with respect

to F,, the o-algebra generated by {Y, s : k < n}.

Theorem 3.1. Assume (M) and (S). In addition, suppose that n?> < e. Then for sufficiently

large n,
2

E|l),> =0 <£+n—|—%) : (3.5)
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Proof. Define V(z) = (2’x)/2. Direct calculations lead to

Env(lznﬂ) - V(Jn) = En{%[—éin + (Yo — E¥(an)) + E[Yp(an) — (o))} (3.6)
+E,| — ety +e(Voin — Bp(an)) + E[(an) — ¢(ani)]|”

By the Markovian assumption and the structure of the transition probability matrix given

by (3.2),
E,[t(0n) ~t(ns1)] = El(cn) — (1))

E[y(@;) — ¥(ani1)|on = ai]]{an:az’}

IvF

=1

IvE
™

lw(@) - ?ﬂ(@j)p?j] lan=a) (3.7)

7 1

J

=-—n Z Z w(aj)%'j[{om:ai}

i=1 j=1

= O(n),

moreover, detailed computation also shows that

E. [ (an) — d(ans)]* = O(n). (3-8)

Owing to (3.2), the transition probability matrix P" is independent of time n. As a result,
the k-step transition probability depends only on the time lags and can be denoted by (P7)*.

By an elementary inequality, we have |1, = [¢n] - 1 < (|¢0,|2 + 1)/2. Thus,

O()|tha] < OM)(V () +1).

Noting that the sequence of signals {Y,,} is bounded, the boundedness of {@En}, and

O(ne) = O(n* + &2) via the elementary inequality ab < (a® + b*)/2 for any real numbers a



46

and b, the estimate (4.14) yields

E,| - ey +c(Yos1 — Bi(an)) + E[t(an) — ()]
< KE, |20 + € Yoi1 — By(an)]” + 2|0, E(Yaa — Bv(aw))]
+e[Ul, B (an) = ¥(an))] + €l (Vosr — Ev(an)) E(¥(an) — $(an))l
+HE(W(an) = t(ani1))|”

=02+ 1) (VW) + 1) + | E(Wb(an) — ()
(3.9)

and

En@%[_azn + 5(Yn+1 - E¢(an)) + E(¢(an) - ¢(an+l))]

- N N (3.10)
= _ng(wn) + EEM/};L(YTWI - Ed}(an» + Enw;E(q/}(an) - w(an+1>>’

Using (3.9) and (3.10) in (4.12) together with (4.13), we obtain

Env(in—l—l) - V(Jn)
= —2eV () + €8, (Va1 — Bd(an)) + Ent E((n) — ¥(ansa))  (311)
+O(% + ) (V (i) + 1).

To obtain the desired estimate, we need to “average out” the second to the fourth terms
on the right-hand side of (3.11). To do so, for any 0 < T < oo, we define the following

perturbations:
T/n

‘/177(,{2;’ n) = €Z@Z/En(y}+l - E’QD(OZ])),
j=n

T/n

Vi (0,n) = U E((ag) = dlagi)),

(3.12)

In the above and hereafter, 7'/n is understood to be |7'/n], i.e., the integer part of T'/n.
Throughout the rest of the proof, we often need to use the notion of fixed-a processes.

For example, by Y;(a) for n < j < O(1/n), we mean a process in which o; = « is fixed for
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all j with n <j < O(1/n).
For V;"(¢,n) defined in (3.12),

T/n

S Bl = (o)l < |3 BulYin — BY;i]
j=n

T/n (3.13)
+ Y [EYj — Ev(e)))].
j=n
Using the ¢-mixing property of {Y;} (see [76, p. 166]),
T/n
ZEn[l/j+1 —EY; ]| <K < uniformly in n. (3.14)
j=n
We can also show
T/n
> [BYj — Bi(ay)]| < . (3.15)
j=n
Thus, using (3.13)-(4.21), for each v,
Vi, n)] < O)(V(¥) +1). (3.16)

By virtue of the definition of V;'(-) and (3.2), it follows that there exists an N, for all

n > N, such that
T/n

V3 (4, )| = ZJ’[E(w(aj) — (1))
= ['E[y
< [¢]0(n
< O(n)(V(¥) +1).

() — Plazyy)]] (3.17)
)
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We next show that they result in the desired cancellation in the error estimate. Note that

E V! (ni1,n+ 1) = V) (U, n)

B B _ _ (3.18)
- En[vln(qvbn-i-la n + 1) - Vf](%, n + 1)] + Envf(%, n—+ 1) - V1n(¢m n)
It can be seen that
E V(Y. n+1) = V', n) = —e B, (Yoy1 — Ev(a,)) (3.19)
and
En‘/ln(lzn-l-lu n—+ 1) - En‘/ln({/;TH n+ 1)
T/n _ T/n B
—¢ Y B Bupi (Vi — Bf(y) —¢ Y Byt By (Vi — B(ay))
]?7;:1 ) ) j=n+1
=& Z En(,@bn-i-l - wn)/En—i-l(}/}-i-l - Ew(a]))
T
=c Y E. [t + (Vi — Bi(an)) + EW(on) — (1)) Bt [Yir — Edb(a)))]
j=n+1
= O(2)(V() + 1) + O(en) = O(2)(V () + 1) + O(17?).
(3.20)
In the above, we have used O(en) = O(e* + n?), (3.4), and (4.12) to obtain
‘En[inﬂ - Jn” < 5En‘lzn‘ +eEy|Ya — EY(ay)| 4+ O(n) (3.21)
= 0(e)(V (1) + 1) + O(n).
Thus
Envln(wn—i-la n—+ 1) - ‘/1"(?% n) (3.22)

= — B, (Vors — Bo(an)) + O(*)(V () + 1) + O(P).
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Analogous estimates yield that

En‘én({/;nﬂ, n+1)— En‘/;(lzn, n+1)
T/n

= > E(tni1 — Un) E(W(0y) — t(aj41))

j=n+1

= 0(en)(V(¥) +1) + O(n%) = O(n* + 2)(V (¢) + 1),
and that
E V3 (nyn+1) = V3 (U, n) = =0, E(¥ (o) — (i)

Thus,
E V3 (g1, n+ 1) = V3 (Y, n)

= —ULE(W(an) = t(ann)) + O + 1) (V (i) + 1).
Redefine V}" and V,' with T'/n replaced by oco. Estimates (3.13)-(3.25) still hold.
Define

W(ih,n) = V() + V{'(&,n) + V3 (¢, n).

Then, using the above estimates, we have

E W (s, n+ 1) — W(thy, n)
= E,V (Yns1) = V() + En[V{ (Yny1,n + 1) = V' (¢, )]
+Ey V3 (g1, m+ 1) = V3! ()]
= 22V () + O + 1) (V () + 1),

This, together with (4.22) and (3.17) and 7'/n replaced by oo, implies

E, W (ns1,n+ 1) = W ()
< —25W(@Zn,n) +O0( + nz)(W(QZn,n) +1).

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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Choose € and n small enough so that there is a A > 0 satisfying
—2e + O(n*) + O(e?) < —)e.

Then, we get

E, W (pi1,n+1) < (1= X)W (thy, n) + O + 1). (3.28)

Taking the expectation and iterating on the resulting inequality yields

n

EW (Yns1,m + 1) < (1= Xe)" M EW (40, 0) + > (1= ey MO + 1)
=Ny ) (3.29)
< (1= Xe)" N EW (3,0) + O <E + n?)

By taking n large enough, we can make (1 — \e)" 7 = (). Then

EW (ps1,n+1) <O <a + 77;) . (3.30)

Finally, applying (4.22) and (3.17) again, replacing W (¢, n) by V (¢) adds another O(n)

term. Thus we obtain
2

EV (1) <O (a o+ %) . (3.31)

This concludes the proof. O
Since our adaptive algorithm can track the time-varying parameter, the ratio n/e must
not be large. Given the order-of-magnitude estimate O(e + 1 + n?/e), to balance the two
terms € and 7n?/e, we need to choose n = O(g). By Theorem 3.1, we obtain the following

result.

Corollary 3.2. Under the conditions of Theorem 3.1, if n = O(e), then for sufficiently



51

large n, E|iy)2 = O(c).

3.3.2 Limit System of Regime-Switching ODEs

Next, we try to derive a limit system for an interpolated sequence of the iterates. We consider
the case n = O(e). For notational simplicity, we use n = e. For 0 < T' < 0o, we construct a

sequence of piecewise constant interpolation of the stochastic approximation iterates in as

UE(t) = b, L E[en,en+e). (3.32)

The process 9°(+) so defined is in D([0,T]: R*), which is the space of functions defined on
[0, T taking values in R* that are right continuous, have left limits, and are endowed with
the Skorohod topology. We implement the analysis using weak convergence methods. The
application of weak convergence ideas usually requires proof of tightness and the character-
ization of the limit processes, which is a system of ODEs modulated by a continuous-time

Markov chain.

Lemma 3.3. Under conditions (M) and (S), {°(-)} is tight in D([0,T];R>).

Proof. By using the tightness criteria [77, p. 47], it suffices to verify that for any ¢ > 0 and

0<s<V,
lim limsup E[ sup E5[{°(t + s) — ¢°(t)[*] = 0. (3.33)
=0 =0 0<s<6
Note that
W(t + S) - wg(t) = 7vb(t—l—s)/e - ¢t/€
(t+s)/e—1 N (334)
=€ Z (Vi1 — ).
k=t/e

Note also that both the iterates and the observations are bounded uniformly. Then the
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boundedness of {3} and {t,} implies that

B8 (t +5) — (1))

(t4s) /=1 ~ (t4s)/e—1 -
=E|c Y Mea—®)||e Y. Va—1y)
k=t/e j=t/e

(t—l—s Je—1 (t+s)/e—1

23S BV — ) (Y — ) (3.35)

k=t/e j=t/e

< K2 t+s t
- € €

= K((t+5s)—1)?=0(8).

Then (3.33) follows, so the desired tightness follows. i

3.4 Limit of Modulating Markov Chain

Consider the Markov chain {a,,}. Regarding the probability vector and the n-step transition
probability matrix, we have the following approximation results.
Suppose that o is a discrete Markov chain which has [ (I < co) interconnected subspaces

such that its state spaces is given by

M:M1UM2U...M1, (336)

where M; = {s;1,8i2,...} for i = 1,... 1. Within each subset the transitions take place
an order of magnitude more frequent than that of among different subsets. The transition

probability matrix is

P* = P+ uQ, (3.37)

where

P = diag(P*,..., P (3.38)
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is the usual notation of diagonal block matrix with entries of appropriate dimensions.

The asymptotic expansions of the probability vector is constructed as

o= (et et
:(P(Oéz:811),...,P(O&£:821),...,...,P(OKZ:Sll),...).

We often partition an infinite-dimensional vector ¢ in accordance with the decomposition of

the state space given by (3.36) as

p=(p'...,¢") where ¢ = (p, 2, ..). (3.40)

That is, ¢’ is an infinite-dimensional vector corresponding to the subspace M;.

Following the approach in [93], consider the spaces

I oo
=" ..., o) 1<i<lp*eR foreach k€N, and ZZ|(,0ik|<OO},
i=1 k=1

lo={(¢" ..., :1<i<l,¢*cR foreach k€N, and sup sup |¢™*| < oo},
1<i<l 1<k<oo

equipped with the norms

l 00
el =D > ™|, and [ = sup sup |p™],

= 1<i<l 1<k<oo

respectively; see Huston and Pym [81, p. 11]. For a linear operator A defined on these
spaces, we use its induced norm [|A|| = sup,; [[Az||, where [ - [| is either the norm | - [[; or

| - ||loo- It is easily seen that p € ¢; and that for each i(1 < ¢ < [) and each k(1 < k < 00),
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P >0, and SO, S0 e Pl = 1. Tt is also well known that p/* satisfies the equation
Phs1 = PR P (3.41)

Assume that the initial probability vector py is independent of p,

Ph=po= 0" 03 D)

such that

1 00
pd >0, and > > pi =1 (3.42)

i=1 j=1

In addition,

sup |Ipille <1 and  sup |[[pilli = sup ZZP
0<k<T/n 0<k<T/u 0<k<T/n'7 1

since it is a probability vector.

We will use the following two assumptions.

(A1) Let P* be given by (3.37) with P specified in (3.38), P* and P are transition probability

matrices; for each i < [, P is irreducible and aperiodic.

(A2) For eachi=1, ... [, thereisa0 < \; < 1such that for k > 1,
I(P)* = 10'[|oe < K ()", (3.43)

where v’ = (v, 0™, ...) is the stationary distribution corresponding to the transition

matrix P’
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We have the following lemma.

Lemma 3.4. Under the conditions (A1) and (A2),

=O(u"*).

sup
0< k< T/

P — [Z (i k) + Z/ﬂvj(/f)]

[e.9]

where

A
up(t)(P—1) =0, w(t)(P—1)=73_ %d é;l(t) —ua(H)Q,0=1,...,n,
=1
volk+ 1) =wvo(k)P, we(k+1)=vp(k)P+v,1(k)Q,0=1,...,n,
and
uo(0) +vo(0) = po, ue(0) = —1p(0),£=1,... n.
In addition,
Pl =" Ugpk) + > ' Vi(k) + O(u"*), (3.44)

/=0 (=0

uniformly in 'k =1,...,T/u, where

4

U(t)(P— 1) =0, oh

1 dUp_(
dt’

U ()G L =1,....n,

Volk+1)=VW(k)P, Vy(k+1)=Vi(k)P+V,_1(k)G,¢{=1,... n,
and

Up(0) + Vo(0) = I, Up(0) = —V(0),6=1,...,n.

Proof. See the proofs of Theorems 2.6 and 2.7 in [93]. O

Lemma 3.5. Under conditions (A1) and (A2), @"(-) converges weakly to a(-), a Markov



56

chain generated by Q defined by
Q = vQ1 = diag(v', ..., v") Q diag(1,1,...,1). (3.45)

Proof. See the proof of Theorem 2.10 in [93]. O

With the above two lemmas, we can now derive a result that will be used in the subse-

quence analysis. The proof is essentially an application of the above lemmas.

Proposition 3.6. Assume (M). Choose n = € and consider the Markov chain o,. Then

the following assertions hold

e Denote p5, = (P(ay,, = @1), ..., P(a, = @3),...). Then

(3.46)
(P9)" = Z(t) + O(e),

=Z(t Z(t)=1.
W z20a. 20
e Define the continuous-time interpolation of o, by a°(t) = «ay, if t € [ne,ne +¢). Then
af(+) converges weakly to a(-), which is a continuous-time Markov chain generated by
Q.
Proof. Observe that the identity matrix in (3.2) can be written as

I = diag(1,1,...) € R®*>®,

Each of the 1’s can be thought as a 1 x 1 “transition matrix”. Note that under the con-
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ditions for the Markov chain a,, the diag(v!,...,v') defined in (3.45) becomes I € R>*>,
and diag(1,1,...) in (3.45) is also I. Moreover, the @ defined in (3.45) is now simply Q.
Straightforward applications of Lemma 3.4 and Lemma 3.5 then yield the desired results.

d

3.4.1 Limit Differential Equations

Consider the pair (@EE(), af(+)). By Proposition 3.6 and Lemma 3.3 together with the Cramér-
Wold device [76, p. 48], we know {(125(),045(-))} is tight in D([0, T];R*® x M) for T" > 0.
By virtue of Prohorov’s theorem, we can extract convergent subsequences. For notational
simplicity, we still index the subsequence by € and denote the limit by @E (+). By virtue of the
Skorohod representation, 125() converges to 12() w.p.1, and the convergence is uniform on

any compact interval. We proceed to characterize the limit @() The result is stated in the

following theorem.

Theorem 3.7. Under conditions (M) and (S), (Je(-),ae(-)) converges weakly to (@(-),a(-)),

which is a solution of the following switching ODE:

—O(t) = Pp(al(t) — D),  $(0) = . (3.47)

Proof. To obtain the desired limit, we prove that the limit (@E(), a(+)) is the solution of the

martingale problem with operator L, given by

Lif(z,2;) =V fl(x,a@)(Y(w) —x)+ Qf (x,-)(@;) for each @; € M, (3.48)
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where

Q [z, ) (@) =D af (@, @) = q;[f(x,0;) — f(z,a@)] for cach @ € M,
JEM i
and for each @; € M, f(-,a;) € CZ, the class of functions that are twice continuously
differentiable with compact support. In the above, V f(z,@;) denotes the gradient of f(z, @;)
with respect to z. Using an argument as in [80, Lemma 7.18], it can be shown that the
martingale problem associated with the operator L; has a unique solution. To show that
the limit (¢(-),a(-)) is a solution of the martingale problem with operator L, it suffices
to show that for each @; € M and any f(-,@;) € Cz, f(z(t) — a(t)) — f(z(0),a(0)) —
f(f Lif(x(s),a(s))ds is a martingale. To verify this, we need only to show that for any

positive integer ¢y, any t > 0, s > 0, and 0 < t; < ¢, and any bounded and continuous

function h;(-,@;) for each @; € M with j < 4,

Lo
E]] hi ((t), a(t;)) (3.49)
11 3.49

X {f@(ms),a(tﬂ))—f@(t),a(t))—/t sLlf@(u),a(u))du = 0.

To verify (3.49), we work with the processes indexed by e and prove that the above equation
holds as ¢ — 0.
First by the weak convergence of (@EE(), af(+)) to (’(//J\(), a(+)) and the Skorohod represen-

tation,

~

g BT (01,02 D0+ 90,050+ 5) — T, 0°(0)
gZ1 (3.50)

= E[[h@(t;), a(t)) [ (@o(t + 5), alt + 5)) = F(0(8), a(1))].

J=1
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On the other hand, choose a sequence n. such that n. — oo as ¢ — 0, but € n. — 0. Divide

[t,t + s] into intervals of width J. = ¢ n.. We have

Lo
£ H hi (@7 (t;), (1)) [f (W7 (E + s), a5 (E + 5)) — F(@7(2), ()]
]_1 Lo R (t+s)/e=1 R
=E | | h(v°(¢)),0°(t5)) Z [f (Vtnesnes Qnesn) = f(Qinetne, un, )] (3.51)
=1 Ine—t /e
! (t+s)/e—1 R
+ Z wlng-i-nga alng) - .f(’lvblnga alng)]
Ine=t/e

Since f(-, «) is smooth and bounded, we obtain that

Lo (t+s)/e—1
J=1 Ine=t/e
lo (t+s)/s=1 - (3.52)
_ lli%E 1 h; (¢€( i) (1)) Z/ [f (Vrnes Qnetn.) — f (i, Q)]
Jj= In.=t/e

Thus we need only work with the latter term. Moreover, letting ¢ — 0 and [0, = ¢ In. — ¢

and using nested expectation, we can insert E}; and obtain

Lo (t+s)/e—1
E H hj(¢e(tj)> aa(tj)) Z [f(wlnga alng-i-ng) - f(¢lng7 alng)]
=1 Inc.=t/e
: Lo N (t+s)/e—1 0o o0 Ine4n.—1
=E[[h@F )07 t) | Do DD > [f(m, @)
Jj=1 Ine=t/e j=1 i=1 k=In.
XP(Oék+1 - ai|ak - aj) - f(,lv/b\lnmaj)]l{ak:aj}]
lo R (t+s)/e—1 00 Inetne—1
—E[m@ ) et | S [ S Q) o %}]
j=1 Ine=t/e j=1  k=in.
Lo
~ B[ wa )| [ Q@ awia] as <=0
j=1

(3.53)
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Since @fns and «y,. are Fj,_-measurable, by virtue of the continuity and boundedness of

\4 f(7 Oé),
% R (t+s)fe=1 R
E][h@ ). 0ct) D 1 Wincsnes in) = f Win, )]
j=1 In.=t/e
Lo . (t+s)/e—1 N Ine+ne—1 R
= E[[ @5, ac(t) > [€Vf'(¢zn6, ) Y. B (Vs — ) | +o(1).
j=1 Ine=t/e k=ln:
where o(1) — 0 as ¢ — 0. Next, consider the term
Lo - (t+8 /E 1 Ine+ne—1
lim B 1_[1 hi (= (t5), o7 (t;)) Z/ Oc [ . kzl: Ein Yy (3.54)
j= Ine=t/e Ne

Consider a fixed-a process Y («), which is a process with a4, fixed at ay, = o for In. < k <

O(1/e). Close scrutiny of the inner summation shows that

Ine+ne—1 Ine+ne—1
1
— Z E,, Y1 can be approximated by — Z E, Yii(a) (3.55)
€ k=lne Ne 2 Ine

with an approximation error going to 0, since, Ey,_[Yii1 — Yit1(a)] = O(n) = O(e) by use

of the transition matrix (3.2). Thus we have

where o(1) — 0 in probability as ¢ — 0. Henceforth, we write 1 in lieu of 1,,. Note that for
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each j =1,2,..., as n. — oo (recall that . = € n.),
1 Ine4+ne—1
— > [A@)F - 1 (@),
Ne
k=Ilng

Note that I(a,, —a,j can be written as Ifse(s.)=a;}- As € — 0 and 6. — u, by the weak
convergence of a®(-) to a(-) and the Skorohod representation, Ifac(cin.)=a;) — lfa(u)=a;}

w.p.1. Consequently, since 1¢’(@;) has identical rows,

1 Ine+ne—1
Eln Yk—l—l - ¢ aj I{a (u)=a;}
M k; Z (3.56)
= ¢(Oé(U))-

That is, the limit does not depend on the value of initial state, a salient feature of Markov

chains. As a result,

Lo N (t+s)/e—1 Ine4+ne—1
lim B[ (0" (t) 07t | 32 = >0 EwYin
J=1 Ine=t/e k=ln.
‘o t+s
= E [ h0° (1 [Z/ V(@) o _aj}du] (3.57)
]Z)l
= E[[n(° (4 U W(a } .
7j=1

Likewise, it can be shown that, as ¢ — 0,

Lo (t+s)/e—1 Ine4+ne—1
lim B ][ 1y (0% (1)), *(2,)) 2)67 Y
j=1 lng—t/e k=Iln. (358)

=Eﬁm@wmwwnuwﬁww]

Combining (3.50), (3.53), (3.57), and (3.58), the desired result follows. i
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3.5 Switching Diffusion Limit

By Theorem 3.1, {%ﬁf(a”)} is tight for n > ny, for some positive integer ny. We define a

scaled sequence of the tracking errors {v, } and its continuous-time interpolation v*(-) by
, n>mng, V(t)=wv, for te€ne ne+e) (3.59)

to evaluate the rate of variation of the tracking error sequence. Note that from Proposi-
tion 3.6,

Ed(ay) = d(e n) + 0(), where i, & Z (e n)v (@), (3.60)

where 2'(t) is the ith component of z(t) given in Proposition 3.6. By (M), {«,} is a Markov

chain with stationary (time-invariant) transition probabilities, so in view of (3.3),

E[)(ay,) — (an)] '

U1 = Up — €U, + VeV — EY(ay)) + NG

(3.61)

Similarly to the rate of convergence study when « is a fixed parameter (see [90, Chapter 10]),
the scaling factor 1/, together with the asymptotic covariance of the limit process, gives us
a “rate of convergence” result. However, since v, is an infinite-dimensional vector, it is not
convenient to analysis its limit process. Suppose that f(-) is an arbitrary bounded real-valued
function defined on M such that {f(s;) : 1 < j <oo} € (I =1). Let y, = 372, f(s;)v],

consider

(¢ (an) — Y7 (an4a)]
NG

it = b =+ VE Y F) (Vi — B (a) + 3 (s) - (3:62)
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We will derive a limit process for y°(-) as ¢ — 0. Our task in what follows is to figure out
the asymptotic properties of y°(-). Here y°(t) = y, for t € [ne, ne +¢). We aim to show that

the limit is a switching diffusion using a martingale problem formulation.

3.6 Truncation and Tightness

Owing to the definition (3.59), {y,} is not a priori bounded. A convenient way to circumvent
this difficulty is to use a truncation device [90]. Let N > 0 be a fixed but otherwise arbitrary
real number, Sy(y) = {y € R : |y| < N} be the interval with length 2N, and 7V (y) be a
smooth function satisfying

1 ifly| < N,

™(

y) =
0 ifly| >N +1.

Note that 7V (y) is “smoothly” connected between the intervals Sy and Sy, ;. Now define

- 77bj(O‘n—i-1)]
\/E .

y7]LV+1 = yvjzv - €yé\’7—N(ijV) + \/EZ f(sj)(Y7{+1 o E¢](an)) + Z f(sJ)E[W(a")
- - (3.63)

and define y=(-) to be the continuous-time interpolation of 3. It then follows that

lim lim sup P( sup |y ()] > ko) = 0 foreach 7T < oo
ko—oo 20 0<t<T

and that y=V(-) is a process that is equal to y°(-) up until the first exit from Sy, and hence
an N-truncation process of y*(-) [90, p. 284]. To proceed, we work with {y=(-)} and derive

its tightness and weak convergence first. Finally, we let N — 0o to conclude the proof.

Lemma 3.8. Under conditions (M) and (S), {y>N ()} is tight in D([0, T];R), and the
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process {y=N (), ac(+)} is tight in D([0, T|;R x M).

Proof. In fact, only the first assertion needs to be verified. In view of (3.63), for any 6 > 0

and t, s < 0 with s < 4,

(t+s)/e—1 (t+s)/e—1 o
vV (t+ s) — yo e > ™) +vE D) fs)(V, -
k=t/e k=t/e Jj=1
(t+s /E 1 o0
Z > () ER (an) = ¢ ().
k=t/e j=1

Owing to the N-truncation used,

(t+s)/e—1
Z yk ™ yk < Ks,
k=t/e
and as a result,
(t+s)/e—1 2
limlimsup E sup Ej|e Z ye N ()| =0
6—0 -0 0<s<§ ht/e

Ey (ar))

(3.64)

(3.65)

Next, by virtue of (M), the irreducibility of the conditional Markov chain {Y,,} implies that

it is ¢-mixing with exponential mixing rate [76, p. 167], EY(ay) — EYj+1 — 0 exponentially
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fast, and consequently

(t+s)/e—1 oo 2
E; |\e Z Zf (s5) (Vi — Ev (ay))
k=t/e j=1
o (t+s)/e=1 | 2
=E;|[VeY | fls) D (V- EW(%)))
j=1 k=t/e
%) (t+s)/e—1 '
= E; \/EZ [(ij—i—l EYk]+1) (B (o) — EYk+1)] = O(s).
J=1 k=t/e
This yields that
(t+s)/e—1 oo 2
(lsl_I)I(l)thélp E Osupé E; |\¢ Z Zf (s;,) (Y, — E’(ay))| =0. (3.66)
e— <s< k=t/e j=1
In addition,
(t+s)/e—1 oo . 0o 1 (t+s)/e—1
Z S () B (an) — ¢ (ansn)] = Y fls) 72 > EW(an) — ¥ (0ng)]
k=t/e Jj=1 j=1 k=t/e
= 5 (o) J2lB ) = B s )
j=1

(3.67)

Combining (3.64)-(3.67), we have

hm lim sup B { sup  ES|y=N(t +s) — =N (1) } =0,

6— e—0 0<s<é

and hence the criterion [77, p. 47] implies that {y="(-)} is tight. i
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3.7 Representation of Covariance

The main results to follow, Lemma 3.9 and Corollary 3.10 for the diffusion limit in Section
3.7.1, require representation of the covariance of the conditional Markov chain {Y}}. This
is again worked out via the use of fixed-a process Yy (o) similar in spirit to (3.55). For any
integer m > 0, for m < k < O(1/¢), with ay, fixed at «, Yy41 () is a Markov chain with 1-step
irreducible transition matrix A(«) and stationary distribution ¢ (a). Thus [76, p. 167] implies
that {Yi11(a) — EYj1()} is a ¢-mixing sequence with zero mean and exponential mixing
rate, and hence it is strongly ergodic. Similarly to (3.55), Y11 — EYj;11 can be approximated
by a fixed a process Yiii(a) — EYyi (). Takingn =n. < O(1/e) ase — 0, n — oo,
and

n+m 1n+m—1 oo

hm— Z Z Zfs] k—i—l EYkJ+1 Z-fsjl ij1+1 @) — EYlgll-q—l( a))

ki=m k=m j=1 Jji=1
=o(a) w.p.l,
(3.68)

and

n+m 1 n+m—1

DY Z EZf S V(@) ~ BYE (@) 3 Flsy ) (Vi ()~ BV, (@) = o(a)
ki=m j1=1

(3.69)

Note that (3.68) is a consequence of ¢-mixing and strong ergodicity, and (3.69) follows from

(3.68) by means of the dominated convergence theorem. By [93, Theorem 2.13|, moreover

detailed computation yields an explicit formula for the limit variance

[e.9]

o?(i) =D F(s)f(s) | Bt Y wi (k) + B> w(k)| (3.70)

1=1 j=1 k=0 k=0
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and vy (k) is the syth entry of Vj(k) given by

Ey
Ey

3.7.1 Weak Limit as Solution of a Martingale Problem

To obtain the desired weak convergence result, we work with the pair (y=V(-),a%(-)). By
virtue of the tightness and Prohorov’s theorem, we can extract a weakly convergent subse-
quence (still denoted by (y=(+), a®(+)) for simplicity) with limit (y™(-), a(-)). We will show
that the limit is a switching diffusion.

To proceed with the diffusion approximation, similarly as in the proof of Theorem 3.7, we
will use the martingale problem formulation to derive the desired result. For y € R, a € M,
and any twice continuously differentiable function g(-, @) with compact support, consider the

operator L defined by

0 1 0?

Lg(y,i) = —a—yg(y,i)y + 502(i)a—?ﬂg(y, i)+ Qgly, )i), ieM (3.71)

where %(i) > 0 will be specified later. We will show that the limit process is a solution of a
martingale problem with operator £, which has a unique solution. As a result, the limit is a
switching diffusion process. For any positive integer {y, any t > 0, s> 0,any 0 < t; < ¢t
with j < /¢y, and any bounded and continuous function h;((-), «) for each o € M, we aim
to derive an equation similar to (3.49) with the operator L; replaced by L. As in the proof

of Theorem 3.7, we work with the sequence indexed by . Choose ne such that ne — oo but
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5. = en. — 0. The tightness of {y=(-),a*(-)} and the Skorohod representation yield that

(3.50)-(3.52) hold with ¢°(-) and #(-) replaced by y=¥(-) and y™(-), respectively.

Lemma 3.9. Assume the conditions of Lemma 3.8 and that (y="(0), a*(0)) converges
weakly to (yN(0), «(0)). Then (y= (-), a(-)) converges weakly to (y™(-), a(-)), which is

a solution of the martingale problem with operator LV given by

2

0 1 0
LNg(y,a) = —8—yg(yN, )NV (yN)+ 0% (a) =

2 ayag(yN’aHQg(yN,-)(a), aeM (3.72)

Proof. In view of (3.67), the term Z,:ths/a/a >oisy F(si)[EY () — B (1)) /V/E = O(VE)

can be ignored in the characterization of the limit process. Moreover,

(t+s)/e—1 oo
VE D D fs)Yi — BY ()]
k=t/e j=1
t-‘rS /6 1 o0 (t-‘rS)/& 1 o0
=Ve D D )V —EYL ) +VE > Y f(s) (B, — B (o).
k=t/e j=1 k=t/e j=1

Since EYyy1 — EY(ax) — 0 exponentially fast owing to the elementary properties of a

Markov chain, the last term above is o(1) that goes to 0 as ¢ — 0. Thus,

(t+s)/e—1 (t+s)/e—1 oo
y= N (t 4 5) — Z yN N () + /e Z Zf s;) (Y, — EY}. ) +o(1).
k=t/e k=t/e Jj=1
(3.73)
Similarly to the argument in the proof of Theorem 3.7,
Lo -(t+s)/€—1
tim BT b2V (1), 07(0) |32 00 ) — 9000
7=1 | Ine=t/e (374)
Lo roptts
B[ [ e at) | [ oty (w),aw)du).
LJ ¢

J=1
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In addition,

(t+s)/e—1 Ine+ne—1 P

e, 5 65
ll_I)nEHh N af ) |- Y - > a—yg(yﬁs,ams)yévfjv(yév)

j=1 lng—t/é‘ k=In;
Lo (t+s)/e—1
=lm E [ (" (1)), 0 = > Oem 00 o)y (Uin,) (3.75)
j=1 In.=t/e
Lo t+s a
— B[ 1" (t5),alty)) [— 2 (), a(u))yN<u>fN<yN<u>>du] |
t

Next we note that

lo (t+s)/e—1 Ine+n-—1 oo
Eth(ye’N(tj “(tj) [ Ve Z ylns n, ) Z Zf ;) Vi — B Y]

j=1 Ine=t/e k=ln. j)=1

Lo (t+s)/e—1
<|ET]hw ™). 0ct) |V Y 9(Yin. n.)

j=1 In.=t/e

Ine+ne—1
X Z f(s)) Z B Y — E Y] ‘
7=1 k=Ing

—0 as e€— 0
(3.76)

owing to the mixing property.

Finally, define

Ine4+ne—11Ilns4+n—1 o)
1
glzns T Z Z E,. (Zf $5) ij+1 EYkJ-i-l Zf Sj1) Y/g-lu EYkG—l])

€ k=ln. ki=ln. j=1 j1=1



70

It follows that

Lo (t+s)/e—1
BII0 00 | Y ool o) 0, — o)
7j=1 lng_t/a
Lo (t+8 /E 1 82
= E[] "V (t;),0°(t;) Z Z 9Wim @n) Wine e = Yim) Lo, =)
j=1 J 1 Inc=t/e

t o (/e oo
= E H h](y&N(t])’ ae(t])) Z Z 6 a 2g(yln5 alnE)Elnsglngl{alng_aJ} + pz’;‘)

j 1 In.=t/e

where p. — 0 as e — 0. Since it is conditioned on ay,, = «; , Ysy1 — FE Yjyq can be
approximated by a fixed-@; process Yii1(a;) — EYj41(a;), and since Yiq(oj) — EYjpq (o)
is a Markov chain with irreducible transition matrix A(c;), it is ¢-mixing, and the argument

in (3.69) implies that for each o; € M with j = 1, 2,..,

— > ) Eun

€ k=in. ki=ln.

1 Ine+ne—11Ilns+ne—1
T ) I

J1=1

—o(@;) wpl as e— 0,

where o(a) is defined in (3.69). By virtue of Lemma 3.5, a®(-) converges weakly to a(-).
As a result, by Skorohod representation, sending ¢ — 0 and [6. — u leads to af(e In.)

converging to a(u) w.p.1. In addition, Ita=(s5.)=a,} — I{a(u)=a,} W-p-1. It follows that

Lo (t+s)/e—1

82
E]h@ ). a%t) | Y0 55900 01) Wi n. — i)

j=1 Ine=t/e

- Eth(yN(tj),oz(tj)) [ t Z[a—?ﬂg(yN(UL@j)a(@j)]f{am):aj}dUI (3.78)
t+s 82

= B[00 )0 | [ st (). at)olatw)li

In view of (3.74)-(3.78), the desired result follows. O
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Corollary 3.10. Under the conditions of Lemma 3.9, the untruncated process (y°(+), a°())

converges weakly to (y(-), a(+)) satisfying the switching diffusion equation

dy(t) = —y(t)dt + o(a(t))dB, (3.79)

where B(-) is a 1-dimensional standard Brownian motion and o(«) is given by (3.69).

Proof. The uniqueness of the associated martingale problem can be proved similarly to that
of [80, Lemma 7.18]. The rest of the proof follows from a similar argument as in [90, Step

4,p.285. O

3.8 An application on adaptive discrete stochastic optimization

Consider the following discrete stochastic optimization problem:

min B{c,(@)}, (3.80)

where for each fixed @ € M, {c,(a)} is a sequence of i.i.d. random variables with finite
variance. we assume that the M in (3.1)is M = S = {ey, €2, ..., }, where e; denotes
the standard unit vector with infinite dimensions. In what follows, M denotes the set of
candidate values from which the time-varying global minimizer is chosen at each time instant
(according to a slow Markov chain). S is the set of candidate solutions for the discrete

optimization. Because we assume M = S, we do not use the notation § in this section.

Remark 3.11. Let K C M denote the set of global minimizers for (3.80). If the global
minima set C does not evolve with time, we say the problem is static. The situation has been

discussed in [94] and [95]. In [92], the authors discussed the case that M =S = {ey,...,eg}
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have finite states and the global minima set I of (3.80) is time varying. Here we will consider
the situation that M = S have countable states. So this is an extended version of a discrete

stochastic optimization algorithm proposed by Andraddttir [94].
The following stochastic ordering assumptions are used.

(O) For each e;, e; € M, there exists some random variable Z¢*% such that for all e; € K,
€j€IC,and6l€Mal7é i? ja
P(Z%% >0)> P(Z% >0), P(Z%% >0)>P(Z"% >0),

| (3.81)
P(Z¢¢ < 0) > P(Z%% <0).

Denote this time-varying optimal solution as «,. We subsequently refer to «, as the true
parameter or hypermodel. Tracking such time-varying parameters is at the very heart of

applications of adaptive SA algorithms. The adaptive algorithm are proposed as follows.

Algorithm 1. (adaptive discrete stochastic optimization algorithm)

Step 0: (Initialization) At time n = 0, select starting point Y, € M. Set 120 = Yy, and
select af =Y.

Step 1: (Random search) At time n, sample Y, with uniform distribution from M — {V,,}.
Step 2: (Evaluation and acceptance) Generate observation ZYeYu If ZVeVn > 0, set

Y,i1 = Yyelse, set YV, = Y,

Step 3: (LMS algorithm for updating occupation probabilities of Y;,) Construct 12,”1 as

7v/b\n+1 = {b\n + 6(Y;L+1 - {b\n> (382)
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Step 4: (Compute estimate of the solution) a = e;+, where
i = arg max ;
gi6{1,2,...} Ynn

~

set n — n + 1 and go to Step 1 (¢}, ., denotes the ith component of the vector @nﬂ).

n

Note that aslongas 0 < ¢ < 1, @En is guaranteed to be a probability vector. Intuitively,
the constant step size € introduces exponential forgetting of the past occupation probabilities
and permits tracking of slowly time-varying «,,. Since «,, € M and M is a finite state space,
it is reasonable to describe {a,,} as a slow Markov chain on M for the subsequent analysis.
Henceforth, we assume that (M) holds for {«, }. Note that the hypermodel assumption is used
only for the analysis and does not enter the actual algorithm implementation; see Algorithm
1. By [92, Theorem 6.1], we know that for fixed a,, = « the sequence {Y,} generated
by Algorithm 1 is a conditional Markov chain (conditioned on «,,); i.e., assumption (S) of
Section 2 holds. The update of the occupation probabilities (3.82) is identical to (3.3). Thus
the behavior of the sequence {@n} generated by Algorithm 1 exactly fits the model of Section
2. In particular, the mean squares analysis and the limit system of switching ODEs of Section

3, and switching diffusion limit of Section 4 hold.

3.9 Further remarks

This chapter has been devoted to a class of stochastic approximation problems with regime
switching modulated by discrete-time Markov chain. Under simple conditions, it has been
shown that a continuous-time interpolation of the iterates converges weakly to a system
of ODEs with regime switching and that a suitably scaled sequence of the tracking errors

converges to a system of switching diffusion. For future study, a worthwhile effort is to
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examine Markov decision processes having general state spaces with emphasis on switching
diffusion type Markov decision processes. Another direction of considerable interest is to

pursue the study of semi-Markov processes.
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CHAPTER 4 Asynchronous Stochastic Approximation
Algorithms for Networked Systems: Regime-
Switching Topologies and Multi-scale Struc-
ture

4.1 Introduction

This chapter develops consensus algorithms under the asynchronous communication and
random computation environment using random switching topologies. Consensus problems
are related to many control applications that involve coordination of multiple entities with
only limited neighborhood information to reach a global goal for the entire team. Since
the mid 1990s, there have been increasing and resurgent efforts devoted to the study of
consensus controls of multi-agent systems. The goal is to achieve a common theme such as
position, speed, load distribution, etc. for the mobile agents. In [123], a discrete-time model
of autonomous agents was proposed, which can be viewed as points or particles moving in the
plane with the same speed but with different headings. Each agent updates its heading using
a local rule based on the average headings of its own and its neighbors. This is in fact a special
version of a model introduced in [119] for simulating animation of flocking and schooling
behaviors. Technically, the problems considered are related to the parallel computation model
considered in [121], which was substantially generalized in [107]; see also related works
in [96,99,101,111-114,117,130]. During the past decades, a host of researchers have devoted
their efforts to the study of the consensus problems; see [102-105,110,115,116,118,120,124],
and many references therein. Many results obtained thus far are for simple dynamic systems
with fixed or highly simplified time-varying topologies, whereas [105], [128], and [129] dealt
with time-varying topologies under Markovian switching.

In practical implementations of consensus or coordinated control schemes, control actions
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are almost always done asynchronously, especially over a large network of subsystems. For
instance, subsystems operate independently with different clocks until they communicate
with their neighbors; communication channels operate according to priorities and hence
transmit data at different pace and at different time; even for data packets transmitted at the
same time from a node system, their pathways through different routes and hubs introduce
different latencies and hence arrive at different time. This is especially true in mobile agents
when obstacles from terrains create interruptions, packet losses, and delays so that consensus
must be performed on delayed information which is an asynchronous operation.

In this chapter, our problems are formulated to capture two aspects of the asynchro-
nism: (i) Asynchronous execution of state updates at the subsystems: Each subsystem has
a randomized timer, representing the internal processing time. A subsystem can update its
state only when the timer ticks. After the state update, the timer is renewed and internal
processing resumes until the next ticking time. (ii) Asynchronous neighborhood information
exchange: When a subsystem’s timer ticks, the subsystem will observe the states of its neigh-
boring subsystems at that time and adjust its own state accordingly. Since the neighboring
subsystems update their states independently, the received state information will always be
a delayed information, creating another layer of asynchronism. These concepts are illustrated
in Figure 9.

This asynchronous framework introduces fundamental challenges to constrained consen-
sus control problems. In the field of consensus control, most works are on unconstrained
consensus, namely, as long as the states of the subsystems achieve consensus there are no
other constraints to be satisfied. However, practical systems often impose constraints on the
states. For example, for power grids, all power produced will have to be equal to the total load

at steady state, even though transient power imbalance is allowed due to storage capabilities
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Figure 9: Asynchronous operations and communications of networked subsystems.

on generators and/or capacitance and inductance on transmission lines. In a team formation
for area surveillance, a team of mobile sensors need to be confined to the region to be covered.
In parallel or cloud computing, steady-state service demands and service capacity must be
equal. In our previous work, this constraint is satisfied by employing a “link control” strategy
in which a reduction on a state value is always balanced by an equal amount of increase in
its neighboring subsystems. The constrained consensus control problems are motivated by
load sharing and resource allocation problems. When node ¢ estimates the state of node j
and decides to shift a resource of amount u” to node j, this will be a reduction on node i
and an increase of the equal amount to node j. In this sense, both node ¢ and node j are
controlled. But the decision resides with node ¢, and node j receives it passively. In synchro-
nized operation, this will guarantee that the sum of all states is a constant at all time. In

asynchronous modes, state updates occur at different times, and as a result, the sum of the
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states may not be a constant during the transient period. Asynchronous operation renders
such a control scheme impractical. Further complication stems from the time-varying nature
of network topologies which changes a subsystem’s neighbors randomly. Consequently, the
interaction between the stochastic processes of subsystem timers and the governing Markov
chain for the network topologies must be carefully studied. In this work, we employ a new
control strategy in which the state constraint can be asymptotically satisfied even though
the asynchronous operation leaves the constraint unmet during transient.

Dealing with large interconnected systems such as in a communication network with mul-
tiple servers, it is natural to consider the distributed, asynchronous stochastic approximation
(SA) algorithms. If synchronous SA algorithms are used, a new iteration will not begin un-
til the current iteration is finished in all subsystems. Since the dimension of a networked
system can be very large, the waiting time on subsystems will cause serious time delays. In

[121], an asynchronous algorithm was proposed where separate processors iterated on the
same system vector (with possibly different noise processes and/or different dynamics) and
shared information in an asynchronous way. In [107,108, 135], SA algorithms for parallel
and distributed processing were further developed. The main efforts were on the study of
convergence and rates of convergence of such algorithms.

In this chapter, we concentrate on consensus-type algorithms. Here, each component in
a system (with a large number of mobile agents) can be handled by different agents and the
information can be shared by agents. To each single agent, it can start the next iteration using
the newest information of iteration on other components without waiting for other agents
to finish. So for each component, the time of each iteration and the number of iterations
up to that moment are random. We note that the underlying problems introduce some

new challenges, and our solutions carry a number of new features. When representing the



79

algorithms as discrete-time dynamic systems, the system dynamics switch randomly among
a finite number of regimes and at random times. The modulating force of the switching
process is modeled as a discrete-time Markov chain with a finite-state space. In our setup, the
transition probability matrix of the Markov chain includes a small parameter . Henceforth,
this parameter will be called the transition frequency parameter since it represents how
frequently the state transition will take place. On the other hand, the SA algorithm defines
its updating speed by another small parameter p, which will be called the adaptation step-
size. The interplay of the two parameters introduces a multi-scale system dynamics. It turns
out that the difference between the parameters (¢ = O(u), € < u, and p < ) gives rise to
qualitatively different behaviors with stark contrasts.

To summarize, there are several novel features of the algorithms proposed in this chapter.
(1) In contrast to the most existing consensus algorithms, the participating agents compute
and communicate in an asynchronous fashion. (2) Based on their local clocks, the agents
compute and communicate at random times without using a global clock. (3) The regime-
switching process is modeled as a discrete-time Markov chain with a finite state space. (4)
The functions involved are allowed to vary with respect to time hence nonstationarity can
be handled. (5) Multi-scale formulation enriches the applicability of the algorithms.

The rest of the chapter is arranged as follows. Section 4.2 begins with the basic knowledge
of consensus. Section 4.3 introduces the formulation of a typical consensus control problem for
networked systems under randomly switching topologies. It serves to demonstrate how this
problem naturally leads to asynchronous SA algorithms under switching dynamics. Math-
ematics formulation of the problem is then presented accordingly. Section 4.4 focuses on
the case ¢ = O(u) to introduce new techniques in establishing asymptotic behavior of the

algorithms. Using weak convergence methods, convergence of the algorithm is obtained. The
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limit behavior of the scaled estimation errors is also analyzed. Section 4.6 extends the main
techniques of Section 4.4 to the cases of ¢ < p and p < . It is shown that depending on
relative scales between the transition frequency and adaptation step-size, the asynchronous
SA algorithms demonstrate fundamentally different asymptotic behaviors. Section 4.7 illus-
trates the main findings of this chapter by simulation examples. Section 4.8 provides further

remarks and discusses some open issues.

4.2 Consensus Algorithm Basics: Traditional Setting

This section gives a brief account on the setup of consensus under simple conditions. Consider

a networked system of r nodes, given by

aho o =alh +ul, i=1,...,7 (4.1)

where !, is the node control for the ith node, or in a vector form x,,, = x, + u, with

1

..., ur)’. The nodes are linked by a sensing network, represented

by a directed graph G whose element (i, j) indicates estimation of the state 7, by node i via
a communication link, and a permitted control v¥ on the link. For node 4, (i,7) € G is a
departing edge and (I,7) € G is an entering edge. The total number of communication links
in G is [,. From its physical meaning, node 7 can always observe its own state, which will not
be considered as a link in G.

We consider link controls among nodes permitted by G. The node control u!, is determined
by the link control v. Since a positive transportation of quantity v¥ on (i, j) means a loss
of v;] at node 7 and a gain of v;/ at node j, the node control at node i is u;, = — >=, ;g v} +

> (ieg Vs~ The most relevant implication in this control scheme is that for all n, 377 x

1
n
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S, xb = nr, for some 1 € R that is the average of zy. That is, n = >_;_, x{/r. Consensus

control seeks control algorithms that achieve x,, — nll, where 1 is the column vector of all
1s. A link (i,7) € G entails an estimate, denoted by Z%, of x/ by node i with estimation
error d¥, i.e.,

79 =2l +dY. (4.2)

The estimation error d¥ is usually a function of the signal z7 itself and depends on commu-

nication channel noises £¥ in a nonadditive and nonlinear relation

d,} = g(@),, &) (4.3)

and can be spatially and temporally dependent. Most existing literature considers much
simplified noise classes d¥ = ¢% with i.i.d. assumptions.

Such extensions are necessary when dealing with networked systems. A sampled and
quantized signal = in a networked system enters a communication transmitter as a source.
To enhance channel efficiency and reduce noise effects, source symbols are encoded [101,
113]. Typical block or convolutional coding schemes such as Hamming, Reed-Solomon, or
more recently the low-density parity-check (LDPC) code and Turbo code, often introduce
a nonlinear mapping v = fi(z). The code word v is then modulated into a waveform s =
fo(v) = fa( f1(x)) which is then transmitted. Even when the channel noise is additive, namely
the received waveform is w = s + d where d is the channel noise, after the reverse process
of demodulation and decoding, we have y = g(w) = g(s + d) = g(fo(f1(x)) + d). As a
result, the error term g(fa(fi(z))+d) — x in general is nonadditive and signal dependent. In
addition, block and convolution coding schemes introduce temporally dependent noises. In

our formulation, this aspect is reflected in dependent ¢-mixing noises on 4. These will be
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detailed later.

For simplification on system derivations, we use first d% = £ in this section. Let 7),, and
&, be the [, dimensional vectors that contain all ¥ and % in a selected order, respectively.
Then, (4.2) can be written as 7, = Hyx, + &,, where H; is an [y X r matrix whose rows
are elementary vectors such that if the ¢th element of Zn is 7% then the (th row in H; is
the row vector of all zeros except for a “1” at the jth position. Each sensing link provides
information 0% = 2! — 7% an estimated difference between z¢ and 27 . This information may
be represented, in the same arrangement as 7,,, by a vector d,, of size I, containing all §% in
the same order as 7,. d,, can be written as 0, = Hy z, — 1, = Hox,— Hyz,—&, = Hx,—&,,
where Hj is an [ X r matrix whose rows are elementary vectors such that if the /th element
of g(k) is 7% then the (th row in Hy is the row vector of all zeros except for a “1” at the ith
position, and H = Hyo— H;. The reader is referred to [98] for basic matrix properties in graphs
and to [122] for matrix iterative schemes. Due to network constraints, the information §% can
only be used by nodes i and 7. When the control is linear, time invariant, and memoryless,
we have v = 11 g;; 6% where g;; is the link control gain on (4,7) and p is a global scaling
factor that will be used in state updating algorithms as the recursive stepsize. Let G be the
ls x s diagonal matrix that has g;; as its diagonal element. In this case, the node control
becomes u,, = —uH'Gd,. For convergence analysis, we note that j is a global control variable
and we may represent wu,, equivalently as u, = —u(H'GHz, — H'G¢,) = p(Mz, + W&,),
with M = —H'GH and W = H'G.

Under the link-based state control u’), the state updating scheme (4.1) becomes

Tyl = Ty, — pH'GO,,. (4.4)
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Since I'M =0, I'W =0, 1'z,,4; = 1'z, = rn hold for all n, which is a natural constraint
to the stochastic approximation algorithm. Starting at z, x,, is updated iteratively by using

(4.4), which for the analysis is

Tpa1 = Ty + p(Mz, + WE,). (4.5)

Throughout the paper, the noise {&,} is allowed to be correlated, both spatially and tempo-

rally. We will assume the following conditions.
(A0) (i) All link gains are positive, g;; > 0. (ii) G contains a spanning tree.

Recall that a square matrix @ = (gi;) is a generator of a continuous-time Markov chain

if ¢;; > 0 for all 7 # j and Zj gij = 0 for each ¢. Also, a generator or the associated

vQ =0,
continuous-time Markov chain is irreducible if the system of equations has a
vl =1
unique solution, where v = [vy,...,1,] € R with 1; > 0 for each i = 1,...,r is the

associated stationary distribution. Assume that the noise is unbounded but has bounded
(2 4+ A)th moments. In addition, it is a sequence of correlated noise, much beyond the usual
i.i.d. (independent and identically distributed) noise classes. A ¢-mixing sequence has the
property that the remote past and the distant future are asymptotically independent. The
asymptotic independence is reflected by the condition on the underlying mixing measure.

The proof of the following theorem is in [128].

Theorem 4.1.. Under Assumption (A0), (1) M has rank r—1 and is negative semi-definite.

(2) M is a generator of a continuous-time Markov chain, and is irreducible.
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4.3 Formulation

Throughout this chapter, | - | denotes a Euclidean norm. A point x in a Euclidean space
is a column vector; the ith component of x is denoted by 2*, 1 denotes the column vector
with all components being 1. The symbol ' denotes transpose. The notation O(y) denotes
a function of y satisfying sup, |O(y)|/|y| < oo. Likewise, o(y) denotes a function of y sat-
isfying |o(y)|/|ly| — 0, as y — 0. In particular, O(1) denotes the boundedness and o(1)
indicates convergence to 0. To facilitate the reading, we have placed some basic formulation
for consensus control algorithms in Section 4.2. Our formulation in this chapter is much be-
yond the traditional setup. In lieu of the simple formulation in Section 4.2, we allow certain
nonadditive noises be added. More importantly, our main effort is on asynchronous compu-
tation and communication schemes. In lieu of the constraint 1'z, = nr at each step, we
only require such an equality to hold asymptotically. This generalizes the setup in Section
4.2 of this chapter. Suppose that the network topology is represented by a graph G. Dif-
ferent from the standard setting, the graph depends on a discrete-time Markov chain so it
is given by G = G(a,). In our setup, the graph can take mg possible values. The Markov
chain is used to model, for example, capacity of the network, random environment, and
other random factors such as interrupts, rerouting of communication channels, etc. Thus
G(a,) = > G(¢) {5, =, To illustrate, suppose that initially the Markov chain is at éo = ¢.
Then the graph takes the value G(¢). At a random instance p;, the first jump of the Markov
chain takes place so that a,, = ¢ # ¢. Then the graph switches to G(¢) and holds that value
for a random duration until the next jump of the Markov chain takes place etc.

To carry out the recursive computational task, we consider a class of asynchronous and

distributed algorithms in the following setup. Suppose that the state x € R" and there are r
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processors participating in the computational task. For notational simplicity, we assume that
each processor handles only one component. It is clear that this can be made substantially
more general by allowing each processor handles a vector of possibly different dimensions.
However, the mathematical framework will be essentially the same albeit the complex no-
tation. Suppose that for each i < r, {Y'} is a sequence of positive integer-valued random
variables (assuming the random sequence to be positive integer valued is for notational con-
venience) that are generally state and data dependent such that the nth iteration of processor
i takes Y | units of time. Define a sequence of “renewal-type” random computation times
i

T, as

=0, Tua=T,+ Y (4.6)

For each i, the sequence {Y;'} is an inter-arrival time and {77} is the corresponding “renewal”
time. It is well known that a,, is strongly Markov, so a,: is a Markov chain.
Using constant stepsize > 0, we consider the following asynchronous algorithm

oo =T+ Moy (G )]+ W (@ )EL) A+ pWh (20, 8y, G, i S, (4.7)
where g; € R" and Z:L € R” are the noise sequences incurred in the (n+ 1)st iteration, Note
that the functions involved are time dependent. We use the same idea as in the setup of a
fixed configuration as in Section 4.2, but allow more general structure. Note also that for
each n and v € M, M, () is not a generator of a Markov chain as the fixed M discussed in
Section 4.2. We allow the non-additive noise be used. When M, (:) = M and W,,(¢) = W are
constant matrices being generators of continuous Markov chains for all n and all « € M, and
/Wn = 0, (4.7) reduces to the existing standard consensus algorithm with additive noise.

The nonadditive portion is a general nonlinear function of the analog state x, the Markov
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chain state « € M, the noise source (, as well as n.

The noise sequences are “exogenous” in that (loosely speaking) the distribution of their
future evolution, conditioned on their past, do not change if we also condition on the past of
the state values. The distribution of the computation interval Y, is allowed to depend on the
state x; and the noise '5; which is used during that (n + 1)-st interval in the ith processor.

We define
N;(n) = sup{j: 7’; <n}, Al =n-— 7';'\71_(”),

Ge=56 Gu=_¢j for nelrj, ),

~ _ ~r ~iodef 1 r !
z, = (z,,...,2,) where 7, = (z, ...,z )
Nj(n) Ni(n)

and with a slight abuse of notation, denote «,, = &'T}-V .
Note that A’ =0 if n is a renewal time for processor i (A’ is the time elapsed since the

start of a new computation for processor 7). The Z,, is an aggregate vector of dimension r - r

and 7!, is the state value used for the ith processor at real time n. We can now write

Thyr = T+ uMo ()T Ty + u[Walan) &) Ty + pWo (T, iy G s (4.9)

where I’ = Itni —gy. If I} =1, then n is a random computation time for the ith processor.
Note that the dependence of &Tjiv o is only through the random computation time T; with j =
N;(n). Thus in the notation of «,, we suppressed the i dependence for notational simplicity
in the subsequent calculation; this information is also reflected from I’. In what follows,
for each i, the mixing measures defined in (A2), namely, ¢ and ¢ should be i dependent.
Nevertheless, to simplify the notation, instead of writing ¢ and ¢, we will use ¢ and 1

throughout the rest of the chapter. We assume the following conditions hold.

(A1) The process @, is a discrete-time Markov chain with a finite state space M = {1,...,mg}
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and transition probability matrix

P =P =1+¢Q, (4.10)

where ¢ > 0 is a small parameter, [ is an mg x my identity matrix, and ) = (g;;) €

R™oxmo g the generator of a continuous-time Markov chain, (i.e., @) satisfies ¢;; > 0

for i # 7, Z;nzol ¢ij = 0 for each i =1,...,myp) such that @) is irreducible.

(A2) (a)

(c)

(i) The function /Wn(, t,e) is continuous for each « € M, e € R", and each n, and
|/W7n(:c, Le)| < K(1+ |z|) for each z € R", 1 € M, e, and n. (ii) The {£} is a
sequence of R™-valued ¢-mixing processes such that E& = 0, E|¢ 2T < oo for
some ¢ > 0. Denote fgi = a{g,i;k: < n}, FE€n = o {E,@, k > n}. For m > 0,

P(B|FE) — P(B)| 2

146

the mixing measure is defined by ¢(m) = supg_rénim
and it satisfies >~ _, qbﬁ(m) < 0. (i) The {Ci} is a stationary sequence that
is uniformly bounded such that for each x € R" and each + € M and each
n, E/Wn(:c, 1,Ct) = 0. Moreover, Wn(x, 1,C) is uniformly mixing such that the
mixing measure satisfies Y %(m) < oco. (iv) The sequences {a,}, {€'}, and
{C'} are independent.

For each i, the sequence of positive integer-valued random variables {Y} is
bounded. There are 7 (z, ¢, £') continuous in z uniformly in each bounded (z, &)
set such thatEﬁ-l Y= 7 (2,0, gﬁl),whereﬁﬁldenotes the conditional expectation
on Fi = {$0,a7;, E;i_l, ?_1 : 7 < m}. There are continuous and strictly posi-
tive 7¢(-,¢) such that for each x and each m, Z?::: E! 7 (x,1, g;)/n — 7'(x,¢) in
probability, for each x and + € M.

For each « € M, {M,(¢)} and {W,(¢)} are uniformly bounded. For each ¢« € M,
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there is an M (:) such that for each m, S277" "1 M;(1)/n — M(t), where M(1) is

j=m

an irreducible generator of a Markov chain for each « € M.

Remark 4.2. (a) Note that as a consequence of (A2), for any positive integer m and fixed

2

m+4n—1

J’_

o~ ~.

E! W;(x,, ;) — 0 in probability,

m J

(4.11)

Il
73

1
E;nE; — 0 in probability.

J
m

SI= 3=

=m

.

In what follows, we often work with ¢’ and (’. Then we use E’, to denote the conditioning
on the o-algebra F) = {zo,;, & 1, j <m}.

(b) Assuming that 7'(-,¢) is strictly positive is reasonable. This is essentially a suitably
scaled limit of the mean of Y. Under the standard renewal setup with i.i.d. inter-arrival Y’
(independent of data), it is simply a positive constant, the mean of Y;'.

(c) Note that (4.9) is a stochastic approximation type algorithm, but more difficult to
analyze because of the switching topologies. In the traditional setup of stochastic approxima-
tion problems, the limit or the averaged system is an ordinary differential equation (ODE).
Very often these limits are autonomous. Even if they are time inhomogeneous ODE, these
equations are non-random. Certain cases treated here, the limits is no longer an ODE, but a
randomly varying ODE subject to switching. In the literature of stochastic approximation,
the rate of convergence study is normally associated with a limit stochastic differential equa-
tion. In our case, some of the limits are Markovian-switching stochastic differential equations
(i.e., switching diffusions [134]).

In the next two sections, three possibilities concerning the relative sizes of € and p are
analyzed. This idea also appears in related treatments of LMS-type algorithms under regime-

switching dynamic systems, see [125-127].
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In treating the three different cases, careful analysis is needed to examine convergence,

stability, and related consensus issues.

4.4 Asymptotic Properties: ¢ = O(u)

This section concentrates on the case ¢ = O(pu). For notational simplicity and concreteness, in
what follows, we simply consider € = p in this section. More general cases can be considered;

they do not add further technical difficulties. The results will be similar in spirit.
4.4.1 Basic Properties

To proceed, we first present a moment estimate for the recursive algorithm (4.9). Through-
out the chapter, we use K to denote a generic positive constant with the convention K + K =
K and KK = K. We also use K to denote a generic positive constant that depends on T’

(whose value may change for different appearances).

Lemma 4.3. Under Assumption (A1), for any 0 <T < oo and eachi=1,...,r,

sup El|z!|? < Krexp(T) < oo.
0<n<T/e

Proof. Note that for any 0 <7 < oo and 0 <n < T'/u, by Cauchy-Schwarz inequality,

2 n
~iviri |2
<P+ DE Y [Mi(a)|” |[7] T
k=0 (4.12)

< Krpn Y B|F) T [
k=0

n

Z[Mk(ak)%]i]liﬂ

k=0

1°E
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where K7 > 0. Likewise,

2

WRE| S W@ on, ()| < Ko Y0 B @) T | + K

- 2 o (4.13)
wE Z[Wk(ak)fli]ifliﬂ < K(un)? < Kp.
k=0

Iterating on F|x!|* with the use of (4.9) and using (4.12) and (4.13), we obtain

i i . ~itiri |2
Eloi, [ < (Elzh]* + Kr) + Krp Y E|[#]'T |
kio (4.14)

< (Blzh* + Kr) + Krp Y Elzj* + O().
k=0

Then by Gronwall’s inequality,
Ela;,4|* < Krexp(np) < Ky exp(u(T/p)) < Kpexp(T).

Taking sup over n, the desired estimate follows. O
4.4.2 Convergence

This section is devoted to obtaining asymptotic properties of algorithm (4.9). Before pro-
ceeding further, we state a result on estimation error bounds. The proof of the assertion on
probability distributions is essentially in that of Theorem 3.5 and Theorem 4.3 of [131],
whereas the proof of weak convergence of a(-) can be found in [133]; see also [132]. Thus

the proof is omitted.

Lemma 4.4. Under condition (A2), with P given by (4.10),  denote the n-step transition

probability by (P°)" and p, = (P(a, = 1),...,P(a, = my)), and define o°(t) = a, for
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t € [ne, ne+¢). Then the following claims hold:

£ — t_'_O + —k‘ot/67
P, = p(t) + O(e + e77%) (4.15)

(PE)""0 = Z(en,eng) + Oe + e—ko(n—no))7
where p(t) € R™™ and Z(t,ty) € R™*™ qare the continuous-time probability vector and

transition matriz satisfying

= (0) = Po,
jt to) ! (4.16)

= E 13 tO)Qa E<t07t0) = [7

with to = € ng and t = £ n. Moreover, a(-) converges weakly to a(-), a continuous-time

Markov chain generated by Q).

Since we consider ¢ = O(u), without loss of generality, we take ¢ = p in what follows.
The next lemma concerns the property of the algorithm as y — 0 through an appropriate

continuous-time interpolation. We define

a(t) = xp, o(t) =y, for te [un,pun+ p).

Then (z#(-),a*(:)) € D([0,T] : R" x M), which is the space of functions that are defined on
[0, T taking values in R" x M, and that are right continuous and have left limits endowed
with the Skorohod topology [109, Chapter7]|. Before proceeding further, we first state a

lemma that gives the uniqueness of the solution of (4.17).

Lemma 4.5. The switched ordinary differential equation

da'(t) _ [M(a(t)z(t)]'
dt mi(x(t), a(t))

ci=1,...,r (4.17)
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has a unique solution for each initial condition (z(0), «(0)) with x(0) = (z{, ..., x})"

Proof. For any f(-,-) : R” x M +— R satisfying for each « € M, f(-,1) € C} (space of

continuously differentiable functions with compact support), £; is defined as follows:

Lif(x,) = Z of(z,1) [M(L)x]l +Qf(x,-)(t), €M, (4.18)

—~ Oz, 7(x,1)

where
- Z ngf(.fC, 2)
(=1

Let (z(t), a(t)) be a solution of the martingale problem with operator £; defined in (4.18).

We proceed to show that the solution is unique in the sense of distribution. Define
g(z, k) = exp(Y'z + vk),VyER", 70 €R, k € M.

Consider 1;;,(t) = Ellia@=j19(x(t), k)], j, k € M. It is readily seen that 1);;(t) is the char-

acteristic function associated with (z(t), «(t)). By virtue of the Dynkin’s formula,

Bioko (1) — ok 0) / Cathjon (5)ds = 0, (4.19)
0
where
' Zm M (ko)) Z
Eleoko % . LU(S) O{(S wjoko + %Jowyko (420)

Let ¢(t) = (¢u(t) : ¢t < mg, ¢ < mg). Combining (4.19) and (4.20), we obtain

+ /Ot G(s)ds, (4.21)



93

where G is an mg X mg matrix. Thus (4.21) is an ordinary differential equation with an initial
condition ¥ (0). As a result, it has a unique solution. m|

By Lemma 4.3 to 4.5, we can obtain the following theorem.

Theorem 4.6. Under (Al) and (A2), {"(-),a"(-)} is tight in D([0,T] : R" x M). Assume
that xo and g to be independent of p and are non-random without loss of generality. Then
(x"(-), a”(+)) converges weakly to (x(-), a(-)) that is a solution of (4.17) with initial condition

(xo, ap).

Proof. (a) Tightness. The tightness of {a*(-)} can be proved as in that of [131, Theorem
4.3]. So we need only prove the tightness of {x#(-)}, i.e., we need only prove that {z*(-)} is
tight for each 7.

For any § > 0, let t > 0 and s > 0 such that s < ¢, and ¢, ¢+ € [0,T]. Note that

(t+5)/u—1 (t4)/u—1

it +s) — 2 (t) = p Z [My () Ty) Ty + 1 Z (W)€ iy
k=t/p k=t/p
(t45)/n—1

+ 1 Z [W]i(f;gaakagli)]lli+1'
k=t/p

In the above and hereafter, we use the conventions that ¢/u and (t 4+ s)/u denote the corre-
sponding integer parts, i.e., | t/p | and | (t+s)/p |, respectively. For notational simplicity,
in what follows, we will not use the floor function notation unless it is necessary.

Since ay, is a finite-state Markov chain, by (A1) |[My(cu)| and |Wy(au)| (see the notation

ay in (4.8)) are uniformly bounded. Using the Cauchy-Schwarz inequality as in (4.12) (with
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> r_o teplaced by Z,(:Jr:/ /f #=1 together with Lemma 4.3,

) (t+5) /1 R GR o
Ef |ati(t + s) — ai(t)|” < Kp*EYf Z (M ()] Ty | + Z (Wi ()& T
k=t/p k=t/p
(tr) /-1 o r
+Kp*Ey Z (W (&, ok, G Ty
k=t/n
() /u-1 |
< Kus Z sup EMal]? + Ks* < K62,

k=t/u t/p<k<(t+s)/p—1
(4.22)

where E}' denotes the conditioning on F}' = o{af, &, ¢l i < r k < |t/u]}. In the above, we
have used E}'|r;|? < oo for [t/p] < k < |(t+ s)/u], which can be shown as in Lemma 4.3.
As a result,

lim limsup F [ sup El|ati(t + s) —x“’i(t)\2] = 0.
=0 pu—o0 0<s<é

The tightness of {z*(-)} follows from [106, p.47].

(b) Characterization the limit. For notational simplicity, we shall not use a function
f(-,-) € CZ in the usual martingale problem formulation for the following derivation, but
work with the underlying sequences directly. It is convenient to proceed with a scaling argu-

ment to treat the random renewal times.

Define the process Z/, Zm(-), WA and WH(-) by

—MZ Zm(t) = Z1 on [, npu+ o),

n—1
k=0

() = ‘I’iﬁ” for t € [np, np+ u),

Use the method similar as (a), we can prove that Z/*%(-) and ¥**(-) are tight. As a result,
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we obtain that {x#(-), Z#(-), U*¢(-)} is tight in D([0,00) : R?) and all limits are uniformly
Lipschitz continuous. We fix and work with a weakly convergent subsequence, also indexed

by p, and with limit denoted by (x%(-), Z'(-), ¥'(-)), for i < r. Now we state a lemma.

Lemma 4.7. Under the conditions of Theorem 4.6, the limits of Z*'(-) and W*'(-) satisfy

Zi(t):/0 7 (x(Z'(s)), a(Z'(s)))ds, (4.23)

and

V() = /0 [M(a(Z' (w))x(Z' (u))] du, (4.24)

respectively.

Proof of Lemma 4.7. Fixed ¢, using similar argument as that of [108, pp. 224-226], we
can derive (4.23). The details are omitted.
Next we work on () and concentrate on the proof of (4.24). First, it is readily seen

that for any ¢,s > 0,

mqo (t+s)/p
U s) - W) =Y Y (M + W (OG) + Wi (@ €. ) s, =0
(=1 k=t/pn

(4.25)
Next, pick out any bounded and continuous function A(-), any positive integer x, and any

t; < tforj < k,the weak convergence and Skorohod representation imply that as y1 — 0,

Eh(x(t;), ak(t;) 1 j < R)[WH(t + ) — ()]
— Eh(x(t)), alt;) : j < &)U (t +5) — W (1)].

(4.26)

Choose m,, so that m, — oo as u — 0, but pm, = 6, — 0. By the continuity of
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linear function in the variable x,

mo (t+s)/p
lim Eh(x"(t;), J <k [“Z Z Iia 1_5}]
: (=1 k=t/u
_mg t+s Imy+my,—1
= lim BA((6), 0(t) 5 < 0[S dume S (M0 T )
: T =1 1, =t k=lm,, *
_mo  t+s lmu"‘mu_l
= lim BR(e"(t;),0(t;) S /)| 3 D e N [My(O)y ]f{aﬂ}]
: T =1 16, =t k=lm, . g
mg  t+s lmu—l—mu—l
= lim Eh(a(t),0"(5) 5 <)) [ 3D du ST [(M(0)zy, ]Zf{aﬂ.:é}}
: =t T kim, 8 g
mo t+s 1 lmu—i-mﬂ—l
+lim Bh(z (), o"(t) : 5 < 0) [ 30 D b Y0 (M () = M(O)ag, [T =)
0=1 16,=t My k=lm,,

(4.27)

Denoting P(a.; = (| oy ) = p(T, Tlimu) with ¢ suppressed, inserting conditional expec-
7”/"4’

tation and using a partial summation, we obtain that

Imy+my—1

— > (My(0) = M(0)p(ri Th,)
=— > (Mu(0) = M), -1 Thm,) (4.28)

o Yo > (M (0) = M) (7} Tim,) = D(T) 15 Tirm, )

By virtue of the assumption (A2)(c), the term on the second line of (4.28) goes to 0 as

w— 0. Next, noting

(1 4+ Q)" T — (I 4 p Q) i = Ofp),

we have
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As a result,
mo t+s Imy+my—1
B | (), 0t(6) 5 < 0By [S3 6 3 (M (0) = M)y, T, =
=1 16,=t k=lm,, r
mo t+s lmu—i-mﬂ—l
1) S D R S (E VAN B 7 (0 P s
(=1 16, =t k=lm, g
mo t+s Imy+my—1
<> b > (M ()= M(0)) Elzy  10(k)
(=1 15, =t k=lm,,

—0 aspu—0.

Since 4 m, — Oaspu — 0, when plm, — wu,forall Im, < k < Im,+m,, nk— u

as well. Therefore, the detailed estimates above lead to

mo (t+s)/p
lim Bh(a"(t;), a(t;) : j < &) [NZ > My (02 [{aTi:g}}
. (=1 k=t/pn i
_ mg t+s 1 lmu—i-mﬂ—l
= lim Eh(2(t;),0(t;) 5 < 1) | 3 D 6uM (D J— > f{aﬂ}]
a T =1 18,—t M My o, g
_mg  t+s 1 Imy+mpu—1
= lim Bh(2"(t;),0"(t;) : 5 <) DD 8 D M@y ]2}
: T =1 16,=t k=lm,, . (4.29)
~mg t+s
= lim ER(z" (1), o"(t;) : 5 < R)| D> 6,
. =1 15,=t
1 Imy+my—1
xS V(2 ) (2 ) |
“w

k=lmy,

= Bh(z(t)), a(t)) : j < &) [ /t M (af Zi(u)))x(Zi(u))]idu].

Next using the independence of a,, with E;, similar conditioning argument together with

the mixing conditions (see the mixing inequality given in [100, Corollary 2.4]) given in (A2)
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(a) yields
(t+s)/n o (t+s)/n
i Y EIWL(OF,EIP@ = Uay,) < Kp 3 60 (k= (t/u) — 0 as u—0.
k=t/p k=t/pn

(4.30)

Likewise, using the continuity of W (-,£,¢1), the limit of

(t+s)/p
Z“ Z W ;p“g Ck)[{al_z}
/=1 k=t/u
is the same as that of
mo t+s Imy+myu—1 N
D — > Wy (@ 0 a0y
77LM k

(=1 15, =t M k=lm,

Then using the uniform mixing (see [97, p. 166]) given in (A2) to the last expression, we

obtain
t+s Imy+my—1
MZ5— > BBy Wylah £GPy =ay,) — 0 as p—0.
et T b im,, g
Thus
t+s Imy+my—1 _
Eh(a(t < 5— Wiz 0,¢) s . - 0. 4.31
(a(t;), a(t;) - j sz_t - k; @ GG = = (4.31)

Using the estimates obtained thus far together with (4.25), we have proved that

Eh(z(t;), at;) : j < k) [@i(tw)-@i(t)- /t t+sW(a(zi(u)))x(zi(u))rdu —0. (4.32)
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Therefore, the proof of the lemma is concluded. O

Completion of Proof of Theorem 4.6. With Z~! denoting the inverse of Z, we have
pi(t) =2 (0) =p Y {IMOT) + WO + W@, £ G M (a0
k=0

ity (4.33)
=pu D AMUOT) + V(OS] + W@ £ G i (=0

pk=0

Lemma 4.7 then yields the limit process

. . @7 . . .
'(t) = 2*(0) +/0 [M(a(Z"(u)))x(Z" ()] du.

This in turn implies

as desired. Thus the theorem is proved. O

4.5 Invariance Theorem

To study the long-time behavior, we derive an invariant theorem for the switched system.
Following the discussion in [134, Chapter 9], recall that a Borel measurable set U C R" x M
is invariant with respect to the process (x(t), a(t)) if P((z(t),a(t)) € U, for all ¢t > 0) = 1,
for any initial (x,.) € U. That is, a process starting from U will remain in U with probability
1. We also need the notion of stability of sets in probability. They are defined naturally as

follows.

e A closed and bounded set K, C R" is said to be stable in probability if for any 6 > 0 and
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p > 0, there is a ; > 0 such that starting from (x, ), P(sup,sod(z(t), K.) < p) > 1—6

whenever d(z, K.) < dy;

e A closed and bounded set K, C R" is said to be asymptotically stable in probability if

it is stable in probability, and P(lim;_ . d(z(t), K.) =1) — 1, as d(x, K.) — 0.

In the above, we have used the usual distance function d(z, D) = inf(jJz —y|:y € D). We

proceed to obtain the following result.

Theorem 4.8. Assume that for each v € M, M(1) is irreducible. Under the conditions of

Theorem 4.6, the following assertions hold.
(i) The set Z = span{1} is an invariant set.

(ii) The set Z is asymptotically stable in probability.

Proof. To prove (i), we divide the time intervals according to the associated switch times.
We begin with (2(0),«(0)) = (x¢,¢). Following the dynamic system given in (4.17), let p;
be the first switching time, i.e., py = inf{t : a(t) = 1; # ¢}. Note that z(t) = x(t,w), where
w € Q is the sample point. Then in the interval [0, p;), for almost all w, (4.17) is a system
with constant matrix M(¢). For all t € [0, p], from equation (4.17) we have that for any
T <ooandte [0,T],

d* z (0)
dt*

) .
tk

0<t< T

Because the matrix M (1) is irreducible, there is an eigenvalue 0 and the rest of the eigenvalues

all have negative real parts.
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If 2(0) € Z, then x(0) = cll, [M(¢)z(0)]* = 0, and for each i < 7,

da' - [M()z(0)]
7= a0

and similarly, we obtain

dk
dtk

(0)=0 forall k>0, 1< 7

Therefore, z(t) = z(0) for all ¢ € [0,p;). Thus z(t) € Z for all t € [0,p1). Now, define
p2 = inf{t > p; : at) =12 # 11}. By the continuity of z(+), x(p1) = z(p7) € Z. Similar
as in the previous paragraph, we can show for all t € [p1, pa), z(t) € Z. Continue in this
way. For any 7" > 0, consider [0,7]. Then 0 < p; < p2 < -+ < pn) < T, where N(t) is
the counting process that counts the number of switchings in the interval [0,7], and p,, is
defined recursively such that a(p,) = ¢, and p,11 = inf{t > p, : a(t) = tye1 # tn}. Suppose
that we have for all ¢t < p,, z(t) € Z w.p.1. Using induction, we can show z(t) € Z for all
t € [0, pn(r)). Finally, we work with the interval [px 1y, T, this establishes the first assertion.

To prove (ii), define V' (x) = 2’z /2. Since V (x) is independent of the switching component,

>0 4.V (z) = 0. Thus, for each « € M, because of the irreducibility of M(s),

LV (x) = i M <0, forall x¢Z.

The rest of the proof of the stability in probability of the set Z is similar in spirit to that of
[134, Chapter 9]. We omit the details for brevity. O
Denote x. = n 1 With the above proposition, we can further obtain the following result

as a corollary of Theorem 4.8.
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Corollary 4.9. Assume the conditions of Theorem 4.8. Then for any t, — oo as u — 0,
(- 4+ t,) converges to the consensus solution n1 in probability. That is for any § > 0,

lim, o P(|Jz*(- + t,) — z.| > 6) = 0.

4.5.1 Normalized Error Sequences

This section is devoted to analyzing the rates of variations of scaled sequence of errors. We

begin with a result on upper bounds on estimation errors in the mean square sense.

Theorem 4.10. Assume the conditions of Theorem 4.6. Then there is an N, such that

E |z,]* =O0(1) for alln > N,.

Proof. We prove the assertion by means of perturbed Liapunov function methods. Redefine
V(z) = (x — x.)(z — z.)/2. Note that V,:(z) = (9/0 ')V (z) = (2" — %) and V. (z) = T

the identity matrix. Using a Taylor expansion for V(x), we have

= b — 2 (M () (x,, — ) M(e,)) — M) (x, — )]
u;(n c){( (an)( )"+ [(M(ow) (an))( )] (434

(Mo () (@ — 2)) + W)€ + Wi(T, a, CE)
FI(M(an) = M(en))ac] Py + O(2) (V () + 1),

Note that for all z, /€ Z, Y )2 @t (M(0)z,) I 1 Iia,—ep < —AV(z,,) for some A > 0. For

n
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some 0 < Ay < 1, define

r  mg 00

= 0> SN B’ — a)[(M(0) = M(0) (@ — 30)] Tia,= T,

i=1 (=1 j=n
r mg 00

= 1> DN Bl — ) MO @ — 2))' T,y T 1,

i=1 (=1 j=n
r mg 00

- ’UZZZE"@Z —Ii)[M(E)S;)]if{aj_g}fj+l, (4.35)
NZZZE (a8 — YW@, 4, ) Loy I
=02 DD N B = ) (M) = MOl T .

It is easily checked that

| V¥ (xz,n)| = O(pw)(V(x)+1), i =1,...,5. (4.36)
Noting

S S0 N — eI = ) wner — 2] T L

zlél]n-‘,—l

S S N, — e [(M(O) ~ T w0 — 20 Ty L

i=1 (=1 j=n+1

=0 (V(z,) + 1),
we have

Envlu(a?n-i-lan + 1) - Vlu(a?mn)
= E, V" (xpi1,n+ 1) =V (z,,n+ )]+ [E VI (zpi,n + 1) = VIF(z,,n)] (4.37)

=M Z En(ziz - ﬂc)[(M(an) - M(an)]xn)ilriz—i-l + O(qu)(v(a?") +1).
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Likewise, we obtain

En‘/éu(xn—l—l, n + 1) — ‘/2“(;(;”7 n)
=~ Y Bu(a, — ) [(M (@) @ — )] Ly + O(2)(V () + 1),
=1
En‘/iﬂu(xn-i-l, n -+ 1) — ‘/E,’M(;L'm n)
= 1> Eulal, — a) W& Iy + O (V(2a) + 1),
- (4.38)
E Vi (xni1,n+1) = VI (2, n)
=1

Env:f)u(xn-i-la n+1)— V5M(xna n)

— i3 Eula’ = ) [(M(an) = M) Toy + OV () + 1),
Define V#(x,n) = V(z) + S, Vi*(x,n). Using (4.34), (4.37), and (4.38), we arrive at
E, VM (2ps1,n+1) = V¥ (x,,n) < — AV(z,) + O@W?) (V(x,) +1).

Using (4.36), replacing V' (x,) in the last line above by V*#(z,,n), taking expectation, and

iterating on the resulting inequality, we arrive at

VA (s n 4 1)< (LX) VA(r0) +0(2) Y (1- A p)
k=0
+ O(?) ) (1= p)" ™" Vi(ay, k).
k=0

(4.39)
Note that there is an N, such that for all n > N,, we can make (1 — A p)* EV#(x0,0) <
O(w). In addition, Y7 (1 = X pu)f O(p?) = O(p) for all n < O(1/u). Using the es-

timates in the above paragraph, an application of the Gronwall’s inequality yields that
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E VH(z,e1,n+1) < O(p). Using (4.36) again in the estimate above, we obtain E V (z,,) <
O(p). The desired result thus follows. O

Define

Ty — T ~ Tt —x,
U, = and U, = — :
Vi Vi

(4.40)
We assume that the following assumption holds.

(A3) (i) For each ¢ € M and each (, /Wn(-,ﬁ, () has continuous partial derivatives with
respect to x up to the second order and Wn,m(',ﬁ, ¢) is uniformly bounded, where
/an() and /an() denotes the first and second partial derivatives with respect to
. The {W, (2, €,C'} and {W, 4(2., £,()} are bounded and uniform mixing sequences
with the mixing measure satisfying >, 1*/2(k) < oo. (ii) For a sequence of indicator
functions {x;(A)} where A is any measurable set with respect to {ay, Y ;i <rk <
Jt, Z;n:ts_l{[Mj (0) — M (0)]ze}x;(A)/v/n — 0 in probability uniformly in m. (iii) The

averaging conditions in (A2) hold with fixed m replaced by N;(NN,). (iv) The sets {1}

and {ZJZ} for i =1...,r are mutually independent.

Note that (A3) (i) implies that we can locally linearize Wn() around .,

Wn($a£> C) - Wn(xcaga C) + Wn,x(l’caga C)($ - ZL’C) + O(|ZL’ - $C|2)’

1 m—+n—1 L .
- Z EyWij (e, £, () — 0 in probability,

ooj:m

Z | En /Wk(l'c,f, Z]Zg)| < 00,

k=n

Condition (A3) (ii) is a technical condition similar to [109, (A1.5) on p. 318]. Recall that

e = p. It is a requirement on the rates of local average for the sequence {M;(¢)} It is readily
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verified that

Uiy = Ul +p[Mo () U+ p[Wh o (e, i, COURTE
VW () E Ty + A Wa(ze, 0, T (4.41)
VI My (o) — M(an)a Y I, + O(u®?)O(|UL ).

To proceed, define U¥(t) = U, for any t € [u(n — N,), p (n — N,) + ). Under
suitable conditions, we show that {U*(-)} converges weakly to a switching diffusion process.

First note that by (A3) (ii),

(t+s)/p—1
Vi Y M(ey)lze} 14y
Jj=t/n
(t+s)/p—1
{ ( )]L:}i] a;=/ [_7-1-1
e Z/ o

— 0as p — 0 uniformly in ¢ € [0, 7.

Observe that by virtue of Theorem 4.10, {U,, : n > N,} is tight. It yields that

| | (t45)/u—1
Uri(t+s) = Ui(t) =p Y [Mi(a))U)'T,

Jj=t/n
(t+s)/pn— 1

+/~L Z jx SL’C,O(],C')U] []2—1—1

J=t/p
(t+s)/p—1 (4.42)

+\//_L Z [W] (xwajvc )] ]JZ+1
j=t/n
(t+s)/n—1

Ve YW L+ o(1),

Jj=t/p

where o(1) — 0 in probability. The o(1) is obtained by use of the last line of (4.41), (A3),
and Theorem 4.10. Using the methods presented for analyzing z#(-), we obtain the following

lemma, whose details are omitted.
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Lemma 4.11. {U"(-),a*(-)} is tight in D([0,T] : R" x M).

Next, for n > 0, and each ¢ € M, define

Ny+n—1 Ny+n—1
Bl =i Y W o QI By =i Y W08,
J=Nyu J=Nu
BI""(t) = Biy', BYU(t) = Biyt for t € [un, pn + p),
Nutn—1 Nutn—1 (4.43)
Bl =i Y W(een O, Bi =y Y. = W0él,
=N, J=Ny
Byt (t) = By, By (t) = Bly' for t € [pm, pn + p).
Define also
Ny+n—1
=y Z 2N t) = ZM for t € [un, un + 1),
J=Nu
Ny+n—1 Nu+n—1
i =V Y Wirean, OILa i = v > W8] .
J=Ny i=Nu
| | | (4.44)
DI(t) = b, by(t) = bl for t € [un, pun + p)
Npy+n—1 Nu+n—1
Ba= Vi 3 W@y QI Wi = Vi 3 V@8],
J=Nu J=Nu

) = U, By (1) = Uy for t € [um, pn + p).

Using similar methods of the martingale averaging as in Theorem 4.6, we can show that
B/ (.) converges weakly to B'(-) = B((Zi(-))™") for I =1,2. It is also easy to see that

BY*(-) and BY'(-) are independent.

Theorem 4.12. Under (A1)—(A3), there are independent standard Brownian motions w 1(-)

and w; o(+) fori < r such that the limits U'(), 1 < r satisfy

[M(a@)TT . o1 (@) dwin(t) + oi(a(t))dwis(t)]

e E0) (e, a(0))

i< T (4.45)
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Proof. The proof is similar in spirit to that of Theorem 4.6. So we will only point out the
distinct features. Using the well-known results for mixing processes (see [97] and [100]),
it is easily seen that B!***(-) and BY"'(-) converge weakly to Brownian motions B (-) and
BS'(+), with covariance (¢ (2))? ¢ and (0(1))%t, respectively. It is also easy to see that B(-)
and By*(-) are independent. Using the scaling argument as in the proof of Theorem 4.6, we
can show that B (-) converges weakly to B™(-) = Bi*((Z'(-))™") for I = 1,2. We need
to prove the independence of the limit Brownian motions. Here we use an argument similar
to [108, the last few lines of p. 239 and the first few lines of p. 240]. Let K, — oo such that

VEEK, — 0 and let N}' = N;(N,). We work with

N“—i—KM—l Ni“—i-Ku—l
,uZL § Dt _ E
B \/7 xc; L, C ] Bn,2 - \/ﬁ
j= N“+K# j:NZ_“+Ku

For simplicity of notation, we take r = 2. We shall show that the limits of f}u“() are
independent. Denote If, = Iyu_pny Iing—py. For any bounded and continuous function

H,(-) and Hy(-), we have

EHy(BE () Ha(BE™ (1)

n+k—+( t/,u mk—+(t/ 1) -
= ZEH1 Vi W n OINH(i > [W(we s ) T,
j=n+k j=m+k
n+k—+( t/,u m—l—k—l—(t/,u)
= ZEH1 VE Y W, OMEH(Vr Y [W(ae A EIL, +o(1),
j=n+k j=m+k

where o(1) — 0 as p — 0. This together with the arbitrariness of & and the weak conver-
gence implies that the independence of the limit Brownian motions. Likewise, we can show

the independence of the limit Brownian motions associated with B4™(-).
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We can then show

Ny+n—1
bﬁll - \/_ ZN LL’C, nggl')]l
’ Z(Lfﬂ—i-n 1
— \/_Z Z WT (e L ()] ]{a =)
teEM  j=Np

Choose my,, ¢, etc. as in the convergence proof of the algorithm. Then

(t+s)/ou lmu—l—m#—l

b‘”(t +3s) — b’“ Z \/7\/_u Z Z Ic, Ly C )] ]{aT;:L}. (4.46)

LEM I=t/d, j=lmy

Let 1 m, — wu. Then for all Im, < j < Im, +m, —1, pk — wu. Using the weak
convergence of a/(-) to a(-) and the Skorohod representation, the limit in the last line of

(4.46) is the same as that of

(t+s)/0u lmu—l—m#—l

> \F > Y Walwe . G ey

LEM Vi I=t/5,  j=lmy

Thus, the limit of (4.46) is given by

bi(t+ s) — b (t Z/ () {a(wy=ndw;(u)
leM ! (4.47)

= [ sitatu)iunw,

where w; 1(+) is a standard Brownian motion. Likewise, b (+) converges to a switched Brow-

nian motion in the sense that bi(t) = f(f o' (a(u))dw; 5 (u). Thus bi(-) = B () 4+ B4 ()
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converges weakly to B'(-) such that

Bi() = / 0% (@u))dwi s (w) + o5 (a(w))dw, ()]

The last step is to combine the above estimates together with the independence of the
limit Brownian motions established together with a scaling argument as in the proof of

Theorem 4.6. A few details are omitted. O

Remark 4.13. In view of the independence of the Brownian motions w;(-) and w;a(-),
there is a standard Brownian motion w;(-) such that the switching diffusion (4.45) may also

be written in an equivalent form as

o DI@UY
W = e () dwy(t), i <1, (4.48)
where
[8’(6)]2 _ [gi(f)]z + [05(6)]2 E c M, i S r.

4.6 Slowly Varying (¢ < p) and Rapidly Varying (1 < €) Markov
Chains

This section is divided into two subsections. One of them is concerned with slowly varying

Markov chains (0 < ¢ < ), whereas the other treats rapidly switching processes (0 < p <
€).
4.6.1 Slowly Varying Markov Chains

Suppose that ¢ < p, where € is the parameter appeared in the transition probability matrix

of the Markov chain and p is the step size of the algorithm (4.9). Intuitively, because the
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Markov chain changes so slowly, the time-varying parameter process is essentially a constant.
We reveal the asymptotic properties of the recursive algorithm. To facilitate the discussion
and to simplify the notation, we take ¢ = p? in what follows.

Note that Lemma 4.4 still holds. We next use these to analyze algorithm (4.9). As in
the previous case, we can prove Supo< <o/ £ |zt |? < oco. Define the piecewise constant
interpolation z#(t) = x,, for t € [un,pun + ). Then as in the previous section, we have
{x#(-)} is tight in D([0, T], R). We proceed to characterize its limit. The analysis is similar
to that Theorem 4.6, so we will omit most of the details.

The idea behind is that since the Markov chain is slowly varying. The the parame-
ter is almost a constant. Since &y = > ¢ I{5,=), we obtain the desired result with
(M ()2 (u)]/m(x(u), ) in (4.17) replaced by > p, [M()z(w)]'/7*(x(u), ). We summarize

the discussions above into the following result.

Theorem 4.14. Assume the conditions of Theorem 4.6 with the modification that the step-
size in (4.9) satisfies € = p?. Then x*(-) converges weakly to x(-), which is a solution of the

ordinary differential equation

da'(t) o~ [M(z(t))
i ;pL EOME (4.49)

In addition, for anyt, — oo as u— 0, (- +1,) converges to the consensus solution

n1 in probability. That is for any § > 0, lim,_, o P(|z#(- +t.) — x| > J) = 0.

Remark 4.15. To carry out the error analysis, furthermore, we define x. and U, as before
and show that {U, : n > N,} is tight. Letting U*(t) be a piecewise constant interpolation

of Uyont e [(n—N,)u, (n—N,)pu+p), similar to Remark 4.13, then U*(-) converges weakly
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to U(-) such that U(-) is the solution of the stochastic differential equation
mo — ;
- pIMU@) |~
dui =S PN g 5 (0 dws (1),
. ; Tz, L) + olt)auds)

where w;(+) is a standard Brownian motion and

[5i(t)]2 = ZOPL [Ui(bgjj(—i_ [UE(L)P, 1 <.

Te,y L)

Note that the interpolation of the centered and scaled sequence of errors has a diffusion

limit in which the drift and diffusion coefficients are averaged out with respect to the initial

probability distribution.

4.6.2 Fast Changing Markov Chains

This section takes up the issue that the Markov chain is fast varying comparing to the

adaptation. By that, we mean p < . For concreteness of the discussion, we take a specific

form of the stepsize, namely, ¢ = p!'/2. Intuitively, the Markov chain vary relatively fast and

can be thought of as a noise process. Eventually it is averaged out.

For ayyy,, =1,

P{oy, = jlaum, } = Zij(e Imy, ek) + O(e + exp(—k))

In view of (4.16) and noting ¢ = pu'/?

and irreducibility of @, we have Z;;(e Imy,,ck) =

vi + O (exp <—mow)), where v; is the jth component of the stationary distribution

N

v = (V1,...,Vnm,) associated with the generator @) of the corresponding continuous-time

Markov chain. This indicates that =(s,t) can be approximated by a matrix v with identical
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rows. Thus we obtain the limit ordinary differential equation.

Theorem 4.16. Assume the conditions of Theorem 4.6 with the modification that the step-
size in (4.9) satisfies € = p'/2. Then x"(-) converges weakly to x(-), which is a solution of

the ordinary differential equation

(4.50)

In addition, for anyt, — oo as . — 0 and for any 6 > 0, lim,_, o P(|z#(- +1t,) — x| >

5) = 0.

Remark 4.17. Concerning the errors, for the fast changing Markov chain case, within a very
short period of time, the system is replaced by an average with respect to the stationary
distribution of the Markov chain. For the error analysis, furthermore, we may define z. U,
as in (4.40) and show that {U, : n > N,} is tight. Letting U*(¢) be the piecewise constant
interpolation of U,, on t € [(n — N,)u, (n — N,)pe + p), similar to Remark 4.13, then U*(-)

converges weakly to U(-) such that U(-) is the solution of the stochastic differential equation

dU" = i Mdt + 7, (t)dw;(t),

—~ ' (z,0)

where w;(-) is a standard Brownian motion and

mo i(,\]2 i(\]2
- o1 (W]* + [o5 ()
a; t 2= I/L[ L - 2 , 2 <.
) = > A T i<
Remark 4.18. As was mentioned, for convenience of presentation, we chose ¢ = p? and
e = /p for the slowly varying and fast varying cases. The specific forms of ;1 and & enable

us to simplify the presentation. The convergence results remain essentially the same for the
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Figure 10: Trajectories of the case ¢ = u = 0.02: (Horizontal axes-discrete time or iteration
numbers)

general cases u/e — 0and pu /e — oo.

4.7 Illustrative Examples

This section presents several simulation examples. We call (x,, — x.)'(z, — z.) the consensus

error variance at time n.

Example 4.19. Suppose that the Markov chain «,, has only 2 states, i.e., M = {1,2}.

—-04 04
The transition probability matrix is P = [ 4+ ¢ @) with @) given by . For

0.3 —0.3
a given system of 5 subsystems, suppose the link gains are G; = diag(1,0.3,1.2,4,7,10)

and Gy = diag(2,0.5,1,6,9,14) with regime-switching at two different states. Suppose the
initial states are x) = 12, 23 = 34, x3 = 56, x3 = 8, 2} = 76. The state average is n = 37.2
(x. = n 1). Initial consensus error is (g — x.) (xo — z.) = 3356.8. Take ¢ = 0.02 and step
size u = ¢ = 0.02. The updating algorithm runs for 3000 steps, and the stopped consensus
error variance is (3o00 — Z¢) (3000 — ) = 8.0166. In Figure 10, we plot the Markov chain

state trajectories and the system state trajectories.

Example 4.20. Here we consider the case that the Markov chain changes very slowly com-

pared with the adaptation stepsize. That is, ¢ < u. To be specific, suppose € = u?, where
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Figure 11: Slowly varying Markov parameter p = 0.02 and ¢ = p?: (Horizontal axes-discrete
time or iteration numbers)
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Figure 12: Fast varying Markov parameter ;1 = 0.02 and ¢ = /j1: (Horizontal axes-discrete

time or iteration numbers)

1 = 0.02. The numerical results are shown in Figure 11. From the trajectory of the Markov
chain, there is only one switching taking place in the first 1000 iterations. The convergence

of the consensus is also demonstrated.

Example 4.21. Here we consider the fast changing Markov p < €. Specifically, we take
i = 2 with p = 0.02. The corresponding trajectories plotted in Figure 12. The frequent

Markov switching is clearly seen.
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4.8 Further Remarks

For convenience and notational simplicity, we have used the current setup. Several extensions
and generalizations can be carried out. So far, the noise sequences are correlated random
processes. For convenience, we used mixing type of noise processes. All the development up
to this point can be generalized to more complex z-dependent noise processes [109, Sections
6.6 and 8.4].

To conclude, this chapter provided a class of asynchronous stochastic approximation
algorithms for consensus type of problems with randomly-switching topologies. This study
extended the arenas for consensus type control problems to randomly time-varying dynamics

of networked systems.
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CHAPTER 5 Concluding Remarks

In this dissertation, In this dissertation, we present three applications of stochastic approx-
imation methods. In Chapter 2, we considered a general form of PSO algorithms using a
stochastic approximation scheme. Different from the existing results in the literature, we
have used weaker assumptions and obtained more general results without depending on em-
pirical work. In addition, we obtained rates of convergence for the PSO algorithms for the
first time. In Chapter 3, we considered a class of stochastic approximation problems with
regime switching modulated by discrete-time Markov chain. In Chapter 4, we provided a
class of asynchronous stochastic approximation algorithms for consensus type of problems
with randomly-switching topologies. As a rapidly expanding discipline, stochastic approx-
imation involves a lot of techniques that go far beyond the traditional approaches. It has
given impetus, not only to the applications of applied probability and stochastic processes,
but also to other areas of science and engineering. Applications of stochastic methods are
growing at an increasing rate. To inherit the past and to usher in the future, we perceive
unprecedented challenges and opportunities for the development of stochastic approximation

methods and applications in the future.
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ABSTRACT

STOCHASTIC APPROXIMATION ALGORITHMS WITH APPLICATIONS
TO PARTICLE SWARM OPTIMIZATION, ADAPTIVE OPTIMIZATION,
AND CONSENSUS

by
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Degree: Doctor of Philosophy

In this dissertation, we present three three problems arising in recent applications of
stochastic approximation methods. In Chapter 2, we use stochastic approximation to an-
alyze Particle Swarm Optimization (PSO) algorithm. We introduce four coefficients and
rewrite the PSO procedure as a stochastic approximation type iterative algorithm. Then we
analyze its convergence using weak convergence method. It is proved that a suitably scaled
sequence of swarms converge to the solution of an ordinary differential equation. We also
establish certain stability results. Moreover, convergence rates are ascertained by using weak
convergence method. A centered and scaled sequence of the estimation errors is shown to
have a diffusion limit. In Chapter 3, we study a class of stochastic approximation algorithms
with regime switching that is modulated by a discrete Markov chain having countable state
spaces and two-time-scale structures. In the algorithm, the increments of a sequence of occu-
pation measures are updated using constant step size. It is demonstrated that least squares
estimations from the tracking errors can be developed. Under the assumption that the adap-

tation rates are of the same order of magnitude as that of times-different parameter, it is
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proven that the continuous-time interpolation from the iterates converges weakly to some
system of ordinary differential equations (ODEs) with regime switching, and that a suitably
scaled sequence of the tracking errors converges to a system of switching diffusion. This work
is an extension of the work in [92]. In Chapter 4, we developed asynchronous stochastic ap-
proximation (SA) algorithms for networked systems with multi-agents and regime-switching
topologies to achieve consensus control. There are several distinct features of the algorithms.
(1) In contrast to the most existing consensus algorithms, the participating agents compute
and communicate in an asynchronous fashion without using a global clock. (2) The agents
compute and communicate at random times. (3) The regime-switching process is modeled
as a discrete-time Markov chain with a finite state space. (4) The functions involved are
allowed to vary with respect to time hence nonstationarity can be handled. (5) Multi-scale
formulation enriches the applicability of the algorithms. In the setup, the switching process
contains a rate parameter ¢ > 0 in the transition probability matrix that characterizes
how frequently the topology switches. The algorithm uses a step-size p that defines how fast
the network states are updated. Depending on their relative values, three distinct scenarios
emerge. Under suitable conditions, it is shown that a continuous-time interpolation of the
iterates converges weakly to a system of randomly switching ordinary differential equations
modulated by a continuous-time Markov chain, or to a system of differential equations (an
average with respect to certain measure). In addition, a scaled sequence of tracking errors
converges to a switching diffusion or a diffusion. Simulation results are presented to demon-

strate these findings.
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