
IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 2, NO. 3, SEPTEMBER 2003 165

Stochastic Assembly of Sublithographic
Nanoscale Interfaces

André DeHon, Member, IEEE, Patrick Lincoln, and John E. Savage, Life Fellow, IEEE

Abstract—We describe a technique for addressing individual
nanoscale wires with microscale control wires without using
lithographic-scale processing to define nanoscale dimensions.
Such a scheme is necessary to exploit sublithographic nanoscale
storage and computational devices. Our technique uses modula-
tion doping to address individual nanowires and self-assembly to
organize them into nanoscale-pitch decoder arrays. We show that
if coded nanowires are chosen at random from a sufficiently large
population, we can ensure that a large fraction of the selected
nanowires have unique addresses. For example, we show that

lines can be uniquely addressesd over 99% of the time using
no more than 2 2 log2() + 11 address wires. We further
show a hybrid decoder scheme that only needs to address =
(litho pitch nano pitch) wires at a time through this sto-

chastic scheme; as a result, the number of unique codes required
for the nanowires does not grow with decoder size. We give an
(2) procedure to discover the addresses which are present.

We also demonstrate schemes that tolerate the misalignment of
nanowires which can occur during the self-assembly process.

Index Terms—Bootstrapping, electronic nanotechnology, molec-
ular electronics, nanoscale interfacing, stochastic assembly.

I. INTRODUCTION

RECENT developments demonstrate that we can build

carbon nanotubes (CNT) [1] and semiconducting nano-

wires (NW) [2], [3] that are just a few nanometers in diameter.

Furthermore, ithasbeenshownthat self-assembly techniquescan

be used to produce sets of parallel NWs with nanometer spacing.

One set can then be placed above another at right angles [4], [5].

The crosspoints in these arrays can act as nonvolatile switching

elements [6], [7], allowing us to control and differentiate the

behavior of the assembled arrays at the nanoscale. Technology

of this kind may form the basis for nanoscale memory devices

and even programmable nanoscale logic arrays [8].

Remarkably, the dimensions of these nanoarrays (diameter of

the wires, spacing between wires) are controlled to nanometer

dimensions without using direct lithographic patterning [9].

Molecular seed catalysts control the diameter and physical

forces between wires control spacing.

Manuscript received April 28, 2003; revised June 1, 2003. This work was sup-
ported by the Defense Advanced Research Projects Agency Moletronics Pro-
gram under Grant ONR N00014–01-0651 and by the National Science Founda-
tion under Grant CCR-0210225.

A. DeHon is with the Department of Computer Science, California Institute
of Technology, Pasadena, CA 91109 USA (e-mail: andre@acm.org).

P. Lincoln is with the Computer Science Laboratory, SRI International, Menlo
Park, CA 94025 USA.

J. E. Savage is with the Department of Computer Science, Brown University,
Providence, RI 02903 USA.

Digital Object Identifier 10.1109/TNANO.2003.816658

Fig. 1. Decoder bridging between microscale and nanoscale wires (not shown
to typical scale); the decoder arrangement allows a small number of microscale
wires to address any single nanoscale wire in a large array.

This leaves a critical weak link in our path to the construction

of fully nanoscale memory and logic arrays: constructing the

interface that allows us to individually address these nanoscale

wires from our conventional, microscale wires. We must be able

to control single NWs individually so that individual crosspoints

can be programmed and addressed.

In this paper, we propose an address decoder that uses

a small number of microscale control wires to selectively

activate one of a large number of NWs as suggested in Fig. 1.

Differently coded modulation-doped NWs (Section III) provide

the independent NW addressability. Our address decoder can

be assembled without relying on lithographic patterning at

nanoscale dimensions by randomly mixing differently coded

NWs and enabling them to self-assemble (Section V) into a par-

allel array at right angles to a pre-existing array of microwires

using previously demonstrated flow and Langmuir–Blodgett

techniques. This approach realizes a microscale-to-nanoscale

interface, bridging the gap from top-down lithographic pro-

cessing to bottom-up self-assembly. The differently coded

modulation-doped NW-based address decoder is robust: It

overcomes misalignment of NWs (Section VI), allows the

customization of nanoscale programmable computing arrays to

personalize behavior and tolerate faults, and directly enables

reliable nanoscale memory devices (Section VII). We can

discover the codes present in such a decoder with reasonable

efficiency (Section VIII).

1536-125X/03$17.00 © 2003 IEEE

166 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 2, NO. 3, SEPTEMBER 2003

Fig. 2. NW FETs with multiple gated wire crossings serve as an AND, allowing
signal flow only when all control wires have suitable voltages.

II. PRIOR WORK

To date, only one other scheme has been proposed to ad-

dress this microscale–nanoscale interface problem [10]. Kuekes

and Williams describe a scheme for bridging the microscale–

nanoscale gap with a decoder based on randomly deposited gold

nanoparticles. The gold particles must be deposited over the re-

gion in which control and address wires intersect. The approach

relies on close control of the density of deposited particles, ide-

ally targeting half of the points of intersection. Additionally,

the approach relies on strongly quantized connection values for

each intersection, while imprecisely localized gold nanoparti-

cles could lead to intermediate values that complicate the dis-

covery approach. Consequently, the Kuekes and Williams ap-

proach comes with its own set of manufacturing challenges.

Our addressing scheme offers tighter address encoding, re-

quires fewer novel processes, and uses standard semiconductor

industry materials and dopants.

III. MODULATION-DOPED CODED NWS

Doped NWs act as field-effect transistors (FETs) [11], that

is, conduction along the length of an NW can be controlled

by an applied voltage field. For the depletion-mode p-type de-

vices demonstrated to date, a low voltage (or no applied voltage)

will allow good conduction, whereas a high applied voltage

will evacuate carriers from the doped semiconductor, preventing

conduction along the NW length. This allows us to build a com-

bining logic when several conductors cross a doped NW—if all

the inputs are low, there is a conduction path from one side of

the crossed wires to the other; if any of the inputs are high, there

will be no conduction path (see Fig. 2).

Gudiksen [12] and others [13], [14] have recently demon-

strated that it is possible to control the doping profile or material

composition along the axial dimension of an NW. By control-

ling the doping profile, we can effectively control the threshold

voltage for the FET. That is, with high doping, it becomes very

hard to deplete the carriers from the channel and stop conduc-

tion through the wire; consequently, the threshold voltage is

Fig. 3. Modulation doping places selective gateable regions in an NW.

high. With low doping, there are fewer carriers, allowing a low

voltage to deplete the channel and stop conduction. This allows

us to construct wires which are gateable in some regions but not

gateable in others (see Fig. 3).

The growth along the length of the NW is controlled by time.

The NW crystal grows by incorporating new atoms into its lat-

tice at one end. To control the dopant profile, we simply control

the dopant concentration in the NW’s growth environment over

time. Consequently, we can precisely control the width of each

doping region by controlling the rate of the growth reaction and

the introduction of dopants into the growth atmosphere at the ap-

propriate times. The dimensions of the doping regions are thus

defined completely without lithographic processing [12].

We note from the Gudiksen experiments [12] that the

transition between materials occurs over a 20-nm-length

scale, while the Björk experiments [14] show subnanometer

transitions between materials. Gudiksen notes that sharper

transitions (5 nm) are likely in smaller diameter NWs. For

our usage, we only need to transition between a strongly doped

(conducting) region and a weakly doped region of the same

semiconducting material, which should be even easier than

these demonstrations. We are ultimately interested in using

NWs that are just a few nanometers in diameter [2], while the

lithographic scale wires will be tens of nanometers in width

(e.g., 90 nm). Consequently, we expect the transition region to

be small compared to the lithographic microwire pitch. Fig. 4

shows a rough band diagram.

IV. NW CODING

With the ability to modulation dope NWs, code words can be

assigned to NWs. Each NW is segmented into regions that are

doped as either FET-controllable or noncontrollable (see Fig. 5).

When a coded NW is aligned across a set of microwires, the flow

of current through the NW can be controlled. If we apply a suit-

ably low field on all the FET-controlled regions, the NW will

conduct. If we apply a high field on any of the FET-controlled

regions, the NW will not conduct. Applying a high field on the

non-FET controlled regions will not affect conduction. The con-

trolling voltages are provided by control microwires, which are

at right angles to the addressed NWs (see Fig. 6).

We employ binary coding schemes for NWs in which 0’s cor-

respond to FET-controllable regions and 1’s to non-FET-con-

trollable regions. There are many coding schemes that could be

used. A natural coding scheme is the -hot scheme in which

DEHON et al.: STOCHASTIC ASSEMBLY OF SUBLITHOGRAPHIC NANOSCALE INTERFACES 167

Fig. 4. Band bending diagram for modulation-doped NW controlled by microscale wires.

Fig. 5. NWs coded with address.

Fig. 6. Single coded NW and control wires.

each NW has potentially controllable regions, exactly of

which are controllable (they must be “hot” to be controlled).

This scheme allows for distinct codes.

Fig. 7. Decoder constructed from addressable NWs.

We consider here the -hot scheme. If we place low volt-

ages on the control lines that correspond to the 0’s in a

code word for an NW and high voltages on the rest, then this

NW is the only one that can conduct. All other NWs will have a

FET-controlled region where the code word has a 1 and will be

disabled as a result. If we could assemble exactly one of each

type of coded NW into an array, we would have an address de-

coder (see Fig. 7) with distinct codes for

addressable NWs. Simple calculations show that the number of

codes in the -hot encoding scheme satisfies the following

relationships:

(1)

(2)

As the second calculation demonstrates, for large , because

approaches 4, the asymptotic growth

168 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 2, NO. 3, SEPTEMBER 2003

of approaches 2 . Inverting this, to uniquely address

wires, we need no more than address bits.

Consequently, for large enough arrays, the overhead associated

with control lines, even if built out of microscale wires, becomes

small compared to the size of the nanoscale logic or memory

core which it addresses. The overhead remains modest even if

-hot addressing is used with much smaller than .

V. STOCHASTIC ASSEMBLY

Since NWs are too small to be selected individually for inclu-

sion into a nanoarray, some other method of selection is neces-

sary. Techniques for assembling undifferentiated NWs into or-

thogonal sets of parallel wires have been demonstrated [5]. We

show that stochastic selection of coded NWs from a sufficiently

large ensemble of such NWs (the code space) ensures that all or

almost all codes are unique. For the uses that we make of nanoar-

rays, it is not necessary that all codes be represented among the

NWs.

For the sake of intuition, consider that we have a large code

space (e.g., codes) and a very large number of wires of each

code type (e.g., of each, or total wires), and our goal

is to build a small array with ten wires in it. If we selected each

wire randomly from the total wires, we have a very high

likelihood that all ten wires are unique (in fact, over a 99.995%

chance). There is an even higher likelihood that we get at least

nine unique wires. From this example, it should be clear that we

can randomly select the coded wires and obtain the independent

nanoscale addressability that we desire.

It should be feasible to mix together a large number of NWs

in solution in order to achieve random code mixing. Common

techniques for aligning NWs are generally based on flow align-

ment in solution [4], [5], so an additional mixing step should be

easy to accommodate.

Of course, we do not want to use a gratuitously large code

space as this does cost us additional control wires. Conse-

quently, the question becomes: How large does the size of the

code space need to be compared to the number of NWs

in an array in order to ensure that a large number of NWs have

unique addresses?

We can obtain a lower bound on the probability

that we have unique codes in an array of wires randomly

selected from a code space of size by counting set sizes. We

model the problem of code selection by assuming that each of

the codes appears equally frequently in the set of codes and

that there are sufficiently many instances of each code that re-

moving one does not change the probability of choosing a

particular code.

Thus, there are ways to select the wires. One way to

ensure that at least NWs have unique addresses is to let the

first addresses be unique, which can be done in

ways, and select the remaining

NWs from the set of remaining addresses in all

possible ways, which can be done in ways. It

follows that satisfies the following inequality:

(3)

TABLE I
PROBABILITY THAT ALL N WIRES IN A SET ARE UNIQUE

WHEN SELECTED FROM CODES OF SIZE C

A weaker and simpler bound is

(4)

Here, . It is straightforward to show that

by induction where the base case is . It follows

that if , is close to 1. In fact, if

, then .

Table I shows sample calculated lower bound probabilities for

achieving unique sets of coded wires for 10, 100, and 1000 NW

arrays using various size code spaces. This data confirms that

is sufficient to yield almost all unique codes and

provides at most a 5% chance of not achieving

unique codes.

For the even-weight codes described above, it would take a

dense code with 14 bits to uniquely address over 1000 coded

NWs. A code with 30 bits will support 155 117 520 unique

codes, exceeding the bound for .

In other words, this scheme requires a little over twice the

number of control lines we would need if we could perfectly

select and place coded NWs. This is true asymptotically since

.

VI. ALIGNMENT

In practice, NWs will not be perfectly aligned to the control

lines. We can divide any misalignment into: 1) misalignment by

multiples of the width of control wires (the control bit pitch);

and 2) misalignment by fractions of the bit pitch.

A. Multiples of Bit Pitch

We can tolerate misalignments by multiple bit pitches by

repeating the code multiple times on the wire. For an -hot

code, if we concatenate multiple copies of the code [see

Fig. 8(a)], any contiguous group of coded bits will only

be a rotation of the original code and, hence, will also be a

valid code in this code space. Since we are selecting codes

randomly, random misalignment does not change the random

code selection. In some applications (e.g., memories when

each nanowire layer does not see the field of the orthogonal

nanowire layer), we can simply repeat the code along the entire

DEHON et al.: STOCHASTIC ASSEMBLY OF SUBLITHOGRAPHIC NANOSCALE INTERFACES 169

Fig. 8. Repeat code to tolerate misalignment by multiples of bit pitch. (a) NW with three copies of code to tolerate misalignment by�1 coding regions. (b)–(d) NW
with a partial repeat of two bits to tolerate �1 bit position (shown at three different offsets).

Fig. 9. Design of modulation-doped control region length.

length of the wire, and the fact that the wire is coded along its

length will not interfere with operation. For other applications,

it may be possible to mask off the address ends at a lithographic

scale and bulk dope the nonaddress sections of the nanowires

to extinguish the control regions outside of the addressing field.

Alternately, if we can guarantee alignment within a few bit

pitches, we repeat the code (or a fraction thereof) for a distance

equal to the alignment tolerance that we would like to achieve

(see Fig. 8). Here, we exploit the fact that the NW conducts

across a coded region when there is no field applied; this way,

the controllable bit code regions which end up on either side of

the control wires will continue to allow signal conduction.

B. Fractions of Bit Pitch

In order to affect a controllable region, we need to have suffi-

cient overlap between the field of one microwire and the doped

controllable region (see Fig. 9). We only need to deplete car-

riers in a small region along the axis of the nanowire in order to

stop conduction. Consequently, the necessary overlap

between the microwire field and the NW control region is likely

170 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 2, NO. 3, SEPTEMBER 2003

Fig. 10. Nanoscale memory array interfaced using modulation-doped address decoders (shown with only a few nanoscale wires for clarity). A typical array size
would have 100–1000 nanoscale wires addressed by only 24–30 microscale wires.

to be small—on the order of a diameter or two of the NW (e.g.,

5 nm). Overlaps between 0 and may only partially turn

off conductions, resulting in intermediate current flow levels.

As shown in Fig. 9, we have a noncontrollable region between

the fields of adjacent microscale control wires. We consider

making the doped controllable region equal to the length of the

noncontrollable region of the nanowire plus . First,

this guarantees there is always at least under one of the

adjacent control fields, making every wire controllable. Second,

this means there is a window of alignments of length

where the controllable region may be affected by the fields

of two microwires. For all other alignments, the controllable

region is under only one of the fields. Assuming all sub-bit-pitch

misalignments are equally likely, the probability that a region

is controlled by only one of the adjacent microscale wire is

(5)

is the bit pitch for the microscale wires; e.g., if the

bit pitch is 210 nm and we conservatively assume a necessary

overlap of 10 nm, then . When the

controllable region does overlap multiple fields, it may require

both fields to be zero to allow conduction. Since every -hot

code contains at least one transition between zeros and ones,

the overlap case can end up with at least one more control re-

gion than any valid code. Consequently, no code in the standard

-hot code space will enable this small fraction of misaligned

wires. Using codes outside of the code space, it may be possible

to still address some of these wires.

It is not clear at this point how far the microwire control field

will extend beyond the width of each control microwire (Fig. 9).

It is possible that the microwires may need to be spaced wider

than the minimum microwire pitch to prevent adjacent wire con-

trol fields from overlapping. This is one of many areas where

further experimental and theoretical work will be necessary to

tune designs.

VII. MEMORY APPLICATION

A. Simple Memory Design

A programmable memory can be constructed by placing a

decoder of the form described above on both sides of an NW

array (see Fig. 10). There are multiple molecular-scale technolo-

gies under consideration for placing nonvolatile memory bits at

DEHON et al.: STOCHASTIC ASSEMBLY OF SUBLITHOGRAPHIC NANOSCALE INTERFACES 171

Fig. 11. Small address space decoder.

the crosspoints [6], [7]. These technologies are programmed by

placing a large voltage across individual crosspoint junctions

and are read by observing the current flowing through a junc-

tion, with programmed ON junctions acting as low-resistance

paths, while programmed OFF junctions act as high-resistance

paths.

Using these addressable NWs, exactly one row and one

column wire can be enabled so that we can apply a program-

ming voltage across a single crosspoint. This will require care

in the selection of voltage levels such that the crosspoints that

are in the same row and column as the intended crosspoint are

not also affected. These row and column neighbors will have

one side pulled to the programming voltage, while the other is

pulled to a nominal voltage, whereas the intended crosspoint is

pulled to the programming voltage by both the row and column

decoders and, hence, will see a greater voltage differential. We

also can generally arrange for the crosspoints to act as diodes

to avoid parasitic paths in a partially programmed array.

Data bits are read from the array by again placing the ap-

propriate control bits to enable only a single row and column.

A high voltage is placed on the common column line, and the

voltage on the common row line is observed. In this manner,

only the intended crosspoint sees both a high input on its column

line and a low-resistance path to the common row line. If the

crosspoint is programmed ON, it will be possible to observe the

current flowing out of the selected row line, perhaps raising the

row line voltage. If the crosspoint is programmed OFF, there will

be less current flow.

B. Hybrid Control Memory

The simple memory described above is easy to understand,

but has the drawback that it requires a very large address space

and, hence, requires that we first construct a very large collec-

tion of differently coded NWs (e.g., 25 million for a 500 500

array). We can use a more modest number of NWs if we ob-

serve that we really only need the stochastic addressing to dis-

tinguish among the number of wires that we can fit into one

microscale wire width. As shown in Fig. 11, we can selectively

energize the endpoints of a collection of NWs at the lithographic

scale. So, for example, if we have 10-nm pitch nanowires and

a 90-nm-wide microwire, we only need to be able to uniquely

address nine nanowires at a time. A 6-hot 12-bit code has 942

code words. With 942 code words, we have over a 96% proba-

bility that all nine wires in a bundle will have unique codes.

By staggering adjacent microwire contacts, we can maintain

the tight NW pitch (see Fig. 12), perhaps losing one wire at

the edge of each microwire group. With a contact group length

, we need to uniquely address a wire group

with wires, as follows:

(6)

As shown:

(7)

For a 90-nm process with nm, we have

nm. With nm, we

have . A 7-hot 14-bit code has 3432 code words, giving

us over an 85% chance of assembling a completely unique set

of 33 coded NWs.

It is worthwhile to note that the microscale-to-nanoscale

address area does not scale up with array size in this hybrid

scheme. For each additional group of core wires we add (e.g.,

nanowires), we will need an additional microscale

wire for the contact, but the nanoscale addressing remains

constant. To the 14 address bit pitches we need to address these

33 wires, we add two bit pitches for the address contacts and

two bit pitches for the load contact on the opposite side of the

array. This allows us to calculate the side length of the memory

array including the microscale-to-nanoscale address translation

:

(8)

For nm, , and

nm (90-nm process), nm. Including

the decoder support, the memory area for the array is

(9)

172 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 2, NO. 3, SEPTEMBER 2003

Fig. 12. Small address space decoder with staggered microscale contacts.

TABLE II
MEMORY YIELD FACTORS

Consequently, this gives us a raw memory bit area of

nm nm . Compared

to the 100-nm memory bit area in the NW core, the array with

microscale-to-nanoscale decoder is a factor of 3.1 times larger.

We will yield less than net bits due to a number of factors

as summarized in Table II. A wire is good only if it makes con-

tacts at its ends where it connects to microwires and there are

no breaks or shorts along its length:

(10)

The wire is addressable only if the address group is unique, the

wire is properly controllable, and the wire end connects to only

one microwire group:

(11)

For a wire to yield, it must both be good and addressable:

(12)

Further, for a bit to yield, both the row and column wire inter-

secting it must yield:

(13)

For the values in Table II, . Combining with a raw

area of 310 nm , this gives a yielded bit area of 800 nm .

For comparison, note that the DRAM core memory cell area

is 49 000 nm in a 90-nm process [15], suggesting that the factor

of 8 overhead for the addressing and yield does not negate the

NW density benefits and there is additional headroom for lower

yield, larger address overlap, and address remapping as neces-

sary. At 45 nm, the DRAM core cell area is 12 000 nm ; with

nm, the raw nanomemory bit area with

decode support is nm , with yielded bit area around

500 nm .

C. Variations

The basic memory construct which this enables can easily be

embellished in a number of ways. We can split the row read

line to read or program multiple bits in parallel. We can array

many such blocks to build a large defect-tolerant memory. This

basic array programming construct also allows us to program the

programmable logic subarrays in nanoscale logic devices [8].

DEHON et al.: STOCHASTIC ASSEMBLY OF SUBLITHOGRAPHIC NANOSCALE INTERFACES 173

VIII. DISCOVERING CODE WORDS

By design, the number of code words is large compared to

the number of wires in any row, column, or microscale contact

group (). Consequently, after fabrication we will have

to discover which code words actually make up the set of live

addresses.

A. Resettable Memory Technology

For the memory arrays based on resettable crosspoints (e.g.,

[6]), this can be done moderately simply in a manner similar to

memory testing. Initially, we can activate the row addresses with

all zeros—this will enable all of the row lines. In this manner,

we treat each column as a single bit rather than a collection of

individual bits. This allows us to attempt to program and read

each possible column address. If the column address is pro-

grammable, we know that address is present. If it is not pro-

grammable, we know it is not present. Once we know which

column addresses are present, we can then test each row address

using the known column addresses. This process will find both

the column and row addresses included and operational in the

array and any crosspoint junction faults. For an array,

this will certainly take longer to test than an array with perfect,

dense, predictable codes. However, as long as , as

derived above, it will still take only total time.

With the hybrid address scheme, the testing overhead is

only . For the 500 500 nanowire array above, we will

need to test row addresses and an

equal number of column addresses to find which addresses are

present. Note that there are 250 000 raw bits in the array, so the

additional 104 000 tests to find valid addresses will not even

double the number of test operations required. Compared to the

memory bits we expect to yield from

this array, the 354 000 tests is less than four times the number

of final yielded bits.

B. One-Time Programmable Crosspoints

Some crosspoints technologies set the junctions permanently

during programming (e.g., [7]). For these technologies, we can

test for address presence without programming the crosspoints.

As shown in Fig. 10, the row (and column) lines are connected

to a common line (,). To test for presence of a row

(column) address, we weakly pull down () and drive

the row (column) address in question. If the address is present,

it will be able to pull up (); if the address is not present,

() will be pulled down to a low voltage. By observing

the voltage on (), we can detect the presence or ab-

sence of the address. This can easily be done at voltage levels

below the programming voltages so that no crosspoints are inad-

vertently programmed during address discovery. Again, as long

as , we only have total row and column

addresses to test to establish the set of row and column ad-

dresses present. This is reduced to for the hybrid ad-

dressing scheme.

C. Mapping Present Addresses

Since the codes are sparse, it will also be necessary to keep

track of the live row and column addresses. There are live

row and column addresses, each of which is bits

long; consequently, we will need bits of storage

to hold this address translation if we build a monolithically

addressed memory or about 14 for the hybrid addressing

scheme. Since this is asymptotically smaller than the

bits in the memory, the memory to hold this translation is

smaller than the memory that we are addressing. At the cost of

multiple nanoscale reads to resolve an address, we can apply

this reduction trick repeatedly to reduce the number of bits

needed to an arbitrarily small number which we can then store

in a microscale memory.

Using the hybrid addressing scheme, we need 14 500 bits

to describe the nanoscale portion of the 500 row wires along

with an equal number of bits for the column wires. Thus, we

will ultimately need to know 14 000 bits of data in order to re-

trieve the 95 000+ bits in the memory. The roughly 7 : 1 reduc-

tion here is not adequate to reduce the information needed to ad-

dress this memory to a sufficiently compact amount that it can be

efficiently stored in a lithographic-scale memory; consequently,

multiple stages of mapping will be necessary. An important area

of future work will be the development of multistage nanoscale

address mapping architectures where a nanoscale mapper can

be programmed, using this same technique, to perform the ad-

dress translation so as to provide a deterministic external set of

memory addresses. Even if we needed two programmed address

mappers that were as large as the memory they addressed, we

would still see benefits from this scheme.

Note that deterministic externally visible addresses are not

necessary for the case of programmable logic array (PLA) pro-

gramming or for programming address mapper stages. In these

cases, we simply (re)discover the codes as part of the program-

ming phase. During operation of the PLA or address mapper,

the programming addresses are irrelevant.

IX. CONCLUSION

The stochastically assembled address decoder allows us to ad-

dress individual nanoscale features without requiring any litho-

graphic processing at nanoscale dimensions. As an example,

this allows us to construct a complete nanoscale memory and ob-

tain independent access to each nanoscale bit without requiring

any lithographic processing to achieve the nanoscale features.

Nanoscale wire features are controlled by catalysts and reaction

time. They are decorated with molecules and assembled using

self-assembly techniques. The code properties that we have de-

scribed allow the assembled devices to tolerate gross misalign-

ment with the microscale wires to which they are interfaced in

several scenarios and remain independently addressable. As a

result, this provides an important technique for bridging the gap

between microscale and nanoscale features and for bootstrap-

ping the programming and customization of nanoscale systems.

ACKNOWLEDGMENT

The authors would like to thank C. Lieber, D. Wang, and

Z. Zhong for their support in this work.

174 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 2, NO. 3, SEPTEMBER 2003

REFERENCES

[1] C. Dekker, “Carbon nanotubes as molecular quantum wires,” Phys.

Today, pp. 22–28, May 1999.
[2] Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, and C. M. Lieber, “Di-

ameter-controlled synthesis of single crystal silicon nanowires,” Appl.

Phys. Lett., vol. 78, no. 15, pp. 2214–2216, 2001.
[3] A. M. Morales and C. M. Lieber, “A laser ablation method for syn-

thesis of crystalline semiconductor nanowires,” Science, vol. 279, pp.
208–211, 1998.

[4] Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed assembley of
one-dimensional nanostructures into functional networks,” Science, vol.
291, pp. 630–633, Jan. 2001.

[5] F. Kim, S. Kwan, J. Akana, and P. Yang, “Langmuir–Blodgett nanorod
assembly,” J. Amer. Chem. Soc., vol. 123, no. 18, pp. 4360–4361, May
2001.

[6] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C.-L. Cheung, and C.
M. Lieber, “Carbon nanotube based nonvolatile random access memory
for molecular computing,” Science, vol. 289, pp. 94–97, 2000.

[7] C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stod-
dard, P. J. Kuekes, R. S. Williams, and J. R. Heath, “Electronically con-
figurable molecular-based logic gates,” Science, vol. 285, pp. 391–394,
1999.

[8] A. DeHon, “Array-based architecture for FET-based nanoscale elec-
tronics,” IEEE Trans. Nanotechnol., vol. 2, pp. 23–32, Mar. 2003.

[9] M. S. Gudiksen, J. Wang, and C. M. Lieber, “Synthetic control of the
diameter and length of semiconductor nanowires,” J. Phys. Chem. B,
vol. 105, pp. 4062–4064, 2001.

[10] S. Williams and P. Kuekes, “Demultiplexer for a molecular wire crossbar
network,” U.S. Patent 6 256 767, July 3, 2001.

[11] Y. Huang, X. Duan, Y. Cui, L. Lauhon, K. Kim, and C. M. Lieber, “Logic
gates and computation from assembled nanowire building blocks,” Sci-

ence, vol. 294, pp. 1313–1317, 2001.
[12] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber,

“Growth of nanowire superlattice structures for nanoscale photonics and
electronics,” Nature, vol. 415, pp. 617–620, Feb. 2002.

[13] Y. Wu, R. Fan, and P. Yang, “Block-by-block growth of single-crys-
talline Si/SiGe upperlattice nanowires,” Nano Lett., vol. 2, no. 2, pp.
83–86, Feb. 2002.

[14] M. T. Björk, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M.
H. Magnusson, K. Depper, L. R. Wallenberg, and L. Samuelson, “One-
dimensional steeplechase for electrons realized,” Nano Lett., vol. 2, no.
2, pp. 87–89, Feb. 2002.

[15] (2001) International Technology Roadmap for Semiconductors. [On-
line]. Available: http://public.itrs.net/Files/2001ITRS/

André DeHon (S’92–M’96) received the B.S., M.S.,
and Ph.D. degrees in electrical engineering and
computer science from the Massachusetts Institute
of Technology, Cambridge, in 1990, 1993, and 1996,
respectively.

From 1996 to 1999, he co-ran the BRASS group
in the Department of Computer Science, University
of California at Berkeley. Since 1999, he has been
an Assistant Professor of computer science with the
California Institute of Technology, Pasadena. His re-
search interests focus on spatial programmable archi-

tectures and interconnect design and optimization.

Patrick Lincoln received the B.S. degree in com-
puter science from the Massachusetts Institute of
Technology, Cambridge, in 1986 and the Ph.D. de-
gree in computer science from Stanford University,
Stanford, CA, in 1992.

He joined SRI International, Menlo Park, CA,
in 1989, where he is currently the Director of the
Computer Science Laboratory. He has previously
held positions at MCC and Los Alamos National
Laboratory. He has co-chaired DARPA-sponsored
Information Science and Technology (ISAT) studies,

and serves on the Scientific Advisory Boards of private and public companies
including Cable & Wireless. His research focuses on the fields of molecular
electronics, formal methods, computer security and privacy, bioinformatics,
scalable distributed systems, and programming language design and imple-
mentation.

John E. Savage (S’59–M’66–SM’91–F’92–LF’96)
received the B.S., M.S., and Ph.D. degrees from the
Massachusetts Institute of Technology, Cambridge,
in 1961, 1962 and 1965, respectively.

He joined Bell Laboratories, Holmdel, NJ, in
January 1965, leaving to join the faculty of Brown
University, Providence, RI, in 1967. He is a Founder
of Brown’s Department of Computer Science
and was its second Chair. He has done research
on information theory, coding, communication
theory, circuit complexity, space-time tradeoffs,

I/O complexity, VLSI algorithms and analysis, silicon compilation, parallel
algorithms, scientific computing, nanotechnology, and human cognition. He
is the author of The Complexity of Computing (New York: Wiley,1976) and
Models of Computation (Reading, MA: Addison-Wesley, 1998) and a coauthor
of The Mystical Machine (Reading, MA: Addison-Wesley, 1986). He is a
co-editor of Advanced Research in VLSI and Parallel Systems (Cambridge,
MA: MIT Press, 1992). He is a member of the editorial board of the Journal of

Computer and Systems Sciences.
Dr. Savage is a Guggenheim Fellow and a Fellow of the Association for Com-

puting Machinery and the American Association for the Advancement of Sci-
ence.

