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Stochastic Bandwidth Estimation in
Networks with Random Service

Ralf Lübben, Markus Fidler, Jörg Liebeherr

Abstract— Numerous methods for available bandwidth esti-
mation have been developed for wireline networks and their
effectiveness is well-documented. However, most methods fail
to predict bandwidth availability reliably in a wireless setting.
It is accepted that the increased variability of wireless channel
conditions makes bandwidth estimation more difficult, however,
a (satisfactory) explanation why these methods are failing is
missing. This paper seeks to provide insights into the problem
of bandwidth estimation in wireless networks, or, more broadly,
in networks with random service. We express bandwidth avail-
ability in terms of bounding functions with a defined violation
probability. Exploiting properties of a stochastic min-plus linear
system theory, the task of bandwidth estimation is formulated
as inferring an unknown bounding function from measurements
of probing traffic. We present derivations showing that simply
using the expected value of the available bandwidth in networks
with random service leads to a systematic overestimation of the
traffic departures. Furthermore, we show that in a multi-hop
setting with random service at each node, available bandwidth
estimates requires observations over (in principle infinitely) long
time periods. We propose a new estimation method for random
service which is based on iterative constant rate probes that take
advantage of statistical methods. We show how our estimation
method can be realized to achieve both good accuracy and
confidence levels. We evaluate our method for wired single- and
multi-hop networks, as well as for wireless networks.

I. INTRODUCTION

The objective of available bandwidth estimation is to infer
the service offered by a network path from traffic measure-
ments taken at end systems only. In bandwidth estimation
methods, end systems exchange timestamped probe packets,
and study the dispersion of these packets after they have
traversed a network of nodes. In recent years, available
bandwidth estimation has attracted significant interest and a
wide variety of measurement tools and techniques have been
developed, e.g., [16]–[18], [34], [39], [41]. Many of the most
popular methods for available bandwidth estimation are based
on congestion-inducing packet trains, where a packet train
consists of a sequence of probe packets. By sending packet
trains at a rate exceeding the available bandwidth, the network
becomes congested, thereby imprinting information on the
network state on the dispersion of probe packets.

Virtually all available bandwidth methods were developed
for wireline networks, where communication channels consist
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of fixed-capacity links, and where the available bandwidth of
a link is given by its unconsumed capacity. Some of these
methods have been adapted for wireless networks (see Sec. II),
in particular WiFi networks, however, they generally lack the
robustness and reliability achieved in fixed-capacity wireline
environments. A potential source of errors are unsuitable
model assumptions. For example, many methods interpret the
packet dispersion under the assumption that probe traffic flows
through one or more fixed-capacity FIFO links that experience
cross traffic [16], [34], [41]. Even though FIFO queueing may
be highly prevalent in wired network infrastructures today,
FIFO assumptions are difficult to justify in wireless multi-
access networks [5], [6], [38]. Another widely used model
assumption is that networks are work-conserving, i.e., they
generate output whenever traffic is ready for transmission.
However, as pointed out in [23], latencies incurred during
channel access lead to non-work-conserving systems.

In this paper we investigate fundamental difficulties of
measuring the available bandwidth in wireless networks with
congestion-inducing packet trains. Rather than revising or
adapting wireline approaches to wireless channels, e.g., by
trying to eliminate superimposed random ‘noise’, we seek to
develop from the ground up a new modeling and inference
approach for networks that are subject to randomness of
both traffic and transmission channels. We dispense with the
modeling assumption of a work-conserving queueing system,
and, taking advantage of concepts from the stochastic network
calculus [20], replace it with that of a general stationary
system.

The point of departure of our efforts is a recent system-
theoretic approach of bandwidth estimation [28]. Here, the
network is viewed as a time-invariant deterministic sys-
tem where throughput and delays of traffic are governed
by an unknown bounding function, referred to as service
curve. Service curves can express work-conserving as well
as non-work-conserving systems. For example, the func-
tion S(t) = R max{0, t− T } expresses a latency-rate service
curve of a non-work-conserving system with a latency of T
and rate R. It can be argued that existing congestion inducing
probing methods assume that a network is a time-invariant
deterministic system. As a case in point, packet train probing
schemes similar to Pathload [17] and Pathchirp [39] were
shown to be aligned with a system-theoretic interpretation
in that they can reliably extract the shape of convex service
curves of a time-invariant deterministic system. A strength of
the system-theoretic approach is that service curves offer a
natural extension to networks with several bottleneck links,
by exploiting properties of the network calculus [8], [26].
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A limitation of this system-theoretic approach is the as-
sumption that the measured system is time-invariant determin-
istic, meaning that identical packet probes, e.g., sent as packet
pairs or packet trains, sent at two different time instances
experience the same backlog or delay. Even in networks with
random traffic load or random link capacities, this can be an
appropriate model as long as the time scale of measurements is
small compared to the time scale at which resource availability
in the network changes. In such cases, the network can be
viewed as a state-dependent deterministic system, where a
single sample of the available bandwidth can be interpreted as
being conditioned on the current state of the network. Evalu-
ating a large number of samples corresponds to computing
a conditional average of the system state. However, when
network or traffic characteristics change on a short time scale,
a time-invariant and deterministic system characterization is
not suitable.

The main contribution of this paper is the development of a
system-theoretic approach to bandwidth estimation of systems
with random service, which can account for variability due
to statistical properties of network traffic and transmission
channels on short time scales. We develop the foundations for
the approach (in Sec. III) by first expressing random service
in a network by ε-effective service curves from the stochastic
network calculus [7]. Working within the framework of the
network calculus, we show that it is feasible to compute an
ε-effective service curve of a network from packet trains with
fixed inter packet gap in each train [16], [17], [34]. By relating
the service curves of the network calculus to a common
definition of available bandwidth, we can express limitations of
existing probing methods in a stochastic stationary system. For
example, for a single-link network the service curve describing
the unused capacity on a link coincides with the commonly
used definition of available bandwidth. However, in a system
with random service, the expected value of the available
bandwidth provides only an optimistic estimate of the traffic
departures. For multi-link networks we show that the definition
of end-to-end available bandwidth can be recovered only as a
time limit, and that the available bandwidth may overestimate
the usable service over short time scales.

Equipped with a system theory for bandwidth estimation of
stochastic systems, we address the development of a practical
probing scheme (in Sec. IV). For example, a challenge of
using packet train probing in a stochastic system is that packet
trains may push the system into a non-stationary state. In
principle, observing the system in a stationary state requires
packet trains with infinite length. We show that, in practice, it
is possible to detect stationarity with finite packet trains using
stationarity tests and other statistical methods, and dynamically
adapt packet trains to the required length. We also study the
required lengths of packet trains and the required number of
repeated measurements.

Using measurement results from a controlled testbed, we
quantify the effect of variability on the estimated service
and observe the impact of the burstiness of cross traffic,
access delays, and retransmissions on service availability. We
present measurement results for wired single-hop and multi-
hop networks as well as for wireless networks.

An implication of our study is that the widely used as-
sumption of work-conserving fixed-capacity FIFO links with
cross traffic can be replaced by a more general network model
without specific requirements on the multiplexing method.
This may open the field of bandwidth estimation to network
environments where FIFO or work-conserving assumptions are
not justified.

The remainder of this paper is structured as follows. In
Sec. II, we discuss related work on approaches to bandwidth
estimation, with a focus on congestion-inducing methods.
In Sec. III, we derive a stochastic min-plus approach for
estimating networks with random service. In Sec. IV we con-
sider practical aspects of bandwidth estimation of a stochastic
system. In Sec. V, we provide an experimental validation of
our method. Sec. VI gives brief conclusions.

II. AVAILABLE BANDWIDTH ESTIMATION

The term available bandwidth denotes the capacity that is
left unused by other traffic in the network, referred to as cross
traffic. For a link h it can be expressed for any time interval
(τ, t] as [29]

αh(τ, t) =
1

t− τ

∫ t

τ

Ch (1 − uh(x))dx , (1)

where Ch is the (possibly time-varying) capacity of the
link and uh(t) ∈ [0, 1] is its utilization by cross traffic at
time t. For cross traffic with a long-term average rate λh,
the limit lim infδ→∞ αh(τ, τ + δ) = Ch − λh is referred to
as long-term available bandwidth. The end-to-end available
bandwidth of a network path is frequently defined as the
minimum of the available bandwidths of all traversed links
(h = 1, . . . , H) [29], [30]

αnet(τ, t) = min
h

{
αh(τ, t)

}
. (2)

A. Bandwidth Estimation of Work-Conserving Systems
Many bandwidth estimation tools assume a fluid time-

invariant network model with work-conserving FIFO schedul-
ing, where the relation between the incoming rate rI and the
outgoing rate rO of a constant bit rate (CBR) probe at a link,
referred to as rate response curve [29], [35], is given by

rI
rO

=

{
1 , rI ≤ C − λ
rI+λ
C , rI > C − λ .

(3)

Random cross traffic is often interpreted as distorting the traffic
dispersion given by response curves. To eliminate the random
distortions, estimation tools have applied averaging [16], [41],
linear regression [34], and Kalman filtering [11]. For packet
pair probes, the corresponding function describing the disper-
sion of the probes, is called gap response curve [16], [29].
Several works have extended the deterministic CBR traffic
model for the response curve at a FIFO system to stochastic
ones, e.g., [10], [14], [29], [30], [36], [37]. A queueing
theoretic framework for bandwidth estimation is analyzed
in [29], where it is shown that the assumption of fluid CBR
traffic generates an upper bound for the available bandwidth,
and that the deviation can be resolved using packet trains of
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infinite length. The work is extended to multi-hop networks
in [30]. In [10], a distribution for the output gap is derived
for a general arrival process in conjunction with parameter
estimation for known cross traffic distributions. Fundamental
limitations of active probing are analyzed in [33] based on a
queueing model of a FIFO system.

Methods which do not explicitly assume FIFO schedul-
ing, but are compatible with this assumption are, e.g.,
Pathchirp [39] and Pathload [17], [18]. Both methods increase
their probing rate until an increase of one-way delays, or,
equivalently, queueing delays of probe packets is detected.
Pathload specifies the available bandwidth as a range, to
capture its time-varying nature. The underlying deterministic
network model is relaxed to filter out short-term fluctuations
in the detection of long-term trends.

B. Bandwidth Estimation in Wireless Networks
Bandwidth estimation in wireless networks is more difficult

for a variety of reasons. Link capacities in wireless networks
are not constant due to interference and time-varying channel
conditions. Also, wireless networks may not behave like FIFO
systems. For example, a measurement study of IEEE 802.11
networks [6] showed that the multiplexing of the Distributed
Coordination Function (DCF) is similar to a fair queueing
algorithm. Further, inherent delays due to media access, re-
transmissions, and other factors, create a non-work-conserving
system [23], where the transmission channel can be idle even
if traffic is pending. Proposed approaches in the literature
have addressed these issues by adapting or revising bandwidth
estimation methods developed for wireline networks.

Time varying link capacities are addressed in [27]. Instead
of estimating the link capacity by the smallest gap between two
successive probe packets, the median of a sequence of probe
gaps is used. In [22] the authors observe dependencies of the
cross traffic rate and the probe packet size on the capacity
of IEEE 802.11 networks. A passive measurement approach
to estimate the available bandwidth in IEEE 802.11 networks
is presented in [24]. Non-FIFO scheduling is investigated
in [5], [38] where the rate response curve is adapted to the
channel access in IEEE 802.11 networks and to the wireless
channel. Additionally, the transient behavior of access delays
and its impact on the response curve are described in [38].
Kalman filters are adapted to the channel access and to the
wireless channel in IEEE 802.11 networks in [6] and [21],
respectively. Recently, attention has been given to measuring
the service in wireless home networks. In addition to the rate
of the available bandwidth, estimation approaches for home
networks in [9] address access delays as important metrics.
In [23], correlations of access delay measurements are used
to differentiate, among others, traffic congestion and hidden
terminal problems. The study emphasizes the need for non-
work-conserving models, due to the significant role of non-
queueing related delay components.

C. Bandwidth Estimation of Min-Plus Linear Systems
System theory offers an alternative model for bandwidth

estimation methods [1], [15], [28]. A network is represented

as a general system with traffic arrivals A(t) as input, and
traffic departures D(t) as output of the system. A(t) and D(t)
are non-negative and non-decreasing functions that denote
the cumulative number of bits seen in an interval (0, t]. By
convention A(0) = 0 and, due to causality, D(t) ≤ A(t)
for all t ≥ 0. We sometimes use the shorthand notation
A(τ, t) = A(t) − A(τ) to denote the arrivals in the interval
(τ, t]. We use B(t) = A(t) − D(t) to describe the backlog
of the system at time t, and the smallest number d such that
D(t+ d) ≥ A(t) to characterize the delay at time t.

A system is called time-invariant if a time shifted arrival
function A(t− τ) results in a time-shifted departure function
D(t − τ). Consider two arrival functions A1, A2, and their
corresponding departure functions D1, D2 of a system. A
system is called min-plus linear, when arrivals of the form
min{A1(t), A2(t)} + c, where c ≥ 0 is constant, result in
departures min{D1(t), D2(t)} + c. The form of the arrivals
can be viewed as a linear combination in an algebra, where the
minimum replaces the usual addition, and the addition takes
the role of the multiplication. This gives rise to the min-plus
algebra formulation of the network calculus.

The behavior of any time-invariant min-plus linear system
can be characterized by a non-negative and non-decreasing
function S(t), referred to as service curve. The service curve
relates departures and arrivals of a system by

D(t) = inf
τ∈[0,t]

{A(τ) + S(t− τ)} =: A⊗ S(t) , (4)

where the operator ⊗ is the convolution under the min-plus
algebra. In the language of system theory, the service curve is
the impulse response of a min-plus linear system [26]. Service
curves can be used to describe a wide range of systems. A
work-conserving constant rate link is expressed by S(t) = Rt
(R > 0), and a non-work-conserving pure delay server which
imposes a latency d > 0 is given by S(t) = ∞ if t ≥ d and
S(t) = 0 if t < d.

For min-plus linear systems, bandwidth estimation can be
expressed as the inversion problem of obtaining S from
D = A ⊗ S [28], where A and D are arrival and departure
functions of probing traffic. A solution to the inversion prob-
lem can be obtained from constant-rate packet train arrivals
A(t) = rt and measurements of the departure traffic D(t).
Using the maximum system backlog, expressed as Bmax(r) =
supτ{A(τ) −D(τ)}, the service curve can be computed as

S(t) = sup
r≥0

{rt−Bmax(r)} .

An advantage of a system theoretic view is a straightforward
extension to multi-hop settings. Given a network of H systems
in sequence where Sh (h = 1, . . . , H) denotes the service
curve of the h-th system, a service curve Snet for the entire
sequence of H systems is given by the min-plus convolution
Snet = S1 ⊗ . . . ⊗ SH . The equivalent replacement of a
sequence of single-hop systems by a single system with service
curve Snet provides a handle on an analysis of multi-hop
networks.

While Eq. (4) is suitable for expressing the service offered
by constant rate links, traffic regulators, or fair schedulers,
it assumes linearity under the min-plus algebra since the
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convolution is a linear operation. For non-linear systems,
Eq. (4) can be relaxed to provide a linear lower bound of
the form D ≥ A⊗ S [26]. Notable non-linear systems that
are used in many actual networks are FIFO schedulers [13],
where the service obtained by a flow in an overloaded system
depends on its arrival rate, see Eq. (3). In [28], it is argued that
networks can be viewed as linear systems that transition to a
non-linear regime when the network becomes saturated, and
it is shown that the transition can be observed using suitable
non-linearity tests.

The main limitation of the system-theoretic approach to
bandwidth estimation is that the measured system must satisfy
time-invariance, i.e., the service curve in Eq. (4) is a determin-
istic function that does not depend on the absolute values of
τ and t but only on the length of the time interval δ = t− τ .
Dispensing with this assumption requires a system-theoretic
framework where the network service is a random process.

III. INFERENCE OF A RANDOM SERVICE

In this section, we develop the foundation for a stochastic
bandwidth estimation methodology for networks with station-
ary random service. Starting from a system characterization by
random service processes as defined in [8], we link the service
processes to the stochastic network calculus [20] and to the
available bandwidth as given in Eq. (1). In detail, we proceed
as follows: In Sec. III-A, we show that stochastic bounds of
random service processes can be expressed in terms of ε-
effective service curves Sε [7] from the stochastic network
calculus, which enables us to express statistical performance
bounds of the type P[B > x] ≤ ε. We show how to infer
an ε-effective service curve from measurements of probing
traffic in Sec. III-B. In Sec. III-C, we address the relation of
effective service curves to the available bandwidth given by
Eqs. (1) and (2), and explore conditions where the available
bandwidth systematically overestimates the actual departures
of a network. In Sec. III-D, we show that by expressing arrivals
and departures using a max-plus algebra, the inference of
service can be done directly from packet timestamps. This
last step will be used in the next section, where we develop a
practical probing methodology.

A. Systems with Random Service in the Network Calculus

Given a system with random service, the assumption of
time-invariance, on which the definition of the service curve
S(t) in Eq. (4) is based, does not hold. To this end, we
substitute S(t) by a bivariate random process S(τ, t), which
expresses a random service experienced in the time interval
(τ, t]. We refer to S(τ, t) as service process. Similar as in
Eq. (4), the departures of a min-plus linear random system
can be related to its arrivals by the service process as [8]

D(t) = inf
τ∈[0,t]

{A(τ) + S(τ, t)} =: A⊗ S(t) . (5)

In the stochastic network calculus, random service can
be expressed by ε-effective service curves, which express a
non-random time-invariant bound on the service that can be

violated with probability ε. An ε-effective service curve Sε(t)
specifies a service guarantee of the form [7]

P

[
D(t) ≥ inf

τ∈[0,t]
{A(τ) + Sε(t− τ)}

]
> 1− ε . (6)

The following lemma links the definitions in Eqs. (5)
and (6), in that it specifies ε-effective service curves as a
stationary bound of a random service process.

Lemma 1: Given a system with service process S(τ, t) as
in Eq. (5). Any function Sε(t) that satisfies the sample path
bound

P
[
S(τ, t) ≥ Sε(t− τ) , ∀τ] > 1− ε

for t ≥ 0 is an ε-effective service curve in the sense of Eq. (6)
of the system.

The advantage of the ε-effective service curve Sε(t − τ)
compared to the service process S(τ, t) is that it is time-
invariant, i.e., Sε(t − τ) depends on the duration t − τ , but
it does not depend on the location of the time interval (τ, t].
Later, we will relate the service process Eq. (5) to the available
bandwidth definition in Eq. (1).

Proof: Consider a sample path Sω(τ, t) of S(τ, t) and fix
t ≥ 0. If Sω(τ, t) ≥ Sε(t − τ) for all τ ∈ [0, t], it follows
from the monotonicity of the min-plus convolution that

D(t) = A⊗ Sω(t) ≥ A⊗ Sε(t) .

Since, by assumption, the condition Sω(τ, t) ≥ Sε(t−τ) holds
for all τ ∈ [0, t] with probability at least 1 − ε, the claim is
proven.

B. Estimation of Effective Service Curves
We next show how an ε-effective service curve can be

obtained from constant rate packet train probes of the form
A(t) = rt. To this end, we phrase the backlog as a function
of the probing rate, that is, B(r, t) = rt −D(t). The steady
state backlog for t → ∞ is abbreviated by B(r). We define
the quantile of the backlog distribution Bξ(r, t) as

Bξ(r, t) = inf {x ≥ 0 : P [B(r, t) ≤ x] > 1− ξ} , (7)

where ξ denotes a violation probability. With this definition,
Th. 1 provides the foundation for a packet train based estima-
tion method.

Theorem 1: Given a system with service process S(τ, t) as
in Eq. (5). Select a finite set R of rates r ≥ 0. For all t ≥ 0,
the function

Sε(t) = max
r∈R

{rt−Bξ(r)}

is an ε-effective service curve in the sense of Eq. (6) of the
system with violation probability ε =

∑
r∈R ξ.

Proof: From B(t) = A(t) −D(t) and Eq. (5) it follows
that

B(t) = sup
τ∈[0,t]

{A(τ, t)− S(τ, t)} . (8)

The supremum in Eq. (8) implies that B(t) ≥ A(τ, t)−S(τ, t)
for all τ ∈ [0, t], permitting us to write

S(τ, t) ≥ A(τ, t)−B(t) , ∀τ ∈ [0, t] .
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Inserting A(τ, t) = r(t − τ) and using the backlog quantile
yields

P
[
S(τ, t) ≥ r(t − τ)−Bξ(r, t) , ∀τ] > 1− ξ .

Using the complement and applying the union bound for a set
of rates R, it follows that

P

[⋃
r∈R

{
S(τ, t) < r(t− τ) −Bξ(r, t) , ∀τ}

]
≤

∑
r∈R

ξ .

and, hence,

P

[
S(τ, t) ≥ max

r∈R
{r(t− τ) −Bξ(r, t)} , ∀τ

]
> 1−

∑
r∈R

ξ.

With Lem. 1 we obtain that Sε(t− τ) defined as

Sε(t− τ) = max
r∈R

{r(t− τ)−Bξ(r, t)}

for all τ ∈ [0, t] is an ε-effective service curve with violation
probability ε =

∑
r∈R ξ. Letting t → ∞ and inserting the

steady state backlog quantile Bξ(r) completes the proof.
Th. 1 gives rise to a method for service curve estimation for

networks with random service using packet train probes sent
at different rates r. Each packet train provides a sample of
the steady state backlog B(r). Taking many samples provides
an empirical distribution of the steady state backlog from
which the quantile, denoted by B̃ξ(r) and given in Eq. (7), is
obtained. Applying Th. 1, we can compute an estimate of an ε-
effective service curve as S̃ε(t) = maxr∈R{rt− B̃ξ(r)}. The
choice of the probing set R presents a trade-off. The accuracy
of the estimate increases by adding probing rates. At the same
time, adding probing rates increases the violation probability
due to the use of the union bound in Th. 1.

Since our method uses steady state backlogs B(r) to obtain
service curve estimates, the convergence to a steady state
is vital. The following lemma is important as it provides
existence of the steady state backlog distribution as long as the
probing rate does not exceed the limiting rate of the service
process, defined as lim inf t→∞

S(τ,t)
(t−τ) .

Lemma 2: Given arrivals A(τ, t) at a system with service
process S(τ, t), satisfying Eq. (5), where A(τ, t) and S(τ, t)
are jointly stationary in the strong sense1.

1) The backlog B(t) is stochastically increasing in t.
2) If for all t it holds that

lim sup
δ→∞

A(t− δ, t)

δ
< lim inf

δ→∞
S(t− δ, t)

δ

almost surely, the backlog converges in distribution to a
finite random variable B.

Note that we extended the processes A(τ, t) and S(τ, t) from
0 ≤ τ ≤ t < ∞ to −∞ < τ ≤ t < ∞. The lemma generalizes
Lem. 9.1.4 in [8] from a constant rate server to a server with
random service. The proof closely follows [8].

1Stationarity in the strong sense means that P[A(τ, t) ≤ x] = P[A(τ +
ϑ, t+ϑ) ≤ x] and joint stationarity P[A(τ, t) ≤ x, S(τ, t) ≤ y] = P[A(τ+
ϑ, t + ϑ) ≤ x, S(τ + ϑ, t + ϑ) ≤ y] for all τ ≤ t and all ϑ.

Proof: From Eq. (8) it follows for any x and ϑ > 0 that

P[B(t+ ϑ) ≥ x]

= P

[
sup

τ∈[0,t+ϑ]

{A(τ, t+ ϑ)− S(τ, t+ ϑ)} ≥ x

]

≥ P

[
sup

τ∈[0,t]

{A(τ + ϑ, t+ ϑ)− S(τ + ϑ, t+ ϑ)} ≥ x

]
.

From the assumption of joint stationarity A(τ + ϑ, t + ϑ) −
S(τ + ϑ, t + ϑ) is equal in distribution to A(τ, t)-S(τ, t) for
all τ , t, and ϑ > 0. The last line equals P[B(t) ≥ x] so that
we get P[B(t+ϑ) ≥ x] ≥ P[B(t) ≥ x], thus, proving the first
claim.

For the second claim, if the given inequality holds, then
there exists a finite random variable

T = sup{δ ≥ 0 : A(t− δ, t) ≥ S(t− δ, t)} ,
for any t. Consequently, A(t− δ, t) < S(t− δ, t) holds for all
δ > T with probability one. Moreover, since A(t−δ, t) is non-
decreasing in δ ≥ 0 we have A(t− δ, t) < S(t− T − ϑ, t) for
all 0 ≤ δ ≤ T and any ϑ > 0. Combining the two statements
and using that S(t − δ, t) for δ ≥ 0 and S(t − T − ϑ, t) are
non-negative yields

A(t− δ, t)− S(t− δ, t) ≤ S(t− T − ϑ, t)

for all δ ≥ 0. Hence,

sup
δ≥0

{A(t− δ, t)− S(t− δ, t)} ≤ S(t− T − ϑ, t) .

With supδ≥0{A(t − δ, t) − S(t − δ, t)} = B(t) from Eq. (8)
it follows for any x that

sup
t
{P[B(t) ≥ x]} ≤ sup

t
{P[S(t− T − ϑ, t) ≥ x]} .

Since T is finite and B(t) is stochastically increasing there
exists a finite random variable B such that

lim
t→∞P[B(t) ≥ x] = sup

t
{P[B(t) ≥ x]} = P[B ≥ x]

completing the proof of the second claim.
Example: We illustrate our estimation approach and its

achievable accuracy using a computed numerical example. We
consider a discrete-time system consisting of a random non-
work-conserving On-Off server. In each time slot, the server
performs an independent Bernoulli trial, where it forwards
one unit of data with probability p = 0.1. This system is
non-work-conserving, since, even if there is a backlog, the
server remains idle with probability of 1 − p. The system
is probed with constant rate probes that are each sent for a
duration of 1000 time slots. Fig. 1 shows the estimated ε-
effective service curve with ε = 10−3 computed with Th. 1.
As indicated by the thin dash-dotted lines, each probing rate
r contributes a linear segment with slope r displaced by
−Bξ(r) to the service curve estimate. Analytical upper and
lower bounds of the service curve are included in the graph
as a reference. The upper bound is computed as the amount
of data forwarded in t time slots with probability at least
1− ε. By assumption, this can be computed from a binomial
distribution with parameter p. The lower bound is computed
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Fig. 1. Service curves of an On-Off server. The service curve estimate
is composed of linear segments, that are each obtained by a single probing
rate. Analytical lower and upper bounds are included for comparison. The
limiting rate of the service curve estimate converges to the long-term available
bandwidth. Compared to the long-term available bandwidth, the service curve
provides significant details on the time scales of service availability.

from the upper bound by an application of the union bound.
The depicted service curve estimate reflects a fluid flow traffic
model, which is different from the staircase function obtained
from the binomial distribution. Discrete-sized data packets will
be incorporated into our method in Sec. III-D. For comparison,
we show the service curve with a constant rate computed as
the average of Eq. (1). The non-work-conserving aspect of
the system is captured by the initial latency of about 100
time slots, where the estimate of Sε(t) in Fig. 1 evaluates
to zero. While the limiting rate of the service curve estimate,
defined as limt→∞ S̃ε(t)/t, is equal to the long-term available
bandwidth, neglecting the latency inherent to the system, the
long-term available bandwidth overestimates the service in the
system (by violating the upper bound). This illustrates that
the ε-effective service curve is a non-trivial generalization of
the available bandwidth concept, since the service curve can
capture that the available service rate is variable at different
time scales.

C. Connection to Available Bandwidth
In this section, we relate our stochastic system theoretic

approach to the available bandwidth definition from Eq. (1).
We will refer to the traffic in the system as cross traffic, and
denote arrivals and departures by Ac and Dc, respectively.
Probe traffic arrivals and departures are denoted by Ap and
Dp, respectively. We will show that the service process of a
work-conserving system is equivalent to the available band-
width from Eq. (1). At the same time, we show that the
commonly used probabilistic version, namely, the expected
available bandwidth, necessarily leads to an overestimation of
the expected departures of a system. Also, we show that a
widely used definition of available bandwidth for multi-hop
systems αnet(τ, τ + δ), given in Eq. (2), can be recovered
only in the limit δ → ∞.

1) Single-hop Systems: Given a work-conserving server
with service process S(τ, t), where S(τ, t) denotes the amount
of service available in (τ, t] [8]. For any t ≥ 0, let τ ≥ 0
denote the beginning of the last busy period before t. From the
work-conserving property it holds that D(t) = D(τ)+S(τ, t).

Now, let D(t) = Dc(t) +Dp(t) be composed of cross traffic
and probe traffic, respectively. It follows that

Dp(t) = Dp(τ) + S(τ, t)−Dc(τ, t)︸ ︷︷ ︸
=:Sl(τ,t)

, (9)

where the service process Sl(τ, t) denotes the service left over
by cross traffic in (τ, t]. By choice of τ , it holds that Dp(τ) =
Ap(τ) so that Dp(t) = Ap(τ)+Sl(τ, t). Given that there exists
at least one τ ∈ [0, t] such that Dp(t) = Ap(τ) + Sl(τ, t) we
conclude that Dp(t) ≥ infτ∈[0,t]{Ap(τ) + Sl(τ, t)} = Ap ⊗
Sl(t). Note that since the min-plus convolution evaluates all
τ ∈ [0, t], it is not confined to the beginning of a specific
busy period. Also, from Eq. (9) it follows for all τ ∈ [0, t]
that Dp(t) ≤ Ap(τ) + Sl(τ, t) since Dp(τ) ≤ Ap(τ) due to
causality. It follows that Dp(t) ≤ infτ∈[0,t]{Ap(τ)+Sl(τ, t)}.
Combining the lower and the upper bound we obtain Dp(t) =
Ap ⊗ Sl(t), that is, Sl(τ, t) satisfies Eq. (5).

Next, we prove that the available bandwidth defined in
Eq. (1) coincides with the leftover service process Sl(τ, t).
Consider the stochastic leftover service process of a constant
rate link S(τ, t) = C (t− τ) that is utilized by random cross
traffic with intensity u(t). We obtain with Eq. (1) that

α(τ, t) =

∫ t

τ
C (1− u(x))dx

t− τ
=

S(τ, t)−Dc(τ, t)

t− τ
,

since the amount of cross traffic departures is determined by
the utilization in (τ, t] as Dc(τ, t) = C

∫ t

τ u(x)dx. It follows
that

α(τ, t) =
Sl(τ, t)

t− τ
. (10)

Thus, the available bandwidth from Eq. (1) for a specific time
interval corresponds to the rate of the leftover service process
in this time interval.

In bandwidth estimation, the time-varying nature of the
available bandwidth is frequently covered by using the ex-
pected value. However, while α(τ, t) can be related to the left-
over service process, the following lemma states that E[α(τ, t)]
systematically overestimates the departures.

Lemma 3: Given Dp(t) = Ap ⊗ Sl(t). It holds that

E[Dp(t)] ≤ Ap ⊗ E[Sl](t) .

Constructing examples where Lem. 3 does not hold with
equality is straightforward.

Proof: Taking expectations we have

E[Dp(t)] = E

[
inf

τ∈[0,t]
{Ap(τ) + Sl(τ, t)}

]

=
∑
ω∈Ω

pω inf
τ∈[0,t]

{Ap(τ) + Sω
l (τ, t)} ,

where SΩ
l is the sample space containing sample paths Sω

l that
occur with probability pω each. For any choice of τ ′ ∈ [0, t],

pω inf
τ∈[0,t]

{Ap(τ) + Sω
l (τ, t)} ≤ pωAp(τ

′) + pωSω
l (τ

′, t) ,

which yields for any τ ′ ∈ [0, t] that

E[Dp(t)] ≤ Ap(τ
′) +

∑
ω∈Ω

pωSω
l (τ

′, t) ,
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since
∑

ω∈Ω pω = 1. It then follows that

E[Dp(t)] ≤ inf
τ ′∈[0,t]

{Ap(τ
′) + E[Sω

l (τ
′, t)]} ,

which completes the proof.
2) Tandem Systems: The end-to-end service process of a

sequence of systems is given by the service processes of the
individual systems Sh(τ, t) (h = 1 . . .H) as [8]

Snet(τ, t) = S1 ⊗ · · · ⊗ SH(τ, t) . (11)

Note the difference between the min-plus convolution in
Eq. (11) and the definition of end-to-end available bandwidth
as a simple minimum in Eq. (2). Assuming work-conserving
systems, we substitute Sh(τ, t)/(t − τ) = αh(τ, t) from
Eq. (10). For the special case of constant rate functions
Sh(τ, t)/(t − τ) = rh, it is shown in [28] that the min-
plus convolution simplifies to Snet(τ, t)/(t−τ) = minh{rh},
which coincides with the available bandwidth αnet(τ, t) =
minh{rh}. Without constant rate functions, we only get
Snet(τ, t)/(t − τ) ≤ αnet(τ, t). Here, we prove that equality
can be recovered if the observed interval tends to infinity. We
assume that the h-th system has a long-term average service
rate αh∞, i.e., for any τ , we have

lim inf
t→∞

Sh(τ, t)

t− τ
= αh

∞ . (12)

Lemma 4: Given the end-to-end service process Snet(τ, t)
as in Eq. (11) where the service processes of the individual
systems Sh(τ, t) satisfy Eq. (12). For any τ it holds that

lim inf
t→∞

Snet(τ, t)

t− τ
= min

h
{αh

∞} .
Proof: It is sufficient to show the proof for two systems.

Due to the properties of the convolution, the result applies to
an arbitrary number of systems by repeated application. We
rewrite Eq. (11) as

Snet(τ, t)

t− τ
= inf

θ∈[τ,t]

{
S1(τ, θ)

t− τ
+

S2(θ, t)

t− τ

}
.

Now we let t → ∞. If α1
∞ > α2

∞ the minimum will be
attained for finite θ such that the first term of the sum goes
to zero and the second term to α2

∞. Otherwise, if α1
∞ < α2

∞,
the parameter θ will tend to t such that the first term becomes
α1∞ and the second term goes to zero. This gives us

lim inf
t→∞

Snet(τ, t)

t− τ
= min{α1

∞, α2
∞} .

Finally, if α1∞ = α2∞ the result holds trivially.

D. Max-plus Network Calculus for Timestamps
So far, we have used the min-plus formulation of the net-

work calculus, where arrival and departure functions A(t) and
D(t) denote amounts of traffic in a time interval (0, t]. This
formulation allowed us to establish the link between available
bandwidth and service curves. There is an alternate (equiv-
alent) formulation of the network calculus based on a max-
plus algebra, which describes arrivals and departure functions
in terms of timestamps [2], [8]. Since any probing scheme is

based on taking timestamps of probing traffic, adopting a max-
plus algebra for the computation of the available service is
more convenient. Let TA(n) and TD(n) denote the timestamps
of the n-th probe packet. For unit sized packets, functions A(t)
and TA(n) are related by A(t) =

∑∞
n=1 1{TA(n)≤t}, where the

indicator function 1{X≤x} = 1 if X ≤ x and zero otherwise.2
We next show how an ε-effective service curve can be

estimated from packet timestamps, by switching to the max-
plus representation of the network calculus. An additional
benefit of using the max-plus representation is that it can deal
with packet loss more easily, by viewing lost packets as being
infinitely delayed. We next show that min-plus and max-plus
representations yield identical results.

Similar to Eq. (6), an ε-effective service curve that operates
directly on packet timestamps can be defined in the max-plus
algebra as

P

[
TD(n) ≤ max

ν∈[1,n]
{TA(ν) + T ε

S(n− ν)}
]
> 1− ε . (13)

Here, T ε
S(n−ν) specifies a shift-invariant upper bound on the

amount of time required to serve n − ν + 1 packets. Under
similar assumptions as in Th. 1, a max-plus ε-effective service
curve can be estimated from the delay defined as W (n) =
TD(n)−TA(n). Again, we use constant rate arrivals TA(n) =
n/r where r ∈ R and let n → ∞ to observe the steady state
delay quantile W ξ(r). It can be shown that for all n ≥ 0,

T ε
S(n) = min

r∈R

{n

r
+W ξ(r)

}
(14)

is an ε-effective service curve that satisfies Eq. (13) with
violation probability ε =

∑
r ξ. We provide the proof in [32]

and omit it here as it closely follows the proof of Th. 1.
Similar to Th. 1, Eq. (14) lays the foundation for an estimation
method that, however, takes delay measurements to estimate
a max-plus service curve. The relation of the two methods
is established by the following theorem, which states that the
max-plus service curve estimate from Eq. (14) deviates from
the min-plus service curve estimate from Th. 1 by at most one
packet length. The theorem uses the pseudo-inverse of service
curve TS , which is defined as

(T ε
S)

−1(t) =
∞∑

n=0

1{T ε
S(n)≤t} .

Theorem 2: Given a system with ε-effective service curves
Sε(t) from Th. 1 and T ε

S(n) from Eq. (14), and assuming that
the system forwards traffic in order of its arrival, the following
holds:

(T ε
S)

−1(t)− 1 ≤ Sε(t) ≤ (T ε
S)

−1(t) .

The proof of Th. 2 uses the following fundamental lemma
that relates the backlog of a system to its delay.

Lemma 5: Given a system with strictly increasing arrival
and departure timestamps TA(n) and TD(n), respectively.

2Considering variable sized packets requires additional notation to specify
packet lengths. Since many probing methods use probe packets of fixed size,
the assumption of unit sized packets is justified.
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Assume the system serves arrivals in order. The backlog
observed at the departure time TD(n) of packet n equals

B(TD(n)) = A(TD(n)−W (n), TD(n))

= A(TA(n), TA(n) +W (n)) ,

where A(τ, t) are the cumulative arrivals in (τ, t] and W (n)
is the delay of packet n.

Proof: From the definition of backlog we have

B(TD(n)) = A(TD(n))−D(TD(n)) .

Since the arrivals are served in order it holds that D(TD(n)) =
A(TA(n)) and it follows by substitution that

B(TD(n)) = A(TA(n), TD(n)) .

Using the definition of delay W (n) = TD(n) − TA(n)
completes the proof.
We use Lem. 5 to relate quantiles of the backlog and delay
to each other, e.g., Bξ = rW ξ for constant rate arrivals with
rate r, where we denote by B and W the steady state backlog
and delay for n → ∞. We note that Little’s law, i.e., E[B] =
λE[W ] for arrivals with average rate λ, can be recovered from
Lem. 5, see the technical report [31]. Equipped with Lem. 5
we now prove Th. 2.

Proof: (of Th. 2) Consider the argument of the indi-
cator function T ε

S(n) ≤ t in the definition of the pseudo-
inverse (T ε

S)
−1. By insertion of T ε

S(n) from Eq. (14) we have
minr∈R{n/r +W ξ(r)} ≤ t and after some reordering

n ≤ max
r∈R

{rt− rW ξ(r)} .

Instantiating Lem. 5 with A(t) = 	rt
 yields the backlog
B(TD(n)) = 	rW (r, n)
. Letting n → ∞ and taking
quantiles we obtain Bξ(r) = 	rW ξ(r)
 = rW ξ(r) − ϑ(r),
where ϑ(r) ∈ [0, 1). It follows that the condition T ε

S(n) ≤ t
is equivalent to

n ≤ max
r∈R

{rt−Bξ(r) − ϑ(r)} .

With Th. 1 and since n = 0, 1, 2, . . . is an integer, the claim
follows.

IV. DERIVATION OF THE PROBING METHODOLOGY

We next address how the results from Sec. III can be devel-
oped into practical probing schemes for networks with random
service. The probing schemes are expressed as described in
Sec. III-D, where arrival and departure timestamps of packet
train probes are used to measure steady state delay quantiles,
and to compute an estimate of the service curve.

We describe a measurement experiment with constant rate
packet train probes by a tuple 〈R,N, I〉, where R is the set of
probing rates, N is the number of packets in a train, and I is
the number of repeated measurements. The selection of these
parameters is crucial for a probing scheme, yet, the derivations
in the previous section do not provide guidelines for selecting
values. For example, a single reading of the steady state
delay W (r) from a packet train is ideally taken from an
infinitely long packet train (N → ∞). Also, computing
the exact tail distribution of the delay requires an infinite

Fig. 2. Multi-hop network with multiple 100 Mbps bottleneck links.

number of repeated measurements (I → ∞). Clearly, such
ideal measurement experiments are not viable. In this section,
we will develop and evaluate guidelines for practical choices
for 〈R,N, I〉. In Sec. IV-A, we discuss the selection of the
rates. In Sec. IV-B, we show how to obtain stationary delay
estimates using finite packet trains and a finite number of
repeated measurements with the usage of statistical methods.
In Sec. IV-C, we discuss how to extract information from short
packet trains. In Sec. IV-D, we apply our method to non-linear
and lossy networks.

For an experimental evaluation we resort to a local testbed
as well as the Emulab testbed [42], which offer controlled
experiments on real networking equipment. We consider the
topology shown in Fig. 2, where probe traffic and cross traffic
are multiplexed at a tandem of 100 Mbps bottleneck links.
The capacities and delays in the network are specified in
the figure. We consider different packet schedulers, including
priority, fair queueing, and FIFO, and different buffer sizes at
the bottleneck links. The default configuration is a network
with a single bottleneck link and priority scheduling with
high priority to cross traffic, and a large buffer size (of
106 packets). Cross traffic has a mean rate of 50 Mbps,
and consists of equally spaced packet bursts of back-to-back
packets whose size follows a truncated Exponential or Pareto
distribution. A comparison of outcomes for these distributions
reveals the sensitivity of the measurement methodology to the
burstiness of network traffic. The average size of a packet
burst is 1500 Byte and the shape parameter of the Pareto
distribution is 1.5. With the chosen link capacity and cross
traffic rate, the limiting rate of the service process (= long-
term available bandwidth) is 50 Mbps. We use D-ITG [4]
to generate cross traffic. D-ITG generates truncated arrival
distributions to conform to the maximum IP payload size of
64 kByte. The payload is further divided by IP fragmentation
to packet sizes of at most 1500 Byte. For probe traffic, we use
Rude/Crude [25] which emits constant bit rate packet trains
consisting of packets with a size of 1500 Byte. NTP is used for
time synchronization. For the impact of asynchronous clocks,
we refer to [28].

A. Selection of Probing Rates
The selection of the set of probing rates presents a tradeoff.

On the one hand, adding probing rates improves the estimate
of the ε-effective service curves, since each rate contributes
an additional linear segment (see Fig. 1). On the other hand,
since we compute the violation probability by an application of
the union bound, adding probing rates increases the violation
probability. We use an algorithm that seeks to find a small
set of characteristic rates that contribute to the service curve.
The algorithm combines a binary increase and a binary search
algorithm, similar to the rate selection procedure in [17].

The algorithm has as parameter racc to specify the desired
rate resolution. The binary increase starts at r1 = racc. As long
as the probes at rate ri measure a finite delay quantile, the rate
is doubled. The estimation of the delay quantile is explained
in Sec. IV-B. The first rate ri at which no finite delay quantile
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can be measured is used to start a binary search in the interval
[ri−1, ri] using the same test criterion. Each additional probing
rate halves the interval. Once the interval achieves the target
accuracy racc the rate scan is terminated. Let r̃ be the largest
rate that achieves a finite delay quantile. As an example if
r̃ = 50 Mbps and racc = 4 Mbps the algorithm probes at
rates ri = 4, 8, 16, 32, 64, 48, 56, and 52 Mbps and stops at
the interval [48, 52].

The total number of rates probed by the binary in-
crease/binary search algorithm is 2	log2(r̃/racc)
 + 2, where
the binary increase algorithm requires 	log2(r̃/racc)
+2 steps
until it first exceeds r̃, and the binary search performs another
	log2(r̃/racc)
 steps to ensure the target accuracy.

B. Estimation of Steady State Delays
Next, we discuss how to estimate the tail distribution of

steady state delays using finite length packet train probes. We
employ a statistical test to detect stationarity of a time series,
and use it to adapt the length of packet train probes to the
variability of cross traffic.

1) Stationarity Test: By definition, Eq. (14) uses steady
state delays to compute a service curve. While Lem. 2 states
that the steady state delay distribution exists as long as the
rate of probe arrivals does not exceed the limiting rate of the
service process, reaching the steady state requires infinitely
long packet trains. To determine the steady state delay from a
finite length packet train, we use a statistical test that detects if
the delays W (n) of a sequence of probe packets n ∈ [0, N−1]
satisfy stationarity. If stationarity is detected, we use the delay
of the last packet of a packet train as an estimate of the steady
state delay. The delay values of all other packets from the
same packet train are discarded due to possible correlations.
If stationarity cannot be detected, we set the delay estimate to
infinity. We repeat the measurement I times for each probing
rate r to measure the (1− ξ)-quantile of the delay W ξ(r).
Note that due to the minimum in Eq. (14), delay quantiles of
infinity do not contribute to the service curve estimate.

To detect stationarity of the delay series observed by a
packet train, we use the unit root test from Elliot, Rothenberg
and Stock (ERS) [12]. The ERS test is based on an auto-
regressive moving average model. The null hypothesis of the
test is that the data series has a unit root, which implies non-
stationarity. The ERS test returns a single value referred to as
ERS statistic. If the ERS statistic falls below a critical value,
the null hypothesis is rejected and stationarity is assumed.

2) Adaptive Train Length: Since the minimal train length
that permits detecting stationarity is not known a priori, we
define a procedure that adaptively increases the train length.
When the ERS test indicates non-stationarity for a share
of more than ξ of the packet trains sent at a certain rate,
then either the stationary (1− ξ)-delay quantiles cannot be
achieved at this probing rate, or the train length is too short
to reliably detect stationarity. To assess whether increasing the
train length can help, we inspect the trend of the ERS statistic.
We compute the ERS statistic for the first half of the train and
for the entire train. If the ERS statistic decreases, i.e., if the
ERS statistic of the first half of the train is larger than the ERS
statistic of the entire train, we interpret this as an indication
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Fig. 3. Fig. 3(a) shows the required train length needed to observe stationary
delays at a link with Exponential and Pareto cross traffic, and a limiting
rate of 50 Mbps. For the train lengths in Fig. 3(a), Fig. 3(b) presents the
observed delay values as stationary 0.95-delay quantiles (with 0.95 confidence
intervals).

that longer trains may achieve stationarity. We refer to this
test as the trend test that is passed by a packet train if its
ERS statistic decreases. If the majority of the packet trains
sent at a certain rate passes the trend test, we double the train
length and carry out the measurements at this rate anew. We
repeat this procedure until either stationarity is achieved or the
majority of the trains fails the trend test.

We next show the train length required to achieve sta-
tionarity at a certain probing rate. Fig. 3(a) shows the train
length that permits detecting stationarity for a share of at least
(1−ξ) = 0.95 of I = 250 packet trains sent at different probing
rates and for different types of cross traffic each. The probing
rates are chosen according to the algorithm from Sec. IV-A
and the train length is adapted as described above starting
at a minimum train length of 100 packets. The results show
that the required train length is sensitive to the distribution
of cross traffic and to the probing rate. The required train
length increases sharply, when the probing rate approaches
the limiting rate of 50 Mbps.

3) Tail Distribution: The computation of ε-effective service
curves requires the (1−ξ)-quantiles of the stationary delays,
W̃ ξ(r). Since each packet train only provides one reading
of the stationary delays, obtaining a delay quantile requires
multiple packet trains for each probing rate. In particular,
to compute a 0.95-delay quantile, the minimum number of
repeated measurements for a given rate is I = 20.

The delays observed by different packet trains can be as-
sumed to be independent when packet trains have random start
times (see [3] for a discussion). We can quantify the accuracy
of the delay quantiles using confidence intervals (which, for
quantiles, are computed from the binomial distribution). This
allows us to increase the number of packet trains until a
desired accuracy is met. Fig. 3(b) displays the stationary 0.95-
delay quantiles and corresponding 0.95 confidence intervals
achieved with I = 250 repeated measurements (where packet
train lengths are given in Fig. 3(a)). The indicated confidence
intervals show that the accuracy decreases when the probing
rate approaches the limiting rate and when cross traffic is more
bursty. To reduce the number of repeated measurements, we
refer to the technical report [31] for methods to predict the
tail of the delay distribution.
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C. Short Packet Train Probes
As seen in Fig. 3(a), when the network is close to saturated,

measuring stationary delays may require very long packet
trains. In this section, we discuss how the limiting rate and a
service curve can be estimated with small sized packet trains,
without requiring stationary delays.

1) Limiting Rate Estimation: In principle, the limiting rate
of a service curve estimate is the largest probing rate that
observes finite steady state delays. In practice, however, the
required packet train length needed to read steady state delays
may become prohibitive. Thus, we abandon trying to read
steady state delays in this regime, and, instead, estimate the
limiting rate directly. Based on the ERS test and the trend test,
we devise a heuristic method to obtain the limiting rate with
packet trains with at most N packets.

In Sec. IV-B2, we used the ERS test to detect stationarity
of delays, and the trend test to indicate that stationarity may
be observable for longer packet trains (sent at the same rate).
To limit the train length at N , we now consider passing the
trend test as sufficient to assume that a finite steady state delay
exists at a given rate. When the trend test fails, we assume that
no finite steady state delay exists. We use the interpretation
of the trend test, i.e., finite steady state delays exist or do not
exist, as criteria in the binary increase/binary search algorithm
from Sec. IV-A for increasing or decreasing the probing rate.
Then, the largest probing rate for which the trend test passes
is an estimate of the limiting rate.

In Fig. 4, we evaluate the impact of the train length on the
fidelity of the trend test. We use again the network shown
in Fig. 2. Since the network has a limiting rate of 50 Mbps,
packet trains should pass the trend test if the probing rate is
below 50 Mbps, and fail the trend test if the probing rate
exceeds 50 Mbps. The bars in Fig. 4 depict the fraction of
trains that pass the trend test out of a total of I = 1000 trains,
for probing rates r = 40 − 60 Mbps. We show results for
packet trains with a length of N = 50 − 800. The figure
shows that the likelihood of a correct classification increases
when the train length is increased, and that it decreases when
the probing rate approaches the limiting rate, and when the
cross traffic is more bursty. On the other hand, note that the
majority of trains makes a correct classification.

We can exploit the last observation to achieve a robust
classification when the number of packet trains is small. We
perform measurements of I packet trains, perform the trend
test for each train, and then conduct a majority decision. By
selecting I to be an odd number, we can ensure that that a
majority decision is always feasible. Assuming independence
of packet trains, we compute the probability that a majority of
trains passes the test from Fig. 4 via the binomial distribution.
Fig. 5 shows the results for a train length of N = 200 packets
and I = 11 − 51 repeated measurements. Even for Pareto
traffic, using a majority decision of the trend tests results in a
correct classification.

2) Service Curve Estimation: Short packet trains often do
not pass the ERS test, and, therefore, do not allow a reading
of stationary delays. It is possible to construct a service curve
with non-stationary delays, which, however, is only valid for
time intervals with limited range. Using the procedure from
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test for different probing rates and given packet train length N = 50− 800.
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Fig. 5. Outcome of a majority decision on the trend test using I repeated
measurements for a train length of N=200 packets. As in Fig. 4, trains with
a rate below 50 Mbps should pass the trend test, and packet trains with a rate
above 50 Mbps should fail the trend test.

Sec. IV-C we can measure the delay of the last packet (with
index N ) of each train and compute a service curve estimate
T ε
S(n) with Eq. (14) for the range n ∈ [0, N−1]. The details

are described in the technical report [31]. By selecting N
sufficiently large, the range of validity of the service curve
can be made large enough to cover the time scales of interest.

For the same network as before, Fig. 6 depicts service curves
obtained with packet trains of length N= 800 − 12800, and
compares them to a service curve estimate with unrestricted
train lengths (which observes stationary delays). The probing
rates are set for a target resolution of racc = 4 Mbps and
the number of repeated measurements is I = 250. Fig. 6
shows the computed service curves. In the figure, the limiting
rate of 50 Mbps is indicated by the dashed diagonal lines.
It is evident that all service curve estimates closely track
the limiting rate of 50 Mbps. For Exponential cross traffic,
service curves computed with N = 800 provide similar results
as unrestricted packet trains. For the burstier Pareto traffic,
we observe that the service curve segments computed by
short trains sometimes overestimate the service curve estimate
obtained from stationary delays. Here, when the probing rate
approaches the limiting rate, the delay estimates obtained from
short trains underestimate the stationary delay distribution,
which results in an overestimation of the service curve.

D. Non-linear and Lossy Networks and Elastic Cross Traffic
So far, we assumed that network elements such as links,

queues, and schedulers can be modeled by Eq. (5) as lossless
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Fig. 6. Service curve estimates from trains of length N compared to
unrestricted trains that observe stationary delays.

linear systems. Next, we show results for systems where these
assumptions are relaxed.

A FIFO scheduler is a prime example of a non-linear
system. As shown in [13], a FIFO scheduler operates as a
linear system only when the traffic (from probe and cross
traffic) is less than the capacity of the system. When it
becomes overloaded, the FIFO scheduler enters into a non-
linear regime. Thus, the application of linear system theory
to FIFO schedulers is justified only when the capacity is not
saturated. In our case, since the stationarity test ensures that
the probing traffic does, on average, not exhaust the capacity of
the network, the linearity assumption is often justified. Bursty
arrivals, however, cause short term violations of linearity.

The assumption of lossless systems can be easily relaxed
in a max-plus algebra, by simply modeling a dropped packet
as incurring an infinite delay. That is, if packet n has been
dropped, we set TD(n) = ∞. As a result, probing rates
experiencing a packet loss ratio of ξ or more do not contribute
to the service curve estimate.

In Fig. 7 we show service curve estimates obtained for a link
with fair and priority scheduling, both of which are linear, to
FIFO scheduling, which is non-linear in overload. For priority
scheduling, we assume that cross traffic has a higher priority.
Buffers are large (106 packets) enough so that no packet losses
occur. For a FIFO scheduler, we also include results with a
small buffer size of 200 packets, which results in moderate
packet losses (The loss is less than 1% at the limiting rate). The
probing parameters are racc=4 Mbps, I=250, ξ=0.05, and
N=800. For all scenarios, the service curves exhibit a latency
of slightly above 10 ms, which matches the propagation delay
of the bottleneck link (see Fig. 2). The service curve estimate
for the fair scheduler is a straight line since the scheduler
allocates a fair share of 50 Mbps to the probe traffic regardless
of the burstiness of cross traffic. The service curve estimate at
a priority scheduler, on the other hand, is sensitive to the type
of cross traffic. Here, the higher priority cross traffic results
in additional latencies and a lower initial rate of the service
curve. For the FIFO scheduler, we observe that the service
curve estimates with small buffers and large buffers are very
close, indicating that our estimation method deals well with
packet losses. For Pareto cross traffic and with small buffers,
the additional packet losses compared to Exponential cross
traffic result in a larger estimate of the service curve.

We also evaluated the estimation method in a network where
cross traffic consists of elastic TCP traffic using the TCP Cubic
algorithm. Since TCP reacts to congestion in the network,
probing traffic could displace TCP traffic and overestimate
the available bandwidth. We compare service curve estimates
made with 1 UDP cross traffic flow to estimates with 1, 10,
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Fig. 7. Service curve estimates for priority, fair, and FIFO scheduling with
large and small buffer.

TABLE I
LIMITING RATE ESTIMATES WITH ELASTIC CROSS TRAFFIC.

cross exponential Pareto
traffic limiting rate latency limiting rate latency
flows [Mbps] [ms] [Mbps] [ms]
1 TCP 48 15 48 22

10 TCP 48 16 48 23
100 TCP 48 16 48 24

1 UDP 48 19 48 26

and 100 TCP cross traffic flows. In each case, the average
rate of cross traffic is 50 Mbps, using the same parameters
as before (racc = 4 Mbps, I = 250, ξ = 0.05, N = 800).
The scheduling is FIFO with a buffer size of 106 packets.
Traffic generation at the application follows an Exponential
or Pareto distribution. Tab. I depicts the initial latency and
the limiting rate of the computed service curve (This corre-
sponds to expressing the service curve to a simple latency-rate
function). For all cases, the same limiting rate of 48 Mbps is
computed. Also, the estimates of the latencies depend only on
the traffic distribution (Pareto or Exponential), but not on the
composition of the traffic. This indicates that TCP traffic is
not displaced by the estimation method.

V. COMPARATIVE EVALUATION

Here, we compare the stochastic bandwidth estimation
method with bandwidth estimation methods from the literature.
We consider the network topology in Fig. 2, with FIFO
scheduling, and parameters as discussed in Sec. IV. We also
present measurements of an IEEE 802.11a network.

A. Service Curve Estimation
We first perform a comparison with a probing method for

min-plus time-invariant deterministic linear systems from [28],
for the network in Fig. 2 with a single bottleneck with
FIFO scheduling and a buffer size of 106 packets. The
method uses constant rate packet trains with fixed length
(N = 800 packets), where the rate of the packet trains is
incremented between successive trains by 8 Mbps. We match
these parameters for the stochastic bandwidth estimation, by
using adaptively varied train length with up to 800 packets and
a target accuracy of racc=8 Mbps. Also, we set ξ = 0.05. For
both methods we present results from I = 200 iterations. The
stochastic bandwidth estimation uses repeated measurements
to obtain (1−ξ)-delay quantiles, as well as 0.95 confidence
intervals of the delays to derive a single estimate of an ε-
effective service curve. Since the method for deterministic
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Fig. 8. Comparison of stochastic bandwidth estimation and deterministic
bandwidth estimation. The ε-effective service curve is compared to the average
deterministic service curve, with 0.95 confidence intervals indicated by shaded
areas.

time-invariant systems [28] generates one deterministic service
curve estimate in each iteration, we compute the mean and
0.95 confidence intervals for all iterations.

Fig. 8 shows the average value of the deterministic service
curve and the ε-effective service curve. Confidence intervals
are shown as shaded areas. With Exponential cross traffic
both deterministic and stochastic service curve estimates give
comparable results. A closer comparison with the diagonal
reference lines shows that the deterministic service curve over-
estimates the limiting rate of 50 Mbps. For Pareto cross traffic,
the deterministic service curve results in a lower estimate,
and very large confidence intervals. The ε-effective service
curve recovers the limiting rate closely with small confidence
intervals. Note that the service curves capture the non-work
conserving aspect of the available service in terms of the initial
latency.

B. Bandwidth Estimation Tools
Most existing bandwidth estimation methods seek to find

the long-term available bandwidth as defined in Section II.
We present an example to illustrates that the long-term avail-
able bandwidth only presents part of the information on the
available service in a network.

We consider a single 100 Mbps FIFO bottleneck link with
Exponential cross traffic sent at rate 50 Mbps. We set the buffer
limit to 200 packets (experiments with larger buffers yielded
similar results). The other network and probing parameters are
as in Sec. IV-D.

For the example, we select the Pathload [17] tool, which is
frequently used as a benchmark method. The method reports a
lower and an upper bound of the available bandwidth. (We re-
fer to our technical report for a comparison with IGI/PTR [16],
Spruce [41], and dietTOPP [22]). As a reference, we also
include an analytically computed ε-effective service curve,
which is computed as a leftover service curve [7] using
a sample path bound for the cross traffic. For Exponential
cross traffic, the analytical curve is computed with the Erlang
distribution and the union bound.

Fig. 9 presents the results. Since the available bandwidth
in Eq. (1) is defined as a rate, we convert the estimated and
analytical ε-effective service curves Sε(t) to a rate function
Sε(t)/t. We note that the estimated ε-effective service curve
matches the analytical reference very closely. The gray area
shows the median of 100 repeated Pathload measurements.
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Fig. 9. Comparison of estimated ε-effective service curve with analytical
reference of ε-effective service curve and estimates by Pathload tool (Service
curves are displayed as rate functions to allow for comparison).

The figure shows that Pathload recovers the long-term avail-
able bandwidth well. On the other hand, the analytical and
estimated ε-effective service curves express that significantly
fewer resources are available on shorter time scales, which
is due to the short term randomness of cross traffic and link
delays.

C. Multiple Bottleneck Links

We now address networks with multiple bottleneck links. In
such networks, many estimation methods have been reported
to severely underestimate the long-term available bandwidth
on an end-to-end path [19]. In Sec. III-C, we showed that
the end-to-end available bandwidth from Eq. (2) is generally
greater than the end-to-end service process of a network given
by Eq. (11). It recovers the long-term available bandwidth if
the observation duration tends to infinity.

Since these results suggest that longer packet trains provide
better estimates, we investigate how the length of packet
trains impacts the accuracy of end-to-end available bandwidth
estimates. We use the topology in Fig. 2, with one, three,
and five 100 Mbps bottleneck links with FIFO scheduling and
large buffers (of 106 packets). At each bottleneck link, we
have independent Exponential cross traffic with an average
rate of 50 Mbps. The remaining parameters are as defined at
the end of Sec. V-B. We report results of the limiting rate for
the ε-effective service curve estimate from Sec. IV-C with a
target accuracy of racc = 1 Mbps, and the available bandwidth
range reported by Pathload, where we show the median of 100
trials. We vary the maximum length of a packet train from 100
to 1600 packets. Since Pathload by default uses packet trains
with a fixed length of 100 packets, we modified the source
code of the tool.

Tab. II shows the limiting rates of the ε-effective service
curve estimates and the available bandwidth bounds computed
by Pathload. With short packet trains, estimates for a single
bottleneck link are accurate. However, increasing the number
of bottleneck links results in lower estimates. Longer packet
trains provide better results for multiple bottleneck links, with
both compared methods. This leaves open the possibility that
underestimation of the long-term available bandwidth can be
remedied by increasing the length of packet train probes.
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TABLE II
AVAILABLE BANDWIDTH ESTIMATES FOR MULTIPLE BOTTLENECK LINKS

ε-eff. serv. curve Pathload
train (limiting rate) (available bandwidth) [Mbps]

length [Mbps] lower bound upper bound
[packets] bottleneck links bottleneck links bottleneck links

1 3 5 1 3 5 1 3 5
100 48 43 41 50 43 38 58 53 44
200 48 45 44 51 45 41 54 52 45
400 48 47 46 51 47 43 53 51 45
800 48 47 47 51 49 45 52 51 46
1600 48 48 48 51 49 46 51 51 47

Fig. 10. Wireless network with several cross traffic senders.
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Fig. 11. Service curves as rate functions for a wireless IEEE 802.11a network,
and a wireline 30 Mbps link with fair queueing. The graphs show the rate of
the service curve estimates with 0, 1, and 3 cross traffic flows.

D. IEEE 802.11a WiFi Networks
We apply the stochastic bandwidth estimation to a WiFi

network, where the medium access control of the DCF re-
sults in a non-deterministic and non-work-conserving channel
allocation.3 We measure an IEEE 802.11a testbed network
with and without cross traffic as shown in Fig. 10. Probe
and cross traffic compete for the wireless medium using the
DCF. All transmitted packets are received by an access point,
which forwards the packet to a receiver station on a wireline
100 Mbps link. Since the DCF has been previously related to
a fair queueing system [6], we compare the results to a wired
network that employs fair queueing at a bottleneck link. The
capacity of the wired bottleneck link is throttled to 30 Mbps.
This corresponds to the maximum achievable throughput in the
WiFi 802.11a network [5]. As we seek to present results on the
DCF, we avoid additional randomness by using constant rate
cross traffic with a rate of 25 Mbps. The rate is divided equally
among the cross traffic flows, so that each flow uses at least its
fair share. This allows exploring the behavior of the DCF in a
fully utilized IEEE 802.11a network. The parameters for the
packet trains are N=800 packets, I=250 iterations, ξ=0.05,
and a target accuracy of racc=1 Mbps. Fig. 11 shows the rate
of the service curve estimates Sε(t)/t for the WiFi network
and the wireline fair queueing link. For the fair scheduler,
without cross traffic, the rate quickly approaches the bound

3We note that [40] recently applied our method to compute service curves
of a simulated wireless channel.

of 30 Mbps. When cross traffic is added, the rates track the
fair share of 15 and 7.5 Mbps for 1 and 3 cross traffic flows,
respectively. For the WiFi network, the limiting rates estimate
do not quite reach the computed fair share. Also, the slower
convergence to the limiting rate reflects additional delays in
the WiFi network. The lower rate and higher delays seen in
the WiFi network are due to the accumulated impacts of the
random backoff of the DCF, collisions, and retransmissions.

VI. CONCLUSION

We have presented a system-theoretic foundation for band-
width estimation of networks with random service, where we
used the framework of the stochastic network calculus to
derive a method that estimates an ε-effective service curve
from steady state backlog or delay quantiles observed by
packet train probes. The service curve model extends to
networks of nodes, as well as to non-work-conserving systems.
The ε-effective service curve characterizes service availability
at different time scales, and recovers the long-term available
bandwidth as its limiting rate. While ideal measurements
require an infinite repetition of infinitely long packet trains,
we showed that practical estimation methods can be achieved
by applying statistical tests and using appropriate heuristics.
We found that cross traffic variability, the number of bottleneck
links, and the target accuracy of the estimate have a significant
impact on the amount of probes required. We presented
measurement examples, which showed that estimates of ε-
effective service curves can disclose essential characteristics
of random service in wired and wireless networks, which are
not reflected in the long-term available bandwidth.
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[31] R. Lübben, M. Fidler, and J. Liebeherr. A foundation for stochastic
bandwidth estimation of networks with random service. Technical
Report arXiv:1008.0050v1 [cs.NI], July 2010.
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