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Abstract

Finding communities in complex networks is a challenging task and one promising approach

is the Stochastic Block Model (SBM). But the influences from various fields led to a diversity

of variants and inference methods. Therefore, a comparison of the existing techniques and

an independent analysis of their capabilities and weaknesses is needed. As a first step, we

review the development of different SBM variants such as the degree-corrected SBM of Kar-

rer and Newman or Peixoto’s hierarchical SBM. Beside stating all these variants in a uniform

notation, we show the reasons for their development. Knowing the variants, we discuss a

variety of approaches to infer the optimal partition like the Metropolis-Hastings algorithm.

We perform our analysis based on our extension of the Girvan-Newman test and the Lanci-

chinetti-Fortunato-Radicchi benchmark as well as a selection of some real world networks.

Using these results, we give some guidance to the challenging task of selecting an inference

method and SBM variant. In addition, we give a simple heuristic to determine the number of

steps for the Metropolis-Hastings algorithms that lack a usual stop criterion. With our com-

parison, we hope to guide researches in the field of SBM and highlight the problem of exist-

ing techniques to focus future research. Finally, by making our code freely available, we

want to promote a faster development, integration and exchange of new ideas.

Introduction

The approach of modeling systems as complex networks has spread into various disciplines

from sociology over physics to engineering. The most simple form of a complex network con-

sists of nodes and edges, where nodes represent the viewed elements and edges the relation-

ships between them. Based on this model, various analyses such as the determination of node

centralities or the robustness of the complete system can be performed easily.

One aspect of particular interest is to determine elements with similar properties based

on the observed and modeled relationships. Examples range from groups of friends, which

attracted attention since the beginning of this research field [1], to more recent works such

as grouping regions of the brain [2]. Since there are numerous applications possible, many
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approaches exist for the detection of these so called clusters or groups. For a more general

overview of clustering methods we recommend the review of Fortunato [3]. In this publica-

tion, we focus solely on the Stochastic Block Model (SBM) because this model is unlike others

based on a generative formulation. The result of a SBM inference is not only a partition, but

also a description of the relationship between the inferred groups. This formulation allows,

for example, the prediction of links [4–6]. Moreover, the described structure is not limited to

assortative structures with more links inside the groups than between groups. Many other

approaches are based on the assumption of assortative structures [7]. As we show in Fig 1,

the SBM is able to create and describe a wide variety of different structures, whereas most

approaches would be only capable to identify one kind. Young et al. showed algorithms that

aim to find a partition of nodes that maximizes an objective function, such as minimum cuts

or core-periphery, are just special cases of restricted SBMs [8].

Though, the simple formulation of the most basic SBM variant has attracted many authors

to propose their own variants of the model, which often include a specific inference algorithm

or strategy. But the different approaches were often compared to one basic SBM variant or

even to other more limited approaches like modularity maximization. Therefore, our goal is

to review the work that has already been done by other authors and compare both different

SBM variants and inference algorithms independently. This comparison, in combination with

the publication of our open-source code [9], is supposed to give newcomers and experts an

easier application of different SBMs or the development of new approaches, be they models or

algorithms.

Our comparison is based on the method of the well-known Lancichinetti-Fortunato-Radic-

chi (LFR) benchmark [10] and extends its set of test cases with a selection of real world net-

works and older test suites like the Girvan and Newman (GN) test [11]. Due to the usage of

these established frameworks, we enable the comparison of our results with existing bench-

marks of clustering methods [12, 13]. In contrast to these works, we investigate the separate

effects of model variants and inference algorithms.

To arrange our work in the general context of community detection, we want to highlight

some findings of these general comparisons as well as important general results. Peel et al.

proved an approximate variant of a No Free Lunch theorem for community detection [14],

which has many practical and theoretical implications. Roughly speaking, their results mean

a)

b)

c)

d)

Fig 1. General structures and their representation as a standard SBM. The standard SBM is represented as a block
matrix with the probabilities visualized in a grey-scale. a) assortative structure b) disassortative structure c) core-
periphery d) hierarchy.

https://doi.org/10.1371/journal.pone.0215296.g001
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every community detection algorithm has equal performance, if the results are averaged over

all possible community detection problems. As long as we restrict the subset of cases, methods

can still outperform others. For a further discussion of the implication of the results, we refer

to Peel et al. [14] or Ghasemian et al. [15]. Another point criticized by Hric et al. [16], that was

studied more deeply by Peel et al. [14] is the differentiation between metadata of real networks

and planted partitions of artificial networks. In a nutshell, the structural description given by

metadata does not match well with the more topological definition of clusters used in the pres-

ent community detection algorithms. Taking these results into account, we concentrate our

analysis on the LFR benchmark and the GN test, which both restrict the subspace of cases as

well as to avoid the problem of real network metadata with artificial networks with known

planted partitions. For these kind of artificial networks some bounds are known to which the

planted partition should be completely retrievable or the inferred partition should at least cor-

relate with the planted one [17–21].

In a contrary approach, Ghasemian et al. evaluated a total of 16 community detection algo-

rithms, of which nearly half are based on the SBM approach, on 406 real networks and evalu-

ated the results without metadata. A major difference is however that they calculated the

performance for the link prediction task and another measure, which they called link descrip-

tion [15]. This review brings new insights into the quality of the different approaches’ results.

Yet, the authors require for each community detection method a assessment of all possible

edges based on the inferred partition and they do not differentiate the effects of the proposed

model and the algorithm. As we will see below, models can miss to reach their optimal results

simply because their corresponding algorithm is not able to retrieve it. In the other extreme

Yang et al. made a review of general clustering methods only on artificial networks, which

resulted in a decision tree to support the selection of a community detection method based on

number of nodes and mixing parameter [13]. The approach of Lancichinetti and Fortunato

was similar. They used their proposed framework to execute some algorithms aiming to high-

light the advantage of their benchmark [12]. But similar to studies like [22], the recent develop-

ments in the field of SBM were not included. Other authors concentrated their reviews on the

selection of either the number of clusters or the decision between competing variants [2, 23–

25]. These comparisons usually take only very few variants into account and usually come

along with their own, new and most suited approach for this challenge. The most similar publi-

cation to our work was done by Zhang et al. [26]. They compared spectral clustering to expec-

tation maximization with naive mean field and belief propagation as inference algorithms for

the basic SBM. Additionally, Young et al. differentiated between objective function and maxi-

mizer, i.e. the algorithm used to maximize the objective function [8]. Though, they focused on

constructing a hierarchy of objective functions of SBM and other approaches.

So comparisons of clustering detection methods are available and concentrate on different

aspects with various measures and test networks. But a joint analysis and comparison of SBM

variants and inference algorithms is still missing. Therefore, we try to study the effects of dif-

ferent choices on the results of the community detection problem.

Before presenting the SBM variants in detail, we give an overview of the development in

this field and provide some additional rationale. A more exhaustive introduction into the topic

of SBM can be found in [27], where Peixoto explains his microcanonical formulation from the

most basic variant of SBM up to his hierarchical version. Another noteworthy overview from

Abbe [28] focuses more on recovery thresholds and the theoretical properties of different

approaches. The first SBM was developed in social sciences to study social networks and com-

bine the benefits of block models like [29] and stochastic models [1]. The aim was to under-

stand the principles behind the formation of ties between individuals. The authors of this first

model assumed that the partition of the individuals is given a priori via additional attributes.

Stochastic block models: A comparison of variants and inference methods
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To drop this assumption, Wasserman and Anderson proposed different methods to infer an

optimal partition [30].

After this early development, the importance of networks in a variety of research fields

from biology via physics to engineering emerged [31]. Once more community structures

were observed and methods were needed to detect and describe these structural information.

Together with a vast progress in available computational power, this led to the development

and application of different new and old approaches including the SBM [3]. With the facili-

tation of the execution and processing of larger graphs, several disadvantages of the first

approaches were detected and fixed by extending the SBM.

One of the most prominent enhancement was provided by Karrer and Newman, who

offered a solution for the application of the SBM to complex networks with a broader degree

distribution [32]. This made the SBM applicable to many real world networks, which, like the

research of small-world and scale-free networks has shown, are often characterized by broad

degree distributions [33]. Additionally, this work created new momentum for the research of

SBM.

Peixoto, another noteworthy author, created and developed his microcanonical view on the

SBM, where, roughly speaking, edge probabilities are replaced by a fixed amount of edges [2,

27, 34–39]. His work covers most of the present SBM variants and is available in form of the

graph-tool module, a C++ based python package.

The majority of publications presenting new SBM variants follow a similar pattern: the

model is applied to real networks to show the benefits of the specific extension. In some cases

like the extension of SBM to weighted graphs, the extension is motivated by a certain set of

real networks [39, 40]. Other works concentrate on the inferred community structure and its

interpretation for a specific real world network, such as financial networks [41, 42], gene net-

works [43–45] and others [46–49]. Another field of application of the inferred structural infor-

mation is the prediction of unobserved or missing edges or nodes [4, 5, 50, 51]. Beside the

research with a focus on applications or new models, other authors aim to prove information

theoretic theorems like detection thresholds for the planted partition [17–21]. For the planted

partition model with its simplified group structure, Newman has shown the equivalence

between maximizing the likelihood of SBM and maximizing a generalized modularity func-

tion, another widely used heuristic method [7]. Keeping this big picture in mind will help to

understand and sort the following SBM variants.

Variants of SBM

At first we want to take a look at the different variants of SBM in order to cover the major

approaches used for application. We divide the variants into the well-established classic mod-

els and more recent extensions. We explicitly omit approaches with a focus in the information

theoretic field.

Each variant section is structured into a motivation for the development of the specific vari-

ant, a general description, which highlights the advantages of this variant with some examples,

and theory with the likelihood functions. The models will be stated for undirected networks

with self-loops. The directed cases, if available, are included in our implementation as well.

Classic models

The regular SBM and the degree-corrected SBM of Karrer and Newman are the most used var-

iants of SBM [32]. Both models share the fact that they require the knowledge about the actual

number of clusters K in the network. For simplicity, we initially assume, that this number is

given a priori, and in the last section we describe means to retrieve this number from the data.

Stochastic block models: A comparison of variants and inference methods
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To allow a clear distinction of any SBM variant and the SBM with no addition, we call the

model described in the next section the standard SBM.

Standard SBM. The standard SBM originates in social sciences and was developed to

describe group structures in friendship networks [1, 30]. As a combination of the strict block

model with a stochastic element, it was able to deal with imperfect group structures and noise

of real world networks. The standard SBM does not only determine the likelihood of a specific

group structure belonging to a certain network. The model is based on a generative model,

which enables the user to generate other network instances from a given structure or allows

the prediction of missing edges [4–6, 50, 51]. Moreover, the SBM is capable to describe any

kind of group structure. Olhede andWolfe developed network histogram based on SBM as

universal representation of interactions in networks [52]. An overview of selected structures

and their representation as a standard SBM is displayed in Fig 1.

The basic idea of the standard SBM is that the neighborhood relations of each node only

depend on the probabilities given by the group memberships. Roughly speaking, the nodes are

clustered in a way so that the neighbors of nodes in a group have a similar neighbor pattern as

well. This idea becomes clearer if we first take a look at the generative model included in the

SBM and then describe the reverse process of SBM inference from a given network.

Generative model. To explain the generative model of the SBM, we assume all model

parameters are given. For the standard SBM in its most simple formulation the model parame-

ters are the group structure b = b1, . . ., bK, which assigns each node to a single group br, and

the edge probabilities ω. To create one realization of these parameters, for each node pairing

their respective group assignment and the corresponding edge probability is retrieved. Then,

the edge probability is evaluated and depending on the result edges are added to the network.

For example an edge between a node i in group r and a node j in group s is created with proba-

bility

Pði ! jÞ ¼ Pðr ! sÞ ¼ ors:

The standard SBM is a kind of two step Erdős-Rényi model, where first the nodes are

assigned to groups and then the edges between two groups as well as inside the group are cre-

ated in a Erdős-Rényi random fashion with the respective probability given by the edge proba-

bility matrix.

With the knowledge of the generative model the relationship between the edge probability

matrices and the network realizations in Fig 1 are clearer. Yet, solely based on the given param-

eter the generation process can create very different networks based on the underlying random

process. Similar to the Erdős-Rényi model, if all entries of the edge probability matrix are in

the open interval (0, 1), then all networks with the given numbers of nodes can be created.

But, given specific parameters, the likelihood of that a network was generated based on these

parameters can be easily calculated. For the later inference task it is more important that the

likelihood of the parameters given a network can be calculated, too. Fixing either a network or

a set of parameters results in a probability distribution of the other space. This duality between

networks and sets of parameters is the starting point of the inference task.

Theory. The main inference task of all SBM variants is either to sample from the probabil-

ity space of parameters or to approximate the optimal set of parameters. In both cases, the like-

lihood of a set of parameters is needed.

Before we start stating and explaining any likelihood functions, we adjust the above stated

generative model. In the description of the generative process, a Bernoulli distributions is used

to decide whether an edge is created or not. Some of the early works are based on these model

Stochastic block models: A comparison of variants and inference methods
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[1, 53]. For completeness, we state one of the likelihoods based on the Bernoulli distribution,

before turning to the Poisson distribution, which is easier to handle.

First we need some basic notation. Let G = (V, E) be a graph with |V| = N nodes and

|E| =M edges. The aim is to find a partition b = b1, . . ., bK of the nodes into K groups, i.e.

each node is in exactly one of the br or in other words [rbr = V and br \ bs = ; for all
r, s 2 {1, . . ., K}. For the formulation of Snijders et al. [53], we need in addition a stochastic vec-

tor ~b ¼ f~b
1
; . . . ; ~bKg, where ~br is the likelihood of a node belonging to group r, and the likeli-

hoods for edges between the groups ω = (ωrs)r,s = 1K. With this the likelihood is (see Eq (2) in

[53])

PðG; bjo; ~bÞ ¼ ~b
n1
1 � � � ~bnK

K

Y

r�s
oers

rs ð1� orsÞnrs�ers ð1Þ

where nr is the number of nodes in group r, i.e. nr = |br|, and

nrs ¼
(

nrns if r 6¼ s

nrðnrþ1Þ
2

if r ¼ s

is the number of possible edges between group r and group s. Further, we denote

ers ¼
1

1þ drs

X

i node of group r;

j node of group s

Aij

as the number of edges between group r and s with A = (Aij) as the adjacency matrix of G and

the Kronecker delta δrs = 1 for r = s and 0 for r 6¼ s. With this formulation, one can directly see

the general structure of SBM. The likelihood in Eq (1) splits into a first part representing the

likelihood of node partition and the product over all pairs of groups and a second part corre-

sponding to the likelihood of all edges. The last part of this equation not only takes existing

edges into account, but also non existing edges.

For calculations, a Poisson distribution is easier to handle and because this is the basis of all

extensions, we focus on this formulation. With this, a created network can now have multiple

edges between two nodes. This fact is usually neglected, because the edge probabilities are

often small or, like in other randommodels, one can simply replace any multiple edge with a

single edge. With the assumption of a Poisson distribution, Karrer and Newman deduced

L
KN

t ðGjbÞ ¼ 1

2

X

rs

ers log
ers
nrns

� �

; ð2Þ

which they called the unnormalized log likelihood for the group assignment b(see Eq (6) in

[32]). In contrast to the original formulation of Eq (2), we include the multiplicative constant

of½, because this changes the place of the maximum during model selection. To retrieve

Eq (2), the authors used a maximum likelihood estimation for the edge probabilities ω and

neglected all terms which do not depend on the parameters of the SBM. In this formulation

b is a partition of the nodes into groups, i.e. b = {b1, . . ., bK} is a set of disjoint subsets of the

node set with [rbr = V.

Another formulation of the SBM is more driven by combinatorics. It replaces the evaluation

of a probability distribution for each edge with the distribution of a certain amount of edges

between the nodes of each pair of groups. This is similar to the two possible formulations of

the Erdős-Rényi model. The first one is like the variants described above and regard an Erdős-

Rényi graph as G(N, p), where p is the edge probability with p 2 (0, 1), and each possible

Stochastic block models: A comparison of variants and inference methods
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network has a specific probability depending on p. The alternative formulation exchanges the

edge probability p with a fixed number of edgesM and thus regard as Erdős-Rényi graph as

G(N,M), where an instance is uniformly chosen from all graphs with exactly N nodes andM

edges. These two formulations are also available for most SBM parameters.

An author who focuses on the latter is Peixoto, who calls this formulation of the SBM the

microcanonical version of SBM. In [34] he deduced for the standard SBM

L
P

t ¼ � 1

2

X

rs

nrnsH
ers
nrns

� �

; ð3Þ

with the binary entropy functionH(x) = −x log(x) − (1 − x) log(1 − x) and proposed for sparse

graphs the approximation

L
P

t;sparse ’ �M þ 1

2

X

rs

ers log
ers
nrns

� �

; ð4Þ

which has the same optima as Eq (2). In Eqs (3), (4 and (6) we assume, that each graph in the

ensemble has the same probability [34], and give the likelihoods of the entropies, which were

originally stated by Peixoto.

Degree-corrected SBM. Once we have established the standard SBM, we can concentrate

on the first expansion, which is so widespread that we consider it one of the classic variants.

The standard SBM has the advantage of no limitation in the kind of inferred community struc-

ture. But the resulting group structure is limited in the variety of node degrees within each

group [32]. Since many real world networks possess broad degree distributions like the scale

free graphs, this fact hinders the application. To overcome this restriction, Karrer and New-

man have developed the degree-corrected SBM [32].

In a recent publication, Newman proved the equivalence of a restricted version of degree-

corrected SBM inference and modularity optimization, that is another widely used method in

community detection [7]. The maximum likelihood method of the degree-corrected planted

partition model, a restricted variant of the degree-corrected SBM, is equivalent to optimization

of a generalized modularity.

The idea behind the degree-corrected SBM is that a new parameter θ = {θ1, . . ., θN} is intro-

duced, which controls the expected degree of each node. Before we take a look at how this

parameter is included in the generative model or the resulting likelihood function, we want to

highlight the advantages with some examples. In Fig 2 we can see a typical example of a local

optimum of the standard SBM, where the nodes with similar degree are grouped into the same

block. The results of the degree-corrected SBM show a much broader degree distribution

inside inferred blocks.

Theory. Knowing the improvement introduced by the degree correction, the new param-

eter θ needs to be included in the model. In the standard SBM the likelihood of an edge

between two nodes i and j of two distinct groups r and s is given by

Pði ! jÞ ¼ Pðr ! sÞ ¼ ors:

The degree-corrected model allows heterogeneity inside each group and the likelihood to

observe at least one edge between the same nodes is in the degree-corrected case

Pði ! jÞ ¼ 1� expð�yiyjorsÞ for i 2 br; j 2 bs and r 6¼ s:

Stochastic block models: A comparison of variants and inference methods
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The likelihood function formulated by Karrer and Newman is

L
KN

c ¼
X

rs

ers log
ers
eres

� �

; ð5Þ

where er = ∑s ers the total number of edges with nodes of block r (see Eq (23) in [32]). The

microcanonical variant of the degree-corrected SBM is approximately according to Peixoto

(see Eq (40) in [34])

L
P

c ’ M þ
X

k

Nk logðk!Þ þ
1

2

X

rs

ers log
ers
eres

� �

; ð6Þ

whereNk is the number of nodes with degree k and is beside a constant and multiplicative factor

identical to (5) derived by Karrer and Newman. These differences do not change the optima for

fixed number of groups, but influence the optima of the following model selection methods.

Selecting the number of groups. A challenge both of these classic variants of SBM share,

is the requirement of the a priori knowledge about the actual number of groups. Simply mini-

mizing one of above likelihood functions (2–6) would result in assigning each node to a differ-

ent block. Different approaches to solve this problem are available and most approaches split

the inference process into two steps. They first retrieve the optimal community structure for

different numbers of groups and then penalize the calculated likelihood values depending on

the used number of groups or more generally the number of parameters used by the model.

We will present a selection of available methods and will later test the techniques in the analy-

sis section. If not stated, all penalty functions will be added to the original likelihood and the

new extreme is the optimal solution.

One example for such an approach is the minimum description length (MDL) described by

[35, 37]. The penalty function of Peixoto (see Eq (9-10) in [37]) is

MDLt;Peixoto ¼ log
K

N

� �� �

þ logN!�
X

r

log nr!þ log
KðK þ 1Þ

2

M

0

B

@

1

C

A

0

B

@

1

C

A

Fig 2. Visualization of a complex network with three partitions, the result of standard SBM and degree-corrected

SBM as well as the metadata. The networks are drawn by ordering the nodes by degree with the highest at the top and
splitting the nodes according to the knownmetadata into two sets. The color of each node represents the membership
to one of the two groups given by the partition of the respective column. Below the network graphics, the degree
distribution is colored according to its partitions. Each node represents a bar with the height of its degree and the color
of its group.

https://doi.org/10.1371/journal.pone.0215296.g002
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for the standard SBM and

MDLc;Peixoto ¼ MDLt;Peixoto �
X

r

nr

X

i

pri log p
r
i

for the degree-corrected SBM. The degree distribution of block r is notated with ðpri Þ and
ð n

k

� �

Þ ¼ nþk�1

k

� �

is the multiset coefficient, which can be calculated using the binomial

coefficient.

Another well known criterion is the Akaike information criterion (AIC; [54]), which is in

general

AIC ¼ � 2 logðmaximum likelihoodÞ
þ2ðnumber of independently adjusted parameters within the modelÞ:

The number of independently adjusted parameters is unclear for the SBM and its variants, like

discussed in [24]. For the standard SBM we choose the sum K(K + 1)/2 for the edge probability

matrix ω and K for the node partition as value for the number of independently adjusted

parameters. For the degree-corrected model we add K parameters for the degree distribution

inside each group, i.e. we assume the node degrees are separately sampled from a distribution

for each group before the creation of edges. Another choice would be adding N free parameters

one for the degree of each node, which would be negligible for the selection between two

competing results. This criterion is widely applied in statistics, but lacks some theoretical

requirements and justification for the case of SBM. Especially for sparse graphs the required

precondition, that the likelihood becomes asymptotically normal in the limit of enough data, is

not true [23]. As we will see in the experiments, the AIC has the tendency of overfitting, i.e.

selecting too many groups. Still some authors use it together with the Bayesian information

criterion (BIC; [48]).

The last tested approach is from the Bayesian context, the BIC, and following Yan we have

BIC ¼ �2 log likelihoodþ KðK þ 1Þ
2

logðN3Þ

for the standard SBM and

BIC ¼ �2 log likelihoodþ KðK þ 1Þ
2

logðN3Þ þ 2 logðNÞ

for the degree-corrected SBM [55].

Further criteria used together with SBM variants are the integrated complete likelihood

(ICL) by Daudin et al. [56], node degree gaps [57], variational Bayesian approaches [58], spec-

tral based approaches [59], cross validation [24, 60] and ensemble methods [61].

Beside the selection criterion, an efficient way to test different values is needed. Under the

assumption that the total of selection criterion and likelihood is an unimodal function, i.e. has

a single extreme, we can apply search methods like golden-section search or Fibonacci search

to reduce the number of tested values. With this the classical SBM variants are completely for-

mulated and just need an inference method to be applied to any network.

Extensions

With the knowledge of the SBM basics, we want to take a look at further extensions, which

deal with a wide range of challenges like weighted graphs or the detection of smaller groups.

Models including number of groups. The inference process described above is inefficient

in the sense that the second step of selecting the correct number of blocks multiply the
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complexity with a factor of at least N log N. To speed up the detection process and include the

selection of the number of groups into the model, some authors refined the SBM and deduced

complete formulas. The natural question, whether the following approaches performs better in

accuracy and/or calculation time, we will answer in the comparison section.

One of the first authors, who achieved this goal, were Côme and Latouche [62] with the

exact integrated complete likelihood (ICL)

ICLexðb;KÞ ¼
X

K

r�s
log

GðZ0

rs þ z
0

rsÞGðZrsÞGðzrsÞ
GðZrs þ zrsÞGðZ0

rsÞGðz0rsÞ
þ logGð

PK

r¼1
n0

r Þ
QK

r¼1
Gðnr þ n0

r Þ
GðPK

r¼1
nr þ n0

r Þ
QK

r¼1
Gðn0

r Þ
; ð7Þ

where Γ is the gamma function and let

Zrs ¼ Z0rs þ ers;

zrs ¼ z
0

rs þ
(

nrns � ers; for r 6¼ s

nrðnr þ 1Þ=2; else

be the pseudo counters for the number of existing and non existing edges between the group r

and s. The constants n0

k , Z
0

rs and z
0

rs are all set to½ or 1 for a non informative Jeffrey prior or a

uniform distribution. Eq (7) is the likelihood of a standard SBM including the number of

groups and similar to (1) it takes with ηrs and zrs the existing and non existing edges into

account.

Newman and Reinert [63] obtained a closed expression for the degree-corrected SBM in

PðK; bjGÞ ¼ PðKÞPðbjKÞPðGjbÞ
PðGÞ ; ð8Þ

where

PðKÞ ¼ 1

N
ð9Þ

PðbjKÞ ¼ ðK � 1Þ!
ðN þ K � 1Þ!

Y

r

nr! ð10Þ

and with p ¼ 2M
N2

Pstandard SBMðGjbÞ ¼
Y

r

err!

1

2
pn2

r þ 1
� �errþ1

Y

r<s

ers!

ðpnrns þ 1Þersþ1 ð11Þ

for the standard SBM or

Pdc SBMðGjbÞ ¼ Pstandard SBM
Y

r;nr 6¼0

ner
r ðnr � 1Þ!

ðnr þ er � 1Þ! ð12Þ

for the degree-corrected SBM. The probability P(G) is unknown but not needed for comparing

partitions and unlike other formulations of the SBM this variant allows empty blocks.

As last flat variant we introduce Peixoto’s microcanonical formulation, which is the basis

for two further variants of the next sections. For the standard SBM the microcanonical formu-

lation of Peixoto [2] yields

Pstandard SBM; PeixotoðG; e; bÞ ¼ PðGje; bÞPðejbÞPðbÞ ð13Þ
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with

PðGje; bÞ ¼
Q

r<sers!
Q

rerr!!
Q

rn
er
r

1
Q

i<jAij!
Q

iAii!!
;

PðejbÞ ¼ KðK þ 1Þ=2
M

� �� ��1

; ð14Þ

PðbÞ ¼
Q

rnr!

N!

N � 1

K � 1

� ��1
1

N
; ð15Þ

where we denoted with (2n)!! = 2nn! the double factorial. The standard SBM does not depend

on the degree sequence k, which is needed in the degree-corrected case. His formula for the

degree-corrected SBM is

PðG; k; e; bÞ ¼ PðGjk; e; bÞPðkje; bÞPðejbÞPðbÞ ð16Þ

with

PðGjk; e; bÞ ¼
Q

iki!
Q

r<sers!
Q

rerr!!
Q

i<jAij!
Q

iAii!!
Q

rer!
;

where ki is the degree of node i. P(e|b) and P(b) are equal to above (14) and (15). The the prob-

ability P(k|e, b) Peixoto gives two choices

Puniformðkje; bÞ ¼
Y

r

nr

er

� �� ��1

; ð17Þ

Puniform hyperpriorðkje; bÞ ¼
Y

r

Q

kN
r
k!

nr!
qðer; nrÞ

�1
; ð18Þ

where Nr
k denoting the number of nodes with degree k in group r and q(m, n) being the num-

ber of restricted partitions of the integerm into at most n parts.

Other approaches, proposing solution to the selection of number of groups, are based

on nonparametric Bayesian model and use the Chinese restaurant process [64] or features

together with the Indian buffet process to solve this task [65]. We did not include these

models in our comparison. A table at the end of this section will list all included SBM variants,

together with a reference to their equation, their authors and the latter used abbreviations.

Hierarchical SBM. Community detection methods often have a known minimum

group size under which the algorithm is not capable to infer statistical significant groups. This

boundary is known as a resolution limit and for the SBM variants described above, the resolu-

tion limit is Oð
ffiffiffiffi

N
p

Þ. Smaller groups are typically merged together with neighboring blocks

and the methods can not retrieve the true community structure. The solution to this, was to

adopt the idea of hierarchical clustering methods like [66] to the concept of SBM.

To allow the detection of smaller groups by lowering this boundary, Peixoto proposed

hierarchical variants of the SBM [2, 37]. The result of an inference of a SBM can be represented

as a multigraph with the groups as nodes and the edges given by the corresponding edges of

the nodes inside each group. The idea of hierarchical SBM is that the multigraph was again

generated by a SBM and with this create a hierarchy of stochastic block models like displayed

in Fig 3.
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To include this extension into the theory, we can adopt the probabilities for the partition

P(b) and the edge counts P(e) in (13) and (16). We now use

PðeÞ ¼
Y

L

l¼1

Y

r<s

nl
rn

l
s

elþ1

rs

� �� ��1
Y

r

nl
rðnl

r þ 1Þ=2
elþ1

rr

� �� �

ð19Þ

and

PðbÞ ¼
Y

L

l¼1

Q

rn
l
r!

K l�1!

K l�1 � 1

K l � 1

� ��1

1

K l�1
; ð20Þ

where L is the hierarchy depth and upper indices indicate specific level, e.g. el ¼ ðelrsÞ is the
(weighted) adjacency matrix at level l. Moreover, we set K0 = N and enforce KL = 1.

The enhancement of the resolution limit we will test in the analysis section against the

model selection of the previous section and the different choices for the classic SBM variants.

With its different levels a hierarchical SBM captures a variety of scales to view the data.

Further extension. Beside the already presented variants of the SBM, researcher have

developed further extensions to cover additional situations like overlapping nodes, valued

edges or time-dependent networks. Here, we only want to give a short insight into these vari-

ants to give a broader overview of available models.

Multiple group assignments. If you think of your own social network, you probably

belong to a number of social groups like your colleagues, your sports club and so on. Applying

the SBM to the network created of your friends and their friendships would probably retrieve

those groups with the exception that you would be assigned to another group, because your

ties do not match with any single group. Placing yourself into all of these groups would

describe the reality in a better way.

Based on this idea, the SBM variants with multiple groups break the strict assignments of

nodes to single groups and allow multiple or partial assignments to groups. To distinguish

Fig 3. The resulting SBM of a graph can be represented as a multi-graph, which contains a node for each block

and the edges between the blocks like in the underlying graph. Based on this representation of a SBM the process of
inference can be iterated by applying the method again to this representation.

https://doi.org/10.1371/journal.pone.0215296.g003
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between multiple binary assignments and multiple partial assignments, the first is usually

referred as overlapping groups and the second as mixed membership [38, 67, 68].

SBM on directed graphs. Another possibility in generalizing the framework of SBM, is to

drop the constraint of undirected graphs and to allow directed networks. Apart from some

exceptions such as [1, 34, 39, 69], most authors assume undirected graphs for simplicity

reasons and do not explicitly specify the formulas of their SBM variant for directed graphs.

Therefore other have extended their concept to the directed case like in [70], where Zhu et al.

generalized the degree-corrected SBM of Karrer and Newman to the directed case. As already

mentioned, we included those generalization and other straight forward generalization in the

same manner for the described SBM variants in our code.

SBM on weighted graphs. The starting point of many complex networks are real phe-

nomena, which often contain additional information about the strength of the connections.

Think for example of capacity in the power network, the number of passengers in the world-

wide flight network or the strength of a friendship in a social network. But simply introducing

a threshold and representing those ties as binary edges would miss important information of

the observed system. Therefore, the SBM was extended again to cover weighted networks, as

well [39, 40, 71].

The basic idea of extending the SBM to weighted networks is based on principle of the stan-

dard SBM. Analog to the edge distribution, the weight distribution of the edges is assumed to

be the same for each pair of nodes between two groups. The research on weighted graphs is

not yet as mature as the general SBM approaches and because this approaches cannot be

directly compared with the other approaches, we only refer to two examples, where implemen-

tations are available.

One of the first authors, who included edge weights or covariates into the SBM are Maria-

dassou et al. [40]. They included a Poisson distribution for the weights in their expectation

maximization algorithm. Their method was also implemented as an R package [72]. Peixoto

describes a selection of different distributions for the edge weights [39], which is like his other

approaches included in his Python graph-tool package.

SBM with metadata. Another kind of information which is usually available for networks

of the real world are node attributes like the age or class of pupils. Peel used this annotated

data for an supervised variant of the SBM and added an additional layer in the generative pro-

cess of the SBM [69, 73]. On the contrary Zhu et al. used an extension of the SBM to use the

topic mix inside documents to improve the description of links between each other [74]. Oth-

ers studied to which extend the metadata is correlated with the observed topological structure

[51, 75].

Dynamic SBM. In the fortunate but more challenging case, that multiple observations of

the regarded phenomenon are available, the so called dynamic SBM can be applied. Based on

the same assumption as in the other SBM variants, that the networks are generated by the gen-

erative model, the aim is to infer this structure from the networks. The degree of freedoms

vary between different dynamic SBM variants. The major differences are in the handling of

the interactions of the edge probabilities and communities between the observed time-steps,

which can be either independent, i.e. only conditioned on the actual network, or in some way

connected to other observations [76–79]. Ghasemian even proved some thresholds for com-

munity detection with SBM in dynamic networks [80].

The fundamental different assumption on the available data of variants of this section, like

weight information or multiple time points, prevent a common set of networks for testing for

those and the other variants. Thus, we exclude these variants from our analysis and have only

included them for an complete overview of all SBM types.
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Summary

To summarize the presented variants and the different objective functions, we give an com-

plete overview in Table 1. The included abbreviations will be used in the analysis section for an

easier identification of the different variants. For the variant proposed by Côme and Latouche

we will test both priors and call them ICLexJ and ICLexU according to the used Jeffrey respec-

tively uniform distribution.

Many inference algorithms iteratively try to improve their result by evaluating the neigh-

borhood of the current partition. As all inference algorithms used later are of this form, we

complete this overview by giving the asymptotic performance for a delta calculation of a single

node movement, which is

SKN; ICLex; SNR;DCNR 2 OðK þ hkiÞ

and

DCKN;DCP; SPC;DCPU;DCPUH;HSPC;HDCPU;HDCPUH 2 OðhkiÞ:

The target functions can be divided into two classes. The execution time of the faster second

group solely depends on the average degree hki of the network. The runtime of the other

group also increases proportionally to the number of groups K.

With this introduction of many SBM variants from the standard SBM over hierarchical

SBM to dynamic SBM, we have shown the variety of the stochastic block model and created a

solid basis for the later comparison of the different approaches and the corresponding infer-

ence methods.

Inferencemethods

Knowing the SBM variants and the corresponding likelihood functions, we need methods to

approximate an optimal community structure of the selected model and in most cases the

authors present a combination of a new SBM variant with a corresponding inference algo-

rithm. However, many inference algorithms do not depend on the specific variant. Therefore,

we clearly separate these two parts of the community detection problem.

Using the term of Young et al. [8], this separation is possible for all canonical algorithms,

which split the task into defining a total ordering of the partitions and a maximizer, which can

find (local) optima. Each objective function from Table 1 (together with their model selection)

induces for a given network G = (V, E) a total order on the set of partitions of V. In other

words, for any two partitions we know, which one describes the network better under the

respective model, by evaluating the function. The task of the inference algorithm is simply to

retrieve a good approximation of the greatest element. We restrict our analysis to these

Table 1. SBM variants, authors and assigned abbreviations.

SBM Variant Authors Equation Abbreviation

Standard SBM Karrer and Newman (2) SKN

Degree-Corrected
SBM

Karrer and Newman (5) DCKN

Peixoto (6) DCP

SBM including
Number of Groups

Côme and Latouche (7) ICLexJ & ICLexU

Newman and Reinert (8–11) & (12) SNR & DCNR

Peixoto (13), (16) & (18) SPC, DCPU & DCPUH

Hierarchical SBM Peixoto i.a. (19), (20) HSPC, HDCPU & HDCPUH

https://doi.org/10.1371/journal.pone.0215296.t001
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canonical formulations to allow the differentiation of effects brought by SBM variant and

inference method.

We start with the simple Markov chain Monte Carlo method and continue with an agglom-

erative algorithm from Peixoto, local heuristics, and end with an overview of further methods

like the usage of semidefinite programming.

Markov chain Monte Carlo methods

The Markov chain Monte Carlo (MCMC) methods are a class of algorithms used to sample

from a probability distribution. This can be used to sample from the space of all node parti-

tions, where each partition is hit with its respective likelihood. These algorithms have the

advantage of an easy implementation and the result usually converges in the limit to the

desired distribution. Because of these advantages, various authors used this method with only

minor variations [36, 63, 81].

The easiest algorithm of this class is the Metropolis algorithm. The algorithm requires only

a function F, which is proportional to the desired likelihood, and a number of steps k. As

described in Algorithm 1, the Metropolis algorithm suggests randommoves, accepts any move

which improves the function F, and accepts all other moves with the probability exp(−βΔF).
The so called inverse temperature β controls the likelihood of negative moves and can be used

for simulated annealing. Simulated annealing increases the value of β step by step to increase

the chance to stay in a local optimum at the end, but leave local optima in the beginning. The

latter is a common advantage of all MCMC algorithms: the ability to perform negative moves

and leave local optima. A disadvantage of this algorithm is that the correct selection of the

number of steps is difficult, which is usually only bounded by the available running time.

Algorithm 1Metropolis algorithm
1: for j = 0 to k do
2: Get a random move (i: r ! s) of node i from block r to block s
3: Calculate the improvement of the target function ΔF(i: r ! s)
4: Accept the move (i: r ! s) with probability pA = min (1, exp
(βΔF))
5: end for
Another MCMC algorithm is the Metropolis-Hastings algorithm, which improves the pro-

posal of randommoves with the introduction of a proposal density function Q and changes in

the acceptance probability. The algorithm has to keep the properties of ergodicity, i.e. all states

are possible, and detailed balance, i.e. all moves are reversible after a sufficient long time, to

eventually reach the respective distribution. We have implemented the node proposals of Peix-

oto [36], which selects a random node and a new block based on the actual edge matrix and

the neighborhood of the node. As first adoption, the likelihood of a move of a node from block

r to block s is instead of 1/K

pðr ! sjtÞ ¼ ets þ ε
et þ εK

; ð21Þ

where t is the block of a random neighbor. The parameter ε > 0 ensures that all moves are pos-

sible and the fully randommoves are recovered by ε !1. The Metropolis-Hastings algo-

rithms has a typical form of acceptance probability, which is for the move of the node i from

block r to block s

pA ¼ min 1; expðbDFÞ
P

tp
i
tpðs ! rjtÞ

P

tp
i
tpðr ! sjtÞ

� �

with pit being the fraction of neighbors of i belonging to block t. The probabilities p(r! s|t)
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and p(s! r|t) are calculated with different values of ert and et. The former with the values of

the current state and the latter with the new values after the proposed r! smove.

With this we have described the basic variants of the MCMCmethods, which are easy to

implement and fast in the execution of a single step. But these approaches have the problem

of detecting the convergence of the MCMC or, in other words, the right choice of performed

number of steps.

Unless we explicitly state otherwise, we used the MCMCmethods with β = 1 and applied

no form of cooling like simulated or abrupt heating. With this choice these algorithms rather

sample from the space of partitions with the probability distribution given by the objective

function and leaves even the global optimum with a certain probability. We tested two simple

variants of simulated variant, where the temperature βk at the k
th step is given by 1þk

T0
respec-

tively logð1þkÞ
T0

. We determined the initial temperature T0 by evaluating the objective function on

20 random partitions and set T0 to 1.5 times the maximal observed deviation. Since these two

variants led to a deterioration of the results, we only included the variants with β = 1 into the

analysis. Yet, elaborated variants of simulated annealing may improve the quality, but such

exploration is beyond the scope of this publication.

Agglomerative algorithm

Another approach in the style of a “bottom-up” hierarchical clustering is the agglomerative

algorithm of Peixoto [36]. Like in hierarchical clustering [11], we start with each node in its

own cluster and subsequently merge clusters. Contrary to hierarchical clustering, we calculate

only a certain amount of nmergers merges for each block and perform a certain ratio of the best

found mergers, instead of calculating all possibilities and performing only a single merge. This

reduces the time complexity of the algorithms by a huge factor and turns the algorithm into an

heuristic. To allow some free movement of the nodes in between the block mergers, a certain

amount of Metropolis-Hastings steps are performed. In total we have the steps of algorithm 2.

The free parameters, which tune the algorithm between being a greedy heuristic and a

slower and more accurate method, are the ratio σ of mergers, the number of tested mergers

per block nmergers, and the number of steps τ in the Metropolis-Hastings algorithm. In addi-

tion, the inverse temperature β of the Metropolis-Hastings algorithm can be used for simulated

annealing or abrupt heat up of β !1 like proposed by Peixoto. We use a similar configura-

tion to Peixoto with σ = 2, nmerges = 10, τ = 200 and an abrupt heating like described in algo-

rithm 2.

The application of this algorithm requires on the one hand the ability to calculate the delta

of the likelihood function for the merger of two blocks instead of a simple node move. On

the other hand, for an efficient sampling of new blocks with the probability p(r! s|t) like

described above the saving of edges adjacent to each block is needed, which adds an extra

space requirement of O(E). The main advantage of this algorithm is that the running time does

not depend on K and unlike the MCMCmethods the algorithms stops when it has reached a

certain result.

Algorithm 2Heuristic agglomerative algorithm from Peixoto [36]
1: Initialize by putting each node in its own cluster
2: while Kactual > Kaim do
3: for Block r = 1 to Kactual do
4: for i = 1 to nmergers do
5: Select a new random block s, where the block s is selected

with probability p(r ! s|t) (based on a random neighboring
block t, see Eq 21)
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6: Calculate the change of the objective function ΔF(r ! s), if
block r and s would be merged

7: end for
8: end for
9: Perform the Kactual

s
block merges with the highest ΔF(r ! s) values

10: Apply the Metropolis-Hastings algorithm τ/2 steps with β = 1
11: Apply the Metropolis-Hastings algorithm τ/2 steps with β = βhigh

= 100 000
12: end while

Local heuristics

Another type of algorithm uses local optimal moves and therefore always stops in a local

extreme. A member of this class is the algorithm proposed by Karrer and Newman together

with their degree-corrected SBM variant [32] and used by Zhu et al., too [74]. It is similar to

the Kernighan-Lin algorithm for the minimum-cut graph partitioning [82].

The algorithm identifies the overall best move of a node to a new block with the only restric-

tion that each node can only be moved once per iteration. This heuristic results in some nega-

tive moves before all nodes are moved. Before a new sweep of all nodes is started, the visited

states are searched and the state with the best value is set as starting point. The algorithm halts if

one iteration finds no further improvement. A complete description is available in algorithm 3.

Algorithm 3 Kernighan-Lin algorithm [82]
1: Start with a random partition of all nodes
2: repeat
3: Calculate the values ΔF for all node moves and set V0 = V and g ¼~0
4: for j = 1 to N do
5: Retrieve the move i: r ! s with the maximal ΔF
6: Set gj = ΔF and perform this move
7: Set V0 = V0\{i} and for all nodes in V0 update the deltas
8: end for
9: Find k which maximizes gk ¼ Pk

a¼1
ga

10: if gk > 0 then
11: Go back to the corresponding state
12: end if
13: until gk � 0
One iteration has a running time of O(N2K) and the algorithm usually stops after a few iter-

ations. The running time is mainly influenced by the calculation of the best possible move. As

part of our evaluation, we used the full version only for the smaller networks and therefore

used two variants of this approach, which have an acceptable runtime for all used graphs.

As a first modification we tried to break up the strong need of updating all deltas. Now

we simply iterate through all nodes and determine the best move for each node or no move if

no improvement is possible. In a second step we perform all moves and the advantage of this

procedure is that the first part can be done in parallel. In the other variant, we iterate again

through all nodes and now always perform the best available move for each node. These two

variants should be a lot faster then the original algorithm, but these adaptations may result in

inferior local optima.

All the presented local heuristics are deterministic in their execution and should be applied

multiple times from different starting partition to retrieve a better result.

Further algorithms

This list of algorithm is far from being complete and most algorithms which aim to minimize

some sort of target function by switching nodes between groups, like the ones for modularity
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optimization, can be applied. We concentrated on those algorithms proposed in the context of

SBM or its variants, which can be applied independently of the concrete variant. In this section

we want to discuss some other approaches that are more strongly linked to formulation of the

variant and that have been proposed in the context of SBM variants.

Belief propagation and spectral algorithms. Some authors try to prove thresholds to

which the community detection problem can be solved. Two approaches often used in these

publications are belief propagation and spectral algorithms.

Spectral algorithms are based on the feature that eigenvalues and their corresponding

eigenvectors of specific matrices are connected to the partition of nodes. The spectral algo-

rithms consist of creating the specific matrix from the network, calculating the K leading real

eigenvalues and solving a clustering task in <K with methods like k-mean. Therefore, the com-

munity detection problem can be transferred to linear algebra and usual clustering, where fast

and efficient methods are available. The difference between the spectral approaches lies in the

usage of different matrices. Starting from the adjacency matrix, several authors proposed vari-

ants with (normalized) Laplacian, modularity matrix, random walk matrix or nonbacktracking

matrix [83, 84].

Another approach used to achieve thresholds, are variants of the belief propagation or mes-

sage passing algorithm [17, 21, 26, 28, 80, 85]. In those algorithms nodes send so-called mes-

sages to their neighbors, consisting of estimates of their marginal distribution. Each node uses

the received messages to update its own estimation. The process of sending and updating esti-

mations is repeated until a fixed point is reached. If the parameters of the SBM are not known,

the fixed-point iteration is alternated with updates of these parameters. Zhang et al. [26] pro-

posed to use the result of a spectral algorithm as starting point for the belief propagation to

accelerate convergence and improve results.

Expectation-maximization algorithm. Another approach often used together with belief

propagation is the expectation-maximization (EM) algorithm. With its alternating sequence of

updating two sets of parameters, the EM algorithms retrieve a local optimum [17, 86].

Beside the usages together with belief propagation, the EM algorithm was used in early

works by Snijders and Nowicki [53] and is often applied to the mixed membership variant of

the SBM, where the node assignment to groups is not binary, but continuous [68].

Semidefinite programming. A different formulation of the inference problem is the per-

spective of semidefinite programming (SDP). In SDP the inference task is stated as an objec-

tive function in the form of a inner product and constraints like semidefiniteness constraints

on matrix variables. For example, the formulation in Yan et al. [87] is

max traceðAXÞ � l traceðlXÞ
s:t: X � 0; X � 0; X1 ¼ 1;

where λ is a tuning parameter, which is determined by its own heuristic, and the constraints

on clustering matrix X are positive semidefiniteness, non-negativity, and the summation of

each row to 1. As far as we see, this approach was applied from different authors for the stan-

dard SBM, but not for any of the variants. Some of the work is even limited on the detection of

two clusters with the aim to lower realized detection thresholds of exact recovery in the planted

bisection model [18, 87, 88].

Because the methods are only available for standard SBM and include their own model

selection technique for the correct number of blocks, we have not included the algorithm of

Yan et al. in the comparison of standard SBM versions and in the corresponding analysis of

model selection techniques.
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Summary

Like previously for the SBM variants, we want to restate the presented inference algorithms,

assign abbreviations for the analysis, and take a first look at the theoretical performance.

Metropolis algorithm (MA) and Metropolis-Hastings algorithm (MHA) have both no ter-

mination condition and so their execution time is solely a product of the given number of

steps and the cost for calculating the delta of a proposed node move. Unfortunately, this crucial

parameter is often not stated in publications. As an orientation we only have the numbers pub-

lished by Newman and Reinert, which was between 10.000 steps for small and 100.000 steps

for larger graphs [63].

Next, we have described Peixoto’s agglomerative heuristic (PAH), which has according to

Peixoto a time complexity of O(N ln2 N) [36]. The outstanding property of this algorithm is its

independence on the number of inferred blocks K.

As a last algorithm in our analysis, we have described the Kernighan-Lin algorithm and two

of its variants. The original algorithm will be named KL. The version applying the search for

each node first and afterwards performing an update of all node position will be referred as

KL-EM, because of its analogy to the principle used in EM algorithm. The second variant with

the direct update for each node is denoted KL-G because of its greedy nature. The runtime

complexity for all these variants depends on the number of iterations needed until conver-

gence. But the required number of calculated deltas for an iteration can be stated with N2 K for

KL and NK for KL-EM and KL-G.

With this non exhaustive overview of inference methods, we have prepared a set of variants

as well as methods for our analysis.

Comparison of SBM variants and inferencemethods

For a systematic test of the presented variants and inference methods we need a suitable set of

networks with a known community structure of different strength. The Girvan-Newman test

and the LFR test define such sets consisting of random networks generated based on a known

node partition and predefined mixing parameters [10, 11]. These tests allow us on the one

hand, to compare the performance of SBM variants and inference methods and on the other

hand, the comparison to other clustering techniques. To demonstrate applicability and suit-

ability in real cases, we conclude this section with a selection of real networks.

One consequence of the approximate no free lunch theorem [14] is that all methods per-

form equal, if we average over all cases. On subsets, methods can still be better than others, but

this is correspondingly exactly complementary on the respective complement of the subset.

We want to compare the methods on a natural subset that is given by those artificial networks

of the detectable region of parameters. As another remark, we can not answer to what extent

the task of the inference algorithms to maximize the objective functions for these networks is

affected by the no free lunch theorem for search and optimization [89].

Girvan-Newman test

Girvan and Newman used a set of computer generated networks to compare their proposed

clustering algorithm [11]. This test was later adapted by other authors and named according to

the authors either Girvan-Newman test or GN test [22, 90].

The test consists of networks generated with the planted l-partition model. This model is

characterized by the groups, the probability Pin for an edge inside a group, and Pout the proba-

bility for an edge between two groups. The planted partition model can be viewed as a reduced

version of a standard SBM, where we restrict the edge probability matrix ω to have only two

different values Pin and Pout, the probability for an edge inside a block respectively an edge
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between blocks. In the GN test, the number of groups is fixed to four with each consisting of

32 nodes. The proposed algorithm of Girvan and Newman aimed only for assortative commu-

nities, so they only regarded Pout < Pin. The probabilities were chosen in a way that the average

degree is 16 for all networks. With this we have one free parameter left to vary.

We have extended the test set of the GN test to the range of probabilities with Pout � Pin.

Our main interest is to determine to which extent assortative and disassortative community

structures are detectable.

Because Girvan and Newman used deterministic algorithms, they generated 100 network

instances for each parameter. In our setting we use algorithms which are at least non determin-

istic in their dependency on the random starting position. We apply every combination of

algorithm and SBM variant 10 times to 10 network instances for every parameter, which

results in the same amount of executions per combination. First, we analyze the SBM variants

under the assumption of knowing the true number of groups and then compare the inference

algorithms, before comparing the model selection.

The comparison of inferred partition and planted partition needs a function, which evalu-

ates their similarity. For this task numerous solutions exist like the old-fashioned fraction of

vertices classified correctly [11, 22] or normalized mutual information [13, 22]. We decided

to take the adjusted mutual information (AMI) [91], which has the advantage to include a cor-

rection for chance and is normalized (in a stochastic sense) to [0, 1]. To be exact, we use the

AMImax version of [91] and will always simply call it AMI. Gates and Ahn discussed the influ-

ence of the normalization method (like max) and the chosen randommodel for the correction

for chance [92]. Following their results, we could use a randommodel with fixed number of

clusters in those cases, which includes only partitions with a fixed number of groups. But we

have decided to always use the [91] variant to facilitate the comparison of our results between

the different cases considered.

For the comparison of the SBM variants, we decided to select for each network and variant

only the partition of nodes with the highest objective value (likelihood) of the respective

model. Because we only use the likelihood for the selection, such an approach is also applicable

in any real situation. The results in Fig 4 show a high consistency between all SBM variants.

Until a value of kout = 6 outgoing edges, the true structure is retrieved in nearly all cases and

starts to diminish afterwards reaching its minimum at kout = 10. From kout = 15 most variants

are able to detect the now disassortative structure again and only the two variants proposed by

Newman and Reinert fail in these cases.

Knowing that all SBM variants are applicable in this scenario, we decided to compare the

inference algorithms over all SBM variants. Fig 5 shows the obtained results. Each point in the

diagram corresponds to the mean of 900 executions. The simple Metropolis Algorithm (MA)

delivers the worst inference results by far. Its pure random proposal of node moves led to only

few accepted moves. The move proposals in the Metropolis-Hastings Algorithms (MHA)

clearly outperforms MA, which can even be seen in the case of only 1 000 moves (MHA 1k).

The results can be improved further by increasing the number of steps to 10 000 or 50 000,

which increases the average performance in complex scenarios a lot. But, still multiple execu-

tions with fewer steps can outperform a single execution with a high number of steps.

Peixoto’s agglomerative heuristic (PAH) performs consistently good for simple cases, but

starts to fail earlier regarding both the average and the best retrieved results. The Kernighan-

Lin algorithm (KL) and both variants (KL-G, KL-EM) retrieve good results. The expectation

maximization alike KL-EM variant delivers the worst results of all tested variants and only the

full KL algorithm is able to retrieve steady, near to perfect results until kout = 6.

Before taking a look at selecting the numbers of group, we try to isolate the contribution

of the model and the algorithm. Therefore, we tested the optimal starting partition and
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executed the algorithms with each model 10 times on each of the 10 network instances for

kout = 0, 0.5, . . ., 16. Fig 6 shows the results of these executions. As expected the ideal starting

partition improves the results in all combination. The results of the MHA 50k confirms, that

the planted partition is a stable optimum up to kout = 6. Beyond this interval the models differ

in their behavior. The models ICLexJ, ICLexU, SPC, DCPU, and DCPUH first start to equili-

brate at likelihoods slightly below the one of the planted partition, before taking higher val-

ues like the others. The executions of KL-G and KL-EM show, that new optima exist for

Fig 4. Results of Girvan-Newman test applied with a known number of groups. Each marker represents the average
of 10 network instances. For each network each of inference algorithm (see Fig 5) were executed 10 times from
random partitions with 4 blocks for each of the shown SBM variants. The AMI of the partition with the best objective
value of all inference algorithms and all executions is taken into account. Since the results of the DCP algorithm are the
same as the SKN for the case without model selection, the diagram only includes the results of SKN.

https://doi.org/10.1371/journal.pone.0215296.g004

Fig 5. Overview of the performance of the applied inference algorithms. The results shown are based on the same
10 executions for each of the 10 networks for each SBM variant of Fig 4, which are the basis for Fig 4. The value shown
are the mean of all executions, all networks with the same kout and all SBM variants (of Fig 4). Fig 6 includes the results
for selected inference algorithms for individual SBM variants.

https://doi.org/10.1371/journal.pone.0215296.g005
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Fig 6. Results from starting the inference algorithms from the true partition 10 times for 10 network instances for each kout = 0, 0.5, . . ., 16.

The resulting difference to the original value (designated with a blue dot●), the average AMI of all runs of all network with the same parameter
(represented with green triangles upside down▼) and for comparison the average in the same manor reached from a random starting partition
with the known number of groups (designated with red triangles▲) are shown. The AMI values (▼,▲) of each row are visualized according to the
right axis of each row. The difference of the objective functions we calculate with Pobserved − Ptrue and is measured according to the left axis in each
row. If the regarded model describes a likelihood, positive values represent more likely partitions then the planted partition. Each small diagram
contains the values of the model of its row and the inference algorithm of its column. To reduce the total number of diagrams shown only the
results of the Metropolis-Hastings algorithm with 50 000 steps is shown. Because PAH is not designed to start from a given partition, it is not
included, too.

https://doi.org/10.1371/journal.pone.0215296.g006
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15> kout > 6. In this region the respective partitions of these optima describe the planted

partition first in decreasing quality and then from kout = 12 the quality of these partitions

increases again with the same slope. The only exceptions of this behavior are the models SNR

and DCNR, which for MHA 50k, KL-G and KL-EM do not show a steady increase for kout >

12, but a discontinuously increase for kout > 15. Taking the results of KL for SNR and DCNR

into account, we see, that even for kout > 15 those model have another higher maximum

beside the values. This explains the bad performance of these models for kout > 15 in Fig 4,

where only the AMI of those partitions with the maximal observed value are included.

The decision which inference algorithms to apply for the model selection requires informa-

tion about their efficiency. We have selected a specific measure, which is shown in Fig 7. Dur-

ing the inference we recorded the number of calculated deltas, number of node moves, and the

time required for each execution of the inference algorithms. The advantage of the first two

measurements is their independence from the used implementation. The Kernighan-Lin algo-

rithm requires with an average of around 125 000 delta calculations the maximum of steps. All

methods based on the metropolis algorithm require exactly the amount given by the number

of steps. The remaining algorithms need comparable amounts of calculations, but some of

them have other overheads like the block merging for Peixoto’s algorithm (PAH), or the stop

criterion in both KL-variants. Taking the results in Figs 5 and 7 into account, we decided to

use the Metropolis-Hastings Algorithm with 50 000 steps for the analysis of the model selec-

tion. This has the additional advantage of the run time independence with regard to the num-

ber of blocks.

In the above executions we have used the knowledge of the correct number of blocks. Now

we want to compare the model selection techniques and the SBM variants, which also includes

this selection step. We have again executed all objective functions with the chosen inference

algorithm for the range of number of blocks from 1 to 10 and selected the optimal structure.

Like above, we used 10 network instances for each kout and applied the inference algorithm 10

times for each block size and network.

Fig 8 shows the average AMI of the different SBM variants after performing the model

selection. For the classic SBM, Fig 8 contains only the model selection with the best values for

Fig 7. The recorded number of calculated deltas of the studied inference algorithm during all performed runs for

Fig 4. The green triangle marks the mean and the orange line represents the median of the values.

https://doi.org/10.1371/journal.pone.0215296.g007
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kout� 8, while Table 2 includes the rationale for our selection. The results with model selection

are a little bit more scattered than the results with the known group size, but still have the same

overall behavior.

Beside the resulting AMI of the inferred partitions, we take a look at the number of

groups selected. Therefore, Figs 9 and 10 contain a visualization of the selected number of

Fig 8. Results of Girvan-Newman test with model selection. Like before, we used 10 network instances for each kout.
For each network and each SBM variant we executed the MHA 50k 10 times for each K = 1, . . ., 10. Then we
considered one execution for each network for all number of group K 2 {1, . . ., 10} as one unit and executed the model
selection based on these results. Therefore, a data point is the average of 100 AMI values resulting from the 10 network
instances and the 10 selected partitions. For the classic models only the best model selection according to Table 2 is
shown.

https://doi.org/10.1371/journal.pone.0215296.g008

Table 2. Normalized AUMIC of the different SBM variants of the GN test for 0� kout� 8 based on 10 executions

of the MHA 50 000 from 10 random partitions for each group size K = 1, . . ., 10 and each kout = 0, 0.5, . . ., 8.

Variant True Group Size With Model Selection

SKN 0.91 MDL 0.89

AIC 0.56

BIC 0.84

DCKN 0.91 MDL 0.75

AIC 0.56

BIC 0.87

DCP 0.91 MDL 0.88

AIC 0.58

BIC 0.91

ICLexJ 0.82 0.81

ICLexU 0.83 0.81

SNR 0.81 0.84

DCNR 0.80 0.84

SPC 0.86 0.81

DCPU 0.87 0.82

DCPUH 0.87 0.81

HSPC – 0.57

HDCPU – 0.59

HDCPUH – 0.56

https://doi.org/10.1371/journal.pone.0215296.t002
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groups as ratio of the average selected value and the true value. This reduction gives us a

good overview and is a valid method as long as all values tend to be relatively close to the

average, which is true in this case. In general, the upper bound is given by the maximal tested

number of blocks, which was 10 and, respectively, as ratio 2.5. The lower bound represents a

partition of all nodes in a single block. The selection of a single block is a rejection of any

found structure under a point of statistical significance in favor of a pure random Erdős-

Rényi graph.

The classical SBM variants in Fig 9 show a broad range of results. The AIC overestimates

the number of groups in any case and like reasoned above, the requirements of the AIC are

not met. Consequently, it should not be used in the case of SBM. The BIC has for the variants

of Karrer and Newman the slight tendency of overfitting, i.e. selecting too many groups. The

Fig 9. Ratio of average selected number of blocks �K to true number of blocks K of the classic SBM variants with

the presented model selections.As in Fig 10, the values shown are based on the same setting as Fig 8.

https://doi.org/10.1371/journal.pone.0215296.g009

Fig 10. Ratio of average selected number of blocks �K to true number of blocks K of those SBM variants which

include model selection step. The values shown are based on the same setting as Fig 8.

https://doi.org/10.1371/journal.pone.0215296.g010
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combination of Peixoto’s degree-corrected variant and BIC is capable to retrieve the true num-

ber of groups in nearly all cases. However, since it also recognizes structure in unidentifiable

cases such as k = 12, this is not very reliable. The only combination which clearly rejects a

noisy structure for the simplest model is the combination of DCP and MDL.

The newer SBM variants retrieve good results and all but the variants SNR and DCNR reject

the structure in the critical region. The hierarchical variants infer the true structure with the

true number of groups for a small number of edges between the groups, but are faster in reject-

ing the structure.

To conclude with an short overview of the results and to allow an easier comparison, we

propose a measure inspired by the area under the receiver operator curve (AUROC) used in

machine learning by calculating the area under the AMI curve (AUMIC). In contrast to the

AUROC, the AUMIC does not have a probabilistic interpretation. Yet, the AUMIC as kind of

averaged AMI result can be useful for comparison as long as we select a region of the integral

in a way, that the AMI curves are monotonic functions. Based on our experimental results (see

Fig 4), this requirement is satisfied for 0� kout � 8 in the case without model selection. To

minimize the effect of random fluctuations, we created the curve like in Fig 8 as average of the

10 executions with the MHA 50 000 for the 10 networks for each kout = 0, 0.5. . ., 8. We calcu-

lated the AUMIC for one of the SBM variants with a numeric integral of the selected region by

applying the trapezoidal rule to the respective AMI values and afterwards normalized the value

by maximal possible integral (e.g. 8 in the case of the GN test).

To differentiate the influence of model selection, we calculated for each variant two

AUMICs, one with the known number of groups and one after applying the model selection.

For easier comparison with other cases we normalized the results by maximal possible area,

which allows us to compare the results between two benchmarks. For a fair comparison all

values in Table 2 are based on the 10 executions of the MHA 50 000 algorithms used for the

model selection. Only the outcome of the hierarchical variants (HSPC, HDCPU, HDCPUH)

were generated using an adopted version of Peixoto’s agglomerative heuristic, which needed

a comparable amount of delta calculations in our experiment. During interpretation of the

AUMIC we should keep in mind the desirable feature of some variants to refuse weak struc-

tures, which will worsen their corresponding AUMIC.

According to the resulting AUMIC presented in Table 2, the SBM variants without model

selection have the highest AUMIC in the case of the known group sizes. From the variants

including model selection Peixoto’s flat variants (SPC, DCPU, DCPUH) performed best. Tak-

ing the model selection step into account, the results of the old variants (SKN, DCKN, DCP)

depend highly on the choice of model selection, which agrees with our findings based on Fig 9.

The hierarchical variants deliver the poorest results, which is mainly caused by the earlier

rejection of the structure see Fig 10, and may influenced by the assigned small execution time.

The other SBM variants with inclusion of the model selection roughly have the same quality

on this aggregation level and for this benchmark.

LFR benchmark

The GN test is a simple and fast way to get a basic comparison and can be used to concentrate

further tests on most promising approaches. But the contained networks do not represents

most real cases with their equal sized communities, narrow degree distribution and relatively

small network size. Therefore, Lancichinetti, Fortunato and Radicchi developed a benchmark

for testing community detection algorithms, that is known as LFR benchmark [10, 13, 93, 94].

In contrast to the GN test, the degree distribution and the community sizes in the LFR

benchmark are both drawn from a power law distribution. For both distributions, minimal
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and maximal values are selected and the average degree is chosen. Like in the GN test, the frac-

tion μt of edges inside groups and total edges are varied to test community detection algo-

rithms. Because of the rewiring step used to ensure the mixing between internal and external

edges, the edges are not conditionally independent. Thus, the resulting networks are only simi-

lar but not identical to ones generated by a degree-corrected SBM, where the node degrees and

community sizes follow different power laws, and the fraction of external links and the con-

nection matrix are fixed.

We have used the setup given in [10] with 1000 nodes, an average degree of 20, a maximum

degree of 50, −2 as exponent of the degree distribution, and −1 as exponent for the community

size distribution. Community sizes are chosen between 20 and 100, resulting in 14 to 23 clus-

ters in our networks. As in the GN test, we generated 10 networks and varied the mixture

parameter μt from 0 to 0.6. We generated the networks using the code supplied in the original

publication [93]. Each combination of algorithm and SBM variant is applied 10 times with dif-

ferent random starting partitions for each network.

First, we discuss the optimal results of different variants retrieved with the known group

size and take a look at the model selection step of the group size later. Fig 11 shows our results

and unlike the GN test, the different variants now inherit different qualitative characteristics.

Because the structure of the LFR benchmark is closer to the generative model of the degree-

corrected variants, we had assumed a better performance of the degree-corrected variants in

comparison to their non-degree-corrected counterparts. Furthermore, the number of groups

may lie above the known theoretical threshold, that should be an additional advantage of the

hierarchical variants. Surprisingly, the standard SBM variant SNR infers the true partition

with near to 100% for μt� 0.4 and outperforms all other variants in this region, if the group

size is given. Only beyond this value its results decline below those of the degree-corrected

variant.

In the more difficult region with μt> 0.4 the degree-corrected variants DCKN, DCNR,

DCPU, and DCPUH retrieve good results and the oldest degree-corrected variant (DCKN)

Fig 11. Results of LFR benchmark applied with the known number of groups. Each marker represents the average
of 10 network instances. For each network each of inference algorithm (see Fig 12) were executed 10 times from
random partition with the same number of blocks as the planted partition for each of the shown SBM variants. The
AMI of the partition with the best objective value of all inference algorithms and all executions is used as result for the
combination of network and model. Since the results of the DCP algorithm are the same as the SKN for the case
without model selection, the diagram only includes the results of SKN.

https://doi.org/10.1371/journal.pone.0215296.g011
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has the best results. The variants ICLexJ and ICLexU from Côme and Latouche exhibit on the

other side the worst results. All other standard variants perform in between.

Now, we want to take a look at the performance of the inference methods. In Fig 12, we see

again a similar shape of most inference algorithms. KL-G and KL-EM are the best methods

and KL-EM slightly outperforms KL-G in the most difficult case with μt = 0.6. Only a little bit

inferior are the results of the Metropolis-Hasting algorithm with 50k steps, which is now a lot

better than those with 10k steps. In this larger test case PAH retrieves relative poor results,

which can be improved by increasing the number of MHA steps per iteration.

The other side of the performance of the inference algorithm are the needed number of

delta calculation, which is shown in Fig 13. Again the variants of the Kernighan-Lin algorithm

need the most number calculation, but they still stay in an acceptable scale. Based on these

Fig 12. Overview of the performance of the applied inference algorithms. The results shown are based on the same
executions as Fig 11, i.e. 10 executions for each of the 10 network instances for each SBM variant. The value shown are
the mean of all executions with the same μt and all SBM variants (of Fig 11). Fig 14 includes the results of selected
inference algorithms for individual SBM variants.

https://doi.org/10.1371/journal.pone.0215296.g012

Fig 13. The recorded number of calculated deltas of the studied inference algorithm during all performed runs
for Fig 11.

https://doi.org/10.1371/journal.pone.0215296.g013
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observations, we have selected Metropolis-Hasting algorithm with 250 000 steps as fair balance

of result and performance and executed the algorithms with number of blocks from 1 to 30.

Like we did for the GN test, we checked the performance of the inference algorithms and

the models, if we give the the ideal start from the planted partition. The results in Fig 14 show,

that the planted partition is for μt� 0.4 very stable. For μt = 0.5 we see from the executions of

KL-G and KL-EM, that the maximum of all models is still the one of the planted partition.

Though the MHA starts to stop at partitions in the near of the planted one, which indicate a

lesser concentration on the value of the planted partition. At μt = 0.6 all models beside SPC,

DCPU and DCPUH tend to have new maximum value at a partition slightly different from the

planted partition. Yet, in all cases the resulting partition of the MCMC increases to vary, but

all retrieved partitions have AMI values near to 1. As we can see in Fig 14 all models seem to

describe the respective networks quite good, but the applied inference algorithm lack to

retrieve the true maximum.

The results of the classic and the new SBM variants in regard to the relative selected number

of blocks in Figs 15 and 16 are closer. For the classic SBM, the AIC always selects too many

groups and can only be used to get an upper bound because it never underestimates the num-

ber of blocks. The BIC retrieves for all variants the results closest to the true number of blocks.

With increased mixture parameter μt it shows a tendency of selecting fewer blocks. The MDL

delivers results in between those above and has the property to reject too complex structures in

favor of a pure randommodel.

The SBM variants, which includes the size selection, are all prone to overestimate the num-

ber of blocks. Most variants are constantly overfitting with the same rate around 30% above

the true average value. Only the ICLex variants, SPC and the hierarchical SBMs show a

decrease for the most complex case.

The comparison of the results with given number of blocks and with the model selection of

Figs 11 and 17 shows an overall decrease of values. But for some variants like SNR, the model

selection affects the value more than others like DCPU and DCPUH, which are in top of both

cases and their results only show a negligible difference. In general, the difference between

those top performing variants and all the others grows with increasing complexity.

For a reduced overview, Table 3 includes the normalized AUMIC for 0� μt� .5 based on

the results of the 10 executions of the MHA 250 000 algorithm for each network and each

K = 1, . . ., 30. As in the case of the GN test, the results of the hierarchical variants (HSPC,

HDCPU, HDCPUH) were created using an adopted version of Peixoto’s agglomerative heuris-

tic with 1000 steps for each MHA execution, which needs in our experiments a comparable

amount of delta calculations as the MHA 250 000 algorithm used for the other results. The

new degree-corrected SBM variants DCPU and DCPUH of Peixoto achieve the best normal-

ized AUMIC with values of 0.89 and 0.90, which is close to the best value of the GN test. All

but one regarded combination of model selection and SBM variant tend to increase their

AUMIC with the model selection. This behavior is different from our GN test results and may

be an indicator for the tendency of regarded SBM variants to describe LFR networks with dif-

ferent number of groups.

Real world networks

The computer generated benchmarks have the advantage that the complexity can be tuned

and that arbitrary number of networks with known group structure are available. But with

regard to some characteristics, like clustering coefficient or type of community structure, those

models still differ from their real world counterparts. Therefore, we have selected some real

world networks with available metadata about the division of nodes into groups. Such
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Fig 14. Executing the inference algorithms from the true partition 10 times for 10 network instances for each μt = 0, 0.1, . . ., 0.6 of the LFR

benchmark. The Figure is structured in the same way like Fig 6. The resulting difference to the original value (designated with a blue dot●), the
average AMI of all runs of all network with the same parameter (represented with green triangles upside down▼) and for comparison the average
of the results from a random starting partition with the known number of groups (designated with red triangles▲) are shown. The AMI values of
each row are visualized according to the right axis of each row. The difference between the objective function values we calculate with Pobserved −
Ptrue and is measured according to the left axis in each row.

https://doi.org/10.1371/journal.pone.0215296.g014
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information is sometimes called ground truth, but some authors argue such information

described different structural properties than the topological groups aimed by currently avail-

able clustering algorithms [16]. Moreover, the metadata could in theory partition the given

network into any partition and thus the limitations of the no free lunch theorem [14] apply

for this part of our analysis. At this point we are interested in the degree of similarity between

inferred results of SBM variants and the given metadata.

Fig 15. Ratio of average selected number of blocks �K to average true number of blocks K of the classical SBMs. As
in Fig 16, the values shown are based on setting of Fig 17.

https://doi.org/10.1371/journal.pone.0215296.g015

Fig 16. Ratio of average selected number of blocks �K to average true number of blocks K of those SBM variants

including model selection. The values shown are based on the same setting as Fig 17.

https://doi.org/10.1371/journal.pone.0215296.g016
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We have decided to compare the presented SBM variants on three real networks with com-

parable basic properties of the benchmarks mentioned above. As first network, we selected the

network of American college football, created by adding an edge between competing teams for

each match of the season 2000 [11]. The original data in [11] had some issues like the assign-

ments of teams from 2001 and not the correct one from the year 2000. Therefore, we use a

corrected version of Evans [95]. The next complex network is a co-purchasing network of

Fig 17. Results of LFR benchmark using model selection. Like before, we used 10 network instances for each μt. For
each network and each SBM variant we executed the MHA 250k 10 times for each μt = 0, 0.1, . . ., 0.6. Then we
considered one execution for each network for all number of groups K 2 {1, . . ., 30} as one unit and executed the
model selection based on these results. Therefore, a data point is the average of 100 AMI values resulting from 10
networks and 10 selected partitions. For the classic models only the best model selection according to Table 3 is shown.

https://doi.org/10.1371/journal.pone.0215296.g017

Table 3. Normalized AUMIC of the different SBM variants of the LFR benchmark for 0� μt� 0.5 based on 10

executions of the MHA 250 000 from 10 random partitions for each number of groups K = 1, . . ., 30 and each μt =
0, 0.1, . . ., 0.5.

Variant True Group Size With Model Selection

SKN 0.75 MDL 0.79

AIC 0.79

BIC 0.81

DCKN 0.86 MDL 0.86

AIC 0.85

BIC 0.89

DCP 0.86 MDL 0.89

AIC 0.85

BIC 0.89

ICLexJ 0.70 0.81

ICLexU 0.70 0.82

SNR 0.74 0.85

DCNR 0.78 0.88

SPC 0.77 0.82

DCPU 0.89 0.90

DCPUH 0.89 0.90

HSPC – 0.74

HDCPU – 0.76

HDCPUH – 0.74

https://doi.org/10.1371/journal.pone.0215296.t003
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political books around the time of the American presidential election 2004 [96]. The last data

set is a network of links between political blogs [97]. The metadata available for these networks

consist of the conferences, the categorization into the political directions conservative, liberal

for the political books, and conservative, liberal, and neutral for the blogs. This selection is

based on the selection of traditional cases by Hric et al. [16] and for comparability we followed

them by reducing the network to the largest weakly connected component and removing any

present multiple edges. The political blogs’ network is a directed network and to apply the

SBM variants in the presented form, we transformed the network into an undirected network.

Since our implementation includes their extension to the directed cases as well, we tested both

possibilities.

Like in the benchmarks, we have executed the greedy (KL-G) and the EM variant (KL-EM)

of the Kernighan-Lin algorithm to get an idea of the needed number of steps for the Metropo-

lis-Hastings algorithm. Then, we applied the Metropolis-Hastings algorithms 10 times for each

block size from 1 to 15. As before, Fig 18 contains the results of all SBM variants with the num-

bers of groups like the metadata and with model selection for each network.

The similarity between the metadata and the inferred SBM partitions of the political

blogs network is quite low with AMI values around 0.2. Even starting from the metadata

results in moderate AMI values. A detailed analysis reveals the categorization of the nodes

Fig 18. Results of inference of real networks. Each model beside the hierarchical ones (HSPC, HSDCPU, HDCPUH) was executed
10 times with MHA with 250 000 steps from the partition given by the metadata and for each group size between 1 and 15
(respectively 25 for the football network) from 10 random starting points. For these models the figure includes results of the start
from the metadata and for partitions with the same number of groups like the metadata. The classical SBM also contain the results
for the three presented model selection AIC, BIC andMDL. Whereas, the models, which include the model selection step, show
instead the results of their model selection. The hierarchical SBM variants only show the results of 10 executions with algorithm for
the hierarchical models. The bars represent the average of the 10 independent runs (for the one with model selection one execution
per group size) and the solid line in the middle of each bar represents the AMI of the partition with the best objective value. Bars not
visible relate to results near to zero and the dashed gray line with its white space was added to separate the models.

https://doi.org/10.1371/journal.pone.0215296.g018
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according to their degree instead of other topological structures. Fig 2 shows the inferred

partitions into two groups with the highest observed likelihood for the SKN and the DCKN

SBM variant. Furthermore, we observe this phenomenon not for standard SBM variants

only, but for some degree corrected variants as well. Including the direction information,

does not significantly change the agreement between metadata and inferred partitions. In

this case, the information about the direction of the links seem to add no further informa-

tion to the applied SBM variants.

For the political books, we get slightly better results than for the political blogs, but still

most SBM variants deliver poor agreement. Yet, this time there is no strong division by node

degree.

As we can see, all variants deliver good results for the football network. For some of the

tested SBM variants the partition given by the metadata is a stable local optima and the selected

partitions from random starting points still strongly agree with the metadata. To our surprise,

the same number of groups like the metadata is retrieved by many variants and this constantly

in every execution. Yet, most algorithms fail to cluster the independent teams in the same way

like the metadata.

During the execution of the SBM variants on the real networks, we have encountered the

division according to the node degrees for some non-degree-corrected and some degree-cor-

rected SBM variants. This confirms the finding of Karrer and Newman on bigger networks

[32] and unlike their findings for the Zachary’s karate club network the local optima retrieved

in our study are stable and not metastable, i.e. the best optima we were able to retrieve. Yet, we

only saw this phenomenon for partitions with exactly two clusters.

Discussion & conclusion

We presented the different approaches to develop a Stochastic Block Model, which are influ-

enced by various disciplines. Moreover, we showed how this diversity led to plurality of formu-

lation and variants of the basic idea of SBM. With our comparison of the complete process

from the rationale behind the SBM variants, over different approaches to deal with the model

selection, to inference algorithms for the maximization of the resulting objective function, we

highlighted the advantages and disadvantages of the existing solutions.

In our review of SBM variants, we presented different formulation based on the same prin-

ciple of structural equivalence. Some authors used a rather continuous approach, which often

in a natural way include extension to (continuous) overlapping groups. Others like Peixoto

stated the SBM using combinatorics, which enabled them to reduce the bias of priors by build-

ing a hierarchy of hyperpriors.

In our analysis of the inference methods we have seen the interplay of performance, effi-

ciency and design of the different approaches. In our tests Peixoto’s agglomerative heuristic

was good in relation to performed delta calculations, but had a great overhead caused by the

bottom-up approach. Furthermore, its two parameters should be chosen in respect for the size

and properties of the observed network. For small cases the Kernighan-Lin algorithm is the

best choice with regard to its continuously good results, that comes at the expense of largest

theoretical and observed run time. Using trial runs of the faster variants of the Kernighan-Lin

algorithm, we overcome the weakness of selecting the number of steps for the Metropolis-Has-

tings algorithm. Based on the design of our study, we focused on the interplay of the SBM vari-

ant and the inference method, and had to exclude some promising approaches such as belief

propagation from our analysis.

Like every comparison of community detection algorithms, our work has some limitations.

We evaluated the performance of the SBM variants and inference algorithm on an extended
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version of the GN test and the more general LFR benchmark and varied the mixture of the

blocks. However, the performance of the algorithms is influenced at least by the factors: degree

distribution, average degree, distribution of community sizes, connectivity pattern, and size of

the network. The modification of one or more of these parameters for the creation of artificial

networks is therefore likely to lead to different results.

Another point raised by the work of Peel et al. [14], is the inherited challenge of our compar-

ison based on evaluating the quality of retrieving a planted partition which was used to generate

the network given to the algorithm. Ghasemian et al. [15] proposed as solution for this the

usage of a large set of real networks instead of artificial ones and a combination of the two mea-

sures link prediction and link description. Yet, the calculation of these measures introduce an

additional layer by requiring the algorithms to rank all edges. For this layer, we see again multi-

ple choices like the changes of the objective function induced by the new edge or the probability

given by the generative process with or without taking the possible new edge into account.

Additionally, the link prediction is unclear for all algorithms that do not directly maximize an

objective function or are subject to a generative model, such as spectral algorithms. In addition,

at least the link prediction can be improved by taking not only a single but multiple partitions

into account [6], which probably influences the performances. Therefore, comparisons based

on artificial networks are still needed before raising the complexity with an additional choice.

During our analysis, we have identified some characteristics of the studied SBM variants.

First, the selection of the correct number of blocks is still challenging. Maybe the area of the

true value could be bounded from below and above in addition to retrieving the likeliest value,

which would be a great advantage in real world applications. This information could be com-

bined with the property of rejecting weak structure or returning significance value of the

result. The latter is itself a desirable feature, but having the no free lunch theorem [14] in

mind, this would reveal the subset of networks for which the variant is designed. Next, as one

result of our extension of the GN test, the compared SBM variants seem to have an inherited

and different strong tendency to prefer assortative groups instead of disassortative ones. This

property should be made more explicit or at best all implicit bias could be overcome. At last

and in accordance with those results of [16], we saw a discrepancy between known metadata

and the retrieved topological based blocks. Some SBM variants rejected any present structure

by dividing the nodes according to their degree, which could indicate that, from a topological

view, in those cases no structure is detectable.

Finally, by supplying the code to test all presented SBM variants and inference methods on

own data or with new modification, we aim to contribute to the identification of the above

mentioned characteristics.
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