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The continuous-time random walk (CTRW) is a pure-jump stochastic process with several appli-
cations in physics, but also in insurance, finance and economics. A definition is given for a class of
stochastic integrals driven by a CTRW, that includes the Itō and Stratonovich cases. An uncoupled
CTRW with zero-mean jumps is a martingale. It is proved that, as a consequence of the martingale
transform theorem, if the CTRW is a martingale, the Itō integral is a martingale too. It is shown
how the definition of the stochastic integrals can be used to easily compute them by Monte Carlo
simulation. The relations between a CTRW, its quadratic variation, its Stratonovich integral and its
Itō integral are highlighted by numerical calculations when the jumps in space of the CTRW have
a symmetric Lévy α-stable distribution and its waiting times have a one-parameter Mittag-Leffler
distribution. Remarkably these distributions have fat tails and an unbounded quadratic variation.
In the diffusive limit of vanishing scale parameters, the probability density of this kind of CTRW
satisfies the space-time fractional diffusion equation (FDE) or more in general the fractional Fokker-
Planck equation, that generalize the standard diffusion equation solved by the probability density
of the Wiener process, and thus provides a phenomenologic model of anomalous diffusion. We also
provide an analytic expression for the quadratic variation of the stochastic process described by the
FDE, and check it by Monte Carlo.

PACS numbers: 02.50.Ey, 05.40.Jc,

I. INTRODUCTION

A. The continuous-time random walk

The continuous-time random walk (CTRW) is a pure-
jump stochastic process used as a model for standard and
anomalous diffusion when the sojourn time at a site is
much greater than the time needed to jump to a new po-
sition, i.e. when jumps can be considered instantaneous
events. The CTRW has been introduced in physics by
Montroll and Weiss [1]; other seminal papers on its ap-
plication to standard and anomalous transport phenom-
ena are due to Scher and Lax [2, 3] and to Montroll and
Scher [4, 5]. More recently, Shlesinger wrote a review that
contributed to further popularize the CTRW [6]; theoret-
ical, numerical, and empirical studies on the CTRW have
been discussed by Weiss [7], Metzler and Klafter [8, 9],
and some authors of the present paper [10, 32].

In a CTRW, if X(t) denotes the position of a diffusing
particle at time t, ξi = X(ti)−X(ti−1) denotes a random

∗Electronic address: guido.germano@staff.uni-marburg.de;

URL: www.staff.uni-marburg.de/~germano
†Electronic address: mauro.politi@unimi.it
‡Electronic address: enrico.scalas@mfn.unipmn.it;

URL: www.mfn.unipmn.it/~scalas
§Electronic address: rene.schilling@tu-dresden.de;

URL: www.math.tu-dresden.de/sto/schilling

jump occurring at a random time ti, and τi = ti − ti−1

is the waiting or sojourn or interarrival or duration time
between two consecutive jumps, one has

X(t)
def
= SN(t)

def
=

N(t)∑

i=1

ξi, (1)

where t0 = 0, X(0) = 0 and N(t) is a counting random
process that gives the number of jumps up to time t.
Throughout this paper, we assume that

- the jumps ξi, i = 1, 2, . . . are independent and
identically distributed (iid) random vectors in Rd,
d = 1, 2, . . . [11];

- the waiting times τi, i = 1, 2, . . . are iid random
variables in R+;

- the families (ξi, i = 1, 2, . . .) and (τi, i = 1, 2, . . .)
are independent.

The third assumption means that we consider a so-called
uncoupled CTRW. The first two assumptions entail that
the joint distribution of any pair (ξi, τi) does not depend
on i. If, in the uncoupled case, the law of (ξi, τi) is given
by a density function ϕ(ξ, τ), the independence of ξi and
τi means that it can be factorized in terms of the marginal
probability densities for jumps λ(ξ) and waiting times
ψ(τ): ϕ(ξ, τ) = λ(ξ)ψ(τ).

Eq. (1) means that a CTRW is a random sum of in-
dependent random variables. The process of the jump
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mailto:guido.germano@staff.uni-marburg.de
www.staff.uni-marburg.de/~germano
mailto:mauro.politi@unimi.it
mailto:enrico.scalas@mfn.unipmn.it
www.mfn.unipmn.it/~scalas
mailto:rene.schilling@tu-dresden.de
www.math.tu-dresden.de/sto/schilling


2

times

tn =
n∑

i=1

τi, t0 = 0, (2)

is a renewal point process. Therefore, a CTRW can
be seen as a compound renewal process [12, 13, 14].
The existence of an uncoupled CTRW can be proved,
based on the corresponding theorems of existence for
renewal processes and discrete-time random walks [15].
Càdlàg (right-continuous with left limit) realizations of
a CTRW can be easily and exactly generated by Monte
Carlo simulation and plotted [10]. This is illustrated in
Fig. 1. An uncoupled CTRW is Markovian if and only if
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FIG. 1: Realization of a CTRW with exponentially dis-
tributed waiting times (γt = 1) and standard normally dis-
tributed jumps (µ = 0 and σ = 1).

the waiting time distribution is exponential, i.e. ψ(τ) =
exp(−τ/γt)/γt [16, 17]. An uncoupled CTRW belongs to
the class of semi-Markov processes [17, 18, 19, 20], i.e.
for any A ⊂ Rd and t > 0 we have

P (Sn ∈ A, τn ≤ t |S0, . . . , Sn−1, τ1, . . . , τn−1)

= P (Sn ∈ A, τn ≤ t |Sn−1) (3)

and, if we fix the position Sn−1 = y of the diffusing
particle at time tn−1, the probability on the right will
be independent of n. In the generic coupled case, if the
law of (ξn, τn) is given by a density function ϕ(ξ, τ), we
can use Sn = Sn−1 + ξn and rewrite this as

P (Sn ∈ A, τn ≤ t |Sn−1) =

∫

A

∫ t

0

ϕ(x− Sn−1, τ) dτdx.

(4)
This can be shown as follows. Let IA(x) denote the in-
dicator function that yields 1 if x ∈ A and 0 otherwise.
Probabilities can be replaced with expectations writing
P (x ∈ A) = E[IA(x)]. Moreover, one has IAIB = IA∩B.

Thus, if B = (0, t]:

P (Sn ∈ A, τn ∈ B |Sn−1)

= E[IA(Sn)IB(τn) |Sn−1]

= E[IA(Sn−1 + ξn)IB(τn) |Sn−1]

=

∫

Rd

∫ ∞

0

IA(Sn−1 + ξ)IB(τ)ϕ(ξ, τ) dτdξ

=

∫

Rd

∫

B

IA(Sn−1 + ξ)ϕ(ξ, τ) dτdξ

=

∫

Rd

∫ t

0

IA(x)ϕ(x − Sn−1, τ) dτdx

=

∫

A

∫ t

0

ϕ(x− Sn−1, τ) dτdx.

(5)

Montroll and Weiss wrote Eq. (4) as an integral equa-
tion for the probability density pX(x, t) of finding the
particle in position x at time t in terms of the joint prob-
ability density ϕ(ξ, τ) of the jumps ξ and waiting times
τ :

pX(x, t) = δ(x)Ψ(t)+

∫

Rd

∫ t

0

ϕ(ξ, τ)pX(x−ξ, t−τ) dτdξ,
(6)

where Ψ(t) = 1 −
∫ t

0
ψ(τ) dτ is the complementary cu-

mulative distribution function for the waiting times, also
called survival function. This can be shown observing
that

P (X(t) ∈ dx |X(0) = 0) = pX(x, t) dx (7)

and

P (X(t) ∈ dx |X(t′) = x′)

= P (X(t− t′) ∈ dx |X(0) = x′)

= P (X(t− t′) − x′ ∈ dx |X(0) = 0)

= pX(x− x′, t− t′) dx

(8)

because the increments in time and space are iid and
hence homogeneous. Moreover, from Eq. (4),

P (S1 ∈ dx, τ1 ∈ dt |S0 = 0) = ϕ(x, t) dxdt. (9)

The probability in Eq. (7) can be decomposed depending
on the duration of the first jump τ1 with respect to t:

P (X(t) ∈ dx |X(0) = 0)

= P (X(t) ∈ dx, τ1 > t |X(0) = 0)

+ P (X(t) ∈ dx, τ1 ≤ t |X(0) = 0).
(10)

The part without a jump before t is given by

P (X(t) ∈ dx, τ1 > t |X(0) = 0) = P (τ1 > t)δ(x) dx

= δ(x)Ψ(t) dx. (11)
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The other part is given by

P (X(t) ∈ dx, τ1 ≤ t |X(0) = 0)

=

∫

Rd

∫ t

0

P (X(t) ∈ dx |X(t′) = x′)

× P (S1 ∈ dx′, τ1 ∈ dt′ |S0 = 0)

Eq. (9)
=

∫

Rd

∫ t

0

P (X(t) ∈ dx |X(t′) = x′)ϕ(x′, t′) dt′dx′

Eq. (8)
=

∫

Rd

∫ t

0

pX(x− x′, t− t′)dxϕ(x′, t′) dt′dx′

=

[∫

Rd

∫ t

0

ϕ(ξ, τ) pX (x− ξ, t− τ) dτdξ

]
dx.

(12)

Combining Eqs. (11) and (12) yields Eq. (6). Notice that
the latter just gives a one-point probability density, which
is not enough to characterize a stochastic process without
further assumptions.

Eq. (6) can be solved in the Fourier-Laplace domain,

̂̃p(k, s) =
1

1 − ̂̃ϕ(k, s)

1 − ψ̃(s)

s
, (13)

where the Fourier and Laplace transforms are defined as

f̂(k) = Fx[f(x)](k) =

∫ +∞

−∞

f(x)eikx dx, k ∈ R, (14)

f̃(s) = Lt[f(t)](s) =

∫ ∞

0

f(t)e−st dt, s ∈ C. (15)

The inverse transforms to the space-time domain are pos-
sible in the uncoupled case, i.e. when ϕ(ξ, τ) = λ(ξ)ψ(τ);
this leads to a series expression written in terms of the
probability P (N(t) = n) = pN (n, t) of the counting
process N(t), and the n-fold convolution λ∗n(x) of the
marginal probability density of jumps λ(ξ):

pX(x, t) =

∞∑

n=0

pN(n, t)λ∗n(x). (16)

The method using integral transforms is described in sev-
eral papers, including the original one by Montroll and
Weiss. However, Eq. (16) can also be derived directly by
probabilistic considerations. Indeed, Eq. (1) is a random
sum of iid random variables. This means that any po-
sition x can be reached at time t by a finite number n
of jumps. The probability of reaching position x at time
t in exactly n jumps is pN(n, t)λ∗n(x). Eq. (16) follows
given that these events are mutually exclusive. Note that
pN (0, t)λ∗0(x) coincides with the singular term δ(x)Ψ(t),
meaning that the distribution function for x has a jump
at position x = 0 of height Ψ(t).

A CTRW with exponential waiting times is called a
compound Poisson process (CPP), as in this case

pN (n, t; γt) = exp(−t/γt)
(t/γt)

n

n!
. (17)

A CPP is not only a Markov, but also a Lévy pro-
cess. This means that it has independent and time-
homogeneous (stationary) increments. In the Lévy case
pX(x, t), even pX(x, 1), fully characterizes the stochas-
tic process defined by Eq. (1) [15, 21, 22]; this is due
to the infinite divisibility and the fact that the incre-
ments are stationary and independent. For a normal
CPP, i.e. a CPP with normally distributed jumps, the
n-fold convolution λ∗n(x) of N(µ, σ2) can be evaluated
as N(nµ, nσ2), leading to

pX(x, t;µ, σ, γt) = exp(−t/γt)

×
∞∑

n=0

(t/γt)
n

n!

1√
2πnσ

exp

(
− (x− nµ)2

2nσ2

)
. (18)

B. The CTRW in physics, insurance, finance, and

economics

Since the seminal paper by Montroll and Weiss [1],
there has been much scientific activity on the application
of the CTRW to important physical problems. One line
of research investigated anomalous relaxation related to
power-law tails of the waiting time distribution as well as
the asymptotic behaviour of the CTRW for large times
[4, 23, 24, 25, 26, 27]. As mentioned above, Klafter and
Metzler have extensively reviewed these and subsequent
studies [8, 9]. Furthermore, in their book, ben-Avraham
and Havlin have discussed the applications to physical
chemistry [28]. Here, it is worth mentioning the recent
work on the relation between the CTRW and fractional
diffusion that can be traced to papers by Balakrishnan
and Hilfer [29, 30] and has been thoroughly discussed in
Refs. [10, 31, 32]. Some specific applications include, e.g.,
plasmas [33] and biopolymers [34, 35].

The CTRW has been applied also in insurance, finance,
and economics. Even if well-known in the field of econo-
physics [32, 36], these applications deserve a short sum-
mary.

In ruin theory for insurance companies, the jumps ξi
are interpreted as claims and they are positive random
variables; ti is the instant at which the i-th claim is paid
[37].

In mathematical finance, if PA(t) is the price of an
asset at time t and PA(0) is the price of the same as-
set at a previous reference time t0 = 0, then X(t) =
log(PA(t)/PA(0)) represents the log-return (or log-price)
at time t. In regulated markets using a continuous
double-auction trading mechanism, such as stock mar-
kets, prices vary at random times ti, when a trade takes
place, and ξi = X(ti) −X(ti−1) = log(PA(ti)/PA(ti−1))
is the tick-by-tick log-return, whereas τi = ti− ti−1 is the
intertrade duration; for more details, see [32, 36, 38] and
references contained therein.

In the theory of economic growth, ξi represents a
growth shock, which can actually be both positive and
negative, X(t) is the logarithm of a firm’s size or of an
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individual’s wealth, and τi is the time interval between
two consecutive growth shocks; see [32] and references
therein.

C. Motivation for the study of stochastic integrals

driven by a CTRW and link with fractional calculus

Given the wide range of applications of the CTRW
overviewed in the previous subsection, it is relevant to
study diffusive stochastic differential equations whose
driving noise is defined in terms of a CTRW:

dZ = a(Z, t)dt+ b(Z, t)dX. (19)

Here Z(X, t) is the unknown random function, a(Z, t)
and b(Z, t) are known functions of Z and time t, and dX
represents the CTRW ‘measure’ with respect to which
stochastic integrals are defined. In order to give a rig-
orous meaning to such an expression, some constraints
on the properties of the CTRW are necessary. In a re-
cent paper, the theory has been discussed for stochastic
integration on a time-homogeneous (stationary) CTRW
— i.e., the already mentioned CPPs [39]. Although the
theory reported there was already well known by math-
ematicians and has been used in finance for option pric-
ing since 1976 [40], that paper contains useful material
and is written in a way that is clear and appealing for
physicists. Here, inspired by Ref. [39], the theory will be
further discussed and developed.

Consider a CTRW X(t) whose jumps in space ξi are
distributed according to the symmetric Lévy α-stable
law, α ∈ (0, 2], whose density can be expressed as a series
or, more conveniently, as the inverse Fourier transform of
its characteristic function:

Lα(ξ; γx) = F−1
k [exp (−|γxk|α)] (ξ). (20)

For α = 2 this corresponds to a Gaussian with standard
deviation σ =

√
2γx. Let the waiting times τi of the

CTRW have the probability density

ψβ(τ ; γt) = − d

dτ
Eβ

(
−(τ/γt)

β
)
, (21)

where Eβ(z), β ∈ (0, 1], is the one-parameter Mittag-
Leffler function [41, 42, 43]:

Eβ(z) =

∞∑

n=0

zn

Γ(βn+ 1)
, z ∈ C. (22)

For a real argument z = t ∈ R and β = 1 this corresponds
to an exponential function. When β < 1, Eβ(−tβ) is ap-
proximated for small values of t by a stretched exponen-
tial decay (Weibull function), exp

(
−tβ/Γ(1 + β)

)
, and

for large values of t by a power law, t−β/Γ(1 − β).
In the diffusive limit for X(t), when the scale pa-

rameters γx of the jumps and γt of the waiting times

vanish satisfying the scaling relation γα
x /γ

β
t = D, if

in Eq. (19) a = 0 and b = 1 the probability density
pZ(z, t) = pX(x, t; γx, γt) converges to the solution of the
space-time fractional diffusion equation (FDE) [44, 45]

∂β

∂tβ
uX(x, t;D) = D

∂α

∂|x|αuX(x, t;D) (23)

uX(x, 0+;D) = δ(x), x ∈ R, t ∈ R+.

The space-fractional derivative of order α ∈ (0, 2] is de-
fined according to Riesz:

dα

d|x|α f(x) = F−1
k

[
−|k|αf̂(k)

]
(x). (24)

The time-fractional derivative of order β ∈ (0, 1] is de-
fined in the sense of Caputo

dβ

dtβ
f(t) = L−1

s

[
sβ f̃(s) − sβ−1f(0+)

]
(t). (25)

The FDE is a generalization of the standard diffusion
equation, that results for α = 2 and β = 1; in this case
the solution uX(x, t;D) of the Cauchy problem given
by Eq. (23) is the one-point probability density of the
Bachelier-Wiener process or Brownian motion B(t),

uX(x, t;D) =
1√

4πDt
exp

(
− x2

4Dt

)
, (26)

and X(t) is the NCPP introduced at the end of Sec. I A.
The general solution of the FDE was worked out in the
Fourier-Laplace domain:

̂̃uX(k, s) =
sβ−1

D|k|α + sβ
. (27)

Because

L−1
s

[
sβ−1

D|k|α + sβ

]
(t) = Eβ(−D|k|αtβ) (28)

defining κ = ktβ/α and the time-independent Green func-
tion

Gα,β(ξ;D) = F−1
κ

[
Eβ(−D|κ|α)

]
(ξ), (29)

the solution of the FDE, Eq. (23), can be expressed in
the space-time domain as

uX(x, t;D) = t−β/αGα,β(xt−β/α;D). (30)

These results are a consequence of a generalized central
limit theorem for sequences of random variables [31]. A
simpler derivation can be found in Ref. [32]. For com-
putational details see Sec. III and Ref. [10]. If a(x, t)
and b(x, t) are not constant, a fractional Fokker-Planck
equation for uX(x, t;D) has been proposed in the diffu-
sive limit [8, 46, 47, 48, 49, 50] starting from a generalized
master equation [48] or a CTRW [49]. For the NCPP this
reduces to the standard Fokker-Planck equation [51, 52].
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Without taking the diffusive limit, and if a = 0 and
b = 1, the time evolution of the probability density
pX(x, t) is given by the Montroll-Weiss integral equation
(6). The uncoupled case of the latter can be presented
alternatively in an integro-differential form [53],

∫ t

0

Φ(t− τ)
∂

∂τ
pX(x, τ) dτ

= −pX(x, t) +

∫ +∞

−∞

λ(x − ξ)pX(ξ, t) dξ, (31)

that can be interpreted as a time evolution equation of
Fokker-Planck type. It involves the time derivative of
pX(x, t) and an auxiliary function Φ(t) defined through

its Laplace transform as Φ̃(s) = Ψ̃(s)/ψ̃(s), so that

Ψ(t) =
∫ t

0
Φ(t− τ)ψ(τ) dτ . This approach has been gen-

eralized studying scores of possible kinetic equations for
non-Markovian processes [54]. What follows in the next
sections is valid without necessarily taking the diffusive
limit. Nevertheless, the latter is important because it
motivates our particular choice for the marginal distribu-
tions of jumps and waiting times, and because it provides
analytic expressions that can be compared to our Monte
Carlo results as shown in Sec. III.

II. STOCHASTIC INTEGRALS

In Ref. [39], the stochastic integral is never explicitly
defined. However, starting from the fact that sample
paths of a CTRW can be represented by step functions,
it is possible to give an explicit formula.

A. Definitions

Some heuristic manipulations are useful for the defini-
tion of the stochastic integral

J(t) =

∫ t

0

Y (s) dX(s), (32)

where X(t) and Y (t) are synchronous CTRWs, i.e. their
jumps happen at the same times ti, i = 1, . . . , N(t).
Though an interesting case is often Y (t) = G(X(t)) with
a suitable function G(X), the jumps of Y (t) and X(t) at
t = ti may be independent as well. Eq. (1) defining X(t)
can be written in terms of the right-continuous variant
of Heaviside’s step function θ(t), which is 0 for t < 0 and
1 for t ≥ 0:

X(t) =

N(t)∑

i=1

ξiθ(t− ti). (33)

Using the fact that the ‘derivative’ of Heaviside’s θ func-
tion θ(t− ti) is Dirac’s δ function δ(t− ti), one can write

dX(t) =

N(t)∑

i=1

ξiδ(t− ti) dt, (34)

which means that ∆X(ti)
def
= X(ti) − X(t−i ) = ξi with

X(t−i ) = lims→t−
i
X(s)

def
= lims→ti,s<ti

X(s). Note that

δ(t) is not a proper function, but rather a distribution in
the sense of Sobolev and Schwartz [55]. Writing Eq. (34)
with t−i in place of ti, inserting it into Eq. (32), and using
the properties of Dirac’s δ function, we get the exact
expression (no limit needed: recall that the number of
jumps N(t) between 0 and t is a random finite integer)

I(t)
def
=

∫ t

0

Y (s−) dX(s) =

N(t)∑

i=1

Y (t−i )ξi

=

N(t)∑

i=1

Y (t−i )(X(ti) −X(t−i )). (35)

The choice Y (s−) for the integrand makes I(t) a mar-
tingale if X(t) is a martingale, as will be explained be-
low. This naive definition works nicely if the driving
noise is a step function with jump times ti and jumps
ξi = X(ti) −X(t−i ); if Y (t) and X(t) jump at the same
time we even have Y (t−i ) = Y (ti−1). As soon as one
wants to go beyond this situation, measurability and con-
vergence become an issue. This observation prompted
K. Itō to use martingale convergence theorems to tackle
the convergence for a large class of integrators [56]. To do
so we must make sure that I(t) is a martingale whenever
X(t) is. For this we assume that Y (t) is adapted i.e. mea-
surable with respect to the natural filtration generated by
the driving noise: Ft = σ(X(s) : s ≤ t). Therefore the
integrand Y (t−i ) in Eq. (35) becomes statistically inde-
pendent of the increment ξi = X(ti)−X(t−i ) and we end
up with a stochastic integral I(t) that is a martingale;
see the next section for details. The fact that we evalu-
ate Y (t) at the left end-point t−i of the ‘infinitesimal in-
terval’ [t−i , ti] makes the integrand non-anticipating and
adapted, i.e. independent of the increment. This can be
seen as a causality requirement: one does not want Y (t)
to anticipate the future behavior of ξ(t) [57]. An elemen-
tary introduction to the concept of a non-anticipating
function can be found in Ref. [58]. Any adapted pro-
cess with right-continuous (or left-continuous) paths is
progressively measurable.

In Eq. (35) we might equally well choose to evaluate
Y (t) in the right end-point ti of the infinitesimal interval
[t−i , ti], corresponding to the right-continuous variant of
Heaviside’s θ function in Eq. (33), or in any intermedi-
ate point tϑi . This means, however, loosing the martin-
gale property of the stochastic integral. The effects on
the formulae for such a choice can be nicely described
for random step functions Y (t) and X(t) jumping at the
same times t1, t2, . . . , tn. Write

Jϑ(t)
def
=

∫ t

0

Y (sϑ) dX(s) =

N(t)∑

i=1

Y (tϑi )ξi (36)

=

N(t)∑

i=1

[(1 − ϑ)Y (t−i ) + ϑY (ti)][X(ti) −X(t−i )]
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for a parameter ϑ ∈ [0, 1] that interpolates linearly be-
tween Y (t−i ) = Y (ti−1) and Y (ti), resulting in a con-
tinuous class of stochastic integrals. The choice ϑ = 0
gives the Itō integral J0(t) = I(t). For any value of
ϑ the integral is a right-continuous function with jump
∆Jϑ(ti) = Jϑ(ti) − Jϑ(t−i ) = Y (tϑi )∆X(ti).

Eq. (36) can be rearranged to

Jϑ(t) = J1/2(t) +

(
ϑ− 1

2

)
[X,Y ](t), (37)

where

[X,Y ](t)
def
=

N(t)∑

i=1

[X(ti) −X(t−i )][Y (ti) − Y (t−i )] (38)

is the covariation or cross variation of X(s) and Y (s)
for s ∈ [0, t]. When Y (s) = X(s), the quadratic
variation [X,X ](t) is denoted simply as [X ](t). Thus
each member of the family of stochastic integrals with
ϑ ∈ [0, 1] can be obtained adding a compensator to the
Stratonovich integral J1/2(t) = S(t). The latter corre-
sponds to the symmetric variant of Heaviside’s step func-
tion, θ(t) = (sgn t + 1)/2, and is particularly appealing
because it can be computed according to the usual rules
of calculus. However, the Itō integral has the advantage
of being a martingale, as proved in the next subsection.
The distinction between integrals with different values of
ϑ disappears in the continuous limit for processes with
finite variation, e.g. continuously differentiable functions,
because this implies that their quadratic variation is zero
[56]. Unless stated otherwise

∫
Y (s) dX(s) denotes the

Itō integral, while the Stratonovich integral is often indi-
cated as

∫
Y (s) ◦ dX(s).

B. Martingale property of the Itō integral

Although it is easy to simulate directly the stochas-
tic process defined in Eq. (35) — see the next section
for numerical examples — it is not so easy to derive its
properties. Each term in the sum depends on the previ-
ous ones and the nice properties of convolutions are not
helpful here. However, using the martingale transform

theorem, it is possible to obtain conditions under which
I(t) is a martingale.

In order to define martingales, we need a filtered prob-
ability space (Ω,F , (Ft)t≥0, P ), where (Ft)t≥0 is a fil-
tration — i.e., an increasing family of sub σ-algebras —
representing the information available up to time t. A
martingale is a stochastic process X(t) for which the ex-
pected value E[|X(t)|] exists for t ≥ 0 and the conditional
expectation E[X(t) | Fs] is X(s) for all t ≥ s [56, 59, 60].

Let us consider the natural filtration, that is the σ-
algebra generated by the CTRW itself: Ft = σ(x(s) :

s ≤ t) = σ(ξ1, . . . , ξk; τ1, . . . , τk : k ≤ N(t))
def
= GN(t).

Then X(t) is a martingale with respect to Ft if and only
if the mean of the jumps E[ξi] is zero. Denote by (ti, ξi)

the time and height of the finitely many jumps i = N(s)+
1, . . . , N(t) occurring between s and t > s. Then

E[X(t) | Fs] = X(s) +

N(t)∑

i=N(s)+1

E[ξi | Fs]. (39)

Using the semi-Markov property, Eq. (3), we get for i >
N(s)

E[ξi | Fs] = E[ξi | GN(s)] = E[ξi | ξN(s)] = E[ξi] = 0, (40)

thanks to the independence of ξi and ξ1, . . . , ξN(s).
Eq. (39) becomes

E[X(t) | Fs] = X(s), (41)

which shows that (X(t))t≥0 is indeed a martingale with
respect to its natural filtration.

Note that our argument is valid for a general uncou-
pled CTRW. We do not need the independence of the
increments X(t+∆t)−X(t) of the process X(t) for non-
overlapping intervals. Of course, if we have independent
increments, i.e. a compound Poisson process X(t), the
proof becomes easier.

Let us now investigate the integral defined in Eq. (35)
for a martingale CTRW X(t). If there is an arbitrary
but finite number of jumps between s and t > s, one has

E[I(t) | Fs] = I(s) +

N(t)∑

i=N(s)+1

E[Y (t−i )ξi | GN(s)]; (42)

now, one observes that ξi = X(ti)−X(ti−1) and that the
random sum in Eq. (42) becomes

N(t)∑

i=N(s)+1

E[Y (t−i )ξi | GN(s)]

=

N(t)∑

i=N(s)+1

E[Y (t−i )(X(ti) −X(ti−1)) | GN(s)]. (43)

If Y (t) is measurable with respect to Ft = GN(t), then

Y (t−i ) is GN(t−
i

)-measurable. Since N(t−i ) = N(ti−1),

this means that Y (t−i ) is GN(ti−1) = Gi−1-measurable;

this is to say that Y (t−i ) is predictable for the filtration
Gi, i.e. the value of Y (t−i ) is known at time ti−1. When-
ever for each i the expression Y (t−i )(X(ti) − X(ti−1))
has a finite absolute mean — e.g., if the process Y (t−i ) is
bounded — we have

E[Y (t−i )(X(ti) −X(ti−1)) | GN(s)]

= E
[
E[Y (t−i )(X(ti) −X(ti−1)) | Gi−1] | GN(s)

]

= E
[
Y (t−i ) E[(X(ti) −X(ti−1)) | Gi−1] | GN(s)

] (44)

In the above calculation we have used the fact that GN(s)

is contained in Gi−1 as (i − 1) ≥ N(s), along with the
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tower property and the fact that we can pull out what is

known from the conditional expectation [60]. Since X(t)
is a martingale, we have E[X(ti) | Fti−1

] = X(ti−1) which
means that

E[Y (t−i )(X(ti) −X(ti−1)) | GN(s)] = 0. (45)

Consequently, each term in the random sum vanishes and
E[I(t) | Fs] = I(s). Summing up, if X(t) is a martingale
with respect to Ft and if the integrand is bounded and
predictable, one has that I(t) is also a martingale with
respect to Ft.

III. SIMULATION

In the previous section we have explicitly defined and
rigorously characterized a martingale stochastic integral
driven by an uncoupled CTRW and given in Eq. (35), as
well as a more general class of stochastic integrals given
by Eq. (36). A useful property of these equations is that
they can be easily implemented by means of Monte Carlo
simulation, as will be shown here for the case Y (t) =
X(t). The theory of Sec. II is the basis for the Monte
Carlo solution of stochastic differential equations driven
by CTRWs and discussed above in Sec. I C.

The marginal distributions of jumps and waiting times
presented in Sec. IC are apparently demanding, but they
can be sampled easily using one-line transformation for-
mulas [10, 61, 62]. A random number ξ drawn from the
symmetric Lévy α-stable probability density, Eq. (20),
can be obtained from two independent uniform random
numbers U, V ∈ (0, 1) through a transformation due to
Chambers, Mallows and Stuck [63, 64],

ξ = γx

( − logU cosΦ

cos((1 − α)Φ)

)1− 1

α sin(αΦ)

cosΦ
, (46)

where Φ = π(V − 1/2). For α = 2 Eq. (46) reduces to
ξ = 2γx

√
− logU sin Φ, i.e. the Box-Muller method for

Gaussian deviates with standard deviation σ =
√

2γx. A
random number τ drawn from the one-parameter Mittag-
Leffler probability density, Eq. (21), can similarly be
obtained from two independent uniform random num-
bers U, V ∈ (0, 1) through a transformation proposed by
Kozubowski and Rachev [65, 66]:

τ = −γt logU

(
sin(βπ)

tan(βπV )
− cos(βπ)

) 1

β

. (47)

For β = 1 Eq. (47) reduces to the transformation formula
for the exponential distribution, τ = −γt logU .

Now, as outlined above, the Monte Carlo simulation of
an uncoupled CTRW is straightforward. To compute the
value X(t), generate a sequence of N(t) + 1 iid waiting
times τi until their sum is greater than t. Discard the
last waiting time and generate N(t) iid jumps ξi. Their
sum is the desired value of X(t). Based on Eqs. (1) and
(2), this algorithm was used to generate Fig. 1. This

procedure is also the basis to compute I(t) according to
Eq. (35), or more in general Jϑ(t) according to Eq. (36),
and the covariation [X,Y ](t) according to Eq. (38). Each
jump ξi is multiplied by Y (t−i ), (1−ϑ)Y (t−i )+ϑY (ti), or
Y (ti)−Y (t−i ), and the results of these multiplications are
summed to obtain respectively I(t), Jϑ(t) and [X,Y ](t).
C++ code for the case Y (t) = X(t) can be found in the
appendix.

Figs. 2 and 3 show histograms from 1 million Monte

Carlo realizations of X(t), I(t) =
∫ t

0
X(s) dX(s), S(t) =∫ t

0
X(s) ◦ dX(s) and [X ](t), where t = 1 and X(t) is a

symmetric CTRW with jump and time scale parameters

linked by the relation γα
x /γ

β
t = D = 1. Thus the integrals

in Figs. 2 and 3 give the Monte Carlo solution for t = 1
of the stochastic differential equation dZ = XdX with
initial condition Z(0) = 0. Since the Itō integral is a mar-
tingale starting at zero, its mean is zero. This is not true
for the Stratonovich integral. The probability density of
the Stratonovich integral S(t) = X2(t)/2 can be worked
out from the density of the stochastic process X(t) by
the transformation pS(s, t) =

∑
i pX(xi(s), t)|dxi(s)/ds|,

where the sum is over all xi that yield the same s. For
s = x2/2 this is x1,2 = ±

√
2s and thus

pS(s, t) = 2pX(
√

2s, t)/
√

2s, s > 0. (48)

In the diffusive limit the NCPP X(t) approximates the
Bachelier-Wiener process B(t) [39], and thus the proba-
bility density of the process X(t) approximates the den-
sity of B(t), Eq. (26). The analytic probability den-
sity for the Stratonovich integral S in the diffusive limit
can be obtained inserting the probability density of the
Bachelier-Wiener process into the transformation for-
mula given by Eq. (48), yielding

pS(s, t;D) =
1√

2πDts
exp

(
− s

2Dt

)
, s > 0. (49)

According to Eq. (37) here I(t) = S(t)−[X ](t)/2; if the
dependence of S and [X ] is small, the probability density
of the Itō integral is approximated by the convolution of
the probability density of the Stratonovich integral with
that of the quadratic variation mirrored around zero and
scaled to half its width:

pI(x, t) ≃ 2

∫ +∞

−∞

pS(x + 2x′, t)p[X](−2x′, t) dx′. (50)

For all choices of α and β the agreement between the
analytic expressions for X(t) and S(t) in the diffusive
limit and the empirical results from Monte Carlo simu-
lation of the CTRWs is fair already for the largest value
γt = 0.1: the curves cannot be distinguished by eye
at the scale of our plots. Therefore we did not evalu-
ate the analytic probability density for X(t), Eq. (18),
available for the particular case of a NCPP only, i.e.
the left column of Fig. 2. Instead the quadratic varia-
tion [X ](t) and consequently the Itō integral tend visibly
more slowly to their diffusive limits. For a NCPP the
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FIG. 2: (Color online) Convergence of the empirical probability densities p from 1 million Monte Carlo runs (points) to the
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I(t), and its quadratic variation [X](t), with t = 1 and different choices of the index parameters α, β and of the scale parameters
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t = D = 1. E[N(t)] is the average number of jumps per run.
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diffusive limit of [X ](t) is [B](t) = 2Dt. In this limit
I(t) = S(t) − Dt = B2(t)/2 − Dt, corresponding to the
well-known result that the probability density of the Itō
integral is equal to the density of the Stratonovich inte-
gral shifted by −Dt, i.e. pI(x, t) = pS(x+Dt, t). Though
the quadratic variation of the NCPP is appreciably dif-
ferent from its limit δ(x − 2Dt), where Dt = 1, for any
non infinitesimal value of γt as shown in the left column
of Fig. 2, for γt = 0.01 there is a good agreement between
the Itō integrals from Monte Carlo and from Eq. (50).

The density of the quadratic variation for a CTRW
can be obtained from the density of squared jumps,
λξ2(x), that results from a transformation of the den-
sity of jumps, λξ(

√
x), similar to the one that leads from

pX(x, t) to pS(x, t), Eq. (48), except for a factor 2:

λξ2 (x; γx) = λξ(
√
x; γx)/

√
x (51)

Inserting this equation into the solution of the Montroll-
Weiss equation in the space-time domain, Eq. (16), gives

p[X](x, t; γx, γt) =

∞∑

n=0

pN(n, t; γt)λ
∗n
ξ2 (x; γx), (52)

where x > 0. Unfortunately even for an NCPP the n-fold
convolution cannot be computed as easily as for pX(x, t)
in Eq. (18). However, the characteristic function of the
quadratic variation can be written as

p̂[X](k, t; γx, γt) =

∞∑

n=0

pN(n, t; γt)λ̂
n
ξ2(k; γx). (53)

In order to consider non-exponential waiting times with
power-law tails and infinite first moment, for the sake of
simplicity let us assume that pN (n, t) is the distribution
of the Mittag-Leffler counting process [31],

pN (n, t; γt) =
(t/γt)

βn

n!
E

(n)
β

(
−(t/γt)

β
)
, (54)

where

E
(n)
β (z) =

dn

dzn
Eβ(z). (55)

This choice is more general than it seems, as the Mittag-
Leffler distribution for waiting times is an attractor for
the thinning procedure used to obtain the diffusive limit
[67]. Using the Mittag-Leffler distribution from the be-
ginning simplifies the derivation of this limit. Then
Eq. (53) becomes [32]

λ̂[X](k, t; γx, γt) = Eβ

(
− (t/γt)

β(1 − λ̂ξ2(k; γx))
)
. (56)

As the jumps ξ follow a Lévy α-stable distribution, for
x → ∞, λξ2(x; γx) ∼ (x/γx)−α/2−1, and the sum of ξ2i
converges to the positive stable distribution with index
α/2, whose characteristic function is

λ̂ξ2(k; γx) = L̂+
α/2(k; γx) ≡ exp

(
(−iγ2

xk)
α/2

)
. (57)

The scale parameter γx is the same as in the Lévy sta-
ble distribution, Eq. (20). Inserting this distribution in
Eq. (56), the diffusive limit yields the following charac-
teristic function for the quadratic variation:

û[X](k, t;D) = Eβ

(
−D(−ik)α/2tβ

)
. (58)

Now we can proceed in a similar fashion as for the so-
lution of the FDE, Eqs. (29–30). Defining κ = kt2β/α

and

Mα,β(ξ;D) = F−1
κ

[
Eβ

(
−D(−iκ)α/2

)]
(ξ), (59)

where ξ > 0, we obtain the quadratic variation for the
diffusive limit in the space-time domain,

u[X](x, t;D) = t−2β/αMα,β(xt−2β/α;D). (60)

When α = 2, M2,β(ξ) coincides with the right half of
the Mainardi-Wright function [68], which is also called
M-function of Wright type because its shape recalls a
capital M centered in the origin. When α = 2 and β = 1
(standard diffusion case), a delta function u[X](x, t;D) =
δ(x − 2Dt) is recovered, corresponding to the quadratic
variation of the Bachelier-Wiener process, [X ](t) = 2Dt.
The plots in Figs. 2 and 3 display quadratic variations
both from Monte Carlo and from Eq. (60). The conver-
gence of the quadratic variation in the diffusive limit can
be used to prove that the integrals of X(t) as defined in
Sec. II converge.

IV. CONCLUSIONS AND OUTLOOK

This paper is based on the definition, given in Eq. (36),
of a class of stochastic integrals Jϑ(t) driven by a CTRW
X(t). For ϑ = 0 this results in the Itō integral I(t),
Eq. (35), for ϑ = 1/2 in the Stratonovich integral. If the
process X(t) that defines the measure used in Eq. (35) is
a martingale with respect to its natural filtration, then
I(t) is a martingale too; this is a consequence of the mar-
tingale transform theorem. It turns out that an uncou-
pled CTRW with zero-mean jumps is a martingale. The
stochastic integration theory developed here is more gen-
eral than the one sketched in Ref. [39], as it can be applied
also to a CTRW that is neither Markovian nor Lévy. In
fact, exponential waiting times are not needed to prove
that I(t) is a martingale if X(t) is a martingale.

The theory presented in Sec. II lies at the foundation
of the Monte Carlo method for integrating stochastic
differential equations driven by CTRWs. As explained
in Sec. I, these results are relevant for applications in
physics and economics as well as in all those fields like in-
surance and finance where martingale methods can help
in the quantitative evaluation of risk. Eq. (36) is a conve-
nient basis for the Monte Carlo calculation of stochastic
integrals. This is shown in Sec. III, where Monte Carlo
realizations of CTRWs are used to effectively approxi-
mate the Itō and Stratonovich integrals driven by the
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FIG. 3: (Color online) Convergence of the empirical probability densities p from 1 million Monte Carlo runs (points) to the
analytic probability densities u (lines) in the diffusive limit for a CTRW X(t), its Stratonovich integral S(t), its Itō integral
I(t), and its quadratic variation [X](t), with t = 1 and different choices of the index parameters α, β and of the scale parameters

γx, γt, where γα
x /γβ

t = D = 1. E[N(t)] is the average number of jumps per run.
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Bachelier-Wiener process and, more generally, by the so-
lution of the space-time fractional diffusion equation.

We believe that up-to-date mathematical methods
from probability theory and stochastic calculus are bene-
ficial to the study of the CTRW and of other random pro-
cesses useful in statistical physics. We fear that progress
will be slower or impossible if these methods are ignored
by physicists.

Future work will deal with Monte Carlo simulations
for coupled CTRWs where jumps and waiting times obey
fat-tailed distributions [69, 70]. There will also be a dis-
cussion of convergence based on the results collected in
[71].
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Appendix

Below are salient lines from the central loop of our
C++ program for the Monte Carlo calculation of a
CTRW X(t), its quadratic variation [X(t)], its Itō inte-
gral I(t) and its Stratonovich integral S(t) as described
in Sec. III and shown in Figs. 2–3.

jumps = 0

// Loop over runs
for (run = 1; run <= runs; run++) {

// Initialize and increment t, x, etc.

t = 0, x = 0, qvar = 0, ito = 0, str = 0,
tau = random.t(); // Eq. (47)

while (t + tau < t_max) {
t += tau; // time t

xi = random.x(); // Eq. (46)
qvar += xi*xi; // [X(t)]

ito += x*xi; // I(t)
str += (x+xi/2)*xi; // S(t)

x += xi; // X(t)
tau = random.t(); // Eq. (47)

jumps++; // N(t)
}

// Update histograms at the end of each run
hisx.add(x); // X(t)

hisq.add(qvar); // [X(t)]
hisi.add(ito); // I(t)

hiss.add(str); // S(t)
}

CPU times grow linearly with the number of jumps
N(t) and take 1–3 µsec per jump depending on α and β
on a 2.2 GHz AMD Athlon 64 X2 “Toledo” Dual-Core
processor with Fedora Core 7 Linux, using the Ran uni-
form random number generator [72] and the GNU C++
compiler (g++) version 4.1.2 with the -O3 -static opti-
mization options.
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