
        

Citation for published version:
Lindgren, G & Lindgren, F 2011, 'Stochastic asymmetry properties of 3D gauss-lagrange ocean waves with
directional spreading', Stochastic Models, vol. 27, no. 3, pp. 490-520.
https://doi.org/10.1080/15326349.2011.593410

DOI:
10.1080/15326349.2011.593410

Publication date:
2011

Document Version
Peer reviewed version

Link to publication

This is an Author's Accepted Manuscript of an article published in Lindgren, G. , & Lindgren, F. (2011).
Stochastic asymmetry properties of 3D gauss-lagrange ocean waves with directional spreading. Stochastic
Models, 27(3), 490-520., copyright Taylor & Francis, available online at:
http://www.tandfonline.com/doi/abs/10.1080/15326349.2011.593410

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 24. Aug. 2022

https://doi.org/10.1080/15326349.2011.593410
https://doi.org/10.1080/15326349.2011.593410
https://researchportal.bath.ac.uk/en/publications/73aebadf-3b13-4668-bbce-38f6a552c296


Stochastic asymmetry properties of 3D 

Gauss-Lagrange ocean waves with directional 

spreading 

Georg Lindgren 

Mathematical Statistics, Lund University, Sweden 

Finn Lindgren 

Department of Mathematical Sciences, NTNU, Trondheim, Norway 

Abstract 

In the stochastic Lagrange model for ocean waves the vertical and 

horizontal location of surface water particles are modeled as correlated 

Gaussian processes. In this paper we investigate the statistical prop-

erties of wave characteristics related to wave asymmetry in the 3D 

Lagrange model. We present a modification of the original Lagrange 

model that can produce front-back asymmetry both of the space waves, 

i.e. observation of the sea surface at a fixed time, and of the time waves, 

observed at a fixed measuring station. The results, which are based 

on a multivariate form of Rice’s formula for the expected number of 

level crossings, are given in the form of the cumulative distribution 

functions for the slopes observed either by asynchronous sampling in 

space, or at synchronous sampling at upcrossings and downcrossings, 

respectively, of a specified fixed level. The theory is illustrated in a nu-

merical section, showing how the degree of wave asymmetry depends 

on the directional spectral spreading and on the mean wave direction. 

It is seen that the asymmetry is more accentuated for high waves, a 

fact that may be of importance in safety analysis of capsizing risk. 

Keywords: Crossing theory, directional spreading, front-back asymmetry, Gaussian 

process, Palm distribution, Rice formula, slope asymmetry, wave steepness. 
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1 Introduction 

The statistical distribution of ocean wave slopes is an important parameter 

in many types of oceanographic applications, which depend on a reflected 

radar signal. Reliable models for the slope distributions are needed for 

correct calibration of algorithms used in remote sensing of ocean wind and 

wave fields, ocean temperature, and many other variables. The distribution 

is also important for the understanding of physical wave mechanisms and in 

the safety analysis of marine vessels. A special topic in the study of wave 

slope distributions is the question of front-back asymmetry, namely the fact 

that for wind-driven waves, the leeward wave front is in general steeper than 

the wave back. 

The statistical distribution of wave slopes in general, and front-back 

asymmetry in particular, has been the subject of several systematic empirical 

studies, beginning with Cox and Munk [6], [7], reanalyzed by Plant [22]. 

An example of an empirically fitted slope distribution by Cox and Munk, 

together with a theoretical slope distribution in a first-order Lagrange model, 

can be seen in Figure 1. Of special interest for the model developed in this 

paper are the work by Longuet-Higgins [19], Bailey et al. [4], Ebuchi and 

Kizu [8], and Walsh et al. [27]; see also [12, Sect. 6.4.3]. 

Longuet-Higgins discusses several possible mechanisms for the generation 

of front-back asymmetry, and gives supporting evidence for the influence of 

the horizontal wind. Bailey et al. separate young wind-driven asymmet-

ric waves and old waves with less asymmetry. Ebuchi and Kizu fail to 

observe any front-back asymmetry at all in the wind direction, using sun 

glitter images from a meteorological satellite, and attribute this to inho-

mogeneous sea states in the observed areas. Walsh et al. discuss further 

the wind related asymmetries for long and short waves, based on airborne 

radar altimetry measurements. For more on the empirical background and 

a historical overview of measurement campaigns, the reader is referred to 

the cited papers, and also to [9] and [15], 

Most theoretical studies of front-back wave asymmetry are based on 

non-linear interaction models or on non-linear differential equation models, 

and it is difficult to perform a full theoretical analysis of their statistical 

properties. The first-order Lagrange model is a linear model, giving room 

for explicit statistical analysis. At the same time, it is flexible enough to 

reproduce the statistical features, empirically observed in real ocean waves. 

The stochastic Lagrange wave model treated in this paper is a realis-

tic alternative to the Gaussian linear model. Stochastic Lagrange models 

were introduced and studied by Gjøsund [10], Socquet-Juglard et al. [24], 
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Figure 1: Left: Illustration from Cox and Munk [6, Fig. 8] of approximate 

normalized slope density functions in along-wind (lower curves) and cross-

wind (upper curves) direction, estimated from sun glitter over an area, to-

gether with standard normal densities (dashed). Right: Slope densities cal-

culated in the 3D Lagrange model with Pierson-Moskowitz orbital spectrum 

with considerable directional spreading. (For definition of orbital spectrum, 

see Section 2.1.1.) The density has been modified to resemble the Cox and 

Munk figure, with wave front slopes being positive; for details, see Sec-

tions 3.2 and 5.2. 
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and Fouques et al. [9], who showed that Monte Carlo simulated stochastic 

Lagrange models can produce realistic crest-trough asymmetry as well as 

front-back asymmetry, the latter for higher order Lagrange models. The-

oretical studies of their stochastic properties have recently been made by 

Lindgren [14], Aberg [1], Aberg and Lindgren [2], Lindgren and Aberg [17], 

and Lindgren [15, 16]. All these work deal with uni-directional waves ob-

served in time at a fixed location or along a line with a fixed direction in 

space, equivalent to 2D waves with one space parameter together with the 

time parameter. They describe their space and time properties, and it is 

noticeable that the time properties require a more complicated stochastic 

analysis than the space properties. 

Two very recent models also appear to be able to model stochastic asym-

metry in a realistic and practically useful way. The first one is a stochastic 

partial differential equation (SPDE), introduced by Bolin and Lindgren [5], 

see also [18]. The second model is a moving average model driven by a 

generalized Laplace processes; see Podgórski and Wegener [23]. 

In this paper, we generalize the study to 3D Lagrange waves with di-

rectional spreading, observed as space waves at a fixed time, observed over 

an area or along a section of the sea surface, or as time waves, at a fixed 

observation point. We derive the statistical distributions of slopes observed 

with asynchronous area sampling, and observed at up- and downcrossings of 

a fixed level, and illustrate by examples how the properties of the space wave 

slopes vary with the degree of directional spreading in the energy spectrum 

and with the mean wave direction. 

The first-order 3D stochastic Lagrange model is presented in Section 2. 

Sections 3 and 4 contain the definitions of slopes in space and time waves, 

respectively, and give the main results on the exact statistical distribution 

of asynchronous slopes and of slopes at up- and downcrossings. Section 5, fi-

nally, illustrates the theory in some numerical examples, showing how the de-

gree of directional spreading and main wave direction influence the stochastic 

front-back asymmetry of the space waves. 

2 The 3D stochastic Lagrange wave model 

2.1 The Gaussian wave field 

2.1.1 Definition and basic properties 

To define the 3D Lagrange model, we first introduce a Gaussian time-varying 

random field W (t, s) with time parameter t and space parameter s = (u, v). 

In the Gaussian linear wave model, W (t, s) would be the surface elevation 
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relative to the still water level at time t at location s. In the Lagrange 

model, we will use W to denote the height of individual water particles, as 

will be described in Section 2.2. 

The Gaussian process W (t, s) is assumed to have mean zero and to be 

stationary in time and homogeneous in space. This means that it can be 

expressed as a stochastic integral over wavenumber κ = (κx, κy) ∈ R2 , 

or, alternatively, over wave angular frequency ω > 0 and wave direction 

θ ∈ (−π, π]. Wave number and frequency/direction are related via the 

dispersion relation, which also includes water depth h; see [13, Ch. 4]. With 

κ = 
√
κ2 
x + κ2 

y, the dispersion relation is 

ω = ω(κ) = 
√
gκ tanh κh, (1) 

θ = arctan2(κy , κx), (2) 

with the inverse 

κ = κ(ω, θ) = (κx, κy), κx = κ cos θ, κy = κ sin θ. 

Here g denotes the earth gravitation constant. For infinite water depth, 

relation (1) reduces to ω = 
√
gκ. In (2), arctan2 is the four quadrant inverse 

tangent function. 

We denote by τ and σ = (σx, σy) a time difference and a space difference, 

respectively. The covariance function of the field in space-time is then, with 

κσ = κxσx + κyσy, 

r ww(τ, σ) = Cov(W (t, s),W (t + τ, s + σ)) 
∫ ∞ ∫ π 

= cos(κσ − ωτ)S(ω, θ) dω dθ, (3) 
ω=0 θ=−π 

where S(ω, θ), for ω > 0, −π < θ ≤ π, is the directional spectrum of the field. 

In the entire paper, we assume all processes to be ergodic, so the spectrum 

is continuous and all covariances vanish at infinity. Following Fouques et al. 

[9], we call the spectral density S(ω, θ) the orbital spectrum, indicating that 

it refers to the orbital motions of water particles in the Lagrange model; see 

also Remark 4. 

2.1.2 A complex representation 

The real form (3) of the spectral representation of the covariance function 

is the form used in most applications. It turns out, that the definition of 

the Lagrange waves becomes mathematically simpler with a complex for-

mulation. We therefore express the real Gaussian process as a stochastic 
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{ 

∫ 

integral of a complex spectral process, ζ(κ, ω). To achieve this, we extend 

the wave number-frequency space from (κ, ω) ∈ R
2 ×R

+ to R2 ×R by allow-

ing also (κ, ω) ∈ R
2 ×R

−, identifying a wave characterized by a certain set 

(κx, κy;ω, θ) with a wave with characteristics (−κx, −κy;−ω, θ +π mod 2π), 

reflecting (κx, κy, ω) in the origin. 

With S(ω, θ), (ω, θ) ∈ R
+ × (−π, π], the directional frequency spectrum 

of W (t, s), we write 

1 

˜
1 

S(ω, θ) = 2 S(ω, θ), if ω > 0, 

S(−ω, θ + π mod 2π), if ω < 0,2 

for the spectrum on the extended space R × (−π, π]. 
If one reflects (κx, κy, ω) in the origin one can define the spectral repre-

sentation in a symmetric complex form. Writing 

D = 
{
(κ, ω) ∈ R

3;ω = ±
√
gκ tanh κh

} 
, 

for the dispersion surface, one has, with a small abuse of notation, and with 

κs = κxu + κyv, 

W (t, s) = e i(κs−ωt) dζK(κ, ω) 
(κ,ω)∈D 

∫ ∞ ∫ π 

= e i(κs−ωt) dζ(ω, θ). (4) 
ω=−∞ θ=−π 

Here ζK (κ, ω) is a Gaussian complex spectral process with mean 0 such that 

dζK(−κ, −ω) = dζK (κ, ω), 

(z denoting complex conjugate of z), and ζ(ω, θ) the corresponding spectral 

process in the (ω, θ)-plane process with 

dζ(−ω, θ) = dζ(ω, θ + π mod 2π). 

Furthermore, 

) { 
0, if ω = ω ′ or θ = θ ′ , 

E 
(
dζ(ω, θ) dζ(ω′, θ′) = 

6 6
(5) · 

S̃(ω, θ) dω dθ, if ω = ω ′ , θ = θ ′ . 

2.2 The first-order Lagrange wave model 

2.2.1 The free Lagrange model 

The integral (4) defines the waves as a continuous version of a sum of inde-

pendent cosine waves, with different directions and frequencies, and in the 
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Gaussian model it gives the elevation of the free water level relative the still 

water level at location s = (x, y) at time t. The (first-order) stochastic La-

grange model is built in a similar way, but instead of letting W (t, s) be the 

relative height of the free water level at the fixed point (x, y), as in the Gaus-

sian model, we let it describe the height at a varying point (X(t, s), Y (t, s)), 

which performs a random shift around s = (u, v), the reference point. The 

physical interpretation of the model is that W (t, s),X(t, s), Y (t, s) are the 

vertical and horizontal coordinates of an individual water particle on the 

surface. The original horizontal location of the particle is s = (u, v). 

From the linearized hydrodynamic equations, (see Fouques et al. [9]), 

the random shift process, (X(t, s), Y (t, s)), is defined by linear filtrations of 

W (t, s). To this end, introduce the complex transfer function vector (with 

subscript M denoting Miche waves; [20]), 

(
hx(θ, κ)

) 
coshκh 

(
cos θ

) 

HM (θ, κ) = 
hy(θ, κ)

= i 
sinhκh sin θ 

, θ ∈ (−π, π], (6) 

and define, integrating over (ω, θ) ∈ R × (−π, π], 
(
XM (t, s)

) ∫ ∫ 

Σ(t, s) = 
YM (t, s)

= s + 
ω θ 

HM (θ, ‖κ‖) e i(κs−ωt) dζ(ω, θ). (7) 

Remark 1. Expressions for the auto- and cross-covariance functions be-

tween the vertical and horizontal processes are given in Appendix A. In the 

sequel we use upper index in a covariance function to indicate the processes 

to be correlated, e.g. rww is the auto-covariance function for W , and we 

use lower index to indicate that the covariance function is between deriva-

tive processes. For example, rwx is the cross-covariance function between tu 
wy ∂W/∂t and ∂X/∂u, and rt(uv) is the covariance function between ∂W/∂t 

and ∂2Y/∂u∂v. 

2.2.2 The linked Lagrange model 

The free Lagrange model (7) will generate front-back statistically symmet-

ric waves. To obtain realistic asymmetries it is necessary to introduce a 

more general transfer function than the purely imaginary Miche function 

HM (θ, κ) in Eqn. (6), and consider a transfer function, 

iψx(θ,κ)
(
hx(θ, κ)

) (
ρx(θ, κ) e

) 

H(θ, κ) = = . (8) 
hy(θ, κ) ρy(θ, κ) e

iψy (θ,κ) 
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The general expression for the horizontal displacement will then be 

(
X(t, s)

) 

Σ(t, s) = 
Y (t, s) 

∫ ∫ (
ei(κxu+κyv−ωt+ψx(θ,κ))ρx(θ, κ)

) 

= s + 
ω θ ei(κxu+κyv−ωt+ψy (θ,κ))ρy(θ, κ)

dζ(ω, θ). 

It is seen that the free model introduces a constant phase shift of ψx = ψy = 

π/2 = 90o between the vertical and horizontal processes, while the linked 

model requires a more general and frequency dependent phase shift. 

In the examples we will use a complex transfer function that, besides the 

imaginary component HM (θ, κ), contains a real term, whose form remains to 

be determined. Working with the 2D model, Lindgren and Aberg [17] argued 

for a wind-driven dependence between the vertical field and the horizontal 

acceleration of the form 

∂2 ∂2 

∂t2 
X(t, s) = 

∂t2 
XM (t, s) − αW (t, s), (9) 

where the linkage parameter α determines the degree of front-back asym-

metry. The motivation for the relation was that it represents the effect of a 

wind blowing in the x-direction, θ = 0. The corresponding transfer function 

is HM (κ) + α/ω2 . Figure 2 gives an illustration of how the elliptic parti-

cle orbits are tilted by the frequency dependent phase shift. In the figure, 

α = 0.3 and the water depth h = 32m. 

X(t,0) (m) 

Figure 2: Frequency dependent Figure 3: Forces, in model (10), 

particle orbits in model (9) with from wind blowing in the x-

α = 0.3, h = 32m, and waves with direction, on waves with different 

frequencies, ω = 0.58 (most eccen- orientations; see Remark 2. 

tric), 0.75, 1, 2 (least eccentric). 

−1.5 −1 −0.5 0 0.5 1 1.5 

−1.5 
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−0.5 
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0.5 

1 

1.5 

W
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6 6

For the 3D case, we have chosen to keep the term α/ω2 but modify 

it according to wave direction θ. The following choice will be used in the 

examples in Section 5: 

α 
( 

cos2(θ) cos(θ)
) 

coshκh 
(
cos θ

) 

H(θ, κ) = 
| | 

+ i . (10) 
ω2 

· 
cos2(θ) sin(θ) sign(cos θ) sinhκh 

· 
sin θ 

Remark 2. This specific direction dependence is chosen so it should re-

semble the effect of a constant wind blowing in the x-direction, θ = 0. As 

it turns out, the final results concerning the front-back asymmetry are not 

very sensitive to the exact form of the real part of the transfer function, as 

long as it treats the four quadrants in a logical way. Figure 3 illustrates how 

the wind in the x-direction affects wave fronts moving out from the origin 

in different directions. The horizontal component of the force vector (thick 

arrows) always point in the positive x-direction, while the vertical compo-

nent point in the positive or negative y-direction, in agreement with the sign 

given in the real part of (10). The cos2 θ factor is the total force vector (thin 

arrows). 

Since the exact mechanism in the wind-wave interaction is very compli-

cated, and no unique model seems to be established in the literature, we have 

chosen to illustrate the theory on the model (10), even if it is chosen a bit 

ad hoc. 

It should be noted, however, that the model (10) is not of full rank, but 

will produce linearly dependent space derivatives: ∂X/∂u = ∂Y/∂v. This 

will not affect the slope distributions, studied in this paper. 

2.2.3 Space and time waves and their derivatives 

Definition 1. The first-order 3D Lagrange model for ocean waves is the 

tri-variate Gaussian process (Σ(t, s),W (t, s)), t ∈ R, s ∈ R
2 . The time 

dependent Lagrange wave field can be implicitly expressed as 

L(t, Σ(t, s)) = W (t, s). (11) 

Remark 3. A complication in the model is that folding may occur, leading 

to multiple values of L in some areas, i.e. it can happen that Σ(t0, s1) = 

Σ(t0, s2) with s1 = s2, and W (t0, s1) = W (t0, s2). However, for realistic 

parameter values and water depth, the probability of folding is negligible. The 

relation (11) defines the Lagrange field locally as a smooth differentiable time 

variable surface. 

By keeping either time or space coordinates fixed, t = t0, and (x, y) = 

(x0, y0), respectively, we obtain the two types of wave observations, recorded 

in empirical studies. 
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The space wave field is defined implicitly by the relation (11) for fixed 

t = t0, or explicitly, if there is only one s = Σ−1(t0, (x, y)) satisfying 

Σ(t0, s) = (x, y), by 

L(t0, (x, y)) = W (t0, Σ
−1(t0, (x, y))). 

The time wave L(t, (x0, y0)) at a fixed location (x0, y0), is defined as the 

parametric curve 

t 7→ W (t, Σ−1(t, (x0, y0))), 

provided Σ−1(t, (x0, y0)) = {s;Σ(t, s) = (x0, y0)} is uniquely defined 

at time t. Then, there is only one water particle located at position 

(x0, y0) at time t. Otherwise, the Lagrangian time wave takes multiple 

values. 

Remark 4 (A remark about orbital and other spectra). When the first-

order Lagrange model is used to describe real ocean waves, it is the spectral 

density, Ψ1, say, of L(t, x, y) that shall be compared to the spectral density 

estimated from wave observations. 

The orbital spectrum S(ω, θ) is defined by (3) as the Fourier transform 

of the covariance function of the vertical process W , and it satisfies (5). 

Fouques et al. [9] present an expression for Ψ1, and they state that S(ω, θ) 

can be used as a good approximation for small values of the wave steepness. 

However, due to the non-uniqueness of the inverse space transformation, the 

precise meaning of their definition is not quite clear. 

Figure 4 shows examples of asymmetric 2D Lagrange space and time 

waves on extremely shallow water (to clearly show the asymmetry), and 

with α = 0.4 in the linked model (10). The orbital spectrum is the uni-

directional Pierson-Moskowitz (PM) spectrum described in Section 5. 

The wave slopes in the two models can be expressed in terms of the 

partial derivatives, found by direct differentiation of (11): 

(
Wu 

) (
Xu Yu 

)(
Lx 

) 

= , (12) 
Wv Xv Yv Ly 

Wt = Lt + 
(
Xt Yt 

)(Lx 

) 

, (13) 
Ly 

where Lt, Lx, Ly denote the local derivatives, on the branch determined by 

the reference coordinates. When the inverse exists, we obtain the explicit 
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Figure 4: Exaggerated examples of asymmetric Lagrange space and time 

waves with Pierson-Moskowitz orbital spectrum; horizontal axis units are 

(m) and (s), respectively. 

relations, 

(
Lx 

) (
Xu Yu 

)−1 (
Wu 

) 

= , (14) 
Ly Xv Yv Wv 

Lt = Wt −
(
Wu Wv 

)(Xu Xv 

)−1 (
Xt 

) 

. (15) 
Yu Yv Yt 

3 Slope distribution for 3D space waves 

3.1 Definition of space wave and its slope 

The Lagrange space wave is what is seen in a photo or radar image of the 

sea surface, like in the study by Cox and Munk [6], and in many subsequent 

studies. The statistical distribution of space wave characteristics, such as 

crest height, wave length, etc, are to be interpreted in a frequentistic way as 

what one can empirically observe from observations of an infinitely extended, 

statistically homogeneous, section of the ocean. Then, one has to define 

precisely how the observations are to be made – either by asynchronous 

sampling of the surface at a fixed grid in space, or by synchronous sampling 

at locations defined by some specified type of random event defined by the 

process to be measured, in our case, the presence of a level crossing. 

We consider space waves observed at time t0 = 0, and to simplify nota-

tion, we leave out the time parameter in the following analysis. 

From (14), we obtain the derivative at location (x, y) expressed in terms 
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of the partial derivatives at the reference point s = Σ−1(x, y), e.g. 

Yv (s)Wu(s)−Yu(s)Wv (s)(
Lx(x, y)

)  

Yv (s)Xu(s)−Yu(s)Xv (s) 

 

= L ′ (x, y) =  
(s)−Xu (s) 

 , (16) 
Ly(x, y) Xv (s)Wu (s)Wv 

Yv (s)Xu(s)−Yu(s)Xv (s) 

valid at each point on the space surface. 

It will be convenient to introduce a notation L̃(t, s) = L(t, Σ(t, s)) = 

W (t, s), and to distinguish between L(t, (x, y)) and L̃(t, s). With this nota-

tion 

L̃′ (s) = 

(
L

L

˜
˜
x

y(

(

s

s

)

)
) 

is the right hand side of (16), and it gives a unique definition of the space 

slope for each solution. 

For a fixed pair s = (u, v), the slopes in (16) are just the ratios between 

quadratic forms in a six-variate normal distribution, and the distribution 

can be found by integrating the multivariate density. However, we seek the 

conditional slope distribution of the space wave, conditioned on the event 

(X(s), Y (s)) = (x0, y0), in the asynchronous case, and on the event that 

(x, y) is a crossing point in a specified direction, in the synchronous case. 

We will now separate the analysis and deal first with asynchronous sam-

pling, where (x, y) = (x0, y0) is a fixed coordinate point, and then with 

synchronous sampling, where the point (x, y) is selected by the occurrence 

of a crossing of a fixed level. 

3.2 Slope distributions with asynchronous sampling in space 

The asynchronous slope distribution of the space wave in the x- and y-

directions at the fixed point (x0, y0) is the conditional distribution of the 

right hand side in (16) under the condition that (X(s), Y (s)) = (x0, y0). 

Now, there may be more than one solution and the condition has to be 

interpreted as an average over the possible solutions. For practical purposes, 

this is of minor importance, in cases when multiple solutions are rare. We 

use the technique used in [2] for the height distribution in the 2D Lagrange 

model. 

The condition Σ(s) = (X(s), Y (s)) = (x0, y0) is a multiple crossing 

event, i.e. the level curves for the X- and Y -fields intersect each other. Such 

multiple crossing events can be analyzed by means of a generalized Rice 

formula for the number of marked crossings in multi-dimensional processes 

and fields. We will specifically use the results in [3, Thm. 6.4] on the expected 

number of marked roots of random equations. 
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In this context, the roots are the reference points with Σ(s) = (x0, y0), 

and the marks are the slopes L̃′ (s) = L ′ (x0, y0) defined by (16). By station-

arity, we can take (x0, y0) = (0, 0), and define the number of unmarked and 

marked roots. Take the set A = (−∞, ℓx]× (−∞, ℓy] ⊂ R
2, and define 

N0 = #
{
s ∈ R

2;Σ(s) = (0, 0)
} 
, 

2N0(A) = #
{
s ∈ R ;Σ(s) = (0, 0), L ′ (s) ∈ B

} 
, 

with subscript 0 standing for “asynchronous sampling at (0, 0)”. 

Then E(N0(A))/E(N0) is an approximation1 to the bivariate distribution 

function of the asynchronous slopes at the origin, P(Lx ≤ ℓx, Ly ≤ ℓy). 

To formulate the results, define the indicator function 

I(L̃′ (s) ∈ A) = I 
{
L̃x(s) ≤ ℓx, L̃y(s) ≤ ℓy 

} 
, (17) 

equal to one if the event occurs, and zero otherwise. 

In the same way as the standard Rice formula includes the process deriva-

tive to take care of the “slope-biased sampling” at crossings, we have to 

introduce the derivative matrix, 

(
Xu(s) Yu(s)

) 

Σ ′ (s) = ,
Xv (s) Yv(s) 

and its determinant, detΣ ′ (s), to compensate for “area-bias”. We formulate 

the theorem for (x0, y0) = (0, 0), without loss of generality, and denote 

by pΣ(s)(0, 0) the bivariate normal density of (X(s), Y (s)). The following 

theorem is a direct consequence of [3, Thm. 6.4]. 

Theorem 1. (a) The expected number of solutions to Σ(s) = (0, 0) is given 

by 

E(N0) = 

∫∫ 

E 
(
|detΣ ′ (s)| | Σ(s) = (0, 0)

) 
pΣ(s)(0, 0, ) ds. (18) 

R2 

(b) The expected number of solutions to Σ(s) = (0, 0) that satisfy L̃x(s) ≤ 
ℓx, L̃y(s) ≤ ℓy, is given by 

E(N0(A)) = 

∫∫ 

E 
(
|detΣ ′ (s)| I(L̃′ (s) ∈ A) | Σ(s) = (0, 0)

) 
pΣ(s)(0, 0) ds. 

R2 

(19) 

1If only one root is possible, then the expression is exact. Otherwise, it is a weighted 

average of the distributions, taken over the reference points. 
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(c) The ratio E(N0(A))/E(N0) gives the observable distribution of slopes ob-

served by asynchronous sampling over a large statistically homogeneous area. 

It is also equal to the observable slope distribution observed by asynchronous 

sampling in time at a fixed point. 

The expectations (18) and (19) are best found by Monte Carlo simulation 

of the six-dimensional Gaussian variable 

R = R(s) = 
(
Wu(s),Wv (s),Xu(s),Xv (s), Yu(s), Yv (s)

)
, 

given that (X(s), Y (s)) = (0, 0), followed by numerical integration over s. In 

Section 5 we will present some examples of asynchronous slope distributions. 

3.3 Space slope distribution at crossing points 

For safety analysis of marine operations, the combined effect of wave height 

and wave slope may be more important than merely the slope distribution. 

In order to investigate how the asymmetry properties of the 3D Lagrange 

model depend on the wave height we derive the distribution when the slope 

is observed by synchronous sampling at the instances where L(x, y) has a 

crossing of a fixed level w0, and in particular treat up- and downcrossings 

separately. Then, we also have to specify a direction along which the cross-

ings are identified. Therefore, fix an axis (the x-axis), denote its direction 

θ = 0, and define all directions relative to this direction. 

We consider now crossings of the level w0 by the process L(x, 0), x ∈ R. 

This means that we have to identify all reference points where Y (s) = 0 

and W (s) = w0, i.e. where two level curves in a bivariate Gaussian field 

intersect each other. In this context, the interesting roots are the reference 

points with 

Z(s) := (W (s), Y (s)) = (w0, 0). (20) 

Each root corresponds to exactly one crossing of the level w0 by the space 

wave along the x-axis, and we define the mark attached to a root as the ratio 

(16) at that crossing. The ratio between the expected number of marked 

and unmarked roots will give the observable distribution of the marks over 

all crossings. 

We use a similar indicator function (17), as in the asynchronous case, 

but to take care of up- and downcrossings, separately, we modify it slightly, 

and define, for ℓx, ℓy > 0, 

B+ = (0, ℓx]× (−∞, ℓy], 

B− = [−ℓx, 0)× (−∞, ℓy]. 
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∫ 

∫ 

The number of marked and unmarked up- and downcrossings of the level 

w0 with reference point in a strip [0, S] ×R of finite width S, are denoted 

NS 
± = #

{ 
s ∈ [0, S]× R;Z(s) = (w0, 0), L̃x(s) ≷ 0

} 
, 

N±(B) = #
{ 
s ∈ [0, S]× R;Z(s) = (w0, 0), L̃

′ (s) ∈ B±
} 
,S 

with NS = NS 
+ + NS 

−, the total number of crossings. The “slope-biased 

sampling” at crossings is compensated by the derivative matrix 

(
Wu(s) Yu(s)

) 

Z ′ (s) = ,
Wv(s) Yv(s) 

and its determinant, detZ ′ (s). For a fixed pair s = (u, v), the slope (16) 

is just the ratio between two quadratic forms in a six-variate normal dis-

tribution, and its distribution can be found by integrating the multivariate 

density. However, we shall use the expression to find the conditional slope 

distribution of the space wave along the x-axis, which corresponds to con-

ditioning on reference points s ∈ V0. 

Theorem 2. (a) The expected number of space wave up- and downcrossings 

of the level w0, with reference point in a strip [0, S] × R of width S, is 

E(N±) = S E(N1) = S E( detZ ′ (0, v) I(L̃x(0, v) ≷ 0) S 
v∈R 

| |
∣∣ Z(0, v) = (w0, 0)) pZ(0,v)(w0, 0) dv, (21) 

where pZ(s)(w, 0) is the bivariate normal density function of Z(s) at (w, 0). 

(b) The expected number of up- and downcrossings of the level w0 in the 

x-direction with reference points in [0, S] × R, and with slopes 

|Lx(x, 0)| ≤ ℓx, Ly(x, 0) ≤ ℓy, 

is given by 

E(NS 
±(B)) = S E(N±(B)) = S 

v∈R 
E(|detZ ′ (0, v)| I(L̃′ (s) ∈ BS 

±)1 

∣∣ Z(0, v) = (w0, 0)) pZ(0,v)(w0, 0) dv. 

(22) 

(c) The ratio E(N1(B
±)/E(N1 

±) gives the long run (Palm) distribution of 

slopes at w0-crossings by the space waves in the 3D Lagrange model. It is 

the limit, as S → ∞, of the empirical distribution ratio NS (B
±)/NS 

± . 
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Proof: Formula (22) is Theorem 6.4 in [3], with (21) as special case. (Note, 

that the fields are homogeneous, so the expectations are proportional to the 

strip width.) Part (c) is the limiting result for ergodic processes. � 

The conditional expectations in (21) and (22) are most easily found by 

Monte Carlo simulation of the conditional six-dimensional Gaussian variable 

R = R(s) = 
(
Wu(s),Wv (s),Xu(s),Xv (s), Yu(s), Yv (s)

)
, 

given that Z(s) = (w0, 0), followed by numerical integration over v. 

4 Slope distribution for time waves 

4.1 The time wave and its geometry 

4.1.1 The time wave 

The Lagrange time wave, in a restricted sense, is the measured water height 

variation at a fixed point (x0, y0) in space as a function of time. With a 

more general view, one can also include the time variations of the geometric 

properties of the surface around the measuring point, in the time wave. 

Examples of such geometric properties are the gradient size and direction, 

and the wave front velocity and direction. In this section, we concentrate 

on the conditional properties of the surface observed at time instances when 

the water level at the measuring station crosses a fixed level. 

To fix notation, we assume (x0, y0) = (0, 0), and denote by 

s0(t) = Σ−1(t, (0, 0)) 

the set of solutions to the equation Σ(t, s) = (0, 0). For a fixed level w0, 

a crossing by the time wave t 7→ L(t) := W (t, s0(t)) occurs any time t for 

which there exists at least one reference point s where, simultaneously, 

W (t, s) = w0, and Σ(t, s) = (0, 0). (23) 

Such triple crossings can be handled by [3, Thm. 6.4], on the expected 

number of joint crossings and the expected number of marked crossings. The 

mark can be any characteristic of the surface around the crossing. For future 

use we denote by (tk, sk), k = 1, 2, . . ., the times and reference coordinates 

for the solutions (23) with tk > 0. 

Conditioned on a level crossing by the time wave, i.e. the occurrence of 

the event (23), one can be interested in the distribution of many different 

wave characteristics of practical importance. They can all be handled by 

the quoted theorem. In this paper we shall deal with time derivatives at 
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the times of crossings and of the surface gradients at these crossings. The 

physical interpretation of these quantities are the speed of increase and the 

steepness/direction of the wave front that hits the measuring station at the 

crossing. 

4.1.2 Time derivative 

The time wave, measured at location (0, 0), is equal to W (t, s0(t)), where 

(
X(t, s0(t)) 

) (
0
) 

= ,
Y (t, s0(t)) 0 

whether or not there is one or many solution. Equations (12-13) give the 

time derivative at a crossing as 

Xv
Lt(t) = Wt −

(
Wu Wv 

)(X
Yu

u 

Yv 

)−1 (
X

Yt

t 

) 

. 

If the inverse exists, the right hand expression is uniquely defined, and it 

gives the time wave derivative at each of the corresponding wave levels at 

(0, 0). As mentioned, for not so extreme cases, the probability of more than 

one solution is very low. 

If the inverse in (15) does not exist, and 

(
Xu Xv 

) 

det = 0, 
Yu Yv 

then the measure point (0, 0) lies on a folding line, and the derivative can 

be left undefined. 

4.2 Conditional distributions at time wave crossings 

The conditional distributions of time slopes and space gradients in time 

waves can be formulated in an analogous way as the space wave quanti-

ties. With (tk, sk) equal to the times and reference coordinates for the 

occurred time wave crossings, define NT = # {tk ∈ [0, T ]} , as the number 

of unmarked time wave crossings, counted with multiplicity. 

Time slopes and space gradients are examples of marks that are attached 

to the time wave crossings, and they are all defined in terms of the basic 

Lagrange processes 

Z(t, s) = 
(
W (t, s),X(t, s), Y (t, s)

)
, 
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(extending the notation (20) from Section 3.3), and the derivatives 


Wt Xt Yt 

 

Z ′ (t, s) = 

Wu Yu . (24)  Xu 



Wv Xv Yv 

For any event A, defined for Z ′ (t, s), write 

NT (A) = #
{
tk ∈ [0, T ];Z ′ (tk, sk) ∈ A

} 
, 

the number of A-marked crossings. Obviously, by choosing an appropriate 

A-event, one can get any relative number of marked time wave crossings. 

We can then formulate the following theorem on the expected number of 

marked and unmarked time wave crossings; the proof is just a reference to 

[3, Thm. 6.4]. 

Theorem 3. (a) The expected number of 3D Lagrange time wave crossings 

of the level w0 in the time interval [0, T ], is 

E(NT ) = T E(N1) 

= T 

∫ 

s∈R2 

E(|detZ ′ (0, s)|
∣∣ Z(0, s) = (w0, 0)) pZ(0,0,v)(w0, 0) ds, 

where pZ(t,s)(w, 0) is the tri-variate normal density function of Z(t, s) at 

(w, 0). 

(b) The expected number of marked crossings of the level w0 in the time 

interval [0, T ], at which Z ′ (tk, sk) ∈ A, is, with I(A) the indicator function 

for the event Z ′ (0, s) ∈ A, 

E(NT (A)) = T E(N1(A)) 

= T 

∫ 

E 
(
|detZ ′ (0, s)| I(A) 

∣∣ Z(0, s) = (w0, 0)
) 
pZ(0,s)(w0, 0) ds. 

s∈R2 

(c) The ratio E(N1(A)) gives the long run (Palm) distribution of Z ′ (tk, sk)E(N1 ) 

observed at the w0-crossings by the time wave in the 3D Lagrange model. It 

is the limit, as T → ∞, of the empirical distribution ratio NT (A) .NT 

Examples 

The purpose of this example is to show how the degree and direction of 

the spreading affects the front-back asymmetry of the Lagrange space waves 

with different degree of linkage in model (10). To clearly see the effects, we 

have chosen a moderate water depth, h = 32m. 
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5.1 The model setup 

5.1.1 The orbital spectrum 

We will illustrate the theory on a model with Pierson-Moskowitz (PM) or-

bital frequency spectrum, i.e. the spectrum of the W -field, with un-directional, 

one-sided spectral density 

S(ω) = 
5Hs 

2 

e −
5

4 
(ω/ωp)−4 

, 0 ≤ ω ≤ ωc,
ωp(ω/ωp)5 

where Hs = 4
√

V(W (t, u)) is the significant wave height in the W -process, 

and ωp is the peak frequency, at which the spectral density has its maximum. 

The peak period is defined as Tp = 2π/ωp. We use fixed values, Hs = 7m 

and Tp = 11 s, for significant wave height and peak period, and assume a 

finite cut off frequency ωc to obtain finite spectral moments and avoid small 

but high frequency wave components. 

Note that Hs is defined as four times the standard deviation of the W -

process, and that it is not exactly equal to the significant wave height in 

the resulting Lagrange wave process, since the two processes have different 

spectra and slightly different standard deviation; see [2] and Remark 4. 

The average wave steepness is important for the degree of front-back 

asymmetry. For narrow-band spectrum it can be defined as the ratio, Hs/L0, 

between the significant wave height and the peak wave length, L0 = 2π/κp. 

In deep water, the steepness is equal to 2πHs 0.037, with the chosen 
gT p 

2 ≈
Hs and Tp values. We will illustrate the distributions for waves at a finite 

water depth, h = 32m, in which case the dispersion relation, (1), gives 

L0 ≈ 160m and approximate steepness 0.044. Both values are normal for 

high wind waves, cf. e.g., [12, Fig. 6.3] and [25, Fig. 2], even if the Hs-value 

is rather high for the chosen depth. The cut off frequency is ωc = 2.5 rad/s. 

The unidirectional space waves, without spreading, were studied by Lind-

gren and Aberg [17], and the results from that paper will be used for com-

parison. Here, the directional spreading is taken as frequency independent 

and defined by the cos 2θ-function, so 

S(ω, θ) = c(m)S(ω) cos2m 

(
θ − θ0 

) 

, (25) 
2 

with different values for the spreading parameter m. An isotropic wave field 

corresponds to m = 0, while m = resembles unidirectional waves. We ∞
use m = 0, 2, 5, 10, 20, 120, in this example. In the literature, values have 

been used between m = 10 for wind waves and up to m = 75 for old decayed 

swell; cf. [11], [21]. The six directional spectra are seen in Figure 5. 
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Figure 5: Directional Pierson-Moskowitz (PM) spectra for the W (t, s)-

field, S(ω, θ) = c(m)S(ω) cos2m(2θ); m = 0, 2, 5, 10, 20, 120, from top-left 

to bottom-right. 

5.1.2 Summary measures of asymmetry and tail heaviness 

To quantify the slope distributions with respect to up- and downcrossing 

asymmetry we will compute two measures based on quantiles. We consider 

upcrossing slopes and downcrossings slopes separately. 

For asynchronous sampling, we denote, for 0 < q < 1, by µ + 
q and µ − 

q the 

q-quantiles in the subpopulation of positive and negative slopes, respectively. 

For synchronous sampling at up- and downcrossings, we define similarly, 

and µ̃ − 
q as the q-quantiles in the upcrossing and downcrossings slopes, µ+ 

q

q

respectively, for a specified level. 

We define the slope asymmetry measure for asynchronous slopes as 

/µ+λq = −µ − 
q , 

for different values of q; see Figure 6. This measure was introduced with 

q = 0.5, as λST in [16], giving the median. 

As measures of tail heaviness, we will use the ratio between a large 

quantile and the median in the up- and downcrossing distributions; in the 
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asynchronous case, with q > 0.5, 

γ+ = µ +/µ+ γq q 0.5, 
−− 

q = µ q /µ − 
0.5. 

A larger γ-value indicates a heavier tail. To quantify the asymmetry in tail 

behavior, we will use for asynchronous sampling, 

δq = γ− 
q /γq 

+ . 

For synchronous slope sampling at up- and downcrossings we define the 
± , in the obvious way by replacing µ ± 

qcorresponding quantities λ̃q , ̃ , and δ̃qγ q 
± .qby the corresponding quantities µ̃ 

The expectations of marked and unmarked crossings that lie behind the 

observable distributions in the theorems, are all found by Monte Carlo sim-

ulation of the conditional expectations, followed by numerical integration 

over the relevant spaces. Some details of the conditional distributions can 

be found in Appendix A.2. All simulations and computations are made in 

the Matlab toolbox Wafo; see [26]. 
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Figure 7: Asynchronous slope density functions in x- and y-direction. Or-

bital spectrum is PM with water depth h = 32m. Directional spreading 

according to Figure 5 with m = 20. Linkage parameter in model (10) is 

α = 0, 0.8, 2.0, from left to right. 

5.2 Asynchronous sampling 

The bivariate distribution function for slopes in x- and y-direction with 

asynchronous sampling in space is obtained, from Theorem 1, as 

P(Lx ≤ ℓx, Ly ≤ ℓy) = E(N0(A(ℓx, ℓy)))/E(N0), 

A(ℓx, ℓy) = {Lx(0, 0) ≤ ℓx, Ly(0, 0) ≤ ℓy}. 

The expectations are found by Monte Carlo simulation of the conditional 

expectations in (18) and (19) followed by numerical integration over s ∈ R
2 . 

The marginal distributions are obtained from the bivariate distribution by 

taking ℓx or ℓy equal to ∞. The probability densities are obtained by dif-

ferentiation of the cumulative distribution functions, followed by moderate 

smoothing. 

Figures 7 and 8 show densities of asynchronous slopes in x- and y-

direction (“along-wind” and “cross-wind”) for different degrees of linkage 

and spreading in model (10). Figure 7 shows the bivariate density for three 

selected combinations, while Figure 8 shows the marginal densities2 . 

Table 1 contains the asymmetry and tail characteristic measures for 

along-wind slopes for two spreading models and for different degrees of link-

age. The measures for the cross-wind direction are not shown in the table, 

since these distributions are symmetric and very close to normal as also can 

be seen in Figure 8. 

The data in the table reveals some interesting features of the linked 

Lagrange model. The asymmetry between the positive and negative parts 

of the asynchronous slope distribution is only present for the more extreme 

2Note that the densities in the right panel in Figure 1 are turned backwards to be 

compatible with the Cox and Munk figure. 
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Figure 8: Asynchronous slope density functions in x- (left) and y-directions 

(right). Orbital spectrum is PM with water depth h = 32 m. Direc-

tional spreading according to Figure 5 with m = 5, (upper panels) and 

m = 20 (lower panels). Linkage parameters in model (10) are α = 

0, 0.4, 0.8, 1.2, 1.6, 2.0 (most skewed). 

part of the two distributions. For slopes smaller than the median there is 

little asymmetry; this is verified from the complete data. For slopes larger 

in absolute value than the median in the two distributions, the asymmetry 

is large, however, as seen from the rapid increase with increasing linkage in 

the 90% quantile ratio λ0.9. 

For the tail behavior, the ratio γ0
− 
.9 for negative slopes increases from near 

2.44, which is the value for the normal distribution, to 3.27 with increased 

linkage, while the corresponding measure γ0
+ 
.9 for positive slopes decreases. 

The effect of directional spreading is clear from the figure and from 

the table data. In the more concentrated spectrum, with m = 20, all the 

mentioned effects are more pronounced than for m = 5. 

5.3 Slopes at up- and downcrossings 

This example illustrates the synchronous sampling of slopes observed at 

up- and downcrossings of specified levels. The distribution function for 

slopes in the space waves, observed along the positive x-axis, i.e. in the 
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α = 0 0.4 0.8 1.2 1.6 2.0 

m = 5 λ0.5 

λ0.9 

γ+ 
0.9 

γ0
− 
.9 

δ0.9 

1.00 1.01 1.02 1.02 1.02 1.01 

1.00 1.10 1.21 1.33 1.45 1.56 

2.48 2.38 2.29 2.22 2.17 2.13 

2.48 2.60 2.74 2.90 3.09 3.27 

1.00 1.09 1.20 1.30 1.43 1.54 

m = 20 λ0.5 

λ0.9 

γ+ 
0.9 

γ0
− 
.9 

δ0.9 

1.00 1.01 1.02 1.02 1.01 1.00 

1.00 1.13 1.27 1.42 1.57 1.69 

2.49 2.37 2.27 2.19 2.12 2.08 

2.49 2.65 2.84 3.05 3.28 3.50 

1.00 1.12 1.25 1.39 1.54 1.68 

Table 1: Skewness and excess measures in asynchronous sampling for waves 

with different degree of spreading and linkage. 

main wave direction, is computed as in Theorem 2. The expectation ra-

tio E(N1(0, x])/E(N1(0, ∞)) is obtained by Monte Carlo simulation of the 

conditional six-dimensional normal distribution, together with numerical in-

tegration over v in equations (21) and (22). 
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Figure 9: Cumulative distribution functions (CDF) for (absolute) space 

slopes at up- and downcrossings of the level w0 = σ = Hs/4 along the 

main wave direction θ0 = 0. PM-spectra with different degree of spreading, 

from isotropic spectrum with m = 0 to almost unidirectional spectrum with 

m = 120, and unidirectional spectrum. The linkage parameter in model (10) 

is α = 0.4. 

Figure 9 shows the cumulative distribution functions for the (absolute 

values of the) slopes at upcrossings and downcrossings of the level w0 = 

σ = Hs/4 for the six degrees of directional spreading in Figure 5. For com-

parison, the distribution for the unidirectional case is also plotted (dashed 
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curve). Obviously, the wave steepness decreases with increasing directional 

spreading, a fact that agrees with many other theoretical and empirical wave 

studies, as well as with the results for asynchronous sampling. 

Also the front-back asymmetry decreases with increasing spreading, as 

can be expected. As a numerical measure of the asymmetry, we will use 
− + − +λ̃q = −µ̃q /µ̃q , where µ̃q and µ̃q are the q-quantiles in the downcrossing 

and upcrossing distribution functions, respectively, for a chosen level. Here 

we use w0 = Hs/4. Table 2 shows the asymmetry measures, taken from the 

CDF:s in Figure 9. Note, how the asymmetry is more accentuated among 

the 10% steepest waves than among the average waves, with slopes near the 

median slope. 

m 

λ̃0.5 

λ̃0.9 

0 2 5 10 20 120 ∞ 
1.07 1.08 1.10 1.12 1.13 1.16 1.18 

1.14 1.16 1.20 1.23 1.27 1.31 1.35 

− +Table 2: Front-back asymmetry measures λ̃q = −µ̃q /µ̃q , in synchronous 
sampling for PM-spectrum with different degree of spreading. Note that 

the asymmetry is more accentuated for the more extreme slopes. 

As a final example, Figure 10 shows how the asymmetry depends on the 

mean wave direction in relation to the observation axis for the space waves. 

The spectrum is the directional PM-spectrum, (25), with m = 10, and main 

wave direction θ0 = 0, π/4, π/2, 3π/4, π. The linkage parameter in (10) is 

taken as α = 0.4 as in Figure 9, and as α = 2, for a more extreme case. 

As see from the figure, the linkage has almost no effect on the up- or 

downcrossing slopes when the linkage (wind) is parallel to the wave crests, 

θ0 = π/2. The slopes at upcrossings are slightly smaller than at the down-

crossings but the difference is small. Wind against the main wave direction 

gives steeper waves than wind along the wave direction, and the same holds 

for the intermediate cases, θ0 = π/4 and θ0 = 3π/4. 

A Covariance structure 

The stochastic space and time distributions in the 3D Lagrange model de-

pend on the joint normal distribution of W (t, s),X(t, s), Y (t, s) and their 

time and space derivatives, Z ′ (t, s). The expressions for these covariances 

are derived from the transfer function for X(t, s), Y (t, s) from W (t, s), ac-

cording to (8). 
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Figure 10: Mean wave directions influence on the cumulative distributions 

functions for (absolute) space slopes at up- (left) and downcrossings (right) 

along the x-direction of the level w0 = σ = Hs/4. Spreading m = 10, and 

linkage parameter in model (10), upper diagrams: α = 0.4, lower diagrams: 

α = 2.0. 

A.1 Covariances 

For sake of reference, we list the explicit expressions of the covariances in 

terms of the directional spectrum S(θ, ω) and the filter transfer function, 

expressed in terms of θ and ω as, (with κ(ω) = ‖κ(ω)‖), 
(
ρx(θ, κ(ω)) e

iψx (θ,κ(ω)) 
) 

H(θ, ω) = 
ρy(θ, κ(ω)) e

iψy (θ,κ(ω)) 
. 

The notation 

∂rw,x(t, σ)wx rt0 (t, σ) = Cov(Wt(0, 0),X(t, σ)) = ,
∂t 

etc., and κ = (κx, κy), σ = (u, v), is used for the different covariances. Inte-

grations are over 
∫ 
ω
∞ 
=0 

∫ 
θ
π 
=−π, and we list only some selected combinations. 

The remaining combinations are obtained by obvious changes of u and v, or 
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∫∫ 

∫∫ 

∫∫ 

∫∫ 

∫∫ 

∫∫ 

∫∫ 

∫∫ 

∫∫ 

∫∫ 

of X(t, σ) and Y (t, σ). For short, we write 

γ = γ(ω, θ) = κσ − ωt, 

ψk = ψk(ω, θ) = ψk(θ, κ(ω)), for k = x, y, 

ρk = ρk(ω, θ) = ρk(θ, κ(ω)), for k = x, y. 

Covariances of W (t, σ) and its derivatives: 

r ww(t, σ) = cos(γ)S(ω, θ) dω dθ, 

r ww (t, σ) = ww (t, σ) = ω sin(γ)S(ω, θ) dω dθ, t0 −r0t − 

ww ww ru0 (t, σ) = −r0u (t, σ) = κx sin(γ)S(ω) dω dθ, 

r ww (t, σ) = r ww (t, σ) = ωκx cos(γ)S(ω, θ) dω dθ, tu ut − 

ww r (t, σ) = ω2 cos(γ)S(ω, θ) dω dθ, tt 

∫∫ 
ww ww ruv (t, σ) = rvu (t, σ) = κxκy cos(γ)S(ω, θ) dω dθ. 

Covariances of X(t, σ) and its derivatives: 

r xx(t, σ) = cos(γ) ρ2 
x S(ω, θ) dω dθ, 
∫∫ 

xx xx rt0 (t, σ) = −r0t (t, σ) = − ω sin(γ) ρ2 
x S(ω, θ) dω dθ, 

∫∫ 
xx xx ru0 (t, σ) = −r0u (t, σ) = κx sin(γ) ρ

2 
x S(ω, θ) dω dθ, 

xx xx rtv (t, σ) = rvt (t, σ) = − ωκy cos(γ) ρ
2 
x S(ω, θ) dω dθ, 

xx rtt (t, σ) = ω2 cos(γ) ρ2 
x S(ω, θ) dω dθ, 

xx xx ruv (t, σ) = rvu (t, σ) = κxκy cos(γ) ρ
2 
x S(ω, θ) dω dθ. 

Cross-covariances of W (t, σ) and X(t, σ) and their derivatives: 

r wx(t, σ) = cos(γ + ψx) ρx S(ω, θ) dω dθ, 
∫∫ 

wx wx rt0 (t, σ) = 0t (t, σ) = ω sin(γ + ψx) ρx S(ω, θ) dω dθ, −r − 
∫∫ 

wx wx ru0 (t, σ) = −r0u (t, σ) = κx sin(γ + ψx) ρx S(ω, θ) dω dθ, 
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∫∫ 

∫∫ 

∫∫ 

r wx (t, σ) = r wx (t, σ) = ωκy cos(γ + ψx) ρx S(ω, θ) dω dθ, tv vt − 

wx rtt (t, σ) = ω2 cos(γ + ψx) ρx S(ω, θ) dω dθ, 
∫∫ 

wx wx ruv (t, σ) = rvu (t, σ) = κxκy cos(γ + ψx) ρx S(ω, θ) dω dθ. 

Cross-covariances of X(t, σ) and Y (t, σ) and their derivatives: 

∫∫ 

rxy(t, σ) = cos(γ − ψx + ψy) ρx ρy S(ω, θ) dω dθ, 

xy xy 
∫∫ 

rt0 (t, σ) = −r0t (t, σ) = − ω sin(γ − ψx + ψy) ρx ρy S(ω, θ) dω dθ, 

xy xy 
∫∫ 

ru0 (t, σ) = −r0u(t, σ) = κx sin(γ − ψx + ψy) ρx ρy S(ω, θ) dω dθ, 

xy xy 
∫∫ 

rtv (t, σ) = rvt (t, σ) = − ωκy cos(γ − ψx + ψy) ρx ρy S(ω, θ) dω dθ, 

rxy (t, σ) = 

∫∫ 

ω2 cos(γ − ψx + ψy) ρx ρy S(ω, θ) dω dθ, tt 

xy xy ruv (t, σ) = rvu = κxκy cos(γ − ψx + ψy) ρx ρy S(ω, θ) dω dθ. 

A.2 Joint distributions 

The slope distributions in 3D Lagrange waves are expressed in Theorems 1-3 

in terms of weighted integrals of conditional expectations of certain rational 

functions of the vertical and horizontal processes, and their partial space and 

time derivatives. Since the fields are jointly Gaussian, the multi-dimensional 

distribution is Gaussian, with a covariance matrix built by the covariances, 
ww ww wx wx rtt = rtt (0, 0) = V(Wt(0, 0)), rtu = rtu (0, 0) = Cov(Wt(0, 0),Xu(0, 0)), 

etc. The expressions for the slope distributions are therefore mixed condi-

tional averages of rational functions of conditional normal random variables, 

the weights given by a normal density. 

A.2.1 Space wave 

We present the explicit expressions for the space model in Theorem 2; the 

other distributions are simple variations of these expressions. We condition 

on 

Z(s) = (W (s), Y (s))T , 
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) 

( ) 

setting time to t0 = 0, while the rational function includes the derivative 

determinant, (
Wu(s) Yu(s)

) 

detZ ′ (s) = det ,
Wv(s) Yv(s) 

and the slope, defined by (16), 

Lx(s) = 
Yv(s)Wu(s) − Yu(s)Wv (s) 

. 
Yv(s)Xu(s) − Yu(s)Xv (s) 

We separate the eight relevant variables into Z = Z(s) and 

R = 
(
Wu(s),Wv (s),Xu(s),Xv (s), Yu(s), Yv (s)

)
T 
. 

Then, the joint distribution of (ZT , RT)T is Gaussian with mean µ and 

covariance matrix Σ, partitioned as, 
( 

0 
)T

T | T )T µ = v 0 0 1 0 0 1 = (µZ µR , 

ww wy wx wx wy wy  
r r 0 0 r0u r0v r0u r0v 

 

yw yw yx yx yy yy ryw ryy  r0u r0v r0u r0v r0u r0v 


wy ww ww wx wx wy wy 


0 r ruu ruv ruu ruv ruu ruv 
 

wy ww ww wx wx wy wy 
0 r

u0 

ΣZR rvu rvv rvu rvv rvu rvv 

 ( 
ΣZZ 

Σ = 


xw 
v0 


= . xw xw xx xx xy xy 


ΣRR ruu ruv ruu ruv ruu ruv 

 ΣRZ 
 ru0 ru

xy 
0

xw xy xw xw xx xx xy xy 


rvu rvv rvu rvv rvu rvv 


v0 v0 r
yw 

r
yy yw yw yx yx yy yy 


ruu ruv ruu ruv ruu ruv 


u0 u0 r r 
yw yy yw yw yx yx yy yy r r rvu rvv rvu rvv rvu rvv v0 v0 

The conditional distribution of R, given that Z = (w0, 0)
T, is Gaussian 

with mean µR|Z=(w0,0)T and covariance matrix ΣR|Z, given by, 

µR|Z=(w0,0)T = µR + ΣRZ Σ
−1 w0 

= A+ w0 B+ v C, say, (26) 
ZZ −v 

ΣR|Z = ΣRR −ΣRZ Σ
−1 ΣZR. (27) 
ZZ 

Consequently, the slope distribution in Theorem 2 is given in terms of 

weighted averages of a simple function in the six-dimensional normal dis-

tribution with these parameters. 

A.2.2 Asynchronous sampling and crossings in time waves 

For slope distribution with asynchronous sampling we have to use the con-

ditional distribution of 

R(s) = (Wu(s),Wv (s),Xu(s),Xv (s), Yu(s), Yv (s)), 
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given (X(s), Y (s)) = 0, and for crossings in time waves, we have to use 

the conditional distribution of Z ′ (0, s) from (24), conditioned on the event 

(W (0, s),X(0, s), Y (0, s)) = (w0, 0). The solutions have the same structure 

as for the space wave. 
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