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Abstract

We marry ideas from deep neural networks and

approximate Bayesian inference to derive a gen-

eralised class of deep, directed generative mod-

els, endowed with a new algorithm for scalable

inference and learning. Our algorithm introduces

a recognition model to represent an approximate

posterior distribution and uses this for optimisa-

tion of a variational lower bound. We develop

stochastic backpropagation – rules for gradient

backpropagation through stochastic variables –

and derive an algorithm that allows for joint op-

timisation of the parameters of both the genera-

tive and recognition models. We demonstrate on

several real-world data sets that by using stochas-

tic backpropagation and variational inference, we

obtain models that are able to generate realistic

samples of data, allow for accurate imputations

of missing data, and provide a useful tool for

high-dimensional data visualisation.

1. Introduction

There is an immense effort in machine learning and statis-

tics to develop accurate and scalable probabilistic models

of data. Such models are called upon whenever we are

faced with tasks requiring probabilistic reasoning, such as

prediction, missing data imputation and uncertainty esti-

mation; or in simulation-based analyses, common in many

scientific fields such as genetics, robotics and control that

require generating a large number of independent samples

from the model.

Recent efforts to develop generative models have focused

on directed models, since samples are easily obtained by

ancestral sampling from the generative process. Directed

models such as belief networks and similar latent vari-

able models (Dayan et al., 1995; Frey, 1996; Saul et al.,
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1996; Bartholomew & Knott, 1999; Uria et al., 2014; Gre-

gor et al., 2014) can be easily sampled from, but in most

cases, efficient inference algorithms have remained elu-

sive. These efforts, combined with the demand for accurate

probabilistic inferences and fast simulation, lead us to seek

generative models that are i) deep, since hierarchical archi-

tectures allow us to capture complex structure in the data,

ii) allow for fast sampling of fantasy data from the inferred

model, and iii) are computationally tractable and scalable

to high-dimensional data.

We meet these desiderata by introducing a class of deep,

directed generative models with Gaussian latent variables

at each layer. To allow for efficient and tractable inference,

we use introduce an approximate representation of the pos-

terior over the latent variables using a recognition model

that acts as a stochastic encoder of the data. For the gener-

ative model, we derive the objective function for optimisa-

tion using variational principles; for the recognition model,

we specify its structure and regularisation by exploiting re-

cent advances in deep learning. Using this construction, we

can train the entire model by a modified form of gradient

backpropagation that allows for optimisation of the param-

eters of both the generative and recognition models jointly.

We build upon the large body of prior work (in section 6)

and make the following contributions:

• We combine ideas from deep neural networks and

probabilistic latent variable modelling to derive a gen-

eral class of deep, non-linear latent Gaussian models

(section 2).

• We present a new approach for scalable variational in-

ference that allows for joint optimisation of both varia-

tional and model parameters by exploiting the proper-

ties of latent Gaussian distributions and gradient back-

propagation (sections 3 and 4).

• We provide a comprehensive and systematic evalua-

tion of the model demonstrating its applicability to

problems in simulation, visualisation, prediction and

missing data imputation (section 5).
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Figure 1. (a) Graphical model for DLGMs (5). (b) The corre-

sponding computational graph. Black arrows indicate the for-

ward pass of sampling from the recognition and generative mod-

els: Solid lines indicate propagation of deterministic activations,

dotted lines indicate propagation of samples. Red arrows indicate

the backward pass for gradient computation: Solid lines indicate

paths where deterministic backpropagation is used, dashed arrows

indicate stochastic backpropagation.

2. Deep Latent Gaussian Models

Deep latent Gaussian models (DLGMs) are a general class

of deep directed graphical models that consist of Gaussian

latent variables at each layer of a processing hierarchy. The

model consists of L layers of latent variables. To generate a

sample from the model, we begin at the top-most layer (L)

by drawing from a Gaussian distribution. The activation hl

at any lower layer is formed by a non-linear transformation

of the layer above hl+1, perturbed by Gaussian noise. We

descend through the hierarchy and generate observations

v by sampling from the observation likelihood using the

activation of the lowest layer h1. This process is described

graphically in figure 1(a).

This generative process is described as follows:

ξl ∼ N (ξl|0, I), l = 1, . . . , L (1)

hL = GLξL, (2)

hl = Tl(hl+1) +Glξl, l = 1 . . . L− 1 (3)

v ∼ π(v|T0(h1)), (4)

where ξl are mutually independent Gaussian variables.

The transformations Tl represent multi-layer perceptrons

(MLPs) and Gl are matrices. At the visible layer, the data is

generated from any appropriate distribution π(v|·) whose

parameters are specified by a transformation of the first la-

tent layer. Throughout the paper we refer to the set of pa-

rameters in this generative model by θg , i.e. the parameters

of the maps Tl and the matrices Gl. This construction al-

lows us to make use of as many deterministic and stochastic

layers as needed. We adopt a weak Gaussian prior over θg ,

p(θg) = N (θ|0, κI).
The joint probability distribution of this model can be ex-

pressed in two equivalent ways:

p(v,h)=p(v|h1,θ
g)p(hL|θg)p(θg)

L−1
∏

l=1

pl(hl|hl+1,θ
g) (5)

p(v,ξ)= p(v|h1(ξ1...L),θ
g)p(θg)

L
∏

l=1

N (ξ|0, I). (6)

The conditional distributions p(hl|hl+1) are implicitly de-

fined by equation (3) and are Gaussian distributions with

mean µl = Tl(hl+1) and covariance Sl = GlG
⊤
l . Equa-

tion (6) makes explicit that this generative model works by

applying a complex non-linear transformation to a spher-

ical Gaussian distribution p(ξ) =
∏L

l=1
N (ξl|0, I) such

that the transformed distribution tries to match the empiri-

cal distribution. A graphical model corresponding to equa-

tion (5) is shown in figure 1(a).

This specification for deep latent Gaussian models (DL-

GMs) generalises a number of well known models. When

we have only one layer of latent variables and use a linear

mapping T (·), we recover factor analysis (Bartholomew

& Knott, 1999) – more general mappings allow for a

non-linear factor analysis (Lappalainen & Honkela, 2000).

When the mappings are of the form Tl(h) = Alf(h)+bl,

for simple element-wise non-linearities f such as the probit

function or the rectified linearity, we recover the non-linear

Gaussian belief network (Frey & Hinton, 1999). We de-

scribe the relationship to other existing models in section 6.

Given this specification, our key task is to develop a method

for tractable inference. A number of approaches are known

and widely used, and include: mean-field variational EM

(Beal, 2003); the wake-sleep algorithm (Dayan, 2000); and

stochastic variational methods and related control-variate

estimators (Wilson, 1984; Williams, 1992; Hoffman et al.,

2013). We also follow a stochastic variational approach,

but shall develop an alternative to these existing inference

algorithms that overcomes many of their limitations and

that is both scalable and efficient.

3. Stochastic Backpropagation

Gradient descent methods in latent variable models typ-

ically require computations of the form ∇θEqθ [f(ξ)],
where the expectation is taken with respect to a distribution

qθ(·) with parameters θ, and f is a loss function that we as-

sume to be integrable and smooth. This quantity is difficult

to compute directly since i) the expectation is unknown for

most problems, and ii) there is an indirect dependency on

the parameters of q over which the expectation is taken.

We now develop the key identities that are used to allow

for efficient inference by exploiting specific properties of

the problem of computing gradients through random vari-

ables. We refer to this computational strategy as stochastic

backpropagation.
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3.1. Gaussian Backpropagation (GBP)

When the distribution q is a K-dimensional Gaussian

N (ξ|µ,C) the required gradients can be computed using

the Gaussian gradient identities:

∇µi
EN (µ,C) [f(ξ)] = EN (µ,C) [∇ξif(ξ)] , (7)

∇Cij
EN (µ,C) [f(ξ)] =

1
2EN (µ,C)

[

∇2
ξi,ξj

f(ξ)
]

, (8)

which are due to the theorems by Bonnet (1964) and Price

(1958), respectively. These equations are true in expecta-

tion for any integrable and smooth function f(ξ). Equation

(7) is a direct consequence of the location-scale transforma-

tion for the Gaussian (discussed in section 3.2). Equation

(8) can be derived by successive application of the product

rule for integrals; we provide the proofs for these identities

in appendix B.

Equations (7) and (8) are especially interesting since they

allow for unbiased gradient estimates by using a small

number of samples from q. Assume that both the mean

µ and covariance matrix C depend on a parameter vector

θ. We are now able to write a general rule for Gaussian

gradient computation by combining equations (7) and (8)

and using the chain rule:

∇θEN(µ,C)[f(ξ)]=EN(µ,C)

[

g⊤
∂µ

∂θ
+ 1

2Tr

(

H
∂C

∂θ

)]

(9)

where g and H are the gradient and the Hessian of the func-

tion f(ξ), respectively. Equation (9) can be interpreted as

a modified backpropagation rule for Gaussian distributions

that takes into account the gradients through the mean µ

and covariance C. This reduces to the standard backpropa-

gation rule when C is constant. Unfortunately this rule re-

quires knowledge of the Hessian matrix of f(ξ), which has

an algorithmic complexity O(K3). For inference in DL-

GMs, we later introduce an unbiased though higher vari-

ance estimator that requires only quadratic complexity.

3.2. Generalised Backpropagation Rules

We describe two approaches to derive general backpropa-

gation rules for non-Gaussian q-distributions.

Using the product rule for integrals. For many expo-

nential family distributions, it is possible to find a function

B(ξ;θ) to ensure that

∇θEp(ξ|θ)[f(ξ)]== −Ep(ξ|θ)[∇ξ[B(ξ;θ)f(ξ)]].

That is, we express the gradient with respect to the param-

eters of q as an expectation of gradients with respect to the

random variables themselves. This approach can be used

to derive rules for many distributions such as the Gaussian,

inverse Gamma and log-Normal. We discuss this in more

detail in appendix C.

Using suitable co-ordinate transformations.

We can also derive stochastic backpropagation rules for

any distribution that can be written as a smooth, invertible

transformation of a standard base distribution. For exam-

ple, any Gaussian distribution N (µ,C) can be obtained as

a transformation of a spherical Gaussian ǫ ∼ N (0, I), us-

ing the transformation y = µ + Rǫ and C = RR⊤. The

gradient of the expectation with respect to R is then:

∇REN(µ,C) [f(ξ)] = ∇REN (0,I) [f(µ+Rǫ)]

= EN (0,I)

[

ǫg⊤
]

, (10)

where g is the gradient of f evaluated at µ + Rǫ and

provides a lower-cost alternative to Price’s theorem (8).

Such transformations are well known for many distribu-

tions, especially those with a self-similarity property or

location-scale formulation, such as the Gaussian, Student’s

t-distribution, stable distributions, and generalised extreme

value distributions.

Stochastic backpropagation in other contexts. The

Gaussian gradient identities described above do not appear

to be widely used. These identities have been recognised by

Opper & Archambeau (2009) for variational inference in

Gaussian process regression, and following this work, by

Graves (2011) for parameter learning in large neural net-

works. Concurrently with this paper, Kingma & Welling

(2014) present an alternative discussion of stochastic back-

propagation. Our approaches were developed simultane-

ously and provide complementary perspectives on the use

and derivation of stochastic backpropagation rules.

4. Scalable Inference in DLGMs

We use the matrix V to refer to the full data set of size

N ×D with observations vn = [vn1, . . . , vnD]⊤.

4.1. Free Energy Objective

To perform inference in DLGMs we must integrate out the

effect of any latent variables – this requires us to com-

pute the integrated or marginal likelihood. In general, this

will be an intractable integration and instead we optimise a

lower bound on the marginal likelihood. We introduce an

approximate posterior distribution q(·) and apply Jensen’s

inequality following the variational principle (Beal, 2003)

to obtain:

L(V) = − log p(V) = − log

∫

p(V|ξ,θg)p(ξ,θg)dξ

= − log

∫

q(ξ)

q(ξ)
p(V|ξ,θg)p(ξ,θg)dξ (11)

≤F(V)=DKL[q(ξ)‖p(ξ)]−Eq [log p(V|ξ,θg)p(θg)] .

This objective consists of two terms: the first is the KL-

divergence between the variational distribution and the
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prior distribution (which acts a regulariser), and the second

is a reconstruction error.

We specify the approximate posterior as a distribution

q(ξ|v) that is conditioned on the observed data. This distri-

bution can be specified as any directed acyclic graph where

each node of the graph is a Gaussian conditioned, through

linear or non-linear transformations, on its parents. The

joint distribution in this case is non-Gaussian, but stochas-

tic backpropagation can still be applied.

For simplicity, we use a q(ξ|v) that is a Gaussian distribu-

tion that factorises across the L layers (but not necessarily

within a layer):

q(ξ|V,θr) =
N
∏

n=1

L
∏

l=1

N
(

ξn,l|µl(vn),Cl(vn)
)

, (12)

where the mean µl(·) and covariance Cl(·) are generic

maps represented by deep neural networks. Parameters of

the q-distribution are denoted by the vector θr.

For a Gaussian prior and a Gaussian recognition model, the

KL term in (11) can be computed analytically and the free

energy becomes:

DKL[N (µ,C)‖N (0,I)]= 1
2

[

Tr(C)−log |C|+µ⊤µ−D
]

,

F(V) = −
∑

n

Eq [log p(vn|h(ξn))] + 1
2κ‖θ

g‖2

+
1

2

∑

n,l

[

‖µn,l‖2+Tr(Cn,l)−log |Cn,l|−1
]

, (13)

where Tr(C) and |C| indicate the trace and the determinant

of the covariance matrix C, respectively.

The specification of an approximate posterior distribution

that is conditioned on the observed data is the first com-

ponent of an efficient variational inference algorithm. We

shall refer to the distribution q(ξ|v) (12) as a recogni-

tion model, whose design is independent of the generative

model. A recognition model allows us introduce a form

of amortised inference (Gershman & Goodman, 2014) for

variational methods in which we share statistical strength

by allowing for generalisation across the posterior esti-

mates for all latent variables using a model. The impli-

cation of this generalisation ability is: faster convergence

during training; and faster inference at test time since we

only require a single pass through the recognition model,

rather than needing to perform any iterative computations

(such as in a generalised E-step).

To allow for the best possible inference, the specification

of the recognition model must be flexible enough to pro-

vide an accurate approximation of the posterior distribu-

tion – motivating the use of deep neural networks. We

regularise the recognition model by introducing additional
noise, specifically, bit-flip or drop-out noise at the input

layer and small additional Gaussian noise to samples from

the recognition model. We use rectified linear activation

functions as non-linearities for any deterministic layers of

the neural network. We found that such regularisation is

essential and without it the recognition model is unable to

provide accurate inferences for unseen data points.

4.2. Gradients of the Free Energy

To optimise (13), we use Monte Carlo methods for any ex-

pectations and use stochastic gradient descent for optimi-

sation. For optimisation, we require efficient estimators of

the gradients of all terms in equation (13) with respect to

the parameters θg and θr of the generative and the recog-

nition models, respectively.

The gradients with respect to the jth generative parameter

θ
g
j can be computed using:

∇θ
g
j
F(V) = −Eq

[

∇θ
g
j
log p(V|h)

]

+ 1
κ
θ
g
j . (14)

An unbiased estimator of∇θ
g
j
F(V) is obtained by approx-

imating equation (14) with a small number of samples (or

even a single sample) from the recognition model q.

To obtain gradients with respect to the recognition parame-

ters θr, we use the rules for Gaussian backpropagation de-

veloped in section 3. To address the complexity of the Hes-

sian in the general rule (9), we use the co-ordinate transfor-

mation for the Gaussian to write the gradient with respect

to the factor matrix R instead of the covariance C (recall-

ing C = RR⊤) derived in equation (10), where derivatives

are computed for the function f(ξ) = log p(v|h(ξ)).
The gradients of F(v) in equation (13) with respect to the

variational mean µl(v) and the factors Rl(v) are:

∇µl
F(v) = −Eq

[

∇ξ
l

log p(v|h(ξ))
]

+ µl, (15)

∇Rl,i,j
F(v) = − 1

2Eq

[

ǫl,j∇ξl,i log p(v|h(ξ))
]

+ 1
2∇Rl,i,j

[TrCn,l − log |Cn,l|] , (16)

where the gradients∇Rl,i,j
[TrCn,l − log |Cn,l|] are com-

puted by backpropagation. Unbiased estimators of the gra-

dients (15) and (16) are obtained jointly by sampling from

the recognition model ξ ∼ q(ξ|v) (bottom-up pass) and

updating the values of the generative model layers using

equation (3) (top-down pass).

Finally the gradients ∇θr
j
F(v) obtained from equations

(15) and (16) are:

∇θrF(v)=∇µF(v)⊤
∂µ

∂θr +Tr

(

∇RF(v)
∂R

∂θr

)

. (17)

The gradients (14) – (17) are now used to descend the

free-energy surface with respect to both the generative and
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Algorithm 1 Learning in DLGMs

while hasNotConverged() do

V← getMiniBatch()
ξn ∼ q(ξn|vn) (bottom-up pass) eq. (12)

h← h(ξ) (top-down pass) eq. (3)

updateGradients() eqs (14) – (17)

θg,r ← θg,r +∆θg,r

end while

recognition parameters in a single optimisation step. Figure

1(b) shows the flow of computation in DLGMs. Our algo-

rithm proceeds by first performing a forward pass (black

arrows), consisting of a bottom-up (recognition) phase and

a top-down (generation) phase, which updates the hidden

activations of the recognition model and parameters of any

Gaussian distributions, and then a backward pass (red ar-

rows) in which gradients are computed using the appropri-

ate backpropagation rule for deterministic and stochastic

layers. We take a descent step using:

∆θg,r = −Γg,r∇θg,rF(V), (18)

where Γg,r is a diagonal pre-conditioning matrix computed

using the RMSprop heuristic1. The learning procedure is

summarised in algorithm 1.

4.3. Gaussian Covariance Parameterisation

There are a number of approaches for parameterising the

covariance matrix of the recognition model q(ξ). Main-

taining a full covariance matrix C in equation (13) would

entail an algorithmic complexity of O(K3) for training and

sampling per layer, where K is the number of latent vari-

ables per layer.

The simplest approach is to use a diagonal covariance ma-

trix C = diag(d), where d is a K-dimensional vector.

This approach is appealing since it allows for linear-time

computation and sampling, but only allows for axis-aligned

posterior distributions.

We can improve upon the diagonal approximation by pa-

rameterising the covarinace as a rank-1 matrix with a di-

agonal correction. Using a vectors u and d, with D =
diag(d), we parameterise the precision C−1 as:

C−1 = D+ uu⊤. (19)

This representation allows for arbitrary rotations of the

Gaussian distribution along one principal direction with

relatively few additional parameters (Magdon-Ismail &

Purnell, 2010). By application of the matrix inversion

1Described by G. Hinton, ‘RMSprop: Divide the gradient by a
running average of its recent magnitude’, in Neural networks for
machine learning, Coursera lecture 6e, 2012.
lemma (Woodbury identity), we obtain the covariance ma-

trix in terms of d and u as:

C = D−1 − ηD−1uu⊤D−1,

η = 1

u⊤D−1u+1
,

log |C| = log η − log |D|. (20)

This allows both the trace Tr(C) and log |C| needed in the

computation of the Gaussian KL, as well as their gradients,

to be computed in O(K) time per layer.

The factorisation C = RR⊤, with R a matrix of the same

size as C and can be computed directly in terms of d and

u. One solution for R is:

R = D− 1

2 −
[

1−√η
u⊤D−1u

]

D−1uu⊤D− 1

2 . (21)

The product of R with an arbitrary vector can be computed

in O(K) without computing R explicitly. This also allows

us to sample efficiently from this Gaussian, since any Gaus-

sian random variable ξ with mean µ and covariance matrix

C = RR⊤ can be written as ξ = µ + Rǫ, where ǫ is a

standard Gaussian variate.

Since this covariance parametrisation has linear cost in the

number of latent variables, we can also use it to param-

eterise the variational distribution of all layers jointly, in-

stead of the factorised assumption in (12).

4.4. Algorithm Complexity

The computational complexity of producing a sample from

the generative model is O(LK̄2), where K̄ is the average

number of latent variables per layer and L is the number of

layers (counting both deterministic and stochastic layers).

The computational complexity per training sample during

training is also O(LK̄2) – the same as that of matching

auto-encoder.

5. Results

Generative models have a number of applications in sim-

ulation, prediction, data visualisation, missing data impu-

tation and other forms of probabilistic reasoning. We de-

scribe the testing methodology we use and present results

on a number of these tasks.

5.1. Analysing the Approximate Posterior

We use sampling to evaluate the true posterior distribution

for a number of MNIST digits using the binarised data

set from Larochelle & Murray (2011). We visualise the

posterior distribution for a model with two Gaussian latent

variables in figure 2. The true posterior distribution is

shown by the grey regions and was computed by impor-

tance sampling with a large number of particles aligned
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Figure 2. (a, b) Analysis of the true vs. approximate posterior for MNIST. Within each image we show four views of the same posterior,

zooming in on the region centred on the MAP (red) estimate. (c) Comparison of test log likelihoods.

Table 1. Comparison of negative log-probabilities on the test set

for the binarised MNIST data.
Model − ln p(v)

Factor Analysis 106.00
NLGBN (Frey & Hinton, 1999) 95.80
Wake-Sleep (Dayan, 2000) 91.3
DLGM diagonal covariance 87.30
DLGM rank-one covariance 86.60

Results below from Uria et al. (2014)

MoBernoullis K=10 168.95
MoBernoullis K=500 137.64
RBM (500 h, 25 CD steps) approx. 86.34
DBN 2hl approx. 84.55
NADE 1hl (fixed order) 88.86
NADE 1hl (fixed order, RLU, minibatch) 88.33
EoNADE 1hl (2 orderings) 90.69
EoNADE 1hl (128 orderings) 87.71
EoNADE 2hl (2 orderings) 87.96
EoNADE 2hl (128 orderings) 85.10

in a grid between -5 and 5. In figure 2(a) we see that

these posterior distributions are elliptical or spherical in

shape and thus, it is reasonable to assume that they can

be well approximated by a Gaussian. Samples from the

prior (green) are spread widely over the space and very

few samples fall in the region of significant posterior

mass, explaining the inefficiency of estimation methods

that rely on samples from the prior. Samples from the

recognition model (blue) are concentrated on the posterior

mass, indicating that the recognition model has learnt the

correct posterior statistics, which should lead to efficient

learning.

In figure 2(a) we see that samples from the recogni-

tion model are aligned to the axis and do not capture the

posterior correlation. The correlation is captured using

the structured covariance model in figure 2(b). Not all

posteriors are Gaussian in shape, but the recognition places

mass in the best location possible to provide a reasonable

approximation. As a benchmark for comparison, the

performance in terms of test log-likelihood is shown in

figure 2(c), using the same architecture, for factor analysis

(FA), the wake-sleep algorithm, and our approach using

both the diagonal and structured covariance approaches.

For this experiment, the generative model consists of 100

latent variables feeding into a deterministic layer of 300

nodes, which then feeds to the observation likelihood. We

use the same structure for the recognition model.

5.2. Simulation and Prediction

We evaluate the performance of a three layer latent Gaus-

sian model on the MNIST data set. The model consists

of two deterministic layers with 200 hidden units and a

stochastic layer of 200 latent variables. We use mini-

batches of 200 observations and trained the model us-

ing stochastic backpropagation. Samples from this model

are shown in figure 3(a). We also compare the test log-

likelihood to a large number of existing approaches in ta-

ble 1. We used the binarised dataset as in Uria et al. (2014)

and quote the log-likelihoods in the lower part of the table

from this work. These results show that our approach is

competitive with some of the best models currently avail-

able. The generated digits also match the true data well and

visually appear as good as some of the best visualisations

from these competing approaches.

We also analysed the performance of our model on three

high-dimensional real image data sets. The NORB object

recognition data set consists of 24, 300 images that are of

size 96 × 96 pixels. We use a model consisting of 1 deter-

ministic layer of 400 hidden units and one stochastic layer

of 100 latent variables. Samples produced from this model

are shown in figure 4(a). The CIFAR10 natural images data

set consists of 50, 000 RGB images that are of size 32× 32
pixels, which we split into random 8×8 patches. We use the

same model as used for the MNIST experiment and show

samples from the model in figure 4(b). The Frey faces data

set consists of almost 2, 000 images of different facial ex-

pressions of size 28× 20 pixels.

5.3. Data Visualisation

Latent variable models are often used for visualisation of

high-dimensional data sets. We project the MNIST data set

to a 2-dimensional latent space and use this 2D embedding

as a visualisation of the data – an embedding for MNIST

is shown in figure 3(b). The classes separate into different

regions, suggesting that such embeddings can be useful in

understanding the structure of high-dimensional data sets.
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(a) Left: Training data. Middle: Sampled pixel probabilities. Right: Model samples (b) 2D embedding.

Figure 3. Performance on the MNIST dataset. For the visualisation, each colour corresponds to one of the digit classes.

(a) NORB (b) CIFAR (c) Frey

Figure 4. Sampled generated from DLGMs for three data sets: (a) NORB, (b) CIFAR 10, (c) Frey faces. In all images, the left image

shows samples from the training data and the right side shows the generated samples.

Figure 5. Imputation results: Row 1, SVHN. Row 2, Frey faces.

Rows 3–5, MNIST. Col. 1 shows the true data. Col. 2 shows

pixel locations set as missing in grey. The remaining columns

show imputations for 15 iterations.

5.4. Missing Data Imputation and Denoising

We demonstrate the ability of the model to impute missing

data using the street view house numbers (SVHN) data set

(Netzer et al., 2011), which consists of 73, 257 images of

size 32 × 32 pixels, and the Frey faces and MNIST data

sets. The performance of the model is shown in figure 5.

We test the imputation ability under two different miss-

ingness types (Little & Rubin, 1987): Missing-at-Random

(MAR), where we consider 60% and 80% of the pix-

els to be missing randomly, and Not Missing-at-Random

(NMAR), where we consider a square region of the image

to be missing. The model produces very good completions

in both test cases. There is uncertainty in the identity of

the image and this is reflected in the errors in these com-

pletions as the resampling procedure is run (see transitions

from digit 9 to 7, and digit 8 to 6 in figure 5 ). This fur-

ther demonstrates the ability of the model to capture the

diversity of the underlying data. We do not integrate over

the missing values, but use a procedure that simulates a

Markov chain that we show converges to the true marginal

distribution of missing given observed pixels. The imputa-

tion procedure is discussed in appendix F.

6. Discussion

Directed Graphical Models. DLGMs form a unified fam-

ily of models that includes factor analysis (Bartholomew
& Knott, 1999), non-linear factor analysis (Lappalainen &

Honkela, 2000), and non-linear Gaussian belief networks

(Frey & Hinton, 1999). Other related models include sig-

moid belief networks (Saul et al., 1996) and deep auto-

regressive networks (Gregor et al., 2014), which use auto-
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regressive Bernoulli distributions at each layer instead of

Gaussian distributions. The Gaussian process latent vari-

able model and deep Gaussian processes (Lawrence, 2005;

Damianou & Lawrence, 2013) form the non-parametric

analogue of our model and employ Gaussian process priors

over the non-linear functions between each layer. The neu-

ral auto-regressive density estimator (NADE) (Larochelle

& Murray, 2011; Uria et al., 2014) uses function approxi-

mation to model conditional distributions within a directed

acyclic graph. NADE is amongst the most competitive gen-

erative models currently available, but has several limita-

tions, such as the inability to allow for deep representations

and difficulties in extending to locally-connected models

(e.g., through the use of convolutional layers), preventing

it from scaling easily to high-dimensional data.

Alternative latent Gaussian inference. Few of the al-

ternative approaches for inferring latent Gaussian distribu-

tions meet the desiderata for scalable inference we seek.

The Laplace approximation has been concluded to be a

poor approximation in general, in addition to being compu-

tationally expensive. INLA is restricted to models with few

hyperparameters (< 10), whereas our interest is in 100s-

1000s. EP cannot be applied to latent variable models due

to the inability to match moments of the joint distribution of

latent variables and model parameters. Furthermore, no re-

liable methods exist for moment-matching with means and

covariances formed by non-linear transformations – lineari-

sation and importance sampling are two, but are either in-

accurate or very slow. Thus, the the variational approach

we present remains a general-purpose and competitive ap-

proach for inference.

Monte Carlo variance reduction. Control variate meth-

ods are amongst the most general and effective techniques

for variance reduction when Monte Carlo methods are used

(Wilson, 1984). One popular approach is the REINFORCE

algorithm (Williams, 1992), since it is simple to imple-

ment and applicable to both discrete and continuous mod-

els, though control variate methods are becoming increas-

ingly popular for variational inference problems (Hoffman

et al., 2013; Blei et al., 2012; Ranganath et al., 2014; Sal-

imans & Knowles, 2014). Unfortunately, such estimators

have the undesirable property that their variance scales lin-

early with the number of independent random variables in

the target function, while the variance of GBP is bounded

by a constant: for K-dimensional latent variables the vari-

ance of REINFORCE scales as O(K), whereas GBP scales

as O(1) (see appendix D).

An important family of alternative estimators is based

on quadrature and series expansion methods (Honkela &

Valpola, 2004; Lappalainen & Honkela, 2000). These

methods have low-variance at the price of introducing bi-

ases in the estimation. More recently a combination of the

series expansion and control variate approaches has been

proposed by Blei et al. (2012).

A very general alternative is the wake-sleep algorithm

(Dayan et al., 1995). The wake-sleep algorithm can per-

form well, but it fails to optimise a single consistent objec-

tive function and there is thus no guarantee that optimising

it leads to a decrease in the free energy (11).

Relation to denoising auto-encoders. Denoising auto-

encoders (DAE) (Vincent et al., 2010) introduce a random

corruption to the encoder network and attempt to mini-

mize the expected reconstruction error under this corrup-

tion noise with additional regularisation terms. In our vari-

ational approach, the recognition distribution q(ξ|v) can

be interpreted as a stochastic encoder in the DAE setting.

There is then a direct correspondence between the expres-

sion for the free energy (11) and the reconstruction error

and regularization terms used in denoising auto-encoders

(c.f. equation (4) of Bengio et al. (2013)). Thus, we can

see denoising auto-encoders as a realisation of variational

inference in latent variable models.

The key difference is that the form of encoding ‘corrup-

tion’ and regularisation terms used in our model have been

derived directly using the variational principle to provide

a strict bound on the marginal likelihood of a known di-

rected graphical model that allows for easy generation of

samples. DAEs can also be used as generative models by

simulating from a Markov chain (Bengio et al., 2013; Ben-

gio & Thibodeau-Laufer, 2013). But the behaviour of these

Markov chains will be very problem specific, and we lack

consistent tools to evaluate their convergence.

7. Conclusion

We have introduced a general-purpose inference method

for models with continuous latent variables. Our approach

introduces a recognition model, which can be seen as a

stochastic encoding of the data, to allow for efficient and

tractable inference. We derived a lower bound on the

marginal likelihood for the generative model and specified

the structure and regularisation of the recognition model by

exploiting recent advances in deep learning. By developing

modified rules for backpropagation through stochastic lay-

ers, we derived an efficient inference algorithm that allows

for joint optimisation of all parameters. We show on several

real-world data sets that the model generates realistic sam-

ples, provides accurate imputations of missing data and can

be a useful tool for high-dimensional data visualisation.

Appendices can be found with the online version of the paper.
http://arxiv.org/abs/1401.4082
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