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Abstract

Non-parametric approaches for analyzing network data based on exchangeable
graph models (ExGM) have recently gained interest. The key object that defines
an ExGM is often referred to as a graphon. This non-parametric perspective on
network modeling poses challenging questions on how to make inference on the
graphon underlying observed network data. In this paper, we propose a computa-
tionally efficient procedure to estimate a graphon from a set of observed networks
generated from it. This procedure is based on a stochastic blockmodel approxi-
mation (SBA) of the graphon. We show that, by approximating the graphon with
a stochastic block model, the graphon can be consistently estimated, that is, the
estimation error vanishes as the size of the graph approaches infinity.

1 Introduction

Revealing hidden structures of a graph is the heart of many data analysis problems. From the well-
known small-world network to the recent large-scale data collected from online service providers
such as Wikipedia, Twitter and Facebook, there is always a momentum in seeking better and more
informative representations of the graphs [1, 14, 29, 3, 26, 12]. In this paper, we develop a new com-
putational tool to study one type of non-parametric representations which recently draws significant
attentions from the community [4, 19, 5, 30, 23].

The root of the non-parametric model discussed in this paper is in the theory of exchangeable ran-
dom arrays [2, 15, 16], and it is presented in [11] as a link connecting de Finetti’s work on partial
exchangeability and graph limits [20, 6]. In a nutshell, the theory predicts that every convergent
sequence of graphs (Gn) has a limit object that preserves many local and global properties of the
graphs in the sequence. This limit object, which is called a graphon, can be represented by mea-
surable functions w : [0, 1]2 → [0, 1], in a way that any w′ obtained from measure preserving
transformations of w describes the same graphon.

Graphons are usually seen as kernel functions for random network models [18]. To construct an
n-vertex random graph G(n,w) for a given w, we first assign a random label ui ∼ Uniform[0, 1] to
each vertex i ∈ {1, . . . , n}, and connect any two vertices i and j with probability w(ui, uj), i.e.,

Pr (G[i, j] = 1 | ui, uj) = w(ui, uj), i, j = 1, . . . , n, (1)

where G[i, j] denotes the (i, j)th entry of the adjacency matrix representing a particular realization
of G(n,w) (See Figure 1). As an example, we note that the stochastic block-model is the case where
w(x, y) is a piecewise constant function.

The problem of interest is defined as follows: Given a sequence of 2T observed directed graphs
G1, . . . , G2T , can we make an estimate ŵ of w, such that ŵ → w with high probability as n→∞?
This question has been loosely attempted in the literature, but none of which has a complete solution.
For example, Lloyd et al. [19] proposed a Bayesian estimator without a consistency proof; Choi and
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Figure 1: [Left] Given a graphon w : [0, 1]2 → [0, 1], we draw i.i.d. samples ui, uj from
Uniform[0,1] and assign Gt[i, j] = 1 with probability w(ui, uj), for t = 1, . . . , 2T . [Middle]
Heat map of a graphon w. [Right] A random graph generated by the graphon shown in the middle.
Rows and columns of the graph are ordered by increasing ui, instead of i for better visualization.

Wolfe [9] studied the consistency properties, but did not provide algorithms to estimate the graphon.
To the best of our knowledge, the only method that estimates graphons consistently, besides ours, is
USVT [8]. However, our algorithm has better complexity and outperforms USVT in our simulations.
More recently, other groups have begun exploring approaches related to ours [28, 24].

The proposed approximation procedure requires w to be piecewise Lipschitz. The basic idea is to
approximate w by a two-dimensional step function ŵ with diminishing intervals as n increases.The
proposed method is called the stochastic blockmodel approximation (SBA) algorithm, as the idea of
using a two-dimensional step function for approximation is equivalent to using the stochastic block
models [10, 22, 13, 7, 25]. The SBA algorithm is defined up to permutations of the nodes, so the
estimated graphon is not canonical. However, this does not affect the consistency properties of the
SBA algorithm, as the consistency is measured w.r.t. the graphon that generates the graphs.

2 Stochastic blockmodel approximation: Procedure

In this section we present the proposed SBA algorithm and discuss its basic properties.

2.1 Assumptions on graphons

We assume that w is piecewise Lipschitz, i.e., there exists a sequence of non-overlaping intervals
Ik = [αk−1, αk] defined by 0 = α0 < . . . < αK = 1, and a constant L > 0 such that, for any
(x1, y1) and (x2, y2) ∈ Iij = Ii × Ij ,

|w(x1, y1)− w(x2, y2)| ≤ L (|x1 − x2|+ |y1 − y2|) .
For generality we assume w to be asymmetric i.e., w(u, v) 6= w(v, u), so that symmetric graphons
can be considered as a special case. Consequently, a random graph G(n,w) generated by w is
directed, i.e., G[i, j] 6= G[j, i].

2.2 Similarity of graphon slices

The intuition of the proposed SBA algorithm is that if the graphon is smooth, neighboring cross-
sections of the graphon should be similar. In other words, if two labels ui and uj are close i.e.,
|ui− uj| ≈ 0, then the difference between the row slices |w(ui, ·)−w(uj , ·)| and the column slices
|w(·, ui) − w(·, uj)| should also be small. To measure the similarity between two labels using the
graphon slices, we define the following distance

dij =
1

2

(∫ 1

0

[w(x, ui)− w(x, uj)]
2
dx+

∫ 1

0

[w(ui, y)− w(uj , y)]
2
dy

)
. (2)
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Thus, dij is small only if both row and column slices of the graphon are similar.

The usage of dij for graphon estimation will be discussed in the next subsection. But before
we proceed, it should be noted that in practice dij has to be estimated from the observed graphs

G1, . . . , G2T . To derive an estimator d̂ij of dij , it is helpful to express dij in a way that the estima-
tors can be easily obtained. To this end, we let

cij =

∫ 1

0

w(x, ui)w(x, uj)dx and rij =

∫ 1

0

w(ui, y)w(uj , y)dy,

and express dij as dij =
1
2

[
(cii−cij−cji+cjj)+(rii−rij−rji+rjj)

]
. Inspecting this expression,

we consider the following estimators for cij and rij :

ĉkij =
1

T 2




∑

1≤t1≤T

Gt1 [k, i]







∑

T<t2≤2T

Gt2 [k, j]


 , (3)

r̂kij =
1

T 2




∑

1≤t1≤T

Gt1 [i, k]







∑

T<t2≤2T

Gt2 [j, k]


 . (4)

Here, the superscript k can be interpreted as the dummy variables x and y in defining cij and rij ,

respectively. Summing all possible k’s yields an estimator d̂ij that looks similar to dij :

d̂ij =
1

2

[
1

S

∑

k∈S

{(
r̂kii − r̂kij − r̂kji + r̂kjj

)
+
(
ĉkii − ĉkij − ĉkji + ĉkjj

)}
]
, (5)

where S = {1, . . . , n}\{i, j} is the set of summation indices.

The motivation of defining the estimators in (3) and (4) is that a row of the adjacency matrix G[i, ·]
is fully characterized by the corresponding row of the graphon w(ui, ·). Thus the expected value of
1
T

(∑
1≤t1≤T Gt1 [i, ·]

)
is w(ui, ·), and hence 1

S

∑
k∈S r̂kij is an estimator for rij . To theoretically

justify this intuition, we will show in Section 3 that d̂ij is indeed a good estimator: it is not only
unbiased, but is also concentrated round dij for large n. Furthermore, we will show that it is possible
to use a random subset of S instead of {1, . . . , n}\{i, j} to achieve the same asymptotic behavior.
As a result, the estimation of dij can be performed locally in a neighborhood of i and j, instead of
all n vertices.

2.3 Blocking the vertices

The similarity metric d̂ij discussed above suggests one simple method to approximate w by a piece-
wise constant function ŵ (i.e., a stochastic block-model). Given G1, . . . , G2T , we can cluster the

(unknown) labels {u1, . . . , un} intoK blocks B̂1, . . . , B̂K using a procedure described below. Once

the blocks B̂1, . . . , B̂K are defined, we can then determine ŵ(ui, uj) by computing the empirical

frequency of edges that are present across blocks B̂i and B̂j :

ŵ(ui, uj) =
1

|B̂i| |B̂j |
∑

ix∈B̂i

∑

jy∈B̂j

1

2T
(G1[ix, jy] +G2[ix, jy] + . . .+G2T [ix, jy]) , (6)

where B̂i is the block containing ui so that summing Gt[x, y] over x ∈ B̂i and y ∈ B̂j yields an

estimate of the expected number of edges linking block B̂i and B̂j .

To cluster the unknown labels {u1, . . . , un} we propose a greedy approach as shown in Algorithm
1. Starting with Ω = {u1, . . . , un}, we randomly pick a node ip and call it the pivot. Then for all

other vertices iv ∈ Ω\{ip}, we compute the distance d̂ip,iv and check whether d̂ip,iv < ∆2 for some

precision parameter ∆ > 0. If d̂ip,iv < ∆2, then we assign iv to the same block as ip. Therefore,

after scanning through Ω once, a block B̂1 = {ip, iv1 , iv2 , . . .} will be defined. By updating Ω as

Ω← Ω\B̂1, the process repeats until Ω = ∅.
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The proposed greedy algorithm is only a local solution in a sense that it does not return the globally
optimal clusters. However, as will be shown in Section 3, although the clustering algorithm is not
globally optimal, the estimated graphon ŵ is still guaranteed to be a consistent estimate of the true
graphon w as n → ∞. Since the greedy algorithm is numerically efficient, it serves as a practical
computational tool to estimate w.

2.4 Main algorithm

Algorithm 1 Stochastic blockmodel approximation

Input: A set of observed graphs G1, . . . , G2T and the precision parameter ∆.

Output: Estimated stochastic blocks B̂1, . . . , B̂K .
Initialize: Ω = {1, . . . , n}, and k = 1.
while Ω 6= ∅ do

Randomly choose a vertex ip from Ω and assign it as the pivot for B̂k: B̂k ← ip.
for Every other vertices iv ∈ Ω\{ip} do

Compute the distance estimate d̂ip,iv .

If d̂ip,iv ≤ ∆2, then assign iv as a member of B̂k: B̂k ← iv.
end for
Update Ω: Ω← Ω\B̂k.
Update counter: k ← k + 1.

end while

Algorithm 1 illustrates the pseudo-code for the proposed stochastic block-model approximation.
The complexity of this algorithm is O(TSKn), where T is half the number of observations, S is
the size of the neighborhood, K is the number of blocks and n is number of vertices of the graph.

3 Stochastic blockmodel approximation: Theory of estimation

In this section we present the theoretical aspects of the proposed SBA algorithm. We will first

discuss the properties of the estimator d̂ij , and then show the consistency of the estimated graphon
ŵ. Details of the proofs can be found in the supplementary material.

3.1 Concentration analysis of d̂ij

Our first theorem below shows that the proposed estimator d̂ij is both unbiased, and is concentrated
around its expected value dij .

Theorem 1. The estimator d̂ij for dij is unbiased, i.e., E[d̂ij ] = dij . Further, for any ǫ > 0,

Pr
[∣∣∣d̂ij − dij

∣∣∣ > ǫ
]
≤ 8e−

Sǫ2

32/T+8ǫ/3 , (7)

where S is the size of the neighborhood S, and 2T is the number of observations.

Proof. Here we only highlight the important steps to present the intuition. The basic idea of the
proof is to zoom-in a microscopic term of r̂kij and show that it is unbiased. To this end, we use the

fact that Gt1 [i, k] and Gt2 [j, k] are conditionally independent on uk to show

E[Gt1 [i, k]Gt2 [j, k] | uk] = Pr[Gt1 [i, k] = 1, Gt2 [j, k] = 1 | uk]

(a)
= Pr[Gt1 [i, k] = 1 | uk] Pr[Gt2 [j, k] = 1 | uk]

= w(ui, uk)w(uj , uk),

which then implies E[r̂kij | uk] = w(ui, uk)w(uj , uk), and by iterated expectation we have E[r̂kij ] =

E[E[r̂kij | uk]] = rij . The concentration inequality follows from a similar idea to bound the variance

of r̂kij and apply Bernstein’s inequality.
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That Gt1 [i, k] and Gt2 [j, k] are conditionally independent on uk is a critical fact for the success of
the proposed algorithm. It also explains why at least 2 independently observed graphs are necessary,
for otherwise we cannot separate the probability in the second equality above marked with (a).

3.2 Choosing the number of blocks

The performance of the Algorithm 1 is sensitive to the number of blocks it defines. On the one hand,
it is desirable to have more blocks so that the graphon can be finely approximated. But on the other
hand, if the number of blocks is too large then each block will contain only few vertices. This is bad
because in order to estimate the value on each block, a sufficient number of vertices in each block is
required. The trade-off between these two cases is controlled by the precision parameter ∆: a large
∆ generates few large clusters, while small ∆ generates many small clusters. A precise relationship
between the ∆ and K , the number of blocks generated the algorithm, is given in Theorem 2.

Theorem 2. Let ∆ be the accuracy parameter and K be the number of blocks estimated by Algo-
rithm 1, then

Pr

[
K >

QL
√
2

∆

]
≤ 8n2e

− S∆4

128/T+16∆2/3 , (8)

where L is the Lipschitz constant and Q is the number of Lipschitz blocks in w.

In practice, we estimate ∆ using a cross-validation scheme to find the optimal 2D histogram bin
width [27]. The idea is to test a sequence of potential values of ∆ and seek the one that minimizes
the cross validation risk, defined as

Ĵ(∆) =
2

h(n− 1)
− n+ 1

h(n− 1)

K∑

j=1

p̂2j , (9)

where p̂j = |B̂j |/n and h = 1/K . Algorithm 2 details the proposed cross-validation scheme.

Algorithm 2 Cross Validation

Input: Graphs G1, . . . , G2T .

Output: Blocks B̂1, . . . , B̂K , and optimal ∆.
for a sequence of ∆’s do

Estimate blocks B̂1, . . . , B̂K from G1, . . . , G2T . [Algorithm 1]

Compute p̂j = |B̂j |/n, for j = 1, . . . ,K .

Compute Ĵ(∆) = 2
h(n−1) − n+1

h(n−1)

∑K
j=1 p̂

2
j , with h = 1/K .

end for
Pick the ∆ with minimum Ĵ(∆), and the corresponding B̂1, . . . , B̂K .

3.3 Consistency of ŵ

The goal of our next theorem is to show that ŵ is a consistent estimate of w, i.e., ŵ → w as n→∞.
To begin with, let us first recall two commonly used metric:

Definition 1. The mean squared error (MSE) and mean absolute error (MAE) are defined as

MSE(ŵ) =
1

n2

n∑

iv=1

n∑

jv=1

(w(uiv , ujv )− ŵ(uiv , ujv ))
2

MAE(ŵ) =
1

n2

n∑

iv=1

n∑

jv=1

|w(uiv , ujv)− ŵ(uiv , ujv )| .

Theorem 3. If S ∈ Θ(n) and ∆ ∈ ω

((
log(n)

n

) 1
4

)
∩ o(1), then

lim
n→∞

E[MAE(ŵ)] = 0 and lim
n→∞

E[MSE(ŵ)] = 0.
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Proof. The details of the proof can be found in the supplementary material . Here we only outline
the key steps to present the intuition of the theorem. The goal of Theorem 3 is to show convergence
of |ŵ(ui, uj)− w(ui, uj)|. The idea is to consider the following two quantities:

w(ui, uj) =
1

|B̂i| |B̂j |
∑

ix∈B̂i

∑

jx∈B̂j

w(uix , ujx),

ŵ(ui, uj) =
1

|B̂i| |B̂j |
∑

ix∈B̂i

∑

jy∈B̂j

1

2T
(G1[ix, jy] +G2[ix, jy] + . . .+G2T [ix, jy]) ,

so that if we can bound |w(ui, uj) − w(ui, uj)| and |w(ui, uj) − ŵ(ui, uj)|, then consequently
|ŵ(ui, uj)− w(ui, uj)| can also be bounded.

The bound for the first term |w(ui, uj) − w(ui, uj)| is shown in Lemma 1: By Algorithm 1, any

vertex iv ∈ B̂i is guaranteed to be within a distance ∆ from the pivot of B̂i. Since w(ui, uj) is an

average over B̂i and B̂j , by Theorem 1 a probability bound involving ∆ can be obtained.

The bound for the second term |w(ui, uj)−ŵ(ui, uj)| is shown in Lemma 2. Different from Lemma
1, here we need to consider two possible situations: either the intermediate estimate w(ui, uj) is
close to the ground truth w(ui, uj), or w(ui, uj) is far from the ground truth w(ui, uj). This ac-
counts for the sum in Lemma 2. Individual bounds are derived based on Lemma 1 and Theorem 1.

Combining Lemma 1 and Lemma 2, we can then bound the error and show convergence.

Lemma 1. For any iv ∈ B̂i and jv ∈ B̂j ,

Pr
[
|w(ui, uj)− w(uiv , ujv )| > 8∆1/2L1/4

]
≤ 32|B̂i| |B̂j|e−

S∆4

32/T+8∆2/3 . (10)

Lemma 2. For any iv ∈ B̂i and jv ∈ B̂j ,

Pr
[
|ŵij − wij | > 8∆1/2L1/4

]
≤ 2e−256(T |B̂i| |B̂j |

√
L∆) + 32|B̂i|2|B̂j |2e−

S∆4

32/T+8∆2/3) . (11)

The condition S ∈ Θ(n) is necessary to make Theorem 3 valid, because if S is independent of n,
the right hand sides of (10) and (11) cannot approach 0 even if n→∞. The condition on ∆ is also
important as it forces the numerators and denominators in the exponentials of (10) and (11) to be
well behaved.

4 Experiments

In this section we evaluate the proposed SBA algorithm by showing some empirical results. For the
purpose of comparison, we consider (i) the universal singular value thresholding (USVT) [8]; (ii)
the largest-gap algorithm (LG) [7]; (iii) matrix completion from few entries (OptSpace) [17].

4.1 Estimating stochastic blockmodels

Accuracy as a function of growing graph size. Our first experiment is to evaluate the proposed
SBA algorithm for estimating stochastic blockmodels. For this purpose, we generate (arbitrarily) a
graphon

w =



0.8 0.9 0.4 0.5
0.1 0.6 0.3 0.2
0.3 0.2 0.8 0.3
0.4 0.1 0.2 0.9


 , (12)

which represents a piecewise constant function with 4× 4 equi-space blocks.

Since USVT and LG use only one observed graph whereas the proposed SBA require at least 2
observations, in order to make the comparison fair, we use half of the nodes for SBA by generating
two independent n

2 × n
2 observed graphs. For USVT and LG, we use one n× n observed graph.

Figure 2(a) shows the asymptotic behavior of the algorithms when n grows. Figure 2(b) shows the
estimation error of SBA algorithm as T grows for graphs of size 200 vertices.
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Figure 2: (a) MAE reduces as graph size grows. For the fairness of the amount of data that can be
used, we use n

2 × n
2 × 2 observations for SBA, and n × n × 1 observation for USVT [8] and LG

[7]. (b) MAE of the proposed SBA algorithm reduces when more observations T is available. Both
plots are averaged over 100 independent trials.

Accuracy as a function of growing number of blocks. Our second experiment is to evaluate the
performance of the algorithms as K , the number of blocks, increases. To this end, we consider a
sequence of K , and for each K we generate a graphon w of K × K blocks. Each entry of the
block is a random number generated from Uniform[0, 1]. Same as the previous experiment, we fix
n = 200 and T = 1. The experiment is repeated over 100 trials so that in every trial a different
graphon is generated. The result shown in Figure 3(a) indicates that while estimation error increases
as K grows, the proposed SBA algorithm still attains the lowest MAE for all K .
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Figure 3: (a) As K increases, MAE of all three algorithm increases but SBA still attains the lowest
MAE. Here, we use n

2 × n
2 × 2 observations for SBA, and n× n× 1 observation for USVT [8] and

LG [7]. (b) Estimation of graphon in the presence of missing links: As the amount of missing links
increases, estimation error also increases.

4.2 Estimation with missing edges

Our next experiment is to evaluate the performance of proposed SBA algorithm when there are
missing edges in the observed graph. To model missing edges, we construct an n× n binary matrix
M with probability Pr[M [i, j] = 0] = ξ, where 0 ≤ ξ ≤ 1 defines the percentage of missing
edges. Given ξ, 2T matrices are generated with missing edges, and the observed graphs are defined
as M1 ⊙ G1, . . . ,M2T ⊙ G2T , where ⊙ denotes the element-wise multiplication. The goal is to
study how well SBA can reconstruct the graphon ŵ in the presence of missing links.
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The modification of the proposed SBA algorithm for the case missing links is minimal: when com-

puting (6), instead of averaging over all ix ∈ B̂i and jy ∈ B̂j , we only average ix ∈ B̂i and jy ∈ B̂j

that are not masked out by all M ′s. Figure 3(b) shows the result of average over 100 independent
trials. Here, we consider the graphon given in (12), with n = 200 and T = 1. It is evident that SBA
outperforms its counterparts at a lower rate of missing links.

4.3 Estimating continuous graphons

Our final experiment is to evaluate the proposed SBA algorithm in estimating continuous graphons.
Here, we consider two of the graphons reported in [8]:

w1(u, v) =
1

1 + exp{−50(u2 + v2)} , and w2(u, v) = uv,

where u, v ∈ [0, 1]. Here, w2 can be considered as a special case of the Eigenmodel [13] or latent
feature relational model [21].

The results in Figure 4 shows that while both algorithms have improved estimates when n grows, the
performance depends on which of w1 and w2 that we are studying. This suggests that in practice the
choice of the algorithm should depend on the expected structure of the graphon to be estimated: If the
graph generated by the graphon demonstrates some low-rank properties, then USVT is likely to be
a better option. For more structured or complex graphons the proposed procedure is recommended.
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Figure 4: Comparison between SBA and USVT in estimating two continuous graphons w1 and w2.
Evidently, SBA performs better for w1 (high-rank) and worse for w2 (low-rank).

5 Concluding remarks

We presented a new computational tool for estimating graphons. The proposed algorithm approx-
imates the continuous graphon by a stochastic block-model, in which the first step is to cluster
the unknown vertex labels into blocks by using an empirical estimate of the distance between two
graphon slices, and the second step is to build an empirical histogram to estimate the graphon. Com-
plete consistency analysis of the algorithm is derived. The algorithm was evaluated experimentally,
and we found that the algorithm is effective in estimating block structured graphons.

Implementation of the SBA algorithm is available online at https://github.com/airoldilab/SBA.
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