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Abstract

There has been great interest in recent years
on statistical models for dynamic networks.
In this paper, I propose a stochastic block

transition model (SBTM) for dynamic net-
works that is inspired by the well-known
stochastic block model (SBM) for static net-
works and previous dynamic extensions of
the SBM. Unlike most existing dynamic net-
work models, it does not make a hidden Mar-
kov assumption on the edge-level dynamics,
allowing the presence or absence of edges
to directly influence future edge probabili-
ties while retaining the interpretability of the
SBM. I derive an approximate inference pro-
cedure for the SBTM and demonstrate that
it is significantly better at reproducing dura-
tions of edges in real social network data.

1 Introduction

Analysis of data in the form of networks has been a
topic of interest across many disciplines, aided by the
development of statistical models for networks. Many
models have been proposed for static networks, where
the data consist of a single observation of the network
(Goldenberg et al., 2009). On the other hand, mod-
eling dynamic networks is still in its infancy; much
research on dynamic network modeling has appeared
only in the past several years. Statistical models for
static networks typically utilize a latent variable rep-
resentation for the network; such models have been
extended to dynamic networks by allowing the latent
variables, which I refer to as states, to evolve over time.

This paper targets networks evolving in discrete time
in which both nodes and edges can appear and dis-
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appear over time, such as dynamic networks of social
interactions. Most existing dynamic network models
assume a hidden Markov structure, where a snapshot
of the network at any particular time is conditionally

independent from all previous snapshots given the cur-
rent network states. Such an approach greatly simpli-
fies the model and allows for tractable inference, but it
may not be flexible enough to replicate certain obser-
vations from real network data, such as time durations
of edges, which are often inaccurately reproduced by
models with hidden Markov dynamics.

In this paper I propose a stochastic block transition

model (SBTM) for dynamic networks, inspired by the
well-known stochastic block model (SBM) for static
networks. The approach generalizes two recent dy-
namic extensions of SBMs that utilize the hidden Mar-
kov assumption (Yang et al., 2011; Xu and Hero III,
2014). In the SBTM, the presence (or absence) of an
edge between two nodes at any given time step directly

influences the probability that such an edge would ap-
pear at the next time step.

I demonstrate that, under the SBTM, the sample mean
of a scaled version of the observed adjacency matrix
at each time is asymptotically Gaussian. Taking ad-
vantage of this property, I develop an approximate in-
ference procedure using a combination of an extended
Kalman filter and a local search algorithm. I investi-
gate the accuracy of the inference procedure via a sim-
ulation experiment. Finally I fit the SBTM to a real
dynamic network of social interactions and demon-
strate its ability to more accurately replicate edge du-
rations while retaining the interpretability of the SBM.

2 Related Work

There has been significant research dedicated to statis-
tical modeling of dynamic networks, mostly in the past
several years. Much of the earlier work is covered in
the excellent survey by Goldenberg et al. (2009). Key
contributions in this area include dynamic extensions
of static network models including exponential random
graph models (Guo et al., 2007), stochastic block mod-
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els (Xing et al., 2010; Ho et al., 2011; Ishiguro et al.,
2010; Yang et al., 2011; Xu and Hero III, 2014), con-
tinuous latent space models (Sarkar and Moore, 2005;
Sarkar et al., 2007; Hoff, 2011; Lee and Priebe, 2011;
Durante and Dunson, 2014), and latent feature mod-
els (Foulds et al., 2011; Heaukulani and Ghahramani,
2013; Kim and Leskovec, 2013).

Several dynamic extensions of stochastic block models
are related to this paper. Xing et al. (2010) and Ho
et al. (2011) proposed dynamic extensions of a mixed-
membership version of the SBM. Ishiguro et al. (2010)
proposed a dynamic extension of the infinite relation
model, which is a nonparametric version of the SBM.
Yang et al. (2011) and Xu and Hero III (2014) pro-
posed dynamic extensions of the standard SBM; these
models are closely related to the model proposed in
this paper and are further discussed in Section 3.2.

Most dynamic network models assume a hidden Mar-
kov structure. Specifically the network states follow
Markovian dynamics, and it is assumed that a network
snapshot is conditionally independent of all past snap-
shots given the current states. While tractable, such
an assumption may not be realistic in many settings,
including dynamic networks of social interactions. For
example, if two people interact with each other at some
time, it may influence them to interact again in the
near future. Viswanath et al. (2009) reported that over
80% of pairs of Facebook users continued to interact
one month after an initial interaction, and over 60%
continued after three months, suggesting that such an
influence may be present.

In hidden Markov dynamic network models, observing
an edge influences the estimated probability of that
edge re-occurring in the future only by affecting the es-
timated states corresponding to the edge, so the influ-
ence is weak. A stronger influence can be incorporated
by allowing the presence of a future edge to depend
both on the current network states and on whether or
not an edge is currently present. The model I propose
satisfies this property. To the best of my knowledge,
the only other dynamic network model satisfying this
property is the latent feature propagation model pro-
posed by Heaukulani and Ghahramani (2013).

3 Stochastic Block Models

3.1 Static Stochastic Block Models

A static network is represented by a graph over a set of
nodes V and a set of edges E . The nodes and edges are
represented by a square adjacency matrix W , where
an entry wij = 1 denotes that an edge is present from
node i ∈ V to node j ∈ V \ {i}, and wij = 0 de-
notes that no such edge is present. Unless otherwise

specified, I assume directed graphs, i.e. wij 6= wji

in general, with no self-edges, i.e. wii = 0. Let
C = {C1, . . . , Ck} denote a partition of V into k classes.
I use the notation i ∈ a to denote that node i belongs
to class a. I represent the partition by a class mem-
bership vector c, where ci = a is equivalent to i ∈ a.

A stochastic block model (SBM) for a static network is
defined as follows (adapted from Definition 3 in Hol-
land et al. (1983)):

Definition 1 (Stochastic block model). Let W denote
a random adjacency matrix for a static network, and
let c denote a class membership vector. W is generated
according to a stochastic block model with respect to
the membership vector c if and only if,

1. For any nodes i 6= j, the random variables wij are
statistically independent.

2. For any nodes i 6= j and i′ 6= j′, if i and i′ are
in the same class, i.e. ci = ci′ , and j and j′ are
in the same class, i.e. cj = cj′ , then the random
variables wij and wi′j′ are identically distributed.

Let Θ ∈ [0, 1]k×k denote the matrix of probabilities of
forming edges between classes, which I refer to as the
block probability matrix. It follows from Definition 1
and the requirement that W be an adjacency matrix
that wij ∼ Bernoulli(θab), where i ∈ a and j ∈ b.

SBMs are used in both the a priori setting, where class
memberships are known or assumed, and the a poste-

riori setting, where class memberships are estimated.
Recent interest has focused on the more difficult a pos-
teriori setting, which I assume in this paper.

3.2 Dynamic Stochastic Block Models

Consider a dynamic network evolving in discrete time
steps where both nodes and edges could appear or dis-
appear over time. Let (Vt, Et) denote a graph snap-
shot, where the superscript t denotes the time step.
Let Mt denote a mapping from Vt, the set of nodes
at time t, to the set of indices {1, . . . , |Vt|}. Using
the appropriate mappingMt, one can represent a dy-
namic network using a sequence of adjacency matrices
W (T ) = {W 1, . . . ,WT }, and correspondence between
rows and columns of different matrices can be estab-
lished by inverting the mapping. In the remainder of
this paper, I drop explicit reference to the mappings
and assume that a node i ∈ Vt−1 ∩ Vt is represented
by row and column i in both W t−1 and W t.

I define a dynamic stochastic block model for a time-
evolving network in the following manner:

Definition 2 (Dynamic stochastic block model). Let
W (T ) denote a random sequence of T adjacency ma-
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trices over the set of nodes V(T ) = ∪Tt=1V
t, and let

c(T ) denote a sequence of class membership vectors
for these nodes. W (T ) is generated according to a dy-
namic stochastic block model with respect to c(T ) if
and only if for each time t, W t is generated according
to a static stochastic block model with respect to ct.

This definition of a dynamic SBM encompasses dy-
namic extensions of SBMs previously proposed in the
literature (Yang et al., 2011; Xu and Hero III, 2014),
which model the sequence W (T ) as observations from
a hidden Markov-type model, where W t is condition-
ally independent of all past adjacency matrices W (t−1)

given the parameters of the SBM at time t. I refer to
these hidden Markov SBMs as HM-SBMs.

Yang et al. (2011) proposed an HM-SBM that posits a
Markov model on the class membership vectors ct pa-
rameterized by a transition matrix that specifies the
probability that any node in class a at time t switches
to class b at time t + 1 for all a, b, t. The authors
proposed an approximate inference procedure using a
combination of Gibbs sampling and simulated anneal-
ing, which they refer to as probabilistic simulated an-
nealing (PSA).

Xu and Hero III (2014) proposed an HM-SBM that
places a state-space model on the block probability
matrices Θt. The temporal evolution of these proba-
bilities is governed by a linear dynamic system on the
logits of the probabilities Ψt = log(Θt/(1−Θt)), where
the logarithms are applied entrywise. The authors per-
formed approximate inference by using an extended
Kalman filter augmented with a local search proce-
dure, which was shown to perform competitively with
the PSA procedure of Yang et al. (2011) in terms of
accuracy but is about an order of magnitude faster.

4 Stochastic Block Transition Models

One of the main disadvantages of using a hidden
Markov-type approach for dynamic SBMs relates to
the assumption that edges at time t are conditionally
independent from edges at previous times given the
SBM parameters (states) at time t. Hence the proba-
bility distribution of edge durations is given by

Pr(duration = d)=
(

1− θt−1
ab

)

θtab · · · θ
t+d−1
ab

(

1− θt+d
ab

)

,

for an edge that first appeared at time t and disap-
peared at t + d where the nodes belong to classes a
and b from times t−1 to t+d. Note that the edge du-
rations are tied directly to the probabilities of forming
edges at a given time θtab, which control the densities
of the blocks. Specifically, the presence or absence of
an edge between two nodes at any particular time does
not directly influence the presence or absence of such

an edge at a future time, which is undesirable in cer-
tain settings, as noted in Section 2.

4.1 Model Definition

I propose a dynamic network model where the edge du-
rations are decoupled from the block densities, which
allows for edges with long durations even in blocks
with low densities. The main idea is as follows: for
any pair of nodes i ∈ a and j ∈ b at both times t − 1
and t such that wt−1

ij = 1, i.e. there is an edge from i

to j at time t− 1, wt
ij are independent and identically

distributed (iid). The same is true for wt−1
ij = 0. Thus

all edges in a block at time t − 1 are equally likely to
re-appear at time t, and non-edges in a block at time
t− 1 are equally likely to appear at time t. Since the
blocks are on the transitions between time steps, I call
this the stochastic block transition model (SBTM).

Let i and j denote nodes in classes a and b, respec-
tively, at both times t− 1 and t, and define

π
t|0
ab = Pr(wt

ij = 1|wt−1
ij = 0) (1)

π
t|1
ab = Pr(wt

ij = 1|wt−1
ij = 1). (2)

Unlike in the hidden Markov SBM, where edges are
formed iid with probabilities according to the block
probability matrix Θt, in the SBTM, edges are formed
according to two block transition matrices: Πt|0 =
[

π
t|0
ab

]

, denoting the probability of forming new edges

within blocks, and Πt|1 =
[

π
t|1
ab

]

, denoting the proba-
bility of existing edges re-occurring within blocks.

The SBTM can accommodate nodes changing classes
over time as well as new nodes entering the network.
If a node was not present at time t − 1, take its class
membership at time t − 1 to be 0. I formally define
the SBTM as follows:

Definition 3 (Stochastic block transition model). Let
W (T ) and c(T ) denote the same quantities as in Defi-
nition 2. W (T ) is generated according to a stochastic
block transition model with respect to c(T ) if and only
if,

1. The initial adjacency matrix W 1 is generated ac-
cording to a static SBM with respect to c1.

2. At any given time t, for any nodes i 6= j, the ran-
dom variables wt

ij are statistically independent.

3. At time t ≥ 2, for any nodes i 6= j such that cti = a
and ctj = b and for u ∈ {0, 1},

Pr(wt
ij = 1|wt−1

ij = u) = ξtijπ
t|u
ab . (3)

The matrix of scaling factors Ξt = [ξtij ] is used to scale

the transition probabilities π
t|0
ab and π

t|1
ab to account
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for new nodes entering the network as well as existing
nodes changing classes over time.

I propose to choose the scaling factors ξtij to satisfy
the following properties:

1. If nodes i ∈ a and j ∈ b at both times t − 1 and
t, then ξtij = 1.

2. The scaled transition probability is a valid prob-

ability, i.e. 0 ≤ ξtijπ
t|u
ab ≤ 1 for all i 6= j such that

cti = a, ctj = b, and u ∈ {0, 1}.

3. The marginal distribution of the adjacency matrix
W t should follow a static SBM.

Property 1 follows from the definition of the transition
probabilities (1) and (2). Property 2 ensures that the
SBTM is a valid model. Finally, property 3 provides
the connection to the static SBM.

4.2 Derivation of Scaling Factors

I derive an expression for the scaling factors that sat-
isfies each of the three properties. Consider two nodes
i ∈ a′ and j ∈ b′ at time t − 1 and i ∈ a and j ∈ b at
time t. Begin with the case where a′ = 0 or b′ = 0,
indicating that either node i or j, respectively, was not
present at time t− 1. For this case, wt−1

ij = 0 so

Pr(wt
ij = 1) = Pr(wt

ij = 1|wt−1
ij = 0) = ξtijπ

t|0
ab

Property 1 does not apply. In order for property 3
to hold, Pr(wt

ij = 1) must be equal to θtab. Thus

ξtij = θtab/π
t|0
ab . Note that this also satisfies property 2

because θtab is a valid probability.

Next consider the case where a′, b′ 6= 0, i.e. both nodes
were present at the previous time. Then

Pr(wt
ij = 1)

= Pr(wt
ij = 1|wt−1

ij = 0)Pr(wt−1
ij = 0)

+ Pr(wt
ij = 1|wt−1

ij = 1)Pr(wt−1
ij = 1) (4)

= ξ
t|0
ij π

t|0
ab (1− θt−1

a′b′ ) + ξ
t|1
ij π

t|1
ab θ

t−1
a′b′ , (5)

where (5) follows from substituting (3) into (4) and by
letting the scaling factor

ξtij =

{

ξ
t|0
ij , if wt−1

ij = 0

ξ
t|1
ij , if wt−1

ij = 1
. (6)

According to property 3, Pr(wt
ij = 1) = θtab. Hence

one must choose the scaling factor ξtij such that this
is the case. If a = a′ and b = b′, i.e. neither node
changed class between time steps, then ξtij = 1 from
property 1, so (5) becomes

θtab = π
t|0
ab (1− θt−1

ab ) + π
t|1
ab θ

t−1
ab . (7)

For the general case where a 6= a′ or b 6= b′, I first
identify a range of choices for the scaling factor ξtij that
satisfy properties 2 and 3, then I select a particular
choice that satisfies property 1. Property 2 implies
the following inequalities:

0 ≤ ξ
t|0
ij ≤ 1/π

t|0
ab (8)

0 ≤ ξ
t|1
ij ≤ 1/π

t|1
ab . (9)

Meanwhile property 3 implies that

θtab = ξ
t|0
ij π

t|0
ab (1− θt−1

a′b′ ) + ξ
t|1
ij π

t|1
ab θ

t−1
a′b′ . (10)

Re-arrange (10) to isolate ξ
t|1
ij and substitute into (9)

to obtain

θtab − θt−1
a′b′

π
t|0
ab (1− θt−1

a′b′ )
≤ ξ

t|0
ij ≤

θtab

π
t|0
ab (1− θt−1

a′b′ )
. (11)

Combine (8), (10), and (11) to arrive at necessary con-

ditions on π
t|0
ab in order to satisfy properties 2 and 3:

α(a′, b′) ≤ ξ
t|0
ij ≤ β(a′, b′), (12)

where the upper and lower bounds are functions of a′

and b′, the classes for i and j, respectively, at time
t− 1 and are given by

α(a′, b′) = max

(

0,
θtab − θt−1

a′b′

π
t|0
ab (1− θt−1

a′b′ )

)

(13)

β(a′, b′) = min

(

1

π
t|0
ab

,
θtab

π
t|0
ab (1− θt−1

a′b′ )

)

(14)

From (12)–(14), it follows that

ξ
t|0
ij = α(a′, b′) +

β(a′, b′)− α(a′, b′)

γ(a′, b′)
(15)

is a valid solution for any γ(a′, b′) ≥ 1.

In order to satisfy property 1 as well, ξ
t|0
ij must equal

1 if a′ = a and b′ = b, i.e. neither node changed class
between time steps. This is accomplished by choosing

γ(a′, b′) =
β(a, b)− α(a, b)

1− α(a, b)
. (16)

Notice that the arguments in α(·) and β(·) are the cur-
rent classes a and b, regardless of the previous classes.

The assignment for ξ
t|0
ij is thus obtained by substitut-

ing (16) into (15). This value can then be substituted

into (10) to obtain the assignment for ξ
t|1
ij .

Proposition 1. The scaling factor assignment given

by (10), (15), and (16) satisfies the three properties

specified in Section 4.1.
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The proof of Proposition 1 is provided in the supple-
mentary material.

Proposition 2. An SBTM with respect to c(T ) satis-

fying such an assumption is a dynamic SBM; that is,

any sequence W (T ) generated by the SBTM also satis-

fies the requirements of a dynamic SBM.

Proposition 2 holds trivially from property 3, which is
satisfied due to Proposition 1. Both the SBTM and
HM-SBM are dynamic SBMs; the main difference be-
tween the two is that, under the SBTM, the presence
or absence of an edge between two nodes at a particu-
lar time does affect the presence or absence of such an
edge at a future time as indicated by (3).

4.3 State Dynamics

The SBTM, as defined in Definition 3, does not specify
the model governing the dynamics of the sequence of
adjacency matrices W (T ) aside from the dependence of
W t on W t−1 specified in requirement 3. To complete
the model, I use a linear dynamic system on the logits
of the probabilities, similar to Xu and Hero III (2014).
Unlike Xu and Hero III (2014), however, the states of
the system would be the logits of the block transition
matrices Πt|0 and Πt|1.

Let x denote the vectorized equivalent of a matrix X,
obtained by stacking columns on top of one another,
so that πt|0 and πt|1 are the vectorized equivalents of
Πt|0 and Πt|1, respectively. The states of the system
can then be expressed as a vector

ψt =

[

log(πt|0/(1− πt|0))
log(πt|1/(1− πt|1))

]

, (17)

resulting in the dynamic linear system

ψt = F tψt−1 + vt, (18)

where F t is the state transition model applied to the
previous state, and vt is a random vector of zero-
mean Gaussian entries, commonly referred to as pro-
cess noise, with covariance matrix Γt. Note that (18)
is the same dynamic system equation as in Xu and
Hero III (2014), only with a different definition (17)
for the state vector.

5 Model Inference

5.1 Asymptotic Distribution of Observations

The inference procedure for the dynamic SBM of Xu
and Hero III (2014) utilized a Central Limit Theorem
(CLT) approximation for the block densities, which
are scaled sums of independent, identically distributed
Bernoulli random variables wt

ij . Such an approach

cannot be used for the SBTM because blocks no longer
consist of identically distributed variables wt

ij due to

the dependency between W t and W t−1. Furthermore,
the presence of the scaling factors ξtij in the transition
probabilities (3) ensure that wt

ij are not identically

distributed even after conditioning on wt−1
ij .

I show, however, that the sample mean of a scaled
version of the adjacencies, is asymptotically Gaussian.
For a, b ∈ {1, . . . , k} and u ∈ {0, 1}, let

B
t|u
ab = {(i, j) : i 6= j, cti = a, ctj = b, wt−1

ij = u}.

Note that B
t|0
ab denotes the set of non-edges in block

(a, b) at time t − 1, which is also the set of possible

new edges at time t, and B
t|1
ab denotes the set of edges

in block (a, b) at time t − 1, which is also the set of
possible re-occurring edges at time t. Let

m
t|u
ab =

∑

(i,j)∈B
t|u
ab

wt
ij

ξtij

and n
t|u
ab =

∣

∣B
t|u
ab

∣

∣. m
t|0
ab and m

t|1
ab denote the scaled

number of new and re-occurring edges, respectively,

within block (a, b) at time t, while n
t|0
ab and n

t|1
ab denote

the number of possible new and re-occurring edges,
respectively. The following theorem shows that the

sample mean of the scaled adjacencies within B
t|u
ab is

asymptotically Gaussian as the block size increases.

Theorem 1. The sample mean of the scaled adjacen-

cies

m
t|u
ab

n
t|u
ab

=
1

n
t|u
ab

∑

(i,j)∈B
t|u
ab

wt
ij

ξtij
→ N



π
t|u
ab ,

(

s
t|u
ab

n
t|u
ab

)2




in distribution as n
t|u
ab →∞, where

s
t|u
ab =






π
t|u
ab

∑

(i,j)∈B
t|u
ab

1

ξtij
− n

t|u
ab

(

π
t|u
ab

)2







1/2

. (19)

The proof of Theorem 1 uses the Lyapunov CLT
(Billingsley, 1995) and is provided in the supplemen-
tary material.

5.2 State-space Model Formulation

Theorem 1 shows that the sample means m
t|u
ab /n

t|u
ab

are asymptotically Gaussian. Assume they are indeed
Gaussian. Stack these entries to form the observation
vector

yt =

[

m
t|0
11

n
t|0
11

· · ·
m

t|0
kk

n
t|0
kk

m
t|1
11

n
t|1
11

· · ·
m

t|1
kk

n
t|1
kk

]T

= h
(

ψt
)

+ zt, (20)
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where the function h : R2k2

→ R
2k2

is defined by

hi(x) = 1/(1 + e−xi), (21)

i.e. the logistic sigmoid applied to each entry of x, ψt

was defined in (17), and zt ∼ N (0,Σt), where Σt is a

diagonal matrix with entries given by
(

s
t|u
ab /n

t|u
ab

)2
.

Equations (18) and (20) form a non-linear (due to
the logistic function h(·)) dynamic system with zero-
mean Gaussian observation and process noise terms
zt and vt, respectively. Assume that the initial state
is also Gaussian, i.e. ψ1 ∼ N

(

µ1,Γ1
)

, and that

{ψ1,v2, . . . ,vt, z2, . . . , zt} are mutually independent.
If (20) was linear, then the optimal estimate for ψt

given observations y(t) in terms of minimum mean-
squared error and maximum a posteriori probability
(MAP) would be given by the Kalman filter. Due to
the non-linearity, I apply the extended Kalman filter
(EKF), which linearizes the dynamics about the pre-
dicted state and results in a near-optimal estimate (in
the MAP sense) when the estimation errors are small
enough to make the linearization accurate. The EKF
was used for inference in systems of the form of (18)
and (20) in Xu and Hero III (2014).

5.3 Inference Procedure

Once the vector of sample means yt is obtained, a
near-optimal estimate of the state vector ψt can be ob-
tained using the EKF. In order to compute the sample
means yt, however, one needs to first estimate (1) the
unknown hyperparameters (µ1,Γ1,Σt,Γt) of the state-
space model (18) and (20), (2) the vector of class mem-
berships ct, and (3) the matrix of scaling factors Ξt.
Methods for estimating items 1 and 2 are discussed in
Xu and Hero III (2014). Item 1 can be addressed us-
ing standard methods for state-space models, typically
alternating between state and hyperparameter estima-
tion (Nelson, 2000). Item 2 is handled by alternating
between a local search (hill climbing) algorithm to es-
timate class memberships and the EKF to estimate
the edge transition probabilities Πt|0 and Πt|1.

The main difference between the inference procedures
of the HM-SBM and the SBTM proposed in this paper
involves item 3. The matrix of scaling factors Ξt is a
function of the marginal edge probabilities at the cur-
rent and previous times (Θt and Θt−1, respectively)
as well as the current probabilities of new and existing
edges (Πt|0 and Πt|1, respectively). Θt can be com-
puted from the other three quantities from (7).

I propose to use plug-in estimates of Θt−1, Πt|0, and
Πt|1 to estimate the scaling matrix Ξt. From property
1 in Section 4.1, ξtij = 1 for all pairs of nodes that
do not change classes between time steps. Thus it is
only necessary to estimate the remaining entries of Ξt.

Algorithm 1 SBTM inference procedure

At time step 1:

1: Initialize estimated class assignment using spectral
clustering on W 1

2: Compute ML estimates ĉ1 and Θ̂1 by local search

3: Compute predicted state vector
ˆ
ψ2|1 at time step

2 using EKF predict phase

At time step t > 1:

1: Initialize estimated class assignment ĉt ← ĉ
t−1

2: repeat {Local search (hill climbing) algorithm}
3: for all neighboring class assignments do
4: Compute plug-in estimate Ξ̂t of scaling matrix

using Θ̂t−1, EKF predicted state ψ̂
t|t−1

, and
current class assignment

5: Compute plug-in estimate ŷt of sample means
using Ξ̂t, W t, and current class assignment

6: Compute estimate ψ̂
t|t

of state vector using
EKF update phase

7: until reached local maximum of posterior density

8: Compute predicted state vector
ˆ

ψt+1|t at time step
t+ 1 using EKF predict phase

Recall from (17) that the state vector ψt consists of
logits of the probabilities of forming new edges πt|0 and
the probabilities of existing edges re-occurring πt|1.

Hence ψ̂
t|t−1

, the EKF prediction of the state vector
at time t given observations up to time t−1 can be used
to compute the plug-in estimates Π̂t|0 and Π̂t|1. The
recursion is initialized at time 2 using the maximum-
likelihood (ML) estimate Θ̂1 obtained from W 1. The
spectral clustering procedure of Sussman et al. (2012)
can be used to initialize the class assignments for the
local search at time 1. A sketch of the entire inference
procedure is shown in Algorithm 1.

6 Experiments

6.1 Simulated Networks

In this experiment I generate synthetic networks in
a manner similar to a simulation experiment in Yang
et al. (2011) and Xu and Hero III (2014), except with
the stochastic block transition model rather than the
hidden Markov stochastic block model. The network
consists of 128 nodes initially split into 4 classes of 32
nodes each. The edge probabilities for blocks at the
initial time step are chosen to be θ1aa = 0.2580 and
θ1ab = 0.0834 for a, b = 1, 2, 3, 4; a 6= b. The mean µ1

is chosen such that π
1|0
aa = 0.1, π

1|0
ab = 0.05, a 6= b,

π
1|1
aa = 0.7, and π

1|1
ab = 0.45, a 6= b. The covariance

Γ1 for the initial state is chosen to be a scaled identity
matrix 0.04I. The state vector ψt evolves according to
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(a) True classes and scaling
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(b) True classes, estimated scaling
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(c) Estimated classes and scaling

Figure 1: Q-Q plots of standardized sample means yt for 10 runs of the simulated networks experiment under
three levels of estimation. With (a) true classes and scaling factors, yt is close to the asymptotic Gaussian
distribution predicted by Theorem 1. Even with (b) estimated scaling factors, yt is still close to the asymptotic
Gaussian distribution. When (c) class memberships are also estimated, yt is heavier tailed due to the errors in
the estimated classes.

a Gaussian random walk model, i.e. F t = I in (18). Γt

is constructed such that γt
ii = 0.01 and γt

ij = 0.0025
for i 6= j. 10 time steps are generated, and at each
time step, 10% of the nodes are randomly selected to
leave their class and are randomly assigned to one of
the other three classes. For consistency with Yang
et al. (2011) and Xu and Hero III (2014), I generate
undirected graph snapshots in this experiment.

I begin by checking the validity of the asymptotic
Gaussian distribution of the scaled sample means yt.
In this simulation experiment, the population means
and standard deviations for yt are known and are used
to standardize yt. Q-Q plots for the standardized yt

are shown in Figure 1. Figure 1a shows the distribu-
tion of yt when both the true classes and true scal-
ing factors (calculated using the true states) are used.
Notice that the empirical distribution is close to the
asymptotic Gaussian distribution, with only slightly
heavier tail. Experimentally I find that this deviation
decreases as the block sizes increase, as one would ex-
pect from Theorem 1.

Figure 1b shows that the distribution of yt is roughly
the same when using estimated scaling factors along
with the true classes, which is an encouraging result
and suggests that the EKF-based inference procedure
would likely work well in the a priori block model set-
ting. Figure 1c shows that the distribution of yt when
using both estimated scaling factors and classes is sig-
nificantly more heavy-tailed. Since this is not seen
in Figure 1b, I conclude that it is due to errors in the
class estimation, which causes the distribution of yt to
deviate from the asymptotically Gaussian distribution
when using true classes. The heavier tails suggest that
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Figure 2: Adjusted Rand indices with 95% confi-
dence bands for the stochastic block transition model
(SBTM), hidden Markov stochastic block model (HM-
SBM), and static stochastic block model (SSBM) on
50 runs of the simulated networks experiment.

perhaps a more robust filter, such as a filter that as-
sumes Student-t distributed observations, may provide
more accurate estimates in the a posteriori setting.

Figure 2 shows a comparison of the class estimation
accuracies, measured by the adjusted Rand indices
(Hubert and Arabie, 1985), of three different inference
algorithms: the EKF-based algorithm for the SBTM
proposed in this paper, the EKF algorithm for the HM-
SBM (Xu and Hero III, 2014), and a static SBM fit us-
ing spectral clustering on each snapshot. As one might
expect, the static SBM approach does not improve as
more time snapshots are provided. The poorer perfor-
mance of the HM-SBM approach compared to the pro-
posed SBTM approach is also not too surprising since
the dynamics on the marginal block probabilities no
longer follow a dynamic linear system as assumed by
Xu and Hero III (2014). The SBTM approach is more
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(a) Observed network
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(b) HM-SBM simulated networks
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(c) SBTM simulated networks

Figure 3: Histograms of edge durations in (a) observed Facebook network, (b) simulated networks from HM-SBM
fit to observed network, and (c) simulated networks from SBTM fit to observed network. The HM-SBM cannot
reproduce the observed edge durations, unlike the SBTM.

accurate than the other two; however it still makes
enough mistakes to cause the heavier-tailed distribu-
tion of yt as previously discussed.

6.2 Facebook Wall Posts

I now test the proposed SBTM inference algorithm on
a real data set, namely a dynamic social network of
Facebook wall posts (Viswanath et al., 2009). Similar
to the analysis by Viswanath et al. (2009), I use 90-
day time steps from the start of the data trace in June
2006, with the final complete 90-day interval ending
in November 2008, resulting in 9 total time steps. I
filter out people who were active for less than 7 of the
9 times as well as those with in- or out-degree less than
30, leaving 462 remaining people (nodes).

I fit the SBTM to this dynamic network using Algo-
rithm 1, beginning with a spectral clustering initial-
ization at the first time step. From examination of
the singular values of the first snapshot, I choose a fit
with k = 3 classes. Visualizations of the class struc-
ture overlaid onto the adjacency matrices at several
time steps are shown in the supplementary material.
Notice that all of the classes are actually communities,
with denser diagonal blocks compared to off-diagonal
blocks. The initial snapshot contains only 332 active
nodes, so many new nodes enter the network over time.
The networks are quite sparse, with the densest block
having estimated marginal edge probability of about
0.08. I find that the estimated probabilities of form-
ing new edges is very low, less than 0.03 over all time
steps regardless of block. The probabilities of exist-
ing edges re-occurring show greater variation between
blocks, ranging from about 0.18 to 0.90.

A histogram of the edge durations observed in the net-
work is shown in Figure 3a. Notice that, despite the
low densities of the blocks, more than 20% of the edges
appear over multiple time steps. I generate 10 syn-

thetic networks each from the HM-SBM and SBTM
fits to the observed networks. The histogram of edge
durations from synthetic networks generated from the
HM-SBM is shown in Figure 3b. Due to the hidden
Markov assumption, only the densities of the blocks
are being replicated over time, and as such, the ma-
jority of edges are not repeated at the following time
step. Compare this to the edge durations generated
from the proposed SBTM, shown in Figure 3c. Notice
that a significant fraction of edges are indeed repeated
in these synthetic networks, much like in the observed
networks. These edge durations cannot be replicated
by the HM-SBM. Thus the proposed SBTM provides
better fits to the sequence of observed adjacency matri-
ces and allows it to better forecast future interactions.

Notice also that the edge durations from the synthetic
networks are actually slightly longer than from the ob-
served networks. This is an artifact that appears be-
cause not all nodes are active at all time steps in the
observed networks, causing edge durations to be short-
ened in the observed networks. One could perhaps
replicate this effect by adding a layer to the dynamic
model simulating nodes entering and leaving the net-
work over time, which would be an interesting direc-
tion for future work.

The proposed SBTM can also be extended to have
edges depend directly on whether edges were present
further back than just the previous time step. Such
an approach would likely improve forecasting ability;
however, it also increases the number of states that
need to be estimated, which creates additional chal-
lenges that would make for interesting future work.
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