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Abstract

The Wang-Landau algorithm is an adaptive Markov chain Monte Carlo algorithm to

calculate the spectral density for a physical system. A remarkable feature of the algorithm

is that it is not trapped by local energy minima, which is very important for systems with

rugged energy landscapes. This feature has led to many successful applications of the algo-

rithm in statistical physics and biophysics. However, there does not exist rigorous theory

to support its convergence, and the estimates produced by the algorithm can only reach a

limited statistical accuracy. In this paper, we propose the stochastic approximation Monte

Carlo (SAMC) algorithm, which overcomes the shortcomings of the Wang-Landau algorithm.

We establish a theorem concerning its convergence. The estimates produced by SAMC can

be improved continuously as the simulation goes on. SAMC also extends applications of the

Wang-Landau algorithm to continuum systems. The potential uses of SAMC in statistics

are discussed through two classes of applications, importance sampling and model selection.

The results show that SAMC can work as a general importance sampling algorithm and a

model selection sampler when the model space is complex.
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1 Introduction

Suppose that we are interested in sampling from a distribution which, for convenience,

is written in the following form,

p(x) = cp0(x), x ∈ X , (1)

where c is a constant and X is the sample space. As known by many researchers, the

Metropolis-Hastings (MH) sampler (Metropolis et al, 1953; Hastings, 1970) is prone to be-

coming trapped in local energy minima when the energy landscape of the distribution is

rugged (in terms of physics, − log{p0(x)} is called the energy function of the distribution).

Over the last two decades a number of advanced Monte Carlo algorithms have been proposed

to overcome this problem, mainly based on the following two ideas.

The first idea is the use of auxiliary variables. Included in this category are the Swendsen-

Wang algorithm (Swendsen and Wang, 1987), simulated tempering (Marinari and Parisi,

1992; Geyer and Thompson, 1995), parallel tempering (Geyer, 1991, Hukushima and Nemoto,

1996), evolutionary Monte Carlo (Liang and Wong, 2001), etc. In these algorithms, the tem-

perature is typically treated as an auxiliary variable. Simulations at high temperatures

broaden sampling of the sample space, and thus are able to help the system escape from

local energy minima.

The second idea is the use of past samples. The multicanonical algorithm (Berg and

Neuhaus, 1991) is apparently the first work in this direction. This algorithm is essentially

a dynamic importance sampling algorithm, where the trial distribution is learned dynami-

cally from past samples. Related works include the 1/k-ensemble algorithm (Hesselbo and

Stinchcombe, 1995), the Wang-Landau (WL) algorithm (Wang and Landau, 2001), and the

generalized Wang-Landau (GWL) algorithm (Liang, 2004, 2005). They are different from

the multicanonical algorithm only in the specification and/or the learning scheme for the

trial distribution. Other work included in this category is dynamic weighting (Wong and

Liang, 1997; Liu, Liang and Wong, 2001, Liang, 2002), where the acceptance rate of the MH

moves is adjusted dynamically with an importance weight which carries the information of

past samples.

Among the algorithms described above, the WL algorithm has received much attention

in physics recently. It can be described as follows. Suppose that the sample space X is

finite. Let U(x) = − log{p0(x)} denote the energy function, {u1, . . . , um} be a set of real

numbers containing all possible values of U(x), and g(u) = #{x : U(x) = u} be the number
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of states with energy equal to u. In physics, g(u) is called the spectral density or the density

of states of the distribution. For simplicity, we also denote g(ui) by gi in the following. The

WL algorithm is an adaptive Markov chain Monte Carlo algorithm designed to estimate

g = (g1, . . . , gm). Let ĝi be the working estimate of gi. A run of WL consists of several

stages. The first stage starts with the initial estimates ĝ1 = · · · = ĝm = 1 and a sample

drawn from X at random, and iterates between the following steps.

The WL algorithm:

(a) Simulate a sample x by a single Metropolis update with the invariant distribution

p̂(x) ∝ 1/ĝ(U(x)).

(b) Set ĝi ← ĝiδ
I(U(x)=ui) for i = 1, . . . ,m, where δ is a gain factor greater than 1 and I(·)

is an indicator function.

The algorithm iterates until a flat histogram has been produced in the space of energy.

Once the histogram is flat, the algorithm will restart by passing on ĝ(u) as the initial value

of the new stage and reducing δ to a smaller value according to a pre-specified scheme, say,

δ ←
√
δ. The process is repeated until δ is very close to 1, say, log(δ) ≤ 10−8. In Wang

and Landau (2001), a histogram is regarded as flat if the sampling frequency for each energy

value is not less than 80% of the average sampling frequency.

Liang (2005) generalized the WL algorithm to continuum systems. The generalization is

mainly in three respects, the sample space, the working function and the estimate updating

scheme. Suppose that the sample space X is continuous and has been partitioned according

to a chosen parameterization, say, the energy function U(x), into m disjoint subregions

denoted by E1 = {x : U(x) ≤ u1}, E2 = {x : u1 < U(x) ≤ u2}, . . ., Em−1 = {x :

um−2 < U(x) ≤ um−1}, and Em = {x : U(x) > um−1}, where u1, . . . , um−1 are m − 1

specified real numbers. Let ψ(x) be a non-negative function defined on the sample space

with 0 <
∫
X ψ(x)dx < ∞. In practice, ψ(x) is often set to p0(x) defined in (1). Let

gi =
∫

Ei
ψ(x)dx. One iteration of GWL consists of the following steps.

The GWL algorithm:

(a) Simulate a sample x by a number, denoted by κ, of MH steps of which the invariant

distribution is defined as follows,

p̂(x) ∝
m∑

i=1

ψ(x)

ĝi

I(x ∈ Ei). (2)
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(b) Set ĝJ(x)+k ← ĝJ(x)+k + δ%kĝJ(x)+k for k = 0, . . . ,m− J(x), where J(x) is the index

of the subregion x belongs to and % > 0 is a parameter which controls the sampling

frequency for each of the subregions.

The extension of gi from the density of states to the integral
∫

Ei
ψ(x)dx is of great interest

to statisticians, as this leads to direct applications of the algorithm to model selection, HPD

region construction, and many other Bayesian computational problems. Liang (2005) also

studied the convergence of the GWL algorithm: as κ becomes large, ĝi is consistent for gi.

However, when κ is small, say, κ = 1, the choice adopted by the WL algorithm, there is

no rigorous theory to support the convergence of ĝi. In fact, some deficiencies of the WL

algorithm have been observed in simulations. Yan and Pablo (2003) noticed that estimates

of gi can only reach a limited statistical accuracy which will not be improved with further

iterations, and the large number of configurations generated towards the end of the simulation

make only a small contribution to the estimates.

We find that this deficiency of the WL algorithm is caused by the choice of the gain

factor δ. This can be explained as follows. Let ns be the number of iterations performed

in stage s and δs be the the gain factor used in stage s. Let n1 = . . . = ns = . . . = n,

where n is large enough such that a flat histogram can be reached in each stage. Let

log δs = 1
2
log δs−1 decreases geometrically as suggested by Wang and Landau (2001). Then

the tail sum n
∑∞

s=S+1 log δs <∞ for any value of S. Note the tail sum represents the total

correction to the current estimate in the following iterations. Hence, the large number of

configurations generated towards the end of the simulation make only a small contribution

to the estimates. To overcome this deficiency, Liang (2005) suggested that ns should increase

geometrically with the rate log δs+1/ log δs. However, this leads to an explosion of the total

number of iterations required by the simulation.

In this paper, we propose a stochastic approximation Monte Carlo (SAMC) algorithm.

SAMC can be regarded as a stochastic approximation correction of the WL and GWL

algorithms. In SAMC, the choice of the gain factor is guided by a condition given in the

stochastic approximation algorithm (Andrieu, Moulines and Priouret, 2005), which ensures

that the estimates of g can be improved continuously as the simulation goes on. It is shown

that under mild conditions SAMC will converge. In addition, SAMC can bias sampling to

some subregions of interest, say, the low energy region, according to a distribution defined on

the subspace of the partition. This is different from WL, where each energy has to be sampled

equally. This is also different from GWL, where the sampling frequencies of the subregions
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follow a certain pattern determined by the parameter %. Hesselbo and Stinchcombe (1995)

and Liang (2005) showed numerically that biasing sampling to low energy regions often

results in a simulation with improved ergodicity. This makes SAMC attractive for hard

optimization problems. SAMC is user-friendly. It avoids the requirement of histogram

checking during simulations. We discuss the potential use of SAMC in statistics through

two classes of examples, importance sampling and model selection. It turns out that SAMC

can work as a general importance sampling method and a model selection sampler when the

model space is complex.

The remaining part of this article is organized as follows. In Section 2, we describe

the SAMC algorithm and study its convergence theory. In Section 3, we compare WL

and SAMC through a numerical example. In Section 4, we explore the use of SAMC in

importance sampling. In Section 5, we discuss the use of SAMC in model selection. In

Section 6, we conclude the paper with a brief discussion.

2 Stochastic Approximation Monte Carlo

Consider the distribution defined in (1). For reasons of mathematical convenience, we

assume that X is either finite (for a discrete system) or compact (for a continuum system).

For a continuum system, X can be restricted to the region {x : p0(x) ≥ pmin}, where pmin is

sufficiently small such that the region {x : p0(x) < pmin} is not of interest. As in GWL, we let

E1, . . . , Em denote m disjoint regions which form a partition of X . In practice, supx∈X p0(x)

is often unknown. An inappropriate specification of ui’s may result in that some subregions

are empty. A subregion Ei is empty if gi =
∫

Ei
ψ(x)dx = 0. SAMC allows the existence of

empty subregions in simulations. Let ĝ
(t)
i denote the estimate of gi obtained at iteration t.

For convenience, we let θti = log(ĝ
(t)
i ) and θt = (θt1, . . . , θtm). The distribution (2) can then

be rewritten as

pθt(x) =
1

Zt

m∑
i=1

ψ(x)

eθti
I(x ∈ Ei), i = 1, . . . ,m. (3)

For theoretical simplicity, we assume that θt ∈ Θ for all t, where Θ is a compact set. In this

article, we set Θ = [−10100, 10100]m for all examples, although as a practical matter this is

essentially equivalent to setting Θ = Rm. Since pθt(x) is invariant with respect to a location

transformation of θt; that is, adding to or subtracting from θt a constant vector will not

change pθt(x), θt can be kept in the compact set in simulations by adjusting with a constant
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vector. Since X and Θ are both assumed to be compact, a follow-on assumption is that

pθt(x) is bounded away from 0 and ∞ on X . Let the proposal distribution q(x,y) satisfy

the following condition. For every x ∈ X , there exist ε1 > 0 and ε2 > 0 such that

|x− y| ≤ ε1 =⇒ q(x,y) ≥ ε2. (4)

This is a natural condition in a study of MCMC theory (Roberts and Tweedie, 1996).

In practice, this kind of proposal can be designed easily for both continuum and discrete

systems. For a continuum system, q(x,y) can be set to the random walk Gaussian proposal

y ∼ N(x, σ2I) with σ2 being calibrated to have a desired acceptance rate. For a discrete

system, q(x,y) can be set to a discrete distribution defined on a neighborhood of x by

assuming that the states have been ordered in a certain way.

Let π = (π1, . . . , πm) be an m-vector with 0 < πi < 1 and
∑m

i=1 πi = 1, which defines

the desired sampling frequency for each of the subregions. Henceforth, π will be called the

desired sampling distribution. Let {γt} be a positive, non-decreasing sequence satisfying

(i)
∞∑

t=1

γt =∞, (ii)
∞∑

t=1

γζ
t <∞, (5)

for some ζ ∈ (1, 2). For example, in this paper we set

γt =
t0

max(t0, t)
, t = 1, 2, . . . (6)

for some specified value of t0 > 1. With the above notation, one iteration of SAMC can be

described as follows:

The SAMC algorithm:

(a) Simulate a sample x(t+1) by a single MH update of which the proposal distribution is

q(x(t), ·) and the invariant distribution is pθt(x).

(b) Set θ∗ = θt +γt+1(et+1−π), where et+1 = (et+1,1, . . . , et+1,m) and et+1,i = 1 if x(t) ∈ Ei

and 0 otherwise. If θ∗ ∈ Θ, set θt+1 = θ∗; otherwise, set θt+1 = θ∗ + c∗, where

c∗ = (c∗, . . . , c∗) can be an arbitrary vector which satisfies the condition θ∗ + c∗ ∈ Θ.

Remark: The explanation for the condition (5) can be found in advanced books on

stochastic approximation, e.g., Nevel′son and Has′minskĭi (1973). The first condition is neces-

sary for the convergence of θt. If
∑∞

t=1 γt <∞, then as follows from step (b) below (assuming

the adjustment of θt does not occur),
∑∞

t=1 |θt+1,i − θti| ≤
∑∞

t=1 γt|eti − πi| ≤
∑∞

t=1 γt < ∞,
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where the second inequality follows from the fact 0 ≤ eti, πi ≤ 1. Thus, the value of θti does

not reach log(gi) if, for example, the initial point θ0i is sufficiently far away from log(gi).

On the other hand, γt can not be too large. A large γt will prevent convergence. It turns

out that the second condition in (5) asymptotically damps the effect of the random errors

introduced by et. When it holds, we have γt|eti − πi| ≤ γt → 0 as t→ 0.

SAMC falls into the category of stochastic approximation algorithms (Benveniste, Métivier

and Priouret, 1990; Andrieu, Moulines and Priouret, 2005). Theoretical results on the con-

vergence of SAMC are given in Appendix. The theory states that under mild conditions we

have

θti →




C + log(

∫
Ei
ψ(x)dx)− log(πi + d), if Ei 6= ∅,

−∞. if Ei = ∅,
(7)

as t→∞, where d =
∑

j∈{i:Ei=∅} πj/(m−m0) andm0 is the number of empty subregions, and

C is an arbitrary constant. Since pθt(x) is invariant with respect to a location transformation

of θt, C can not be determined by the samples drawn from pθt(x). To determine the value

of C, extra information is needed, e.g.,
∑m

i=1 e
θti is equal to a known number. Let π̂ti denote

the realized sampling frequency of the subregion Ei at iteration t. As t→∞, π̂ti converges

to πi + d if Ei 6= ∅ and 0 otherwise. Note that for a non-empty subregion, its sampling

frequency is independent of its probability
∫

Ei
p(x)dx. This implies that SAMC is capable

of exploring the whole sample space, even for the regions with tiny probabilities. Potentially,

SAMC can be used to sample rare events from a large sample space. In practice, SAMC

tends to lead to a “random walk” in the space of non-empty subregions (if each subregion

is regarded as a “point”) with the sampling frequency of each non-empty subregion being

proportional to πi + d.

The subject of stochastic approximation was founded by Robbins and Monro (1951).

After five decades of continual development, it has developed into an important area in sys-

tems control and optimization, and it has also served as a prototype for the development

of recursive algorithms for on-line estimation and control of stochastic systems. Refer to

Lai (2003) for an overview on the subject. Recently, it has been used with Markov chain

Monte Carlo for solving maximum likelihood estimation problems (Younes, 1988, 1999; Moy-

eed and Baddeley, 1991; Gu and Kong, 1998; Gelfand and Banerjee, 1998; Delyon, Lavielle

and Moulines, 1999; Gu and Zhu, 2001). The critical difference between SAMC and other

stochastic approximation MCMC algorithms is at sample space partitioning. With our use
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of partitioning, many new applications can be established in Monte Carlo computation, for

example, importance sampling and model selection as described in Sections 4 and 5. In the

same spirit, SAMC can also be applied to highest posterior density (HPD) interval construc-

tion, normalizing constant estimation, and other problems as discussed in Liang (2005). In

addition, sample space partitioning improves its performance in optimization. Control of the

sampling frequency effectively prevents the system from getting trapped into local energy

minima in simulations. This issue will be further explored elsewhere. It is notable that

Geyer and Thompson (1995) and Geyer (1996) mentioned that stochastic approximation

can be used to determine the “pseudo-priors” for simulated tempering (i.e., determining the

normalizing constants of a sequence of distributions scaled by temperature), although no

details were provided. In Geyer’s applications, the sample space is partitioned automatically

according to the temperature variable.

For an effective implementation of SAMC, several issues need to be considered.

• Sample space partition. This can be done according to one’s goal and the complexity of the

given problem. For example, if we aim to construct a trial density function for importance

sampling (as illustrated in Section 4) or minimizing the energy function, the sample space

can be partitioned according to the energy function. The maximum energy difference in

each subregion should be bounded by a reasonable number, say, 2, which ensures that the

local MH moves within the same subregion have a reasonable acceptance rate. Note that

within the same subregion, sampling from the working density (3) is reduced to sampling

from ψ(x). If we aim at model selection, the sample space can be partitioned according to

the index of models, as illustrated in Section 5.

• The desired sampling distribution. If one aims at estimating g, one may set the desired

distribution to be uniform, as is done in all examples of this paper. However, if one aims at

optimization, one may set the desired distribution biased to low energy regions. As shown by

Hesselbo and Stinchcombe (1995) and Liang (2005), biasing sampling to low energy regions

often improves the ergodicity of the simulation. Our numerical results on BLN protein

models (Honeycutt and Thirumalai, 1990) also strongly support this point. Due to space

limitations, these results will be reported elsewhere.

• The choice of t0 and the number of iterations. To estimate g, γt should be very close to

0 at the end of simulations. Otherwise, the resulting estimates will have a large variation.

The speed of γt going to zero can be controlled by t0. In practice, t0 can be chosen according

to the complexity of the problem. The more complex the problem is, the larger one should
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choose the value of t0. A large t0 will force the sampler to reach all subregions quickly, even

in the presence of multiple local energy minima. In our experience, t0 is often set to be a

value between 2m and 100m with m being the number of subregions.

The appropriateness of the choice of t0 and the number of iterations can be diagnosed

by checking the convergence of multiple runs (starting with different points) through an

examination for the variation of ĝ or π̂, where ĝ and π̂ denote, respectively, the estimates of

g and π obtained at the end of a run. A rough examination for ĝ is to see visually whether

the ĝ vectors produced in the multiple runs follow the same pattern or not. Existence of

different patterns implies that the gain factor is still large at the end of the runs or some

parts of the sample space are not visited in all runs. The examination for ĝ can also be done

by a statistical test under the assumption of multivariate normality. Refer to Jobson (1992)

(page 150-153) for the testing methods for multivariate outliers.

To examine the variation of π̂, we define the statistic εf (Ei), which measures the deviation

of π̂i, the realized sampling frequency of subregion Ei in a run, from its theoretical value.

The statistic is defined as

εf (Ei) =





bπi−(πi+ bd)

πi+ bd × 100%, if Ei is visited,

0, otherwise,

(8)

for i = 1, . . . ,m, where d̂ =
∑

j∈{i:Ei is not visited} πj/(m −m′
0) and m′

0 is the number of

subregions which are not visited. Note that d̂ can be regarded as an estimate of d in (7). It

is said {εf (Ei)}, output from all runs and for all subregions, matches well if the following

two conditions are satisfied: (i) there does not exist such a subregion which is visited in some

runs but not in others, and (ii) maxm
i=1 |εf (Ei)| is less than a threshold value, say, 10%, for all

runs. A group of {εf (Ei)} which does not match well implies that some parts of the sample

space are not visited in all runs, t0 is too small (the self-adjusting ability is thus weak),

or the number of iterations is too small. We note that the idea of monitoring convergence

of MCMC simulations using multiple runs was discussed in Gelman and Rubin (1992) and

Geyer (1992).

In practice, to have a reliable diagnostic for the convergence, we may check both ĝ and

π̂. In the case that a failure of multiple-run convergence is detected, SAMC should be re-run

with more iterations or a larger value of t0. The process of determining t0 and the number

of iterations is a trial and error process.
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x 1 2 3 4 5 6 7 8 9 10

P (x) 1 100 2 1 3 3 1 200 2 1

Table 1: The unnormalized mass function of the 10-state distribution.

3 Two Demonstration Examples

Example 1 In this example, we compared the convergence and efficiency of WL and

SAMC. The distribution of the example consists of 10 states with the unnormalized mass

function P (x) as given in Table 1. It has two modes which are well separated by low mass

states.

The sample space was partitioned according to the mass function into the following five

subregions: E1 = {8}, E2 = {2}, E3 = {5, 6}, E4 = {3, 9} and E5 = {1, 4, 7, 10}. In simula-

tions, we set ψ(x) = 1. The true value of g is then g = (1, 1, 2, 2, 4), which is the number of

states in the respective subregions. The proposal used in the MH step is a stochastic matrix

of which each row is generated independently from the Dirichlet distribution Dir(1, . . . , 1).

The desired sampling distribution is uniform, i.e., π1 = . . . = π5 = 1/5. The sequence

{γt} is as given in (6) with t0 = 10. SAMC was run for 100 times independently. Each

run consists of 5 × 105 iterations. The estimation error of g was measured by the function

εe(t) =
√∑

Ei 6=∅(ĝ
(t)
i − gi)2/gi at 10 equally spaced time points t = 5 × 104, . . . , 5 × 105.

Figure 1(a) shows the curve of εe(t) obtained by averaging over the 100 runs. The statistic

εf (Ei) was calculated at time t = 105 for each run. The results show that they match well.

Figure 1(b) shows the box-plots of εf (Ei)’s of the 100 runs. The deviations are all less than

three percent. This indicates that SAMC has achieved the desired sampling distribution and

the choice of t0 and the number of iterations are appropriate. Other choices of t0 were also

tried, say, t0 = 20 and 30. The results are similar.

The WL algorithm was applied to this example with the same proposal distribution as

that used in SAMC. In the runs, the gain factor was set as in Wang and Landau (2001).

It starts with δ0 = 2.718 and then decreases in the scheme δs+1 →
√
δs. Let ns denote the

number of iterations performed in stage s. For simplicity, we set ns to a constant which has

been large enough such that a flat histogram can be formed in each stage. The choices of ns

we tried include ns = 1000, 2500, 5000 and 10000. The estimation error was also measured

by εe(t) evaluated at t = 5× 104, . . . , 5× 105, where t is the total number of iterations made
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so far in the run. Figure 1(a) shows the curves of εe(t) for each choice of ns, where each

curve was obtained by averaging over 100 independent runs.

The comparison shows that for this example SAMC produces more accurate estimates

for g and converges much faster than WL. More importantly, in SAMC the estimates can be

improved continuously as the simulation goes on, while in WL the estimates can only reach

a certain accuracy depending on the value of ns.
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Figure 1: Comparison of the WL and SAMC algorithms. (a) Average εe(t) curves obtained

by SAMC and WL. The vertical bars show the ±one-standard-deviation of the average of

the estimates. (b) Box-plots of {εf (Ei)} obtained in 100 runs of SAMC.

Example 2 As pointed out by Liu (2001), umbrella sampling (Torrie and Valleau, 1977)

can be seen as a precursor of many advanced Monte Carlo algorithms, including simulated

tempering, multicanonical and thus WL, GWL and SAMC. Although umbrella sampling

was proposed originally for estimating the ratio of two normalizing constants, it can also

be used as a general importance sampling method. Recall that the basic idea of umbrella

sampling is to sample from an “umbrella distribution” (trial distributions in terms of im-

portance sampling) which covers the important regions of both target distributions. Torrie

and Valleau (1977) proposed two possible schemes for construction of umbrella distributions.

One is to sample intermediate systems of the temperature-scaling form p
(i)
st (x) ∝ [p0(x)]1/Ti

for Tm > Tm−1 > · · · > T1 = 1. This leads to directly the simulated tempering algo-

rithm. The other one is to sample a weighted distribution pu(x) ∝ ω{U(x)}p0(x), where

the weight function ω(·) is a function of the energy variable and can be determined by a pilot

study. Thus, umbrella sampling can be seen as a precursor of multicanonical, WL, GWL
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and SAMC. Sample space partitioning, which is motivated by discretization of continuum

systems, provides a new methodology for applications of umbrella sampling to continuum

systems.

Although SAMC and simulated tempering both fall into the class of umbrella sampling

algorithms, they have quite different dynamics. This can be illustrated by the follow-

ing example. The distribution is defined as p(x) ∝ e−U(x), where x ∈ [−1.1, 1.1]2 and

U(x) = −{x1 sin(20x2) + x2 sin(20x1)}2 cosh{sin(10x1)x1} − {x1 cos(10x2) − x2 sin(10x1)}2
cosh{cos(20x2)x2}. This example is modified from Example 5.3 of Robert and Casella

(2004). Figure 2 (a) shows that U(x) has a multitude of local energy minima separated

by high-energy barriers. In applying SAMC to this example, we partitioned the sample

space into 41 subregions with an equal energy bandwidth: E1 = {x : U(x) ≤ −8.0},
E2 = {x : −8.0 < U(x) ≤ −7.8}, . . ., and E41 = {x : −0.2 < U(x) ≤ 0}, and set other

parameters as follows, ψ(x) = e−U(x), t0 = 200, π1 = · · · = π41 = 1/41, and a random

walk proposal q(xt, ·) = N2(xt, 0.252I2). SAMC was run for 20000 iterations, and 2000

samples were collected at equally spaced time points. Figure 2 (b) shows the evolving path

of the 2000 samples. For comparison, MH was applied to simulate from the distribution

pst(x) ∝ e−U(x)/5. MH was run for 20000 iterations with the same proposal N2(xt, 0.252I2),

and 2000 samples were collected at equally spaced time points. Figure 2 (c) shows the evolv-

ing path of the 2000 samples, which characterizes the performance of simulated tempering

at high temperatures.

The result is clear: under the above setting, SAMC almost samples uniformly in the

space of energy (the energy bandwidth of each subregion is small, and the sample distribution

matches with the contour plot of U(x) very well), while simulated tempering tends to sample

uniformly in the sample space X when the temperature is high. As we usually do not know

where the high and low energy regions are and how much the ratio of their “volumes” is

a priori, we can not control the simulation time spent on low and high energy regions in

simulated tempering. However, we can control almost exactly, up to the constant d in (7),

the simulation time spent on low and high energy regions in SAMC by choosing the desired

sampling distribution π. SAMC can go to high energy regions, but it only spends limited

time over there to help the system to escape from local energy minima and spends other

time in exploring low energy regions. This smart simulation time distribution scheme makes

SAMC potentially more efficient than simulated tempering in optimization. Due to the space

limitations, this point is not explored in this paper. But we note that Liang (2005) reported

11



a neural network training example where it was shown GWL is more efficient than simulated

tempering in locating global energy minima.
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(c) MH

Figure 2: (a) Contour of U(x). (b) Sample path of SAMC. (c) Sample path of MH.

4 Use of SAMC in Importance Sampling

In this section, we illustrate the use of SAMC as an importance sampling method. Sup-

pose that due to its rugged energy landscape, the target distribution p(x) is very difficult

to simulate from with conventional Monte Carlo algorithms. Let x1, . . . ,xn denote the

samples drawn from a trial density p∗(x), and let w1, . . . , wn denote the associated impor-

tance weights, where wi = p(xi)/p
∗(xi) for i = 1, . . . , n. The quantity Eph(x) can then be

estimated by

Êph(x) =

∑n
i=1 h(xi)wi∑n

i=1wi

. (9)

Although this estimate converges almost surely to Eph(x), its variance is finite only if

Ep∗h
2(x)

( p(x)

p∗(x)

)2
dx =

∫

X
h2(x)

p2(x)

p∗(x)
dx <∞.

If the ratio p(x)/p∗(x) is unbounded, the weight p(xi)/p
∗(xi) will vary widely, and the

resulting estimate will be unreliable. A good trial density should necessarily satisfy the

following two conditions:

(a) The importance weight is bounded, that is, there exists a number M such that

p(x)/p∗(x) < M for all x ∈ X .
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(b) The trial density p∗(x) can be easily simulated from using conventional Monte Carlo

algorithms.

In addition, the trial density should be chosen to have a similar shape to the true density.

This will minimize the variance of the resulting importance weights. How to specify an

appropriate trial density for a general distribution has, of course, been a long standing and

difficult problem in statistics.

The defensive mixture method (Hesterberg, 1995) suggests the following trial density

p∗(x) = λp(x) + (1− λ)p̃(x), (10)

where 0 < λ < 1 and p̃(x) is another density. However, in practice, p∗(x) is rather poor.

Although the resulting importance weights are bounded above by 1/λ, it can not be easily

sampled from using conventional Monte Carlo algorithms. Since p∗(x) contains p(x) as a

component, if we can sample from p∗(x), we can also sample from p(x). In this case, we do

not need to use importance sampling! Stavropoulos and Titterington (2001), Warnes (2001),

and Cappé et al (2004) suggested to construct the trial density based on previous Monte

Carlo samples, but the trial densities resulting from their methods can not guarantee that

the importance weights are bounded. We note that these methods are similar to SAMC in

the spirit of learning from historical samples. Other trial densities based on simple mixtures

of normals or t-distributions may also result in unbounded importance weights, although

they can be sampled from easily.

Suppose that the sample space has been partitioned according to the energy function,

and the maximum energy difference in each subregion has been bounded by a reasonable

number such that the local MH move within the same subregion has a reasonable acceptance

rate. It is then easy to see that the distribution defined in (2) or (3) satisfies the above two

conditions and can work as a universal trial density even in the presence of multiple local

minima on the energy landscape of the true density. Let

p̂∞(x) ∝
m∑

i=1

ψ(x)

ĝi

I(x ∈ Ei), (11)

denote the trial density constructed by SAMC with ψ(x) = p0(x), where ĝi = limt→∞ eθti .

Assuming that ĝi has been normalized by an additional constraint, e.g.,
∑m

i=1 ĝi is a known

constant, the importance weights are then bounded above by maxm
i=1 ĝi <

∫
X ψ(x)dx < ∞.

As shown in Section 2, sampling from p̂∞(x) will lead to a “random walk” in the space of

non-empty subregions. Hence, the whole sample space can be well explored.

13



In addition to satisfying the conditions (a) and (b), p̂∞(x) has two additional advantages

over other trial densities. First, the similarity of the trial density to the target density can

be controlled to some extent by the user. For example, instead of (11) we can sample from

the following density,

p̂∞(x) ∝
m∑

i=1

ψ(x)

λiĝi

I(x ∈ Ei), (12)

where the parameters λi, i = 1, . . . ,m, control the sampling frequency of the subregions.

Second, resampling can be made on-line if we are interested in generating equally weighted

samples from p(x). Let ωi = ĝi/maxm
j=1 ĝj denote the resampling probability from the

subregion Ei, and xt denote the sample drawn from p̂∞(x) at iteration t. The resampling

procedure consists of the following three steps.

The SAMC-importance-resampling algorithm

(a) Draw a sample xt ∼ p̂∞(x) using a conventional Monte Carlo algorithm, say, the MH

algorithm.

(b) Draw a random number U ∼ Uniform(0, 1). If U < ωk, save xt as a sample of p(x),

where k is the index of the subregion xt belongs to.

(c) Set t← t+ 1 and go to step (a), until enough samples have been collected.

Consider the following distribution,

p(x) =
1

3
N





−8

−8


 ,


 1 0.9

0.9 1





+

1

3
N





6

6


 ,


 1 −0.9

−0.9 1





+

1

3
N





0

0


 ,


1 0

0 1





 ,

which is identical to the one given in Gilks, Roberts and Sahu (1998), except that the mean

vectors are separated by a larger distance in each dimension. Figure 3 (a) shows its contour

plot, which contains three well separated components. The MH algorithm has been tried

to simulate from p(x) with a random walk proposal N(x, I2), but it failed to mix the three

components. However, an advanced MCMC sampler, such as simulated tempering, parallel

tempering and evolutionary Monte Carlo, should work well for this example. The purpose

we study this example is just to illustrate how SAMC can be used in importance sampling

as a universal trial distribution constructor and how SAMC can be used as an advanced

sampler to sample from a multi-modal distribution.

SAMC was applied to this example with the same proposal as that used in the MH

algorithm. Let X = [−10100, 10100]2 be compact. It was partitioned with an equal energy

14
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Figure 3: Computational results for the mixture Gaussian example. Plots (a) and (b) are

the contour plots of the true and trial densities, respectively. The contour lines correspond

to 99%, 95%, 50%, 5% and 1% of the total mass. Plot (c) shows the path of the first 500

samples simulated from p(x) by the SAMC-importance-sampling algorithm.

bandwidth ∆u = 2 into the following subregions, E1 = {x : − log p(x) < 0}, E2 = {x :

0 ≤ − log p(x) < 2}, . . ., and E12 = {x : − log p(x) > 20}. Set ψ(x) = p(x), t0 = 50

and the desired sampling distribution to be uniform. In a run of 500,000 iterations, SAMC

produced a trial density with the contour plot as shown in Figure 3(b). On the plot there are

many contour circles formed due to the density adjustment by ĝi’s. The adjustment means

that many points of the sample space have the same density value. The SAMC-importance-

sampling algorithm was then applied to simulate samples from p(x). Figure 3(c) shows the

sample path of the first 500 samples generated by the algorithm. All three components

have been well mixed. Later, the run was lengthened, and the mean and variance of the

distribution were estimated accurately using the simulated samples. The results indicate that

SAMC can indeed work as a general trial distribution constructor for importance sampling

and an advanced sampler for simulation from a multi-modal distribution.

5 Use of SAMC in Model Selection Problems

5.1 Algorithms

Suppose that we have a posterior distribution denoted by f(M,ϑM |D), where D denotes

the data, M is the index of models, and ϑM is the vector of parameters associated with
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model M . Without loss of generality, we assume that only a finite number, m, of mod-

els are under consideration, and the models are subject to a uniform prior. The sample

space of f(M,ϑM |D) can be written as
⋃m

i=1XMi
, where XMi

denotes the sample space of

f(ϑMi
|Mi, D). If we let Ei = XMi

for i = 1, . . . ,m, and ψ(·) ∝ f(M,ϑM |D), it follows from

(7) that ĝ
(t)
i /ĝ

(t)
j = eθti−θtj forms a consistent estimator for the Bayes factor of the models Mi

and Mj, 1 ≤ i, j ≤ m. We note that reversible jump MCMC (RJMCMC) (Green, 1995) can

also estimate the Bayes factors of m models simultaneously. For comparison, in the following

we give explicitly the iterative procedures of the two methods for Bayesian model selection.

Let Q(Mi →Mj) denote the proposal probability for a transition from modelMi to model

Mj, and T (ϑMi
→ ϑMj

) denote the proposal distribution of generating ϑMj
conditional on

ϑMi
. Assume that both Q and T satisfy the condition (4). Let M (t) and ϑ(t) denote the

model and the model parameters sampled at iteration t, respectively. One iteration of SAMC

consists of the following steps.

The SAMC-model-selection algorithm:

(a) Generate model M∗ according to the proposal matrix Q.

(b) If M∗ = M (t), simulate a sample ϑ∗ from f(ϑM(t)|M (t), D) by a single MCMC iteration

and set (M (t+1), ϑ(t+1)) = (M∗, ϑ∗).

(c) If M∗ 6= M (t), generate ϑ∗ according to the proposal distribution T and accept the

sample (M∗, ϑ∗) with probability

min{1, e
θ
t,M(t)

eθt,M∗
f(M∗, ϑ∗|D)

f(M (t), ϑ(t)|D)

Q(M∗ →M (t))

Q(M (t) →M∗)
T (ϑ∗ → ϑ(t))

T (ϑ(t) → ϑ∗)
}. (13)

If it is accepted, set (M (t+1), ϑ(t+1)) = (M∗, ϑ∗); otherwise, set (M (t+1), ϑ(t+1)) =

(M (t), ϑ(t)).

(d) Set θ∗ = θt+γt+1(et+1−π), where et+1 = (et+1,1, . . . , et+1,m), and et+1,i = 1 if M (t+1) =

Mi and 0 otherwise. If θ∗ ∈ Θ, set θt+1 = θ∗; otherwise, set θt+1 = θ∗ + c∗, where c∗ is

chosen such that θ∗ + c∗ ∈ Θ.

Let Ξ
(t)
i = #{M (k) = Mi : k = 1, 2, . . . t} be the sampling frequency of model Mi during

the first t iterations in a run of RJMCMC. With the same proposal matrix Q, the same

proposal distribution T and the same MH step (or Gibbs cycle) as those used by SAMC,

one iteration of RJMCMC can be described as follows.

The RJMCMC algorithm:
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(a) Generate model M∗ according to the proposal matrix Q.

(b) If M∗ = M (t), simulate a sample ϑ∗ from f(ϑM(t)|M (t), D) by a single MCMC iteration

and set (M (t+1), ϑ(t+1)) = (M∗, ϑ∗).

(c) If M∗ 6= M (t), generating ϑ∗ according to the proposal density T and accept the sample

(M∗, ϑ∗) with probability

min{1, f(M∗, ϑ∗|D)

f(M (t), ϑ(t)|D)

Q(M∗ →M (t))

Q(M (t) →M∗)
T (ϑ∗ → ϑ(t))

T (ϑ(t) → ϑ∗)
}. (14)

If it is accepted, set (M (t+1), ϑ(t+1)) = (M∗, ϑ∗); otherwise, set (M (t+1), ϑ(t+1)) =

(M (t), ϑ(t)).

(d) Set Ξ
(t+1)
i = Ξ

(t)
i + I(M (t+1) = Mi) for i = 1, . . . ,m.

The standard MCMC theory (Tierney, 1994) implies that as t → ∞, Ξ
(t)
i /Ξ

(t)
j forms a

consistent estimator for the Bayes factor of model Mi and model Mj.

We note that the form of the RJMCMC algorithm described above is not the most general

one, where the proposal distribution T (· → ·) is assumed such that the Jacobian term in

(14) is reduced to 1. This note is also applicable to the SAMC-model-selection algorithm.

The MCMC algorithm employed in step (b) of the above two algorithms can be the MH

algorithm, the Gibbs sampler (Geman and Geman, 1984) or any other advanced MCMC

algorithms, such as simulated tempering, parallel tempering, evolutionary Monte Carlo and

SAMC-importance-resampling (discussed in Section 3). When the distribution f(M,ϑM |D)

is complex, an advanced MCMC algorithm may be chosen and multiple iterations may be

used in this step.

SAMC and RJMCMC are only different at steps (c) and (d), i.e., the ways of acceptance

for a new sample and estimation for the model probabilities. In SAMC, a new sample is

accepted with an adjusted probability. The adjustment always works in the reverse direction

of the estimation error of the model probability or, equivalently, the frequency discrepancy

between the realized sampling frequency and the desired one. Thus, it guarantees the conver-

gence of the algorithm. In simulations, we can see that SAMC can overcome any difficulties

in dimension-jumping moves and have a full exploration for all models. Recall that the

proposal distributions have been assumed to satisfy the condition (4). Since RJMCMC does

not possess the self-adjusting ability, it samples each model in a frequency proportional to

its probability. In simulations, we can see that RJMCMC often stays on a model for a long
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time if that model has a significantly higher probability than its neighboring models. In

SAMC, the estimates of the model probabilities are updated in the logarithmic scale; this

makes SAMC potentially work for a group of models with huge differences in probability.

This is beyond the ability of RJMCMC, which can only work for a group of models with

comparable probabilities.

At last, we point out that for a problem which contains only several models with compa-

rable probabilities, SAMC may not be better than RJMCMC, as in this case its self-adjusting

ability is no longer crucial for mixing of the models. SAMC is essentially an importance sam-

pling method (the samples are not equally weighted), hence, its efficiency should be lower

than RJMCMC for a problem that RJMCMC succeeds. In summary, we suggest to use

SAMC when the model space is complex, for example, when the distribution f(M |D) has

well separated multiple modes, or when there are tiny probability models, but, of interest to

us.

5.2 Numerical Results

The autologistic model (Besag, 1974) has been widely used for spatial data analysis, see,

e.g., Preisler (1993) or Augustin et al (1996). Let s = {si : i ∈ D} denote a configuration

of the model, where the binary response si ∈ {−1,+1} is called a spin and D is the set of

indices of the spins. Let |D| denote the total number of spins in D and N(i) denote a set of

the neighbors of spin i. The probability mass function of the model is

p(s|α, β) =
1

ϕ(α, β)
exp{α

∑
i∈D

si +
β

2

∑
i∈D

si(
∑

j∈N(i)

sj)}, (α, β) ∈ Ω, (15)

where Ω is the parameter space, and ϕ(α, β) is the normalizing constant defined by

ϕ(α, β) =
∑

for all possible s

exp{α
∑
i∈D

si +
β

2

∑
i∈D

si(
∑

j∈N(i)

sj)}.

The parameter α determines the overall proportion of si with a value of +1, and the param-

eter β determines the intensity of the interaction between si and its neighbors.

A major difficulty with this model is that the function ϕ(α, β) is generally unknown

analytically. Evaluating ϕ(α, β) exactly is prohibitive even for a moderate system, since

it requires summary over all 2|D| possible realizations of s. Since ϕ(α, β) is unknown, im-

portance sampling is perhaps the most convenient technique if we aim at calculating the

expectation Eα,βh(s) over the parameter space. This problem is a little bit different from
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conventional importance sampling problems discussed in Section 4, where we have only one

target distribution, whereas here we have multiple target distributions indexed by their pa-

rameter values. A natural choice for the trial distribution is a mixture distribution of the

form

p∗mix(s) =
1

m∗

m∗∑
j=1

p(s|αj, βj), (16)

where the values of the parameters (α1, β1), . . . , (αm∗ , βm∗) are pre-specified. We note that

this idea has been suggested by Geyer (1996). To complete this idea, the key is to es-

timate ϕ(αj, βj), . . ., ϕ(αm∗ , βm∗). The estimation can be up to a common multiplica-

tive constant, which will be canceled out in calculation of Eα,βh(s) in (9). Geyer (1996)

also suggested stochastic approximation as a feasible method for simultaneously estimating

ϕ(α1, β1), . . . , ϕ(αm∗ , βm∗), but gave no details. Several authors have based their inferences

for a distribution like (15) on the estimates of the normalizing constant function at a finite

number of points. For example, Diggle and Gratton (1984) proposed estimating the normal-

izing constant function on a grid, smoothing the estimates using a kernel method, and then

substituting the smooth estimates into (15) as known for finding MLEs of the parameters. A

similar idea has also been proposed by Green and Richardson (2002) in analyzing a disease

mapping example.

In this paper, we explore the idea of Geyer (1996) and give details about how SAMC

can be used to simultaneously estimate ϕ(α1, β1), . . . , ϕ(αm∗ , βm∗) and how the estimates

can be further used in estimation of the model parameters. The dataset considered is the

U.S. cancer mortality rate as shown in Figure 4(a). Following Sherman, Apamasovich and

Carroll (2006), we modeled the data by a spatial autologistic model. The total number of

spins is |D| = 2293. Suppose that the parameter points used in (16) form a 21 × 11 lattice

(m∗ = 231) with α equally spaced between −0.5 and 0.5 and β between 0 and 0.5. Since

ϕ(α, β) is a symmetric function about α, we only need to estimate it on a sublattice with

α between 0 and 0.5. The sublattice consists of m = 121 points. Estimating the quantities

ϕ(α1, β1), . . . , ϕ(αm, βm) can be treated as a Bayesian model selection problem, although

no observed data are involved. This is because ϕ(α1, β1), . . . , ϕ(αm, βm) correspond to the

normalizing constants of different distributions. In the following, the SAMC-model-selection

algorithm and the RJMCMC algorithm were applied to this problem by treating each grid

point (αj, βj) as a different model and p(s|αj, βj)ϕ(αj, βj) as the posterior distribution used

in (13) and (14).
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Figure 4: The U.S. cancer mortality rate data. (a) The mortality map of liver and gallbladder

cancer (including bile ducts) for white males during the decade 1950-1959. The black squares

denote the counties of high cancer mortality rate, and the white squares denote the counties

of low cancer mortality rate. (b) Fitted cancer mortality rates. The cancer mortality rate of

each county is represented by the gray level of the corresponding square.

SAMC was first applied to this problem. The proposal matrix Q, the proposal distribu-

tion T and the MCMC sampler used in step (b) are specified as follows. Let the m models

be coded as a matrix (Mij) with i = 0, . . . , 10 and j = 0, . . . , 10. The proposal matrix Q is

then defined as follows,

Q(Mij →Mi′j′) = q
(α)
ii′ q

(β)
jj′ ,

where q
(α)
i,i−1 = q

(α)
i,i = q

(α)
i,i+1 = 1/3 for i = 1, . . . , 9, q

(α)
0,0 = q

(α)
10,10 = 2/3, and q

(α)
0,1 = q

(α)
10,9 = 1/3;

and q
(β)
i,i−1 = q

(β)
i,i = q

(β)
i,i+1 = 1/3 for i = 1, . . . , 9, q

(β)
0,0 = q

(β)
10,10 = 2/3, and q

(β)
0,1 = q

(β)
10,9 =

1/3. For this example, ϑ corresponds to the configuration s of the model. The proposal

distribution T (ϑ(t) → ϑ∗) is an identical mapping, i.e., keeping the current configuration

unchanged when a model is proposed to be changed to another one. Thus, we have T (ϑ(t) →
ϑ∗) = T (ϑ∗ → ϑ(t)) = 1. The MCMC sampler used in step (b) is the Gibbs sampler (Geman

and Geman, 1984): sampling spin i from the conditional distribution

P (si = +1|N(i)) =
1

1 + e−2(α+β
P

j∈N(i) sj)
, P (si = −1|N(i)) = 1− P (si = +1|N(i)), (17)

for all i ∈ D in a pre-specified order.

SAMC was run 5 times independently. Each run consisted of two stages. The first stage

was to estimate the function ϕ(α, β) on the sublattice. In this stage, SAMC was run with
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t0 = 104 and for 108 iterations. The second stage was to draw importance samples from the

trial distribution,

p̂∗mix(s) ∝ 1

m∗

m∗∑

k=1

1

ϕ̂(αk, βk)
exp{αk

∑
i∈D

si +
βk

2

∑
i∈D

si(
∑

j∈N(i)

sj)}, (18)

which represents an approximation to (16) with ϕ(αj, βj) being replaced by its estimate

obtained in the first stage. In this stage, SAMC was run with δt ≡ 0 and for 107 iterations,

and a total of 105 samples were harvested at equally spaced time points. Each run cost

about 115m CPU time in a 2.8GHZ computer. In the second stage, SAMC is reduced to

RJMCMC by setting δt = 0. Figure 5(a) shows one estimate of ϕ(α, β) obtained in a run of

SAMC.

Using the importance samples collected above, we estimated the probability P (si =

+1|α, β), which is a function of (α, β). The estimation can be done in (9) by setting h(s) =
∑

i∈D(si + 1)/(2|D|). By averaging over the five runs, we obtained one estimate of the

function as shown in Figure 5(b). To assess the variation of the estimate, we calculated

the standard deviation of the estimate at each grid point of the lattice. The average of the

standard deviations is 3× 10−4. The estimate is fairly stable.
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Figure 5: Computational results of SAMC. (a) Estimate of logϕ(α, β) on a 21 × 11 lattice

with α{−0.5,−0.45, . . . , 0.5} and β ∈ {0, 0.05, . . . , 0.5}. (b) Estimate of P (si = +1|α, β) on

a 50× 25 lattice with α ∈ {−0.49,−0.47, . . . , 0.49} and β ∈ {0.01, 0.03, . . . , 0.49}.

Using the importance samples collected above, we also estimated the parameters (α, β)

for the cancer data shown in Figure 4(a). The estimation can be done using the Monte
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Carlo maximum likelihood method (Geyer and Thompson, 1992; Geyer, 1994) as follows.

Let p∗(s) = c∗p∗0(s) denote an arbitrary trial distribution for (15), where p∗0(s) is completely

specified and c∗ is an unknown constant. Let ψ(α, β, s) = ϕ(α, β)p(s|α, β), and L(α, β|s)

denote the log-likelihood function of an observation s. Thus,

Ln(α, β|s) = α
∑
i∈D

si +
β

2

∑
i∈D

si

( ∑

j∈N(i)

sj

)
+ log c∗ − log

[ 1

n

n∑

k=1

ψ(α, β, s(k))

p∗0(s(k))

]
, (19)

approaches L(α, β|s) as n → ∞, where s(1), . . . , s(n) are MCMC samples simulated from

p∗(s). The estimate (α̂, β̂) = arg maxα,β Ln(α, β|s) is called the Monte Carlo maximum like-

lihood estimator (MCMLE) of (α, β). The maximization can be done using a conventional

optimization procedure, say, the conjugate gradient method. Setting p∗(s) = p̂∗mix(s), the

five runs of SAMC resulted in five estimates of (α, β). The mean and standard deviation vec-

tors of these estimates are (-0.2994,0.1237) and (0.00063,0.00027), respectively. Henceforth,

these estimates are called mix-MCMLEs, because they are obtained based on a mixture

trial distribution. Figure 4(b) shows the fitted mortality map based on one mix-MCMLE

(−0.2999, 0.1234).

In the literature, p∗(s) is often constructed based on a single parameter point; that is,

setting

p∗(s) ∝ exp{α∗
∑
i∈D

si +
β∗

2

∑
i∈D

si(
∑

j∈N(i)

sj)}, (20)

where (α∗, β∗) denotes the parameter point. The point (α∗, β∗) should be chosen to be

close to the true parameter point, otherwise, a large value of n would be required for the

convergence of (19). Sherman et al (2006) set (α∗, β∗) to be the maximum pseudo-likelihood

estimate (Besag, 1975) of (α, β), which is the MLE of the pseudo-likelihood function

PL(α, β|s) =
∏
i∈D

exp{si(α+ β
∑

j∈N(i) sj)}
exp{α + β

∑
j∈N(i) sj}+ exp{−α− β∑

j∈N(i) sj} . (21)

We repeated Sherman et al’s procedure for the cancer data five times with n = 105 and

the MCMC samples being collected at equally spaced time points in a run of the Gibbs

sampler of 107 iteration cycles. The mean and standard deviation vectors of the resulting

estimates are (-0.3073,0.1262) and (0.00837, 0.00946), respectively. These estimates have a

significantly higher variation than the mix-MCMLEs. Henceforth, these estimates are called

single-MCMLEs, because they are obtained based on a single-point trial distribution.

To compare the accuracy of the mix-MCMLEs and single-MCMLEs, we conducted the

following experiment based on the principle of the parametric bootstrap method (Efron and
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Estimate single-MCMLE mix-MCMLE

RMSE(tsim
1 ) 59.51 2.90

RMSE(tsim
2 ) 114.91 4.61

Table 2: Comparison of the accuracy of the mix-MCMLEs and single-MCMLEs for the US

cancer data. RMSE(tsim
i ) is calculated as

√∑5
k=1(t

sim,k
i − tobs

i )2/5, where i = 1, 2, and tsim,k
i

denotes the value of tsim
i calculated based on the kth estimate of (α, β).

Tibshirani, 1993). Let T 1 =
∑

i∈D si and T 2 = 1
2

∑
i∈D si

(∑
j∈N(i) sj

)
. It is easy to see that

T = (T 1,T 2) forms a sufficient statistic of (α, β). Given an estimate (α̂, β̂), we can reversely

estimate the quantities T 1 and T 2 by drawing samples from the distribution f(s|α̂, β̂). If

(α̂, β̂) is accurate, one should have tobs ≈ tsim, where tobs and tsim denote the values of

T calculated from the true observation and from the simulated samples, respectively. To

calculate tsim, 1000 independent configurations were generated conditional on each estimate

with each configuration being generated by a short run of the Gibbs sampler. The Gibbs

sampler started with a random configuration and was iterated for 1000 cycles. A convergence

diagnostic shows that 1000 iteration cycles have been long enough for the Gibbs sampler to

reach equilibrium for simulation of f(s|α̂, β̂). Table 2 compares the root mean squared errors

(RMSEs) of tsim’s calculated from the mix-MCMLEs and single-MCMLEs. The comparison

shows that the mix-MCMLEs are much more accurate than the single-MCMLEs for this

example.

For comparison, RJMCMC was also run for this example for 108 iterations. The simu-

lation started with model M0,0, moved to model M10,10 very fast and then got stuck there.

This is shown in Figures 6 (c)&(d), where the parameter vector (α, β) = (0, 0) corresponds

to model M0 and (0.5, 0.5) corresponds to model M10,10. RJMCMC failed to estimate

ϕ(α1, β1), . . . , ϕ(αm, βm) simultaneously. This phenomenon can be easily understood from

Figure 5(a), which indicates that model M10,10 has a dominated probability over other mod-

els. Fives runs of SAMC produced an estimate of the log-odd ratio logP (M10,10)/P (M0,0).

The estimate is 1775.7 with standard deviation 0.6. Making transitions between models with

such a huge difference in probability is beyond the ability of RJMCMC. It is also beyond the

ability of other advanced MCMC samplers, such as simulated tempering, parallel tempering

and evolutionary Monte Carlo, because the strength of these advanced MCMC samplers is

23



at making transitions between different modes of the distribution instead of sampling from

low probability models. However, it is not hard for SAMC due to its capability of sampling

rare events from a large sample space. For comparison, we plot in Figures 6 (a)&(b) the

sample paths of α and β obtained in a run of SAMC. This figure indicates that even though

the models have very large differences in probabilities, SAMC can still mix them well and

sample each model equally. Note that the desired sampling distribution has been set to the

uniform distribution for this example and other examples of this section.
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Figure 6: Comparison of SAMC and RJMCMC. Plots (a) and (b) show, respectively, the

sample paths of α and β in a run of SAMC. Plots (c) and (d) show, respectively, the sample

paths of α and β in a run of RJMCMC.

6 Discussion

In this paper, we have introduced the SAMC algorithm and studied its convergence.

SAMC overcomes the shortcomings of the WL algorithm. It can improve the estimates

continuously as the simulation goes on. Two classes of applications, importance sampling

and model selection, are discussed. SAMC can work as a general importance sampling

method and a model selection sampler when the model space is complex.

As with many other Monte Carlo algorithms, such as slice sampling (Neal, 2003), SAMC

also suffers from the curse of dimensionality. For example, consider the modified witch’s hat
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distribution studied in Geyer and Thompson (1995),

p(x) =





1 + β, x ∈ [0, α]k,

1, x ∈ [0, 1]k \ [0, α]k,

(22)

where k = 30 is the dimension of x, α = 1/3, and β ≈ 1014 which is chosen such that the

probability of the peak is 1/3 exactly. For this distribution, the small hypercube is called the

peak and the rest the brim. It is easy to see that SAMC is not better than MH for sampling

from this distribution, if the sample space is partitioned according to the energy function.

The peak is like an atom, so SAMC will make a random walk in the brim just like MH. The

chance for SAMC to jump into the peak from the brim is decreasing geometrically as the

dimension increases. One way to overcome this difficulty is to include an auxiliary variable

in (22) and to work on the joint distribution,

p(xI , I) =





1 + βI , xI ∈ [0, α]I ,

1, xI ∈ [0, 1]I \ [0, α]I ,

(23)

where I is the dimension of xI with I ∈ {1, . . . , 30}, and βI is chosen such that the peak

probability is 1/3 exactly. To sample from (23), we can make a joint partition on I and energy.

Let E11, E12, . . . , Ek1, Ek2 denote the partition, where Ei1 and Ei2 denote, respectively, the

peak and brim sets of p(xi, i). SAMC can then work on the distribution with this partition

and appropriate proposal distributions (dimension jumping will be involved). As shown by

Liang (2003), working on such a sequence of trial distributions indexed by dimension can

help the sampler to reduce the curse of dimensionality. We note that the auxiliary variable

used in construction of the joint distribution is not necessarily the dimension variable; the

temperature variable can be used as in simulated tempering for some problems for which the

dimension change is not sensible.

In our theoretical results on convergence, we assume that the sample space X and the

parameter space Θ are both compact. At least in principle, these restrictions can be removed

as in Andrieu, Moulines and Priouret (2005). If the restrictions are removed, we may need

to put some other constraints on the tails of the target distribution p(x) and the proposal

distribution q(x,y) to ensure the minorisation condition holds, see Roberts and Tweedie

(1996), Rosenthal (1995) and Roberts and Rosenthal (2004) for more discussions on the

issue. Our numerical experience indicates that SAMC should have some type of convergence
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even when the minorisation condition does not hold, in a manner similar to the Metropolis-

Hastings algorithm (Mengersen and Tweedie, 1996). A further study in this direction is of

some interest.

Appendix: Theoretical Results on SAMC

The appendix is organized as follows. In part I, we describe a theorem for the convergence of

the SAMC algorithm. In part II, we briefly review the published results on the convergence

of a general stochastic approximation algorithm. In part III , we give a proof for the theorem

described in Section 1.

I. A Convergence Theorem for SAMC Without loss of generality, we only show the

convergence presented in Equation (7) of the paper for the case that all subregions are non-

empty or, equivalently, d = 0. Extension to the case d 6= 0 is trivial, because changing step

(ii) of the SAMC algorithm to (ii)′ (given below) will not change the process of simulation.

(ii)′ Set θ′ = θt + γt(et − π − d), where d is an m-vector of d.

Theorem 6.1 Let E1, . . . , Em be a partition of a compact sample space X and ψ(x) be

a non-negative function defined on X with 0 <
∫

Ei
ψ(x)dx < ∞ for all Ei’s. Let π =

(π1, . . . , πm) be an m-vector with 0 < πi < 1 and
∑m

i=1 πi = 1. Let Θ be a compact set of

m dimensions, and there exists a constant C such that θ̆ ∈ Θ, where θ̆ = (θ̆1, . . . , θ̆m) and

θ̆i = C + log(
∫

Ei
ψ(x)dx)− log(πi). Let θ0 ∈ Θ be an initial estimate of θ̆, and θt ∈ Θ be the

estimate of θ̆ at iteration t. Let {γt} be an non-increasing, positive sequence as specified in

(6). Suppose that pθt(x) is bounded away from 0 and ∞ on X , and the proposal distribution

satisfies the condition (4). As t→∞, we have

P{ lim
t→∞

θti = C + log(

∫

Ei

ψ(x)dx)− log(πi)} = 1, i = 1, . . . ,m, (24)

where C is an arbitrary constant.

II. Existing Results on the Convergence of a General Stochastic Approximation

Algorithm Suppose that our target is to solve the following integration equation for the

parameter vector θ,

h(θ) =

∫

X
H(θ,x)p(dx) = 0, θ ∈ Θ.
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The stochastic approximation algorithm with MCMC innovations (noise) works iteratively

as follows. Let K(xt, ·) be a MCMC transition kernel. For example, it can be the MH kernel

of the form,

K(xt, dy) = s(xt, dy) + I(xt ∈ dy)[1−
∫

X
s(xt,z)dz],

where s(xt, dy) = q(xt, dy) min{1, [p(y)q(y,xt)]/[p(x)q(x,y)]}, and q(·, ·) is the proposal

distribution and p(·) is the invariant distribution. Let Θ ⊂ Θ̃ be a compact subset of Θ̃.

Let {γt}∞t=0 be a monotone, non-increasing sequence governing the step size. Also define

a function Φ : X × Θ̃ → X × Θ, which reinitializes the non-homogeneous Markov chain

{(xt, θt)}. The function Φ can for instance generate a random or fixed point, or project

(xt+1, θt+1) onto X ×Θ. An iteration of the algorithm is as follows.

(i) Generate y ∼ Kθt(xt, ·).

(ii) Set θ∗ = θt + γt+1H(θt,y).

(iii) If θ∗ ∈ Θ, then set (xt+1, θt+1) = (y, θ∗); otherwise, set (xt+1, θt+1) = Φ(y, θ∗).

This algorithm is actually a simplified version of the algorithm presented in Andrieu et

al (2005). Let Px0,θ0 denote the probability measure of the Markov chain {(xt, θt)}, started

in (x0, θ0), and implicitly defined by the sequences {γt}. Define D(x, A) = infy∈A |x− y|.

Theorem 6.2 (Theorem 5.5 and Proposition 6.1, Andrieu et al, 2005) Assume the condi-

tions (A1) and (A4) hold, and there exists a drift function V (x) such that supx∈X V (x) <∞
and the drift condition holds (refer to Andrieu et al (2005) for the description of the condi-

tions). Let the sequence {θn} be defined as in the stochastic approximation algorithm. Then

for all (x0, θ0) ∈ X ×Θ,

lim
t→∞

D(θt,L) = 0, Px0,θ0 − a.e.

III. Proof of Theorem 6.1

Proof: To prove Theorem 6.1, it suffices to verify that (A1), (A4) and the drift condition

hold for the SAMC algorithm. To simplify notation, in the proof we will drop the subscript

t by denoting xt by x and θt = (θt1, . . . , θtm) by θ = (θ1, . . . , θm). Since the invariant

distribution of the MH kernel is pθ(x), for any fixed θ, we have

E(e
(i)
x − πi) =

∫

X
(e

(i)
x − πi)pθ(x)dx =

∫
Ei
ψ(x)dx/eθi

∑m
k=1[

∫
Ek
ψ(x)dx/eθk ]

− πi =
Si

S
− πi, i = 1, . . . ,m,

(25)
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where Si =
∫

Ei
ψ(x)dx/eθi and S =

∑m
k=1 Sk. Thus,

h(θ) =

∫

X
H(θ,x)p(dx) = (

S1

S
− π1, . . . ,

Sm

S
− πm)′.

• Condition A1: It follows from (25) that h(θ) is a continuous function of θ. Let

w(θ) = 1
2

∑m
k=1(

Sk

S
− πk)

2. As shown below, w(θ) has continuous partial derivatives of the

first order. Since 0 ≤ w(θ) ≤ 1
2
[
∑m

k=1(
Sk

S
)2 + π2

k)] ≤ 1 for all θ ∈ Θ, and Θ itself is compact,

the level set WM = {θ ∈ Θ, w(θ) ≤ M} is compact for any positive integer M . Condition

(A1-ii) is satisfied.

Solving the system of equations formed by (25), we have

L = {(θ1, . . . , θm) : θi = c+ log(

∫

Ei

ψ(x)dx)− log(πi), i = 1, . . . ,m; θ ∈ Θ},

where c = log(S) can be determined by imposing a constraint on S. For example, setting

S = 1 leads to that c = 0. It is obvious that L is nonempty and w(θ) = 0 for every θ ∈ L.

To verify the conditions (A1-i), (A1-iii) and (A1-iv), we have the following calculations.

∂S

∂θi

=
∂Si

∂θi

= −Si,
∂Si

∂θj

=
∂Sj

∂θi

= 0,

∂
(

Si

S

)

∂θi

= −Si

S
(1− Si

S
),

∂
(

Si

S

)

∂θj

=
∂
(Sj

S

)

∂θi

=
SiSj

S2
,

(26)

for i, j = 1, . . . ,m and i 6= j.

∂w(θ)

∂θi

=
1

2

m∑

k=1

∂(Sk

S
− πk)

2

∂θi

=
∑

j 6=i

(
Sj

S
− πj)

SiSj

S2
− (

Si

S
− πi)

Si

S
(1− Si

S
)

=
m∑

j=1

(
Sj

S
− πj)

SiSj

S2
− (

Si

S
− πi)

Si

S
= µη

Si

S
− (

Si

S
− πi)

Si

S
,

(27)

for i = 1, . . . ,m, where it is defined µη =
∑m

j=1(
Sj

S
− πj)

Sj

S
. Thus,

〈∇w(θ), h(θ)〉 = µη

m∑
i=1

(
Si

S
−πi)

Si

S
−

m∑
i=1

(
Si

S
−πi)

2Si

S
= −{ m∑

i=1

(
Si

S
−πi)

2Si

S
−µ2

η} = −σ2
η ≤ 0,

(28)

where σ2
η denotes the variance of the discrete distribution defined by the following table,

State (η) S1

S
− π1 · · · Sm

S
− πm

Prob. S1

S
· · · Sm

S
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If θ ∈ L, 〈∇w(θ), h(θ)〉 = 0; otherwise, 〈∇w(θ), h(θ)〉 < 0. For any M0 ∈ (0, 1], it is true

that L ⊂ {θ ∈ Θ, w(θ) < M0}. Hence, condition (A1-i) is satisfied.

It follows from (28) that 〈∇w(θ), h(θ)〉 ≤ 0 for all θ ∈ Θ. The w(L) forms a line in space

Θ, as it contains only one free parameter c. Therefore, the interior set of w(L) is empty.

Conditions (A1-iii) and (A1-iv) are satisfied.

• Condition A4: Let p be arbitrarily large, β = 1, α = 1, and ζ ∈ ( 1
τ
, 2). Thus, the

conditions
∑∞

t=1 γt =∞ and
∑∞

t=1 γ
ζ
t <∞. Since |H(θ,x)| is bounded above by c1 as shown

in (31), |γtH(θt−1,xt)| < c1γt < c1γ
η
t holds. Condition (A4) is satisfied by choosing C = c1

and η ∈ [(ζ − 1)/α, (p− ζ)/p] = [ζ − 1, 1).

•(Drift condition) Theorem 2.2 of Roberts and Tweedie (1996) shows that if the target

distribution is bounded away from 0 and ∞ on every compact set of its support X , then

the MH chain with a proposal distribution satisfying the condition (4) is irreducible and

aperiodic, and every nonempty compact set is small. Hence, Kθ, the MH kernel used in each

iteration of SAMC, is irreducible and aperiodic for any θ ∈ Θ. Since X is compact, X is a

small set and thus the minorisation condition is satisfied, i.e., there exists an integer l such

that

inf
θ∈Θ

K l
θ(x, A) ≥ δν(A), ∀x ∈ X , ∀A ∈ B. (29)

Define KθV (x) =
∫
X Kθ(x,y)V (y)dy. Since C = X is small, the following conditions

hold

sup
θ∈Θ0

K l
θV

p(x) ≤ λV p(x) + bI(x ∈ C), ∀x ∈ X ,

sup
θ∈Θ0

KθV
p(x) ≤ κV p(x), ∀x ∈ X ,

(30)

by choosing the drift function V (x) = 1, Θ0 = Θ, 0 < λ < 1, b = 1 − λ, κ > 1, p ∈ [2,∞)

and any integer l. Equations (29) and (30) imply that (DRI1) is satisfied.

Let H(i)(θ,x) be the ith component of the vector H(θ,x) = (ex − π). By construction,

|H(i)(θ,x)| = |e(i)x −πi| < 1 for all x ∈ X and i = 1, . . . ,m. Therefore, there exists a constant

c1 =
√
m such that, for all x ∈ X ,

sup
θ∈Θ
|H(θ,x)| ≤ c1. (31)

Also, H(θ,x) does not depend on θ for a given sample x. Hence, H(θ,x)−H(θ′,x) = 0 for

all (θ, θ′) ∈ Θ×Θ, and the following condition holds for the SAMC algorithm,

sup
(θ,θ′)∈Θ×Θ

|H(θ,x)−H(θ′,x)| ≤ c1|θ − θ′|. (32)
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Equations (31) and (32) imply that (DRI2) is satisfied by choosing β = 1 and V (x) = 1.

Let sθ(x,y) = q(x,y) min{1, r(θ,x,y)}, where r(θ,x,y) =
pθ(y)q(y,x)

pθ(x)q(x,y)
. Thus, we have

∣∣∂sθ(x,y)

∂θi

∣∣ =
∣∣− q(x,y)I(r(θ,x,y) < 1)I(J(x) = i or J(y) = i)I(J(x) 6= J(y))r(θ,x,y)

∣∣

≤ q(x,y),

where I(·) is the indicator function, and J(x) denotes the index of the subregion where x

belongs to. The mean-value theorem implies that there exists a constant c2 such that

|sθ(x,y)− sθ′(x,y)| ≤ q(x,y)c2|θ − θ′|, (33)

which implies that

sup
x
‖sθ(x, ·)− sθ′(x, ·)‖1 = sup

x

∫

X
|sθ(x,y)− sθ′(x,y)|dy ≤ c2|θ − θ′|. (34)

In addition, for any measurable set A ⊂ X we have

|Kθ(x, A)−Kθ′(x, A)| =
∣∣
∫

A

[sθ(x,y)− sθ′(x,y)]dy + I(x ∈ A)

∫

X
[sθ′(x,z)− sθ(x,z)]dz

∣∣

≤
∫

X
|sθ(x,y)− sθ′(x,y)|dy + I(x ∈ A)

∫

X
|sθ′(x,z)− sθ(x,z)|dz

≤ 2

∫

X
|sθ(x,y)− sθ′(x,y)|dy ≤ 2c2|θ − θ′|.

(35)

For g : X → Rd, define the norm ‖g‖V = supx∈X
|g(x)|
V (x)

. Then, for any function g ∈ LV =

{g : X → Rd, ‖g‖V <∞}, we have

‖Kθg −Kθ′g‖V = ‖
∫

(Kθ(x, dy)−Kθ′(x, dy))g(y)‖V

= ‖
∫

X+

(Kθ(x, dy)−Kθ′(x, dy))g(y) +

∫

X−
(Kθ(x, dy)−Kθ′(x, dy))g(y)‖V

≤ ‖max{
∫

X+

(Kθ(x, dy)−Kθ′(x, dy))g(y),−
∫

X−
(Kθ(x, dy)−Kθ′(x, dy))g(y)}‖V

≤ ‖g‖V max{|Kθ(x,X+)−Kθ′(x,X+)|, |Kθ(x,X−)−Kθ′(x,X−)|}

≤ 2c2‖g‖V |θ − θ′|, (following from (35))

where X+ = {y : y ∈ X , (Kθ(x, dy) − Kθ′(x, dy))g(y) > 0} and X− = X \ X+. This

implies that condition (DRI3) is satisfied by choosing V (x) = 1 and β = 1. The proof is

completed. ¤
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