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Abstract: Active network management (ANM) aims to increase the capacity of variable distributed generation (DG), which can
be connected to existing distribution networks. In this study, it is proposed to simultaneously consider the efficient use of energy
resources when high shares of DG are procured through the ANM approach. To that end, a multi-period and multiobjective
optimisation algorithm, based on the linearised optimal power flow, is formulated. The algorithm seeks to maximise the installed
capacity of DG while minimising the energy losses and consumption of voltage-dependent loads. The objectives are optimised
considering the coordinated operation of voltage regulators and on-load tap changers, and the management of DG generation
curtailment and reactive power compensation from DG. Additionally, the effects of load and generation uncertainties are
addressed through a two-stage stochastic programming formulation of the multiobjective problem. The result is a set of non-
inferior solutions, which allows exploring the degree of conflict among the objectives. The proposed approach was tested on two
IEEE test feeders and the solutions show a significant improvement in the system's energy efficiency with a low impact on the
amount of connected DG.

 Nomenclature
Sets

Ωb set of network nodes
Ωl set of lines
T set of discrete time periods
R set of buses with voltage regulation devices
G set of candidate nodes for DG allocation
S set of scenarios
M set of line segments approximating the square of the power

flows in lines
U set of line segments approximating the capability curve of

generators and the substation transformer capacity

Parameters

ri, j/xi, j resistance/reactance of the line segment between
nodes i and j

Pli
Z peak constant impedance load at bus i

Pli
I peak constant current load at bus i;

Pli
P peak constant power load at bus i

ζt
Z constant impedance load level relative to the peak

at time t
ζt

I constant current load level relative to the peak at
time t

ζt
P constant power load level relative to the peak at

time t
ωt GD generation level relative to the nominal

capacity at time t
γc curtailment factor
Vmin/Vmax minimum/maximum voltage limits
Δtapi step of voltage variation of the device at bus i
tapi

min/tapi
max minimum/maximum tap position of the device at

bus i
S1, max rated capacity of substation transformer
TAPi

max maximum number of tap changes of the device at
bus i during the planning horizon

am/bm intercept/slope of line segments approximating Pi, j, t
2

and Qi, j, t
2

αu, βu, δu coefficients used to linearise the capability curve of
generators and the substation transformer capacity

vci/vr/vco cut-in speed/rated speed/cut-off speed of the wind
turbine

ξt vector of random parameters at time t

Variables

Pi
ic size of the generator at bus i

Pli, t /Qli, t active/reactive load power at bus i and time t
ℓt system's active power losses at time t
Vi, t voltage magnitude at bus i and time t
Pi, j, t /Qi, j, t active/reactive power flow from bus i to bus j at

time t
Pgi, t /Qgi, t active/reactive power supplied at bus i and time t
Pst /Qst active/reactive power supplied by the substation at

time t
Pi, t

curt active power curtailment from the generator at bus i
and time t

Pi, t
av available active power from the generator at bus i

and time t
tapi, t tap position of the device at bus i and time t
Vi, t

in /Vi, t
out output/input voltage of the voltage regulator at bus i

and time t
Wi, j, t

P /Wi, j, t
Q linear approximation of Pi, j, t

2 /Qi, j, t
2

χi, t /ϕi, t /θi, t, u dual variable corresponding to constraints (15)/
(18)/(34)

Ft
wt probabilistic distribution of ωt

Ft
Z /Ft

I /Ft
P probabilistic distribution of ζt

Z /ζt
I /ζt

P

1 Introduction
Nowadays, there exists a trend in increasing the share of distributed
generation (DG), primarily based on renewable energy sources
(RES), to supply the global electric energy consumption [1]. In
order to achieve RES targets, the participation of third party
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investors in developing RES-based DG projects is being promoted
through the liberalisation of electricity markets. In this new
scenario, planning the DG expansion is no longer possible because
distribution network operators (DNOs) must provide network
access to all connection requests, irrespective of the DG size and
location. Moreover, when the current network's statutory or
physical limits are reached, the DNOs must incur in actualisation
of their assets to allow new DG connections. Thus, the energy
market restructuring has led to a new paradigm related to the
determining of the maximum capacity of new DG able to be
connected to a distribution network without requiring network
upgrade, sometimes referred to as maximum hosting capacity
(MHC).

In general, the MHC problem is solved through optimisation
techniques, where the objective is the maximisation of the DG
installed capacity subject to network constraints, usually imposed
by voltage and thermal limits. Some proposals have also sought to
include voltage step constraints derived from outages of generators
[2], and fault level constraints [3]. Other studies foresee the
implementation of active network management (ANM) schemes,
designed to dynamically manage constraints that depend on the
variability of RES and load. Examples of ANM schemes are:
coordinated voltage control, DG generation curtailment and
reactive power compensation. In [4], a methodology based on
linear programming is presented, which maximises the energy
delivered from DG applying energy curtailment. AlKaabi et al. [5]
proposed various ANM schemes based on the photovoltaic (PV)
inverter control for reactive power compensation, applied to
maximise the total wind-DG penetration. A multi-period non-linear
programing formulation of the optimal power flow (OPF) is used
in [6] to evaluate the maximum wind energy exploitation, applying
coordinated voltage control through on-load tap changer (OLTC),
energy curtailment and DG power factor control. In [4–6], the
settings of the ANM schemes are determined independently for
each time period. However, the controllable resources required by
ANM schemes are limited in availability and must be efficiently
managed during the planning horizon; therefore, temporal
interdependencies need to be considered. To this end, in [7] a
multi-period AC OPF-based technique is proposed for solving the
MHC problem considering temporal interdependencies for limiting
the amount of curtailed energy, while applying DG power factor
control and coordinated voltage control via OLTC and voltage
regulators (VRs). In [8], a similar technique as in [7] was proposed,
but also exploring the potential benefits of network
reconfiguration.

In the previous works [2–8], the variability of load and
generation is taken into account by using historical data, and
techniques for aggregation of time periods are applied to reduce the
problem size. Recently, the effects of load and generation
uncertainties in the MHC are being investigated. In [9], the
applicability of robust optimisation to maximise the installed
capacity of solar PV DG, coordinating the operation of an OLTC
and static VAR compensators when load and generation
uncertainties are included, is studied. Zio et al. [10] addressed the
MHC problem with a Monte Carlo technique to include the load
uncertain behaviour. In both proposals [9, 10], successive load flow
calculations are performed to simulate each time period in the
planning horizon and, therefore, temporal interdependencies are
not included in the analysis.

From the literature review, it can be seen that the MHC of
distribution networks has been evaluated considering: single time
period analyses [2, 3], multi-period analyses [4–6], multi-period
analyses with temporal interdependencies [7, 8] and load and/or
generation uncertainties [9, 10]. Nevertheless, any of these studies
simultaneously considers multi-period analyses, temporal
interdependencies and load and generation uncertainties. Moreover,
in [2–10], the main concern in the determination of the MHC is the
fulfilment of essential network constraints. However, the
procurement of high DG penetration levels may greatly impact
energy losses and, therefore, the trade-off between DG hosting
capacity and energy losses also needs to be taken into account.
Only in [6, 7], the effects of high DG penetration levels on energy
losses are discussed, and in [4] the MHC is evaluated taking into

account the energy losses by including a loss adjustment factor in
the objective function. Additionally, in all of these studies, loads
are modelled as constant power loads and, consequently, the
relationship between DG and energy consumption of voltage-
dependent loads is disregarded. This relationship is an important
issue that must be investigated because, as the DG penetration level
increases, higher voltage levels are expected to supply the load,
and this may result in an increase of energy consumption.

In this work, a multi-period and multiobjective linearised OPF-
based optimisation algorithm is proposed to estimate the quantity
of variable DG that can be accommodated in a medium-voltage
(MV) distribution network considering the efficient energy use.
Here, energy efficiency is related to the amounts of energy losses
in network's lines and energy consumption of loads. The algorithm
seeks to maximise the installed DG capacity and to minimise both
the energy consumption of loads and energy losses, while taking
account of network constraints. The effect of voltage on demand is
included by modelling the loads through the ZIP load model. The
coordinated operation of VRs and OLTC, and the management of
DG generation curtailment and reactive power compensation from
DG are used to improve network utilisation and energy efficiency.
Furthermore, the effects of load and generation uncertainties are
addressed through a two-stage stochastic programing formulation
of the multiobjective problem, where one objective function is
related to the first stage decisions and the other objective function
is related to the recourse actions. A deterministic approximation to
the multiobjective stochastic problem is generated using a scenario
generation and reduction process. The resulting multiobjective
deterministic problem is solved simultaneously applying the e-
constrained method [11] and a decomposition technique based on
the L-shaped method to obtain a set of non-inferior solutions.

The major contributions of this work are as follows:

• The MHC of MV distribution networks is evaluated
simultaneously considering the efficient energy use, load and
generation uncertainties and the implementation of various
ANM schemes.

• A novel multi-period, multiobjective, two-stage stochastic
formulation of the MHC problem, which includes temporal
interdependencies and the load-to-voltage (LTV) dependence
through the ZIP load model.

• A solution strategy that integrates the e-constrained method and
the L-shaped method to deal with the multiobjective stochastic
formulation.

2 MHC, ANM and energy efficiency
Opening the energy market to the participation of independent
investors in the development of DG projects demands the DNOs to
efficiently manage the network utilisation; because the capacity for
new connections is limited and network expansion results
expensive and usually restricted by environmental and social
concerns. In this sense, DNOs would be interested in determining
the locations where more DG can be accommodated and
incentivise the developments in that areas, for example by applying
differentiated connection rates. However, when the priority is in the
exploitation of RES, arises the need for more sophisticated
strategies to deal with the generation variability and its lack of
correlation with demand; otherwise, the DG hosting capacity
would be constrained by extreme generation and demand scenarios
that seldom occur. In this scenario, the concept of ANM becomes
fundamental as a means for integrating large amounts of variable
DG.

ANM incorporates the interaction between planning, access and
connection, and operational timeframes, and was devised to
coordinate the development of generation, energy storage and
flexible demand [1]. Moreover, its implementation calls for the
evolution of regulatory and commercial frameworks and, thereby,
providing tools to promote DG connections under non-firm access
agreements and market-based procurement of flexibility and
ancillary services from DG. Thus, with the appropriate
communication, monitoring and control infrastructure, coordinated
smart control schemes, referred to as ANM schemes, can be put in
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place to optimally manage DG capabilities and other controllable
network elements so that network utilisation can be maximised.

2.1 Energy efficiency

Some technical difficulties may impact the efficiency in electric
power systems, and among them, DG is gaining relevance. It has
been shown DG penetration above certain level can increase losses
and power demand of voltage-dependent loads, if no corrective
actions are undertaken [12–14]. In this regard, the LTV dependence
has been included in studies for DG planning [15, 16] and
operation [17, 18]; nevertheless, to the best of the author's
knowledge, the interaction between LTV dependence and MHC
has not been yet studied.

When the priority is in the exploitation of RES, ANM schemes
are deployed to maximise the DG hosting capacity of existing
distribution networks. However, in the search for a more
sustainable energy system, improving energy efficiency possesses a
high priority. Therefore, ANM schemes need to be applied in way
to maintain low levels of energy losses and energy consumption of
loads when the DG hosting capacity is maximised.

3 Mathematical formulation
3.1 DG modelling

Variable DG interfaced with synchronous generators (SGs) and
power electronics converters has the technical capability to supply
more continuous reactive output than capacitor banks and, with
appropriate controls, it can respond faster and with higher control
resolution. These properties along with a rapid development of DG
are moving the industry to allow DG to provide voltage regulation
[19, 20]. In this work, the focus is on wind power (WP) generation,
for which we define the reactive power capability as in (1). This
simplified formulation can be representative of a wind turbine
interfaced with a SG or a full power electronics converter.

|Qmax | = Smax
2 − Pg

2 (1)

In relation to the mode of operation of DG, it is considered that,
when required, the active power generation can be reduced to
overcome network constraints, to free reactive capacity and to
regulate voltage. Additionally, it is considered during low wind
speed scenarios, at zero active power generation, the DG can still
provide reactive power support.

3.2 Problem formulation

When energy efficiency and high penetration levels of RES-based
generation are pursued, DNOs are committed to optimise
utilisation of their networks and to prevent unnecessary energy
usage; whereas DG developers are encouraged to invest in the
construction of new DG units. To achieve their objectives, DNOs
can offer incentives to DG developers to site their units in
appropriate locations and procure flexibility and ancillary services
from DG, as long as it results more cost effective than reinforcing
the network. By providing support to DNOs, DG developers have
the possibility to increase their participation in the energy market,
because higher DG capacities can be installed, and to receive
additional benefits from the provision of reactive compensation
and flexibility.

The MHC problem considering energy efficiency and load/
generation uncertainties is modelled as a mixed-integer, non-linear,
multiobjective, two-stage, stochastic programming problem.
Stochastic programming requires that the probability distributions
of the uncertain data are known or can be estimated. This method
was chosen because: (i) there are good approximations of the
probability distributions governing the uncertainties of RES and
load [15, 17, 21]; (ii) stochastic programming is a well-established
method that has been the subject of many studies and has been
applied to many power system problems with satisfactory results
[22, 23]. Below is presented the mathematical formulation of the
problem:

max : f 1 = ∑
i ∈ G

P
i

ic

(2)

min : f 2 = E min: f
~

2(ξt) = ∑
t ∈ T

∑
i ∈ Ωb

Pli, t(ξt) + ℓt(ξt) (3)

Subject to: tapi
min ≤ tapi, t ≤ tapi

max, ∀i ∈ R, ∀t ∈ T (4)

∑
t = 1

|T | − 1

| tapi, t + 1 − tapi, t | ≤ TAPi
max, ∀i ∈ R (5)

∑
i j ∈ Ωl

Pi, j, t(ξt) = Pk, i, t(ξt) − Pli, t(ξt) + Pgi, t(ξt), ∀i ∈ Ωb, ∀t

∈ T
(6)

∑
i j ∈ Ωl

Qi, j, t(ξt) = Qk, i, t(ξt) − Qli, t(ξt) + Qgi, t(ξt), ∀i ∈ Ωb,

∀t ∈ T
(7)

V j, t(ξt) = Vi, t(ξt) −
ri, jPi, j, t(ξt) + xi, jQi, j, t(ξt)

V1, t
, ∀i j ∈ Ωl, ∀t

∈ T

(8)

ℓt(ξt) = ∑
i j ∈ Ωl

ri, j

Pi, j, t
2 (ξt) + Qi, j, t

2 (ξt)

V1, t
2 (ξt)

, ∀t ∈ T (9)

Pli, t(ξt) = Pli
Z
ζt

Z
Vi, t

2 (ξt) + Pli
I
ζt

I
Vi, t(ξξ) + Pli

P
ζt

P, ∀i ∈ Ωb,

∀t ∈ T
(10)

Qli, t(ξt) = Qli
Z
ζt

Z
Vit

2(ξt) + Qli
I
ζt

I
Vi, t(ξt) + Qli

P
ζt

P, ∀i ∈ Ωb,

∀t ∈ T
(11)

Pgi, t(ξt) = Pi, t
av(ξt) − Pi, t

curt(ξt), ∀i ∈ G, ∀t ∈ T (12)

Pi, t
curt(ξt) ≤ Pi, t

av(ξt), ∀i ∈ G, ∀t ∈ T (13)

∑
t ∈ T

Pi, t
curt(ξt) ≤ γc ∑

t ∈ T

Pi, t
av(ξt), ∀i ∈ G (14)

Pi, t
av(ξt) = ωtPi

ic: χi, t, ∀i ∈ G, ∀t ∈ T (15)

Pg1, t(ξt) = Pst(ξt), ∀t ∈ T (16)

Qg1, t(ξt) = Qst(ξt), ∀t ∈ T (17)

Vi, t
out(ξt) = Vi, t

in(ξt) + Δtapitapi, t :ϕi, t, ∀i ∈ R, ∀t ∈ T (18)

V1, t
in (ξt) = 1, ∀t ∈ T (19)

Vmin ≤ Vi, t(ξt) ≤ Vmax, ∀i ∈ Ωb, ∀t ∈ T (20)

|Qgi, t(ξt) | ≤ (Pi
ic)

2
− Pgi, t

2 (ξt), ∀i ∈ G, ∀t ∈ T (21)

Pst
2(ξt) + Qst

2(ξt) ≤ S1, max
2 , ∀t ∈ T (22)

ξt = (ωt, ζt
Z, ζt

I, ζt
P), ∀t ∈ T (23)

ωt ∈ Ft
wt, ∀t ∈ T (24)

ζt
Z ∈ Ft

Z, ζt
I ∈ Ft

I, ζt
P ∈ Ft

P, ∀t ∈ T (25)
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In the above formulation, the first stage problem is a multiobjective
problem given by the expressions in (2)–(5). The expression in (2)
corresponds to the maximisation of the total installed DG capacity
in a set of predefined network buses G. The expression in (3)
corresponds to the minimisation of the expectation of the second
stage objective f

~
2(ξt) taken over all possible realisations of the

uncertain data ξt. Constraint (4) defines the maximum and
minimum tap positions of VRs and OLTCs located at the buses i in
the set R. Constraint (5) limits the number of switching operations
of VRs and OLTCs during the planning horizon. Therefore, the
first stage problem determines the tap position of VRs and OLTCs
tapi, t and the size of generators Pi

ic.
For each realisation of ξt, the second stage problem minimises

the total energy consumption (energy consumption of loads plus
energy losses in lines) represented by f

~
2(ξt), subject to constraints

(6)–(25). The decision variables in the second stage problem are
the generation curtailment Pi, t

curt(ξt) and the reactive power injected
from the DG Qgi, t(ξt).

Constraints (6)–(8) are the linearised DistFlow equations for
nodal power flows representation. These equations were initially
described in [24], and have been extensively used in the literature
[9, 15, 17]. Equation (9) describes the active power losses in
network branches for each time period. In (10) and (11), the ZIP
model is used to represent the voltage-dependent behaviour of
loads for active and reactive power. In the ZIP model, loads consist
of constant impedance Z , constant current I  and constant power
P  components, and the degree of dependence with voltage varies

according to the percentage of participation of each component
[25]. In this work, the participation of each component at each bus
and time period is calculated as the product between the peak load
and the load level relative to peak, which in this case is a random
parameter.

In (12), the actual active power injected by a generator at a
specific bus and time period is calculated. Constraint (13)
establishes the generation curtailment cannot be greater than the
available active power. In (14), the amount of curtailed energy
from each generator during the planning horizon is restricted to a
maximum percentage of the energy that can be generated. In (15),
the available active power of a generator depends on the installed
capacity and on the generation level relative to that capacity ωt,
which is a random parameter dependent on the wind speed.
Constraints (16) and (17) correspond to the active and reactive
power injections at the substation. Constraint (18) models the
operation of VRs and OLTCs. Constraint (19) assumes the voltage
at the primary side of the substation transformer is kept to a
constant value of 1.0 p.u. Constraint (20) indicates the voltage at
each node should be within the statutory range. Constraint (21)
defines the reactive power capability of generators as discussed in
the previous section. Here, the rated capacity of a generator is
given by Pi

ic. Constraint (22) limits the apparent power flowing
through the substation transformer. Equation (23) defines the
random vector ξt. Expressions (24) and (25) assume that the
generation levels and the demand levels are random parameters
that can be represented using probability density functions (PDF),
as will be discussed later.

Non-linearities in the above model are reduced. Constraint (5)
is linearised by transforming it into the equivalent form shown in
the following equations:

λi, t ≥ tapi, t + 1 − tapi, t, ∀i ∈ R, ∀t ∈ T (26)

λi, t ≥ tapi, t − tapi, t + 1, ∀i ∈ R, ∀t ∈ T (27)

∑
t ∈ T

λi, t ≤ TAPi
max, ∀i ∈ R (28)

Constraint (9) is linearised by replacing Pi, j, t
2  and Qi, j, t

2  with
piecewise linear approximations, and assuming the secondary
voltage of the transformer at the substation, V1, t

2 , is equal to 1 [24].

Thus, (9) can be written as (29), and constraints (30) and (31) are
added

ℓt(ξt) = ∑
i j ∈ Ωl

ri j(Wi, j, t
P (ξt) + Wi, j, t

Q (ξt)), ∀t ∈ T (29)

Wi, j, t
P (ξt) ≥ am + bmPi, j, t(ξt), ∀i j ∈ Ωl, ∀t ∈ T , ∀m ∈ M (30)

Wi, j, t
Q (ξt) ≥ am + bmQi, j, t(ξt), ∀i j ∈ Ωl, ∀t ∈ T , ∀m ∈ M (31)

The quality of the above approximation increases with the number
of linear segments approximating the quadratic terms; however,
this number must be carefully chosen to avoid excessive use of
computational resources in solving the problem. The quadratic
expression in constraints (10) and (11) is linearised by using
Taylor's expansion around Vi, t = 1 and ignoring the second- and
high-order terms as shown in (32) and (33). Note that, the error
introduced by this linearisation is small since, according to (20),
Vi, t at any time and bus is close to 1

Pli, t(ξt) = Pli
Z
ζt

Z(2Vi, t(ξt) − 1) + Pli
I
ζt

I
Vi, t(ξt) + Pli

P
ζt

P, ∀i

∈ Ωb, ∀t ∈ T
(32)

Qli, t(ξt) = Qli
Z
ζt

Z(2Vi, t(ξt) − 1) + Qli
I
ζt

I
Vi, t(ξt) + Qli

P
ζt

P, ∀i

∈ Ωb, ∀t ∈ T
(33)

Constraints (21) and (22) are also linearised through piecewise
linear approximations as shown in (34) and (35). Here, the method
described in [9] is used to calculate the linear segments

αuPgi, t(ξt) + βuQgi, t(ξt) + δuPi
ic ≤ 0:θi, t, u, ∀i ∈ G, ∀t ∈ T ,

∀u ∈ U
(34)

αuPst(ξt) + βuQst(ξt) + δuSmax ≤ 0, ∀t ∈ T , ∀u ∈ U (35)

4 Uncertainty characterisation
In the model presented in the previous section, uncertainties are
related to errors in predicting load levels and wind speed. In this
work, wind forecast errors are modelled by a special case of the
Weibull PDF called Rayleigh PDF [21], expressed as follows:

f R(vt) =
2vt

ct
2 exp −

vt

ct

2

, ∀t ∈ T (36)

The scale parameter ct is calculated as in (37), where vμ, t is the
mean value of the PDF, which, in this work, is the predicted wind
speed for a specific time period. Therefore, (36) models, for each
time period t, the occurrence of wind speed values vt when a certain
prediction value vμ, t has been forecasted

ct =
2

π
vμ, t, ∀t ∈ T (37)

For a realisation of vt the conversion to WP is determined by the
power performance curve of the wind turbine. A piecewise linear
approximation to this curve is expressed in (38). Note that for
purposes of simplicity, it is assumed all DG locations are subject to
the same wind speed

ωt =

0, 0 ≤ vt < vci

vt − vci

vr − vci
, vci ≤ vt < vr

1, vr ≤ vt < vco

0, vco < vt

, ∀t ∈ T (38)

As for the load forecast errors, they are assumed to be normally
distributed around the predicted values with standard deviation
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equal to 2% of the expected demand [15, 17]. Therefore, for each
time period t, the random vector ξt is formed by one Rayleigh PDF
and three normal PDFs, describing the wind speed and load
forecast errors, respectively.

5 Solution methodology
5.1 Sampling and scenario reduction

An approach for solving two-stage stochastic problems is through
Monte Carlo simulations. The accuracy of Monte Carlo methods
increases with the size of the generated random sample; however,
this also implies increasing the computational complexity.
Consequently, it becomes necessary a means for estimating a
reduced number of scenarios that efficiently approximate the
system uncertainty. To that end, in this work it is proposed the
implementation of the simultaneous backward reduction (SBR)
technique [17, 26]. Assuming there are N initial scenarios, denoted
by τs(s ∈ S := {1, …, N}), each one with probability ρs, SBR is to
reduce them into n scenarios, denoted by τs′(s ∈ S := {1, …, n}),
each one with probability ρs′. The sampling and scenario reduction
procedure allows to write the stochastic formulation in Section 3.2
as a mixed-integer multiobjective deterministic (MIMD)
optimisation problem, defined over a reduced number of scenarios
n

max: f 1 = ∑
i ∈ G

Pi
ic

(39)

min: f 2 = ∑
s ∈ S

ρs′ ∑
t ∈ T

∑
i ∈ Ωb

Pli, t, s + ℓt, s (40)

Subject to: (4), (26) − (28)(6) − (8), (12) − (20), (29) − (35),
∀s ∈ S

5.2 Multibojective optimisation

In a multiobjective problem, the degree of conflict, or tradeoff,
among objectives can be estimated through the set of non-inferior
or Pareto optimal solutions. In this work, the e-constrained method
[11] is used to generate a representative subset of the non-inferior
set for objectives f 1 and f 2. In the e-constrained method one
objective is selected to be optimised, with the other objective
functions regarded as constraints. Here, the MIMD problem
defined in the previous subsection is solved by optimising f 1 with
f 2 included in the constraint set, expressed as follows:

f
~

2, s = ∑
t ∈ T

∑
i ∈ Ωb

P

li, t, s + ℓt, s ≤ εs
d, ∀s ∈ S (41)

where f
~

2, s corresponds to the objective function of the second stage
problem evaluated for each scenario s ∈ S. Note that, instead of a
single constraint, f 2 is split into n constraints, one for each scenario
s, to keep the separable structure of the problem and apply the L-
shaped method for its solution. Each parameter εs

d, s ∈ S, is within
a range of values limited below by the optimal value εs

min of the
objective f

~
2, s, obtained when the MIMD problem is solved

optimising only f 2, and above by the worst of the values εs
max of the

objective f
~

2, s, obtained when the MIMD problem is solved
optimising only f 1. By ranging εs

d, s ∈ S, in the transformed
problem, with f 2 considered as a constraint, and resolving each
new problem the non-inferior set is generated. For each scenario
s ∈ S, the values of the parameters εs

d are determined using the
following formula:

εs
d = εs

min +
d − 1
h − 1

εs
max − εs

min , ∀d ∈ {1, …, h} (42)

where h is the number of non-inferior solutions to be generated.
When the e-constrained method is applied to find the non-inferior
set of the MIMD problem, three different problems need to be
solved: the problem that optimises f 1, OP1; the problem that
optimises f 2, OP2; and the problem that optimises f 1 with f 2

regarded as a constraint, OP3. The procedure for the e-constrained
method can be summarised as follows:

Step 1: Solve OP1 and OP2;
Step 2: Determine the values of εs

d, s ∈ S, using (42);
Step 3: For each d ∈ {2, . . . , h − 1}, solve OP3.

5.3 L-shaped method

A multi-cut version of the L-shaped method [27, 28] is used to
solve the three problems defined in the previous subsection. Using
this method each problem can be decomposed into a mixed-integer
linear master problem, and n pure linear sub-problems, one
corresponding to each scenario s. However, in order to reduce the
search space, in this work, a partial decomposition technique is
applied [29]. That is, a subset of sub-problems S̄ ⊆ S is retained in
the master problem to provide a tighter formulation. Here, the
retained sub-problems are arbitrarily selected. For each iteration j,
the solution of the master problem provides the tap positions of the
OLTC and VRs tapi, t

( j), the size of the generators Pi
ic( j), and the

solution vector of the retained sub-problems. With the variables Pi
ic

and tapi, t fixed at the values found in the master problem, the sub-
problems s ∈ S∖S̄ are solved and the values of their dual variables
χi, t, s

( j) , ϕi, t, s
( j)  and θi, t, u, s

( j) , and objective functions f
~

2, s
( j)  are used to derive

constraints on the master problem. For OP1, the sub-problems are
given by the deterministic representation of constraints (6)–(8),
(12)–(20) and (29)–(35), taking one scenario at a time. For OP2 the
sub-problems optimise f

~
2, s subject to the same constraints as in

OP1. Sub-problems of OP3 are the same as in OP1 but including
constraint (41). The general formulation of the master problem at
iteration j for OP1, OP2, OP3 is as follows:

min : − f 1 + ∑
s ∈ S̄

ρs′ ∑
t ∈ T

∑
i ∈ Ωb

Pli, t, s + ℓt, s + ∑
s ∈ S∖S̄

ρs′Zs (43)

Subject to:

(4), (26) − (28)

(6) − (8), (12) − (20), (29) − (35), ∀s ∈ S̄

Γ(l)
Zs − f

~
2, s
(l)

≥ − ∑
i ∈ G

∑
t ∈ T

χi, t, s
(l) ωt, s(Pi

ic(l) − Pi
ic) −

∑
i ∈ R

∑
t ∈ T

ϕi, t, s
(l) Δtapi tapi, t

(l) − tapi, t +

∑
i ∈ G

∑
t ∈ T

∑
u ∈ U

θi, t, u, s
(l)

δu Pi
ic(l) − Pi

ic

∀l ∈ {1, …, j}, ∀s ∈ D
(l) (44)

In the above formulation, variables Zs replace in the master
problem the objective functions of the sub-problems s ∈ S∖S̄, and
the terms ∑t ∈ T ∑i ∈ Ωb

Pli, t, s + ℓt, s  are the objective functions of
the retained sub-problems S̄ ⊆ S. For OP3, the retained sub-
problems also include constraints of the same type as (41). If
Γ(l) = 1, constraint (44) corresponds to optimality cuts, and if
Γ(l) = 0 constraint (44) correspond to feasibility cuts. When OP1

and OP3 are solved, only feasibility cuts are generated, since the
sub-problems do not have objective function; hence, only the term
− f 1 in (43) is considered and, for both problems, the algorithm

IET Gener. Transm. Distrib., 2017, Vol. 11 Iss. 18, pp. 4617-4625
© The Institution of Engineering and Technology 2017

4621



converges when feasibility is achieved in all sub-problems. When
OP2 is solved, the term − f 1 in (43) is not considered and both
feasibility and optimality cuts can be generated. In this case,
algorithm converges when, at iteration j, UB − LB ≤ ϵ, where UB
and LB are, respectively, the upper and the lower bound of the
optimal solution of OP2, and ϵ is the tolerance. The procedure for
the L-shaped method is summarised below.

1. Initialisation: Create a set S̄ ⊆ S, let ϵ > 0 be given. Set an
upper bound UB = ∞, lower bound LB = − ∞ and iteration
j = 0.

2. Solve the master problem: Obtain tapi, t
( j) and Pi

ic( j). If the
problem being solved is OP2, also obtain Zs and calculate the
lower bound LB = ∑s ∈ S∖S̄ ρs′Zs

( j). In this case, as long as no
optimality cuts have been generated, the values of Zs are set to
be zero, otherwise, the master problem would be unbounded.

3. Solve the sub-problems: If at least one sub-problem s ∈ S∖S̄ is
infeasible for the proposals of the master problem, make
Γ( j) = 0, D( j) = D

′( j), being D′( j) ⊆ S∖S̄ the set of infeasible sub-
problems at iteration j. For the unfeasible sub-problems, the
values χi, t, s

( j) , ϕi, t, s
( j) , θi, t, u, s

( j)  and f
~

2, s
( j)  obtained from the phase I of

the simplex method are used to form feasibility cuts in the
master problem. Increase the iteration number j = j + 1 and
return to step 2. If all the sub-problems s ∈ S∖S̄ are feasible go
to step 4.

4. Calculate upper bound: If the problem being solved is OP1 or
OP3, the current solution is the final solution. If the problem
being solved is OP2, calculate the upper bound
UB = min UB, ∑s ∈ S∖S̄ ρs′ f

~
2, s
( j)  and go to step 5.

5. Termination criterion: If UB − LB ≤ ϵ stop the algorithm, the
current solution is the final solution. Otherwise, make Γ( j) = 1,

D
( j) = S∖S̄ and add optimality cuts to the master problem with

the values χi, t, s
( j) , ϕi, t, s

( j) , θi, t, u, s
( j)  and f

~
2, s
( j)  obtained from the optimal

solution of the sub-problems. Increase the iteration number
j = j + 1 and return to step 2.

6 Case study
The method was implemented in AMPL 20160614 calling CPLEX
12.6.3 [30]. To investigate the interaction between DG installed
capacity and energy efficiency in systems with different voltage
drop characteristics, tests were performed on single-phase
equivalents of the IEEE 34-bus and IEEE 123-bus test feeders [31].

6.1 Scenarios generation

In this section, the procedure for constructing the load and
generation scenarios for both feeders under study is described. In
order to take into account the hourly and seasonal variations in
demand and wind, each season of a 1-year planning horizon is
represented by a single day divided into 24 time periods. By
selecting a set of representative days it is possible to evaluate the
MHC; however, in order to capture the effects of integrating large
volumes of wind generation on energy efficiency, the annual
energy losses and energy consumption of load should be
calculated. For each representative day, predictions of load and
wind profiles must be performed in a way that they approximate
the general behaviour of load and wind in the days of the
corresponding season. The application of sophisticated methods to
generate predictions of load and wind profiles is beyond the scope
of this work; here, the values shown in Figs. 1 and 2, obtained
using historical average values, are used. For each profile, 200
scenarios (N = 200) are generated using Monte Carlo simulation to
represent the prediction errors of wind speeds and load levels. Then
the SBR technique is applied to reduce the number of scenarios to
15 (n = 15). For the resulting scenarios, the WP of generators is
calculated using (38) with vci = 5 m/s, vr = 15 m/s and vco = 5 m/s.
With regards to the solution procedure, the partial decomposition
technique is applied retaining in the master problem only one sub-
problem.

6.2 IEEE 34-bus feeder

This feeder is characterised by including long distribution lines,
nominal voltage of 24.9 kV and peak active load of 1.769 MW.
The topology and the data of this system can be found in [31]. For
the tests performed here, some modifications were made. The two
VRs at buses 814 and 852, are modelled to regulate ±10% of the
input voltage, with Δtapi = 0.00625 p . u ., tapi

min = − 16 and
tapi

max = + 16. An OLTC is installed at the substation, capable of
regulating ±5% in steps of Δtap1 = 0.0125 p . u . with tap1

min = − 4

and tap1
max = + 4. The feeder is supplied by a 2.5 MVA

transformer interfacing the transmission and distribution networks.
Voltage limits are set to Vmin = 0.95 p . u . and Vmax = 1.05 p . u .
Loads at buses are composed of a mix of constant impedance,
constant current and constant power components; each one

Fig. 1  Predicted wind speeds
 

Fig. 2  Predicted load levels relative to peak load
 

Table 1 Load composition of the IEEE 34-bus feeder
Load type Participation, % Power factor
Z 39.85 0.90
I 40.70 0.95
P 19.45 0.98
 

Fig. 3  Set of non-inferior solutions for the IEEE 34-bus feeder
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assigned with a peak value. The power factor and participation at
the network level of each load type are shown in Table 1.

It is also assumed that loads have constant power factor; hence
the reactive load power at each bus is determined by the active load
power and its power factor. The maximum number of switching
operations for each VR and the OLT is set to 32 TAPi

max = 32 ;
this number corresponds to the 96 h representing the planning
horizon. Buses 838, 848, 856 and 890 were selected as candidate
sites for DG allocation.

For comparison purposes, a base case is defined without DG
and with the settings of the OLTC and VRs determined so as to
maintain the system operating between the required limits under all
load scenarios. The results of the base case for total energy
consumption, energy consumption of loads and energy losses are
9.355, 8.671 and 0.684 GWh, respectively. These values
correspond to the 1-year planning horizon; hence they are
calculated multiplying the results obtained for the set of
representative days by the number of times the size of this set is
contained into 1 year. Furthermore, they represent the expected
values over all scenarios.

The relationship between the amount of DG connected to the
selected buses and energy consumption in the system is analysed
considering the progressive implementation of ANM schemes. The
following cases are studied:

• Case 1: Only coordinated voltage control.
• Case 2: Coordinated voltage control and generation curtailment

limited to γmax = 7%
• Case 3: The ANM schemes in case 2 and reactive power

compensation from the DG.

For each case, five non-inferior or Pareto optimal solutions are
found. The Pareto front for case 1 and case 2 are shown in Fig. 3.

The same solutions for the three cases are shown in Table 2,
where, to facilitate the analysis, the values of the first objective
function are expressed as percentage changes of the total energy
consumption taking the results of the base case as reference, and
the values of the second objective function are expressed as DG
penetration levels. In Table 2, solution 1 corresponds to the
solution that minimises the total energy consumption and solution
5 to the solution that maximises the DG capacity. Observe that, the
DG penetration level is the DG installed capacity expressed as a
percentage of the total system peak load. In Fig. 4, the contribution
of load and losses in the percentage change of total energy
consumption is shown. 

When the energy consumption is minimised (solution 1), the
results for case 1 and case 2 are similar, since, for the obtained DG
penetration levels, there is no need to perform generation
curtailment to further reduce the voltage levels. In both cases, the
resulting DG penetration levels are those that produce the best
combination of reduced energy losses and energy consumption as
shown in Fig. 4. Note that, losses are reduced when loads are
locally supplied by the DG because there is a reduction in the
power flows from the substation. In case 3, the DG installed
capacity is about twice as obtained in case 1 and case 2, this results
in lower energy losses and even lower energy consumption of
loads.

In regard to the maximisation of the DG capacity (solution 5),
the penetration level increases with the progressive implementation
of more ANM schemes. In case 1, the maximum DG penetration is
dependent on the capability of the OLTC and VRs to maintain
adequate voltage levels; considering that their settings are
determined in advance and must hold for all generation and
demand scenarios. It is worth noting that, in this analysis the
connection of DG is constrained only by voltage limits and the
rated capacity of the substation transformer. In case 2, generation
curtailment can be performed to bring down voltage raise produced
by extreme scenarios of power generation and demand. As a result,
a maximum generation curtailment of 7% translates to a DG
capacity 24% greater than in case 1. In both case 1 and case 2, the
energy consumed by loads is greater than in the base case;
however, the energy losses are lower because most of the energy
production is locally consumed in the distribution network. As a
whole, the total energy consumption is still lower than in the base
case. Case 3 presents the best results in terms of allocated DG
capacity, nevertheless at the cost of low energy efficiency. In this
case, the DG reactive power capability is exploited to provide a
finer voltage regulation than the coordinated voltage control, and
less restricted than the generation curtailment. Since the generation
capacity is significantly higher than the peak load, active power is
exported to the transmission system. In this case, the limiting factor
for allocating more DG is the capacity of the substation
transformer.

When the objective is minimising the energy consumption, the
DG is considered as an additional control, and its penetration level
is calculated to provide the best trade-off between reduced losses
and load. However, in some situation, the DNO could be interested
in exploring less aggressive solutions that still provide acceptable
results in terms of energy efficiency but with larger amounts of
connected DG. For example, in case 1 and case 2, if solution 2 is
chosen over solution 1, the DG penetration is tripled and the total

Table 2 Percentage change of total energy consumption (ΔE) and DG penetration level (PL) for the IEEE 34-bus feeder
Solution Case 1 Case 2 Case 3

PL, % ΔE, % PL, % ΔE, % PL, % ΔE, %

1 22.05 −4.20 20.41 −4.21 43.53 −6.24
2 57.68 −3.50 68.10 −3.31 147.02 1.91
3 68.87 −2.90 84.40 −2.44 186.55 10.03
4 78.34 −2.33 96.42 −1.56 208.44 18.16
5 82.49 −1.65 106.38 −0.69 211.98 26.29

 

Fig. 4  Breakdown of the percentage change of energy consumption in the
IEEE 34-bus feeder

 

Fig. 5  Reactive power exchanges obtained for the IEEE 34-bus feeder
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energy consumption is increased by <1%. This behaviour is also
present in case 3 and similar results can be found if additional non-
inferior solutions are calculated.

When the problem is formulated to optimise only the DG
installed capacity, the effects on energy efficiency are completely
disregarded; thus, losses and demand may be unnecessarily large.
In this sense, important benefits could be obtained if a more
flexible solution is selected. This situation is more evident in case
3, where the maximum DG capacity is achieved with energy
consumption 26% above the base case. However, if solution 4 is
chosen, the energy consumption is reduced 8% reducing the DG
installed capacity by <4%. In case 1 and case 2, the same pattern is
observed at a lower scale but still significant.

The amounts of annual reactive power hours (varh) imported/
exported by the distribution network for the five solutions of case 3
are shown in Fig. 5, where the total of each bar corresponds to the
sum of the capacitive and inductive requirements.

In this work, the assumption that capacitive sources export or
generate reactive power and inductive sources import or consume
reactive power is adopted. For solution 1, the network behaviour is
predominantly capacitive; because the generators inject reactive
power to compensate for voltage drops in scenarios of low active
power generation. As the DG penetration is increased, the network
becomes more inductive; because the generators consume reactive
power to compensate for the voltage raise produced by the reversed
active power flows. Depending on the regulations, one of these
solutions can be chosen to meet restrictions on the reactive power
exchanges with the transmission system while maximising the DG
installed capacity.

6.3 IEEE 123-bus feeder

This feeder operates at a nominal voltage of 4.16 kV and has a
peak active load of 3.49 MW. Compared with the IEEE 34-bus
feeder, it presents less voltage drop problems, and thus the DG
capacity is expected to be less voltage constrained. The topology
and the data of this system can be found in [31]. An OLTC is
installed at bus 149 as well as two VRs at buses 18 and 160. The
characteristics of the voltage regulation devices, their operational
limits and the network's voltage limits are the same used in the
IEEE 34-bus feeder. The substation transformer has nominal
capacity of 5 MVA and the candidate buses for DG allocation are
29, 52, 82 and 105. The power factor and participation of the
constant impedance, constant current and constant power load
components are shown in Table 3.

The results of the base case for total energy consumption,
energy consumption of loads and energy losses are 17.906, 17.458
and 0.448 GWh, respectively. The same cases as in the previous
section are studied. The percentage changes of the total energy
consumption and the DG penetration levels for the three cases are
shown in Table 4. 

In this system, the DG penetration levels are higher than in the
IEEE 34-bus feeder. For the three cases, the factor limiting the
MHC is the rated capacity of the substation transformer. This

behaviour restricts the effect of reactive power compensation to
increase the DG capacity as can be seen when comparing solution
5 of case 2 and case 3. Moreover, for the three cases, solution 5
does not present a significant improvement in the DG penetration
level over solution 4, however, the energy efficiency is
considerably lower.

7 Conclusions
The proposed method provides a comprehensive picture of the
relationship between DG hosting capacity and energy efficiency,
and could be used as support in the process of defining the
expansion planning of DG. From the results, it was observed that,
as the DG penetration approaches the maximum capacity of the
network, connecting new DG becomes more expensive in terms of
energy efficiency. For example, in most of the studied cases, when
compared to the adjacent non-inferior solution, the solution with
maximum installed DG capacity improves the DG penetration level
by <4% increasing the energy consumption more than 1%.
Moreover, in some cases, the increase in the DG penetration level
corresponds to the increase in the losses and load consumption.
Consequently, it becomes necessary to seek for more balanced
solutions, with reduced energy consumption and high DG
penetration levels, as the provided by the multiobjective approach.
At the end, the choice of a solution will depend on technical
aspects, regulatory frameworks and commercial strategies. For
example, the incentives the DNO receives to allow more DG
connections, the economic impacts of energy efficiency, the energy
cost and the operational costs of the ANM (i.e. the cost of loss of
opportunity derived from energy curtailment, the cost of reactive
power compensation and the depreciation of voltage regulation
devices).
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