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This paper considers nonlinear dynamics in an ensemble of uncoupled lasers, each being a limit-cycle

oscillator, which are driven by the same external white Gaussian noise. As the external-noise strength in-

creases, there is an onset of synchronization and then subsequent loss of synchrony. Local analysis of the laser

equations shows that synchronization becomes unstable via stochastic bifurcation to chaos, defined as a passing

of the largest Lyapunov exponent through zero. The locus of this bifurcation is calculated in the three-

dimensional parameter space defined by the Hopf parameter, amount of amplitude-phase coupling, and

external-noise strength. Numerical comparison between the laser system and the normal form of Hopf bifur-

cation uncovers a square-root law for this stochastic bifurcation as well as strong enhancement in noise-

induced chaos due to the laser’s relaxation oscillation.
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I. INTRODUCTION

Synchronization of nonlinear oscillators to external noise

is an interesting mathematical problem of importance in bi-

ology, applied science, and engineering �1–9�. The key dif-

ference to synchronization to an external periodic signal is

the lack of a simple functional relationship between the noisy

input and the synchronized output, making the phenomenon

much less evident �10,11�. Rather, synchronization to noise

is defined as identical response of two or more identical but

uncoupled oscillators to the same external noise. This defi-

nition is equivalent to obtaining reproducible output from a

single oscillator driven repeatedly by the same external

noise, each time starting at a different initial state. Hence,

noise synchronization is also known as reliability �2� or con-

sistency �6�, and represents the ability to encode irregular

external signals in a reproducible manner.

Recent studies have shown that limit-cycle oscillators can

exhibit interesting nonlinear response to noisy external sig-

nals. Typically, a small amount of external noise causes syn-

chronization which is quantified by negative largest

Lyapunov exponent of the noise-driven system �1,3�. How-

ever, as the external-noise strength increases, one can ob-

serve loss of synchrony in oscillators with amplitude-phase

coupling �also called nonisochronicity or shear� �7–9,12,13�.
The resulting asynchronous behavior is quantified by posi-

tive largest Lyapunov exponent of the noise-driven system.

Mathematically, loss of synchrony, consistency, or reliability

is a manifestation of the same phenomenon, namely, stochas-

tic bifurcation defined as a crossing of the largest Lyapunov

exponent through zero. This paper focuses on such stochastic

bifurcation in lasers and Hopf oscillators, and contributes to

the general problem of noise-induced nonlinear dynamics.

Single-mode lasers are especially interesting as they are

experimentally accessible amplitude and phase oscillators.

The amplitude-phase coupling is quantified by the linewidth

enhancement factor that varies with the laser type and design

�14,15�. Externally driven lasers have been intensively stud-

ied for fundamental understanding of synchronization prop-

erties and for technological applications such as high-power

light generation from phased laser arrays �16–18�. Synchro-

nization and instabilities in lasers with periodic external sig-

nal �19� are well understood; see �20� for an overview of the

literature. However, only a few works considered nonlinear

dynamics in lasers with external noise �6,21�. In particular,

no stochastic bifurcation has yet been reported in white-

noise-driven lasers.

Motivated by fundamental interest and applications alike,

we address whether external white noise can induce phase

coherence or interesting dynamics in an ensemble of un-

coupled lasers with intrinsic noise. We demonstrate onset of

noise synchronization similar to that observed when the ex-

ternal signal is periodic. Then, one transition to asynchro-

nous behavior and another transition back to synchrony is

found for nonzero linewidth enhancement factor. Each tran-

sition corresponds to stochastic bifurcation in a single laser

with external white noise. We study this bifurcation with

dependence on the three parameters: the laser pump which

controls the distance from Hopf bifurcation of the noise-free

laser, the linewidth enhancement factor which quantifies the

amount of amplitude-phase coupling, and the external-noise

strength. The analysis uncovers an experimentally accessible

region of chaos �sensitivity on initial conditions� that is

purely noise induced; the noise-free laser does not possess

any type of a chaotic set in its phase space. For small

external-noise strength, the numerically obtained stochastic

bifurcation in the laser system follows a square-root law in

agreement with the normal form of Hopf bifurcation. How-

ever, with increasing external-noise strength, discrepancies

arise. In the laser system, the noise-induced chaos is signifi-

cantly enhanced due to one additional degree of freedom and

damped relaxation oscillation toward the laser’s limit cycle.

II. LASER RATE EQUATIONS

The analysis is based on the stochastic rate equations for a

single-mode semiconductor laser with intrinsic spontaneous

emission noise. Time evolution of M uncoupled lasers in-

jected with common external optical signal fext�t� can be de-

scribed as �19,21�

dE j

dt
= i�E j + ���1 − i��N jE j + fEj�t� + fext�t� , �1�
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dN j

dt
= � − N j − �1 + �N j��E j�

2 + fNj�t� , �2�

j = 1,2, . . . ,M ,

where, E j =E j
R+ iE j

I is the normalized complex electric field

and N j is the normalized deviation from the threshold density

of excited carriers �electron-hole pairs� in laser j. � is the

normalized deviation from the threshold pump rate. �N j

=−1 corresponds to zero carrier density and �=−1 corre-

sponds to zero pump rate.� The linewidth enhancement factor

� quantifies amplitude-phase coupling of the complex field,

� is the normalized detuning between the free-running laser

frequency and some conveniently chosen reference fre-

quency, �=500 is the normalized decay rate, and �=2.765 is

the normalized gain coefficient �21,23�. �Different values of

� and � are used in Fig. 7 as indicated in the caption.� The

lasers are identical except for the spontaneous emission noise

represented by random Gaussian processes fEj�t�= fEj
R �t�

+ ifEj
I �t� and fNj�t� which have zero mean and are � correlated

�fEj�t�� = �fNj�t�� = 0,

�fEi
R �t�fEi

I �t�� = 0,

�fEi
R �t�fEj

R �t��� = �fEi
I �t�fEj

I �t��� = DE�ij��t − t�� ,

�fNi�t�fNj�t��� = 2DN�ij��t − t�� . �3�

Here, �ij is the Kronecker � and ��t− t�� is the Dirac � func-

tion. In the calculations we use 2DE=0.1 and 2DN

=6.9�10−8 �23�.
A single laser without noise can be described using Eqs.

�1� and �2� with fEj�t�= fext�t�= fNj�t�=0 which define a three-

dimensional dynamical system. This system is S1 equivariant

and has rotational symmetry corresponding to a phase shift

E→Eei�, where 0	�
2�. For relevant values of ��−1

there is an equilibrium at �Eeq ,Neq�= �0,�� which represents

the “off” state of the laser. This equilibrium is globally stable

if −1	�	0 and unstable if ��0. At �=0, there is a Hopf

���0� or pitchfork ��=0� bifurcation which defines the la-

ser threshold. Moreover, if ��0, the system has a stable

group orbit in the form of periodic orbit ���0� or the whole

circle of equilibria ��=0�. In the paper, we refer to this cir-

cular attractor as the limit cycle. The limit cycle is given by

��E0�2 ,N0�= �� ,0� and represents the “on” state of the laser.

The amplitude-phase coupling � of the complex field E is

crucial to our analysis. Its physical origin is the dependence

of the semiconductor refractive index �and hence the cavity

resonant frequency� on the number of carriers �14,20�. A

change in the electric field intensity �E�2 induces a change �N

in the number of carriers �Eq. �2��. The resulting change in

the refractive index shifts the cavity resonant frequency by

−����N �Eq. �1��. The ultimate result is a change in the

�instantaneous� frequency of the electric field E. Mathemati-

cally, amplitude-phase coupling is best illustrated by a spe-

cial set associated with a point p on the limit cycle. This set

is defined as a stable manifold of p�t�,

Ws„p�t�… = �x: x�t� → p�t�;t → 
	 , �4�

and is called an isochron �22�. Isochrones of eight different

points on the laser limit cycle are shown in Fig. 1 in projec-

tion onto the complex E plane. Isochron inclination to the

orthogonal to the limit cycle at p indicates the strength of

phase-space stretching along the limit cycle. If �=0, all tra-

jectories with different initial �E��0 rotate around the origin

of the E plane with the same average frequency giving no

isochron inclination nor phase-space stretching �Fig. 1�a��.
However, if ����0, trajectories with larger initial �E� rotate

with higher average frequency �Fig. 1�b�� giving rise to iso-

chron inclination and phase-space stretching �Fig. 1�b��. The

amplitude-phase coupling �or nonisochronicity� plays an im-

portant role in noise synchronization �9� and is responsible

for the interesting nonlinear response reported in Secs. III

and IV of this paper.

III. SYNCHRONIZATION BY EXTERNAL SIGNALS

Phased multilaser systems have been studied over decades

for fundamental interest and potential applications, for ex-

ample, in generation of high intensity light �17,18�. If one

focuses light from M identical lasers onto a small spot of the

order of a wavelength, the total average intensity at this spot

is given by

�IM�t�� = lim
T→


1

T



0

T ��
j=1

M

E j�t��2

dt . �5�

A single laser oscillates with random phase owing to spon-

taneous emission noise fEj�t� �Eq. �3��. When the lasers are

independent, the total average intensity at the focal spot is

proportional to M times the average intensity of a single

laser. This follows directly from Eq. �5� assuming lasers with

identical amplitudes and uncorrelated random phases. How-

ever, when the lasers oscillate in phase, one expects the total

average intensity at the focal spot of M2 times the average

intensity of a single laser. This follows directly from Eq. �5�
assuming lasers with identical amplitudes and phases. We

will now consider the synchronizing effect of two different
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FIG. 1. �Color online� Projection onto the complex E plane of

�black� the limit cycle representing the “on” state of the laser and

�blue� isochrones of �black dots� eight different points on the limit

cycle as defined by Eq. �4�. Each two-dimensional isochron is in-

dependent of N and, hence, appears as a one-dimensional curve in

the projection. �=1 and �a� �=0 and �b� �=3.
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external signals fext�t� and use the total average intensity as

given by Eq. �5� to measure the quality of synchronization.

For comparability reasons, we briefly review the case of a

pure-coherent external signal and then move on to the case

of a pure-incoherent �white noise� external signal.

A standard approach to obtaining phased laser arrays uses

a weak coherent external signal

fext�t� = Kei�extt,

where K�R is the external-signal amplitude and �ext is the

detuning between the external-signal frequency and the cho-

sen reference frequency. Such an external signal breaks S
1

symmetry and can force each laser to fluctuate in the vicinity

of the well-defined external signal’s phase �extt �24�, as op-

posed to a random walk. Figure 2 shows �IM�t�� versus the

amplitude K of the external signal resonant with the lasers

��ext=��. Because of the intrinsic spontaneous emission

noise, the external-signal strength has to reach a certain

threshold before synchronization occurs. For �=0, a sharp

onset of synchronization at K
10−3 is followed by a wide

range of synchronous behavior with �IM�t��=M2�I fr�t��,
where �I fr�t�� is the average intensity of a free-running �no

external signal� laser. At around K=102, �IM�t�� starts in-

creasing above M2�I fr�t��. Whereas lasers still remain syn-

chronized, this increase indicates that the external signal is

no longer small. Rather, it starts dominating the dynamics

and up shifts the average intensity of each individual laser. A

different scenario is observed for �=3. There, the onset of

synchronization is followed by an almost complete loss of

synchrony just before �IM�t�� increases above M2�I fr�t��. The

loss of synchrony is caused by externally induced bifurca-

tions and ensuing chaotic dynamics. These bifurcations have

been studied in detail, both theoretically �20,25–27� and ex-

perimentally �28�, and are well understood.

Here, we study an alternative approach that uses a pure-

incoherent external signal represented by the complex ran-

dom process that is Gaussian, has zero mean, and is � cor-

related,

fext�t� = fext
R �t� + ifext

I �t� ,

�fext�t�� = �fext
R �t�fext

I �t�� = 0,

�fext
R �t�fext

R �t��� = �fext
I �t�fext

I �t��� = Dext��t − t�� . �6�

Such external signal can synchronize the ensemble by forc-

ing each laser to have �nearly� identical random fluctuations.

This phenomenon is demonstrated in Fig. 3 where we plot

�IM�t�� versus Dext. For �=0, one finds a clear onset of syn-

chronization at around Dext=10−3, followed by synchronous

behavior at larger Dext. In particular, there exists a range of

Dext where external-noise is strong enough to synchronize

phases of intrinsically noisy lasers but weak enough so that

each individual laser has small intensity fluctuations and un-

changed average intensity �I fr�t��. The resulting probability

distributions for the total average intensity IM�t� are shown in

blue in Figs. 4�a� and 4�b�. The distinct peak at IM�t�

M2�I fr�t�� and a noticeable tail at smaller IM�t� indicate

synchronization that is not perfect as synchronous behavior

is occasionally interrupted with short intervals of asyn-

chrony. For Dext�102, we observe a trivial case of noise-

induced synchrony where the external noise starts dominat-

ing laser dynamics: the intensity of each individual laser

exhibits large fluctuations and its average increases above

�I fr�t��. As a consequence, the total average intensity �IM�t��
increases above M2�I fr�t�� �Fig. 3� and IM�t� exhibits large

fluctuations �Fig. 4�c�� as in the asynchronous case �though

the lasers remain in synchrony�. A different scenario is again

observed for �=3. There, the onset of synchronization is
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FIG. 2. �Color online� Total average intensity as defined by Eq.

�5� of M =50 independent lasers with common coherent external

signal vs the external-signal amplitude K for �blue� �=0 and �red�
�=3; �=5 and �ext=�.

10
�4

10
�3

10
�2

10
�1

10
0

10
1

10
2

10
3

10
3

10
4

�IM �

�IM � = M
2�Ifr�

�IM � = M�Ifr�

Dext

α = 0

α = 3

FIG. 3. �Color online� Total average intensity as defined by Eq.

�5� of M =50 independent lasers with common external white noise

vs the external-noise variance Dext for �blue� �=0 and �red� �=3;

�=5.
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followed by a significant loss of synchrony for 4�Dext

�2�102. In this parameter interval, one finds qualitatively

different dynamics in an ensemble of lasers with �=0 and

�=3 as is further revealed by different probability distribu-

tions in Fig. 4�b�.
Interestingly, comparison between Figs. 2 and 3 shows

that some general aspects of synchronization to a pure-

coherent and pure-incoherent external signal are similar. In

both cases there is a clear onset of synchronization followed

by a significant loss of synchrony for nonzero � and subse-

quent revival of synchronous dynamics under strong external

signal. However, the dynamical mechanism responsible for

the loss of synchrony in the case of a pure-incoherent exter-

nal signal �red curve in Fig. 4� has not been studied in laser

systems to date and is not fully understood in general.

IV. STOCHASTIC BIFURCATION

The previous section motivates further research needed to

reveal the dynamical mechanism responsible for the loss of

synchrony observed in Fig. 4. Therefore, it is useful to first

recall some facts about random dynamical systems. In a de-

terministic �noise-free� laser, lasing is represented by the

limit cycle with one zero and two negative Lyapunov expo-

nents �LEs�. In the presence of noise, the zero LE shifts to

either positive or negative values �9�. In particular, one

speaks of a random sink when the largest LE is negative and

of a random strange attractor when the largest LE is positive

�29�. Note that random attractors are defined only relative to

a set of trajectories which are attracted. As such, they provide

information about the relative long term behavior of nearby

trajectories, as in the deterministic case, but not about the

behavior of a single trajectory relative to the origin of the

phase space. Qualitative changes of random attractors are

defined as crossing of the largest LE through zero and are

called stochastic d bifurcations �29�. This is in contrast to

stochastic p bifurcations defined as qualitative changes in the

phase-space probability distribution that are not necessarily

accompanied by crossing of the largest LE through zero.

A. Laser system

To facilitate the analysis, we henceforth consider M iden-

tical lasers that have no intrinsic spontaneous emission noise

but are subjected to common external noise. In the absence

of the intrinsic noise, one can show that there exists an exact

synchronous solution

E1�t� = E2�t� = ¯ = EM�t� = E�t� , �7�

whose stability is determined from the sign of the largest LE

of just a single laser with external noise. Intuitively, M dif-

ferent trajectories of a single laser with external noise corre-

spond to the evolution of an ensemble of M uncoupled lasers

with common external noise. Since LEs measure the expo-

nential rate of separation between nearby trajectories �30�, a

stable �unstable� synchronous solution is represented by a

random sink �a random strange attractor� in a single laser

with external noise.

Figure 5 shows effects of external noise on the sign of the

otherwise zero largest LE in a single laser. For �=0, external

noise always shifts the largest LE to negative values so the
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system has a random sink for Dext�0 and ��0 �Fig. 5�a��.
However, for �=3 one finds two curves of stochastic d bi-
furcation where the largest LE crosses through zero �Fig.
5�b��. For parameter settings between these two curves the
system has a random strange attractor and the synchronous
solution �7� is unstable. Hence, the synchronization-

desynchronization transitions of M uncoupled lasers with

common external noise are caused by the stochastic d bifur-

cation to the random strange attractor in a single laser with

external noise. Examples of two qualitatively different dy-

namics found for �=3 are shown in Fig. 6 as snapshots of

50 000 trajectories at different times t. In column 6�a�,

nearby trajectories representing independent lasers converge
to the random sink which itself moves randomly in time. In
column 6�b�, the trajectories converge to the random strange
attractor on which they move continuously apart so giving

rise to the fractal-like structure that evolves in time.

To establish persistence of the stochastic d bifurcation in

various laser designs we studied the largest LE in depen-

dence on � and two other laser parameters, namely, photon

and carrier decay rates. Typically, a curve of the largest LE

plotted versus Dext in Fig. 7 has two local minima and

maxima. The first maximum has positive largest LE across a

wide range of photon �Fig. 7�b�� and carrier �Fig. 7�c�� decay

rates provided that � is large enough �Fig. 7�a��. Therefore,

bifurcation to random strange attractor is expected in most

FIG. 6. The two different types of dynamics found in a single

laser with external noise are shown as snapshots of 50 000 trajec-

tories at different times t in the projection onto the complex E

plane. The left column �Dext=0.1� shows convergence to a random

sink and the right column �Dext=0.5� shows convergence to a ran-

dom strange attractor; �=1 and �=3. At t=0, the initial points are

evenly distributed on the ellipse �ER
/2�2+ �2EI�2=1, N=0.

10
�3

10
�2

10
�1

10
0

10
1

10
2

10
3

10
4

�40

�30

�20

�10

0

10

20

10
�3

10
�2

10
�1

10
0

�0.4

�0.2

0.0

10
�3

10
�2

10
�1

10
0

10
1

10
2

10
3

10
4

�40

�30

�20

�10

0

10

10
�3

10
�2

10
�1

10
0

�1.2

�0.8

�0.4

0.0

10
�3

10
�2

10
�1

10
0

10
1

10
2

10
3

10
4

�40

�30

�20

�10

0

10

10
�3

10
�2

10
�1

10
0

�0.4

�0.2

0.0

la
rg

es
t

L
ya

p
u
n
ov

ex
p
o
n
en

t
la

rg
es

t
L
ya

p
u
n
ov

ex
p
o
n
en

t
la

rg
es

t
L
ya

p
u
n
ov

ex
p
on

en
t

Dext

(a)

(b)

(c)
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single-mode semiconductor lasers with external optical

noise. Moreover, we found that a random strange attractor

can also be induced by external carrier noise alone �not

shown�, represented by an additional �-correlated random

Gaussian process on the right-hand side of Eq. �2�.

B. Comparison with Hopf normal form

The stochastic d bifurcation uncovered in the previous

section has been reported only in biological systems

�7–9,12,13�, but it should also appear in other noise-driven

limit-cycle oscillators. Here, we use the laser model in con-

junction with the Hopf normal form to contribute to a better

understanding of this phenomenon. Specifically, we address

its dependence on the three parameters: Dext, �, and �. With

an exception of certain approximations �9�, this general prob-

lem is beyond the reach of analytical techniques and so nu-

merical analysis is the tool of choice.

To identify effects characteristic to our particular laser

model, we first consider the normal form of a Hopf bifurca-

tion with amplitude-phase coupling and additive white

Gaussian noise �30�

dz

dt
= �� + i�1 − ��� − �z�2��	z − z�z�2 + fext�t� , �8�

where z�C and fext�t� is defined by Eqs. �6�. If fext�t�=0, the

system has an equilibrium for all values of �. This equilib-

rium is stable if �	0 and unstable if ��0. Moreover, there

is a stable limit cycle if ��0 that is born via Hopf bifurca-

tion at �=0. The �higher-order� term i���− �z�2�z represent-

ing amplitude-phase coupling does not affect topological

properties of Eq. �8� if fext�t�=0. Therefore, this term does

not usually appear in the Hopf normal form. However, if

fext�t��0, this term has to be included since its omission

would give a system that is not topologically equivalent to

Eq. �8�.
Figures 8 and 9 show the dependence of the noise-

induced d bifurcation on �, Dext, and � in Eq. �8�. In the

three-dimensional parameter space, the two-dimensional sur-

face of d bifurcation has a ridge at �min
5.3 and appears to

be asymptotic to �
9 with increasing Dext �Fig. 9�. Further-

more, numerical results in Fig. 9 suggest that the shape of the

d-bifurcation curve in the two-dimensional section �Dext ,��
is independent of �. As a consequence, for fixed � within the

range 5.3���9 one finds two d-bifurcation curves �Fig. 8�
parametrized by

� = C1,2����2Dext, �9�

and bounding the region of noise-induced chaos in the

�Dext ,�� plane. Since C1��min�=C2��min�=1, these two

curves merge into a single curve

� = �2Dext �10�

and the chaotic region disappears from the �Dext ,�� plane

when �=�min. For ��9, one finds only one bifurcation

curve in the �Dext ,�� plane, hence the chaotic region remains

unbounded on the right-hand side �Fig. 9�. Finally, the sto-

chastic d bifurcation appears to originate from the half line

�Dext=0, �=0, ��5.3� of the deterministic Hopf

bifurcation.

Similar results are expected for any noise-driven Hopf

oscillator with amplitude-phase coupling, at least in the limit

of small �. This is because near to Hopf bifurcation such

systems can be reduced to Eq. �8� using center manifold

theory �30�. In particular, the deterministic part of Eqs. �1�
and �2� can be reduced to
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1

��

dE

dt
= �� + i� �

��
− ��� − �E�2���E − E�E�2

on the two-dimensional invariant center manifold

Wc = ��E,N�: N = � − �E�2	 .

After rescaling time t̃= t�� and detuning �̃=� / ����, one

obtains an approximated model of a single laser with exter-

nal signal

dE

dt̃
= �� + i��̃ − ��� − �E�2��	E − E�E�2 + fext�t̃� , �11�

that is identical to Eq. �8� if �̃=1. For the rescaled time t̃, the

external-signal correlations become

�fext
R �t̃�fext

R �t̃��� = �fext
I �t̃�fext

I �t̃��� =
Dext

��
��t̃ − t̃�� .

These theoretical considerations are supported with numeri-

cal calculations in Figs. 10 and 11. For a fixed �, Eq. �8� and

Eqs. �1� and �2� give identical results if the external noise is

weak enough but significant discrepancies arise with increas-

ing noise strength. First of all, it is possible to have one-

dimensional sections for fixed �, as those in Fig. 7, with two

uplifts of the largest LE to positive values �black dots for

�	10−6 in Fig. 10�. Second, the chaotic region in Eqs. �1�
and �2� expands toward much lower values of �. Third, in

the full laser model the shape of the two-dimensional surface

of d bifurcation becomes strongly dependent on � �distorted�
and has a minimum rather than a ridge. As a consequence,

although the stochastic d bifurcation seems to originate from

the half line �Dext=0, �=0, ��5.3� of the deterministic

Hopf bifurcation, it will appear only as a closed and isolated

curve away from the origin of the �Dext ,�� plane if 1��

�5.3 �Fig. 10�. Finally, the laser chaotic region remains

bounded within a finite range of Dext even for large �.

The onset of discrepancies between Eq. �8� and Eqs. �1�
and �2� coincides with changes in transient dynamics toward

the limit cycle �the “on” state� of the noise-free laser. Be-

cause the laser limit cycle is an S
1 group orbit, it can be

transformed to a circle of nonhyperbolic �neutrally stable�
equilibria by setting �=0 in Eq. �1�. Floquet exponents of

the laser limit cycle are then calculated analytically as eigen-

values of one of the �infinitely many� equilibria. Specifically,

if 0	�	 �4��1−�1−1 / �2���−1	�−1
9�10−5, the over-

damped limit cycle has three real Floquet exponents

�1 = 0, �2,3 = − a � b , �12�

and if �� �4��1−�1−1 / �2���−1	�−1
9�10−5 the under-

damped limit cycle has one real and two complex-conjugate

Floquet exponents

�1 = 0, �2,3 = − a � ib , �13�

where a=−
1

2
�1+����0 and b=��a2−2�����0. In the

laser literature, the oscillatory relaxation found for �
�9�10−5 is called relaxation oscillation. �Note that in dy-

namical systems the term relaxation oscillation is usually

used to describe a completely different phenomenon of self-

sustained oscillations of slow-fast nature.�
To unveil the link between the transient dynamics and the

stochastic bifurcation, we plot � versus the real parts of the

nonzero Floquet exponents or LEs in Fig. 12; note that Flo-

quet exponents and LEs are related by LEi=Re��i�. A com-

parison between Figs. 8, 10, and 12 shows strong correlation

between the type and rate of relaxation toward the limit cycle

in the noise-free system and the shape of the noise-induced d

bifurcation. In the deterministic Hopf normal form �8�, the

linear relation �=−�2 /2, between � and the nonzero Flo-
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FIG. 10. �Color online� The stochastic d bifurcation in laser with

no spontaneous emission noise and with external noise �equations
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quet exponent �2 �dashed line in Fig. 12�, results in a linear

parametrization �9� of the d bifurcation curves in the

�� ,�2Dext� plane �Fig. 8�. In the deterministic laser system

�1� and �2�, the nonlinear relation �12� and �13� between �
and the nonzero Floquet exponents �2,3 �solid curves in Fig.

12� results in a very similar nonlinear parametrization of the

d-bifurcation curves in the �� ,�2Dext� plane �Fig. 10�. The

splitting up of the chaotic region bounded by the black dots

at low � �Fig. 10� is related to two different time scales of

transient dynamics along the two eigendirections orthogonal

to the limit cycle �the corresponding two real Floquet multi-

pliers are shown by the solid curve in Fig. 12�. Finally, the

appearance of oscillatory relaxation in the laser system is

associated with a significant expansion of the chaotic region

toward small �.

We remark that this section neglected the intrinsic noise to

numerically study some universal features of the stochastic d

bifurcation. In a real semiconductor-laser experiment one has

to deal with the intrinsic spontaneous emission noise which

is typically comparable to �Dext / �����0.0045.

V. NOISE-INDUCED STRANGE ATTRACTORS

Complicated invariant sets, such as strange attractors, re-

quire a balanced interplay between phase-space expansion

and contraction �30�. If phase-space expansion in certain di-

rections is properly compensated by phase-space contraction

in some other directions, nearby trajectories can separate ex-

ponentially fast �positive LE� and yet remain within a finite

subset of the �infinite� phase space. Figure 13 uses Eqs. �1�
and �2� to illustrate how the interplay between phase-space

expansion and contraction near a stable limit cycle can pro-

duce fold-and-stretch action which is responsible for the for-

mation of a strange attractor. If �=1, the stable limit cycle is

given by ��E0�2 ,N0�= �1,0�. At time t=0, the entire cycle is

perturbed to the shape of an ellipse with �ER
/ P�2+ �PEI�2

=1, N=0; the perturbation has to be nonconstant along the

cycle �S1 breaking�. If �=0, the perturbed set always relaxes

back to the cycle with no stretching or folding �Figs. 13�a�
and 13�b��. However, if ��0, the phase-amplitude coupling

makes the perturbed points with �E��1 rotate faster than the

points with �E�	1, hence, giving rise to stretching along the

cycle �Figs. 13�c� and 13�e��. In particular, for any ����0

there is a sufficiently large perturbation P such that the in-

terplay between stretching along the cycle and concurrent

attraction toward the cycle produces noticeable folds �Figs.

13�d� and 13�f��. Repeating the perturbation having noncon-

stant strength along the cycle at periodic or random time

intervals can give rise to strange attractors �13�. A rigorous

proof of strange attractor formation in periodically perturbed

limit-cycle oscillators with amplitude-phase coupling is

given in Ref. �31�.
In contrast to discrete-time perturbation �31�, white noise

is a continuous-time perturbation and may have different ef-

fects. First of all, we demonstrated that purely additive noise

is sufficient to induce random strange attractors. Further-

more, numerical analysis in Sec. IV B shows that noise-

induced strange attractors require a different balance be-

tween the amount of amplitude-phase coupling, rate of
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relaxation toward the limit cycle, and strength of external

perturbation. Unlike in the case of discrete-time perturbation,

amplitude-phase coupling has to be strong enough ����
� ��min��0� to allow sufficient stretch-and-fold action and

��min� does not depend on the external-noise strength. Fur-

thermore, provided that the amplitude-phase coupling is

strong enough, the external-noise strength needs to be at

least comparable to the relaxation rate toward the limit cycle

to allow formation of random strange attractors. Often,

noise-induced strange attractor exists within a finite interval

of the external-noise strength bounded by two stochastic d

bifurcations �see also Refs. �8,9��. Finally, different relax-

ation rates toward the limit cycle associated with different

eigendirections may give rise to more than one parameter

interval with noise-induced strange attractor.

The above considerations help to explain intuitively find-

ings in Sec. IV B, in particular, the chaotic region expansion

associated with a change in the type of relaxation toward the

limit cycle. For ��10−1, Eqs. �1� and �2� and Eq. �11� have

nearly identical relaxation time scales toward the limit cycle

�Fig. 12�. However, despite identical amplitude-phase cou-

pling �, they show different dynamics along the limit cycle.

Owing to one additional degree of freedom and oscillatory

relaxation �13� in the laser system, the instantaneous stretch-

ing along the limit cycle in the vector field �1� and �2� can be

much stronger compared to the vector field �11�, especially at

short times after the perturbation. This effect is illustrated by

the time evolution of the phase difference between two tra-

jectories starting at different isochrones for �=3 in Fig. 14.

In both vector fields, the phase difference approaches the

same limit value at large t. However, at small t, the oscilla-

tory phase difference of Eqs. �1� and �2� exceeds signifi-

cantly the monotonically varying phase difference of Eq.

�11� �compare Figs. 13�c� and 13�e� as well as solid and

dotted curves in Fig. 14�. We conjecture that the enhance-

ment in the stretch-and-fold action arising from laser’s relax-

ation oscillation results in a smaller �min required to induce

chaos for given �.

VI. CONCLUSIONS

This paper uses semiconductor-laser rate equations in

conjunction with normal form of Hopf bifurcation to study

noise-induced synchronization and chaos in limit-cycle oscil-

lators with amplitude-phase coupling.

While external white optical noise can induce synchrony

in an ensemble of uncoupled and intrinsically noisy lasers,

the parameter region with synchronous dynamics becomes

interrupted with an interval�s� of asynchronous dynamics if

the amplitude-phase coupling is sufficiently large. Stability

analysis shows that synchronous solution of the whole en-

semble loses stability via stochastic d bifurcation to a ran-

dom strange attractor in a single noise-driven laser. We per-

formed systematic study of this bifurcation with dependence

on the three parameters: the Hopf bifurcation parameter �la-

ser pump�, the amount of amplitude-phase coupling �line-

width enhancement factor�, and the external-noise strength.

In this way, we uncovered a vast parameter region with

purely noise-induced chaos not observed in optical systems

to date. Furthermore, we contributed to the better under-

standing of synchronization-desynchronization transition in

noise-driven oscillators.

More specifically, in the three-dimensional parameter

space, the two-dimensional surface of the stochastic bifurca-

tion originates from the half line of the deterministic Hopf

bifurcation. In the plane of external-noise strength and Hopf

parameter, one finds stochastic bifurcation curve�s� if the

amplitude-phase coupling is strong enough. The shape of

these noise-induced bifurcation curves is determined by the

type and rate of the relaxation toward the limit cycle in the

noise-free system. As a consequence of center manifold

theory, at low external noise the stochastic bifurcation

curve�s� are expected to follow numerically observed square-

root law �9� in all noise-driven Hopf oscillators. However,

for high external noise one expects deviations from this law.

Deviations arise because different systems experience differ-

ent effects of higher-order terms and additional degrees of

freedom on the relaxation toward the cycle. In the laser ex-

ample, the parameter region with random strange attractor is

in perfect agreement with the result obtained from the Hopf

normal form provided that the external noise is sufficiently

low. However, the laser’s chaotic region becomes signifi-

cantly distorted as the external noise increases: it splits up at

lower external noise and expands toward smaller amplitude-

phase coupling at higher external noise. We intuitively ex-

plained this result by demonstrating how the appearance of

damped relaxation oscillation toward the laser limit cycle

can greatly increase phase-space stretching and folding

which are necessary for creation of a chaotic attractor.
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