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Stochastic calculus, statistical asymptotics,
Taylor strings and phyla(*)

OLE E. BARNDORFF-NIELSEN(1), PETER E. JUPP(2) et
WILFRID S. KENDALL(3)

Annales de la Fsculté des Sciences de Toulouse Vol. III, nO 1, 1994

RESUME. - Cet article fournit un expose sans demonstration de la
théorie du calcul d’ordre superieur que l’on appelle la théorie des cordes
(cordes de Taylor ou cordes statistiques). Cette théorie etait introduite
comme outil pour traiter les complexites géométriques de la statistique
asymptotique mais elle pourrait aussi jouer un role dans les approches
geometriques aux etudes asymptotiques. (La theorie des cordes de Taylor
n’a rien a voir avec le concept de corde tel qu’on l’utilise en physique
mathematique.) L’expose est divisé en trois parties. La premiere partie
introduit la theorie des cordes au second ordre via une description du
formalisme du calcul stochastique. La deuxième partie decrit des idees
d’invariance de la statistique asymptotique et la geometric des jougs
statistiques, ainsi que la maniere dans laquelle elles conduisent a la
formation de la theorie des cordes de Taylor. Dans la troisième partie,
on passe en revue les rapports entre la theorie des cordes de Taylor et
d’autres concepts mathématiques, tels que les fibrés de jets et les fibrés
naturels. La theorie des cordes de Taylor s’introduit pas a pas comme on
en a besoin.

MOTS-CLES : Algèbre symbolique, calcul d’lto, calcul d’Itô symbolique,
calcul d’ordre superieur, calcul stochastique, champ de cordes, connexion,
dinerenticlle du deuxieme ordre, fibre de repères d’ordre T, fibre vectoriel
naturel, corde de connexions, corde de coordonées, corde de dérivées,
corde de differentielles, corde scalaire, formule-p*, groupe de phyla,
jets, jets semi-holonomes, joug, phyla, REDUCE, semi-martingale, série
invariante de Taylor, statistique asymptotique, vraissemblance.

ABSTRACT. - This paper provides an exposition without proofs of the
theory of higher order calculus known as (Taylor or statistical) string
theory. This theory was introduced as a tool to deal with the geometric
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complexities of statistical asymptotics, but has a potentially wider role
to play in geometric approaches in asymptotic studies. (Note that
Taylor string theory is not related to the concept of a string as used in
mathematical physics. The exposition is a survey in three parts, intended
to introduce and to motivate the study of Taylor strings. The paper

begins by introducing string theory at the second order via a description of
the formalism of the second-order stochastic calculus, a powerful method
of analysis of an important class of random processes. There follows a

description of some invariance considerations of statistical asymptotics
and the geometry of statistical yokes, and the way in which they lead to
the formulation of Taylor string theory. Finally a survey is given of the
interrelationships between Taylor string theory and other concepts from
mathematics such as jet bundles and natural bundles. The apparatus of

Taylor string theory is introduced step-by-step as it becomes necessary,
thus providing intuition and applications to motivate this approach to

higher-order calculus and higher-order invariance.

KEY-WORDS : computer algebra, connection, connection string, coor-
dinate string, derivative string, differential string, higher-order calculus,
invariant Taylor series, Ito calculus, jets, likelihood, natural vector bundle, ,
p*-formula, phyla, phylon group, RED UCE, scalar string, second-order
differential, semi-holonomic jets, semimartingale, statistical asymptotics,
stochastic calculus, string field, symbolic Ito calculus, T’th-order frame
bundle, yoke.

AMS classification 62A10, 62E20, 60H05, 58A20

1. Introduction

The use in statistics of geometric intuition and concepts has a long history
and has recently experienced a considerable surge of progress through a
number of related developments. See for example Amari ~1~, Amari et al.

[2], Barndorff-Nielsen [8], Barndorff-Nielsen, Cox &#x26; Reid [16], Critchley,
Marriott &#x26; Salmon [23], Kass [39], McCullagh [51]. The purpose of

this paper is to expound and to survey one of these developments, a

fascinating link between four topics which have been developed largely in
isolation from each other: second order stochastic calculus; the geometry
of statistical asymptotics; some generalizations of tensors suggested by
invariance considerations in physics; and the concept of natural vector
bundles. The link lies in the behaviour under coordinate transformation

of local descriptions of the objects involved in these topics. The feature

common to second order stochastic calculus and statistical asymptotics is
that the underlying mathematical objects are derivative strings, in the sense
of Barndorff-Nielsen [7], Barndorff-Nielsen &#x26; Blaesild [10]-[11]. Derivative



strings, differential strings (Blaesild &#x26; Mora [19]) and the "new tensors"
(suggested inter alia by considerations from theoretical physics; Foster

[32]-[35]) all alike have a natural generalization to phyla, objects with
transformation laws in a very general algebraic class. The class of phyla
includes tensors, affine connections, jets of functions and of tensor fields
and almost all objects arising in classical and higher order differential

geometry. Thus it may be viewed as forming a suitable general context for
"higher-order calculus". The idea of "invariants" or "geometrical objects"
as objects which transform in almost the most general possible way under
smooth coordinate transformation has been formalized using the concept of
elements of natural vector bundles. It turns out that phyla are precisely
the elements of algebraic natural vector bundles, and that algebraic natural
vector bundles provide the ultimate mathematical framework for the study
of Taylor strings. .

This link provides a powerful and expressive formalism for dealing in
a geometric way with the calculations that arise in statistical asymptotics
and, to a lesser extent, with those arising in stochastic calculus. Moreover
the demands of statistical inference call forth constructions which are of
intrinsic geometric interest, such as the geometries defined by yokes and
their associated string fields, described briefly in section 3. Finally the
demands of stochastic calculus have stimulated the implementation within
a computer algebra package of an effective framework formalizing the
theory of stochastic calculus which is closely related to the higher-order
invariance considerations which the theories above hold in common. Similar

implementations of statistical asymptotics are currently being sought, using
the geometric perspectives described below. It is hoped that this expository
paper will stimulate and aid workers in the fields of geometry, statistical
asymptotics and stochastic calculus to consider what benefits might accrue
from further examination and investigation of these relationships.

The relevant aspects of stochastic calculus and of statistical asymptotics
are outlined in sections 2 and 3 respectively, while section 4 gives a brief
indication of the theory of strings and phyla and discusses its relations to
natural vector bundles and other geometric constructs, including statements
without proof of a number of key theorems.

The reader is alerted to the use of the summation convention (summation
over repeated dummy indices) in formulae where there are no explicit signs
of summation. Associated notation is described in section 2.2. An extension
of this summation convention is described in section 3.2 and employed from
then on except where indicated otherwise.



2. Second order stochastic calculus

Our first example of higher-order calculus arises in the theory of the
stochastic calculus. This theory allows one to use calculus on a class of

random processes known as the semimartingales. Semimartingales are
continuous-time random processes which can be decomposed in a way
analogous to the basic "signal-plus-noise" decomposition of statistics and

signal-processing. The classical differential calculus cannot be applied to
these processes, because their sample paths are in general too irregular.
Nevertheless the signal-plus-noise decomposition means that an extension
of differential calculus is available, namely the stochastic calculus. As

we will see below, the stochastic calculus is second-order in distinction

to the classical differential calculus, which is first-order. To be more

precise about this distinction, classical differential calculus deals with limits
of approximations by first-order truncated Taylor series which may be

expressed using finite-difference notation as

which holds for sample paths z of locally bounded variation (hence =

a ( Ot ) ) while stochastic calculus deals with limits of approximations by
second-order truncated Taylor series

which holds for certain classes of random sample paths x satisfying

The move from first- to second-order truncated Taylor series is the first step
towards the theory of higher-order calculus known as the Theory of phyla.
In this section we summarize the elements and basic operations of stochastic
calculus (also called Ito calculus) of continuous semimartingales. We then
introduce and discuss notations and definitions used in the stochastic

calculus, taking the opportunity also to introduce notational conventions
to be used later in the paper. Then we consider the invariant formulation of

stochastic calculus, which is a matter of importance not only for aesthetic
reasons but also for the purposes of computation and presentation of

results. The section is concluded by a brief discussion of issues raised by

implementation of stochastic calculus within a computer algebra package.
It will be seen that computer algebra and geometrical invariance are closely
linked by the notions of second-order calculus.



2.1. Elements of stochastic calculus

Basic to stochastic calculus are the notions of adapted processes and
filtrations. Suppose given a fixed probability space (Q, 7, IP). Informally,
an adapted process X is one whose value X(t) at any fixed time t depends
only on events which are determined before time t. Let 7t c 7 denote
the ensemble of all events deemed to be determined before time t. It
is reasonable to insist that each of these ensembles is a u-field. The

specification of all these u-fields fixes the filtration : t > 0~. An adapted
process X is defined by the property: X(t) is measurable with respect
to 7t for each t. One of the fascinations of stochastic calculus is the

way in which specification of the filtration > 0~, and thence of
the adapted processes, lays down the structure of cause and effect in a
problem. See Dellacherie &#x26; Meyer [25]-[27] for a very thorough discussion
of the ramifications involved here, in the case of discontinuous as well as of
continuous processes. A brief but informative presentation is to the found in
Meyer’s appendix to Emery [30]. There are many other useful monographs:
for example Protter [59], Rogers &#x26; Williams [61] and (for the continuous
sample-path theory to which the following discussion is restricted) Revuz &#x26;
Yor [60].

We may now define a ( continuous sample-path) semimartingale X as an
adapted continuous random process expressible as a sum X = X (0) + M + V
of a continuous local martingale M and a continuous process V such that
the paths of V are of locally bounded variation. This decomposition is

actually unique if we take M(0) = V(O) = 0. (Recall that a martingale
M is defined by the following property concerning conditional expectations:
E ~M(t + s) = M(t) for all t, s > 0. A local martingale can be turned
into a martingale by stopping it at any one of a sequence of stopping times
tending to infinity.) Examples of (continuous sample-path) semimartingales
include: Brownian motion B (when M = B and V = 0 identically), solutions
y(t) to ordinary differential equations y’ = f(y) for bounded smooth f
(when M = 0 identically and V = y - y(0), and smooth functions f(B) of
Brownian motion B (when M, V may be derived from (SC1)-(SC4) below). .
One may think of V as being the signal or trend, and M as being the
noise, so that X = X(O) + M + V is a "signal-plus-noise" decomposition.
We shall call V the (integrated) drift of X . Being of locally bounded
variation, V may be viewed as the solution of an ordinary differential

equation, perhaps with stochastic coefficients and perhaps subject to a
(possibly singular) random time-change. Consequently ordinary calculus



applies to the bounded-variation part V. However save in trivial cases

the local-martingale part M never has paths of locally bounded variation
and so the full force of stochastic calculus is required. There are many
treatments of stochastic calculus (see for example those mentioned above)
so here we merely sketch the elements of the theory in order to illustrate
and to explain the invariance considerations which link stochastic calculus
to the other topics of this paper.

In summary, the elements of (continuous sample-path) stochastic calculus
are:

(SC1) A smooth invariance result. - If X = X(O) + M + V is a

semimartingale and f is a C2 function then f (X ) is a semimartingale,
with decomposition say f(X) = ,f {X (o)) + N + U. In more formal

terms, the class S of continuous sample-path semimartingales is closed

under application of C2 functions. Let So = ~X E S : X(0) = 0~, V be
the class of adapted continuous processes of locally bounded variation, and

.

(SC2) An integral eztending the Lebesgue-Stieljes integral. - If X is a
semimartingale and H is a bounded adapted process then we can make sense

of J H dX as a semimartingale in a way that both extends the Lebesgue-
Stieltjes integral and also respects the "signal-plus-noise" decomposition (if
X = M is a local martingale then so is J H dM).

(SC3) A measure of the randomness of the martingale part of a semi-
martingale X = X (0) + M + V . The bracket process ~ X , X ~ _ ~ M , M ~
is the unique continuous adapted increasing process given by the (Doob-
Meyer) decomposition of the semimartingale M2 as M2 = N + [M , M ]
where N is a continuous local martingale and where [M, M](0) = 0.

In fact [X , X ] is also known as the quadratic variation of X , since

[X~ , X ~(t) = taking the limit in probability over dyadic
partitions of the time axis. A particular and important example is that
of Brownian motion B, for which [ B , .B ~ (t) = t for all times t. Note that
[ X , Y ] can be defined by polarization. The bracket process allows us to re-
late ordinary and stochastic integration via J H d~ X , Y J = ~ f H dX , Y~ ,
holding for all bounded adapted H.

(C4). - A "change-of-variables" formula to make (SC1) precise: the

famous Ito formula asserts that if f is a C2 function then



This of course uses (SC3), and also (SC2) to make sense of f , f ~ (X ) dX, and
allows us to determine the "signal-plus-noise" decomposition of f(X).

(SC5) The quadratic nature of ~ X , X ~. - For example if f is CZ then

(SC6). - It can be shown that (subject to suitable regularity conditions)
the statistical behaviour of a semimartingale X = + M + V is
determined once one knows its second-order structure, which is to say,
formulae for X(0), V and ~ X , X ~ = ~ M , M ~ . For example if = 0,
V vanishes and ~ X , X ~ (t~ = t for all t then a theorem of Levy asserts that
X is actually real-valued Brownian motion. If the second-order structure
is more complicated then information may be derived for example from
formulation as a martingale problem: the process determined by

is actually a continuous martingale whenever f is C2 and of compact
support.

There is of course a more general stochastic calculus dealing with
discontinuous semimartingales. However it is the continuous stochastic
calculus which is dominant in applications, with the important exception
of stochastic calculus for adapted locally-bounded variation processes with
jumps only of ~1. Presumably this dominance is due to the relative

parsimony of descriptions of continuous semimartingales based on the
second-order structure of X referred to in (SC6). (A similar parsimony
holds in the exceptional case of::i: 1 jumps.)

2.2. Notations and definitions

Stochastic integrals such as those written down in (2.3)-(2.5) are nota-
tionally tedious. The formalism of stochastic differentials provides an ex-
tremely useful abbreviation: for example (2.3) and (2.4) are usually written
as



Stochastic differentials are interpreted by integration against bounded
adapted processes H. As pointed out in Ito [37], this notation treats dX
et cetera as generating a space D2 of stochastic differentials which is an 
module, where H is the family of bounded adapted processes. Let D1 C D2
be the space of conventional differentials generated by dV, V E V. One

makes sense of stochastic differentials by integrating them; thus the stochas-
tic integration of (SC2) provides a linear map

extending D --i V0 Lebesgue-Stieltjes integral.

Here  inverts where

is the procedure of taking stochastic differentials. So j is an "anti-

derivative". The operator J is determined in the obvious way for h dX

when h is piecewise constant in time, and is defined for general h as

the limit of J hn dX for piecewise constant hn converging rapidly to
h. Of course it is a nontrivial matter to show that this leads to a good
definition of dX .

Similarly the bracket construction of (SC3) yields a symmetric tl/-bilinear
map

It is important that Bracket (also called "multiplication of Ito differentials"
or "quadratic covariation") vanishes on D1 x D2 and on D2 x VI. The

basic examples are the products arising from differentials dA, dB of two
independent Brownian motions and the differential of time dt forming the
l~o multiplication table:

In quite a different way the decomposition X = X(0) + M + V into noise
plus drift yields an 7~-linear map



Note Drift is the identity on D1. . Furthermore Drift depends on the under-
lying probability measure P while J, Bracket depend on P only through
its equivalence class under absolute continuity of probability measures. For
example consider X = B2 the square of Brownian motion B. By (2.6) and
(SC3) we have dX = 2B dB + dt. Since B is a martingale we can use (SC2)
to deduce Drift(dX) = dt. On the other hand it is possible to make a change
of probability measure such that B (t ) = A(t ) + t for all times t, where A is a
Brownian motion under the new probability measure, while B is no longer
a Brownian motion under the new probability measure. The decomposition
dX = 2B dB + dt continues to hold under the new probability measure, but
now Drift(dX) = Drift (2B(dA + dt) + dt) = (2B + 1)dt.

Together with the invariance property (SC1), the expressive nature of
this formulation in terms of differentials provides a strong incentive to try to
formulate D2 and the above constructions for multivariate semimartingales
in a geometric and intrinsic manner. Property (SC1) makes it clear that the
notion of a semimartingale X = ... Xd) on a CZ manifold is well-
defined by the requirement that f(X) be a semimartingale whenever f is a
real-valued C2 function. However, if X = ... Xd) is a multivariate
semimartingale and if f is twice-differentiable then the multivariate form of
(2.6) is

Not only will this lead to complicated formulae for high dimensionality
d, (generally requiring d + d(d + 1)/2 summands as opposed to the d
summands of the counterpart in ordinary calculus!), but also the presence
of second-order terms means that dX is not at all a tensorially-invariant
quantity. Thus X makes sense as a semimartingale on a manifold, dX
makes sense in coordinates, but if dX makes invariant sense then it must be
in some extended sense and not as a conventional invariant. Some economy
of notation is brought in by introducing the repeated index summation
convention of Einstein and the associated convention for partial derivatives,

However the lack of tensorial invariance is still a problem. In order further
to demonstrate the problem (and incidentally to introduce more conventions



used later on in this survey) suppose that 1/; is a new system of coordinates
and consider the expression for the stochastic differential of Y = ~(X ) in
this new set of coordinates. We find from (2.14)

where indices i, j, ... refer to derivatives taken with respect to the original
set of coordinates and indices a, b, ... refer to coordinates based on ~.
Furthermore if f is a real-valued C2-function as above then .

where 03C8ab/ij = The lack of tensorial invariance is clear from the

second derivatives occurring in the two trailing terms in (2.16) and the
potential for complexity of formulae is evident.

We digress briefly to extend the notational conventions above in a way
which will be used extensively when we come to discuss the coordinate-
based theory for Taylor strings and phyla. Let w = (~, ..., and

1/J = (1/Jl, ..., 1/Jd) be two alternative coordinate systems or parametrizations
for a manifold IM . . (We treat these as though they were global rather than
local, and indeed the distinction does not affect the essence of the discussion

throughout this survey paper. Of course most of the interesting questions
in geometry and stochastic differential geometry, though not necessarily in
statistical asymptotics, arise when we consider the issue of extending from
local to global considerations!) Generic coordinates of w and 1/J are indicated
by f.J)i, f.J)j, f.J)k, , ... and ~a, ~b, ~~, ... respectively. If I = (il... in ) and
A = (al ... am) are finite sequences of indices and if f is a suitably smooth
function then we write .

and we also use the following notation for sums over partitions:



where the summation is over all standard ordered partitions of I into m
nonempty subsequences or blocks h , ... , Im such that:

(PS1) for m  n the order of the indices in each of Ii, ... is the
same as their order within I,

(PS2) for p = 1, ..., m - 1 the first index in Ip comes before the first
index in Ip+i in the ordering within I,

(PS3) in the case m > n we interpret both sides of equation (2.19) as
equalling zero.

Here is an illustration of this notation. Suppose A = (aia2) and
I = (i1i2i3). Then

Another particular case is

in accordance with the notation for ~°‘ ~ in equations (2.15~-(2.17) above.
2.3. Invariant formulation and geometrical considerations

We return to the problem of lack of tensorial invariance. This can be
evaded by using the Stratonovich calculus; the second-order nature of (2.6)-
(2.7) is avoided by defining the Stratonovich integral

which has a first-order or tensorial transformation rule. This has proved
of great use in stochastic differential geometry, finding application for

example to harmonic maps in Kendall [41], [43], [44]. . Stratonovich calculus
is enormously convenient in providing intrinsic formulations of geometric
constructions. Nevertheless even when using Stratonovich calculus it is still
necessary to resort to Ito calculus when a detailed analysis is required of the
behaviour of a random process, because Ito calculus provides a direct link
with probability via the "signal-plus-noise" decomposition referred to above.
For this reason in the computer algebra treatment referred to below it
turns out to be preferable to deal directly with Ito rather than Stratonovich
calculus, because otherwise the delay in the inevitable resort to Ito calculus



renders the algebraic computations susceptible to "intermediate expression
swell" as the computer algebra package expands Stratonovich differential
upon Stratonovich differential. So, Stratonovich calculus notwithstanding,
it is still desirable to find a treatment of the It6 differential dX which is

invariant in some extended sense.

What is to be done ? It is desirable to understand dX invariantly, not
only for purely abstract reasons but also to allow geometric reasoning to
help tame the complexity of (2.16). It also turns out the invariant approach
can be viewed as underlying a successful computer algebra approach to
calculations involving expressions such as (2.16).

The key is Schwartz’ principle (Emery ~34J, Meyer ~53J-~54J, Schwartz
[63]-[64]) : view the differential of X as a (formal) second-order tangent
vector dX = dX, concealing its bracket within itself via

Here if X is a semimartingale in Rn then [ X , X ] is viewed as a matrix-
valued process in So dX is equipped with a second-order
transformation rule

where (in the terminology of Schwartz e~ al.)

is the second-order form associated to f That is to say, the components of
2

the top row of f transform according to



where w denotes a coordinate system, while the non-zero component on the
bottom right can be deduced from the top left component via a squaring
operation. More generally if

transforms in the same way, so that

Then F is a second-order form in the terminology of the second-order
approach to stochastic calculus (see the papers cited above for more on

2
second-order forms). In the string terminology used in this paper, f and
F possess the invariant character of a costring field of length 2 while at
least formally dX possesses the invariant character of a contrastring field
of length 2. The effect of the transformation laws (2.23)-(2.24) is that if
F is a second-order form and dX is a stochastic differential as above then

the integral J F ~ dX makes intrinsic sense, giving the same result whatever
coordinate system is used for the calculations.

Note how (2.23) encapsulates equations (2.16)-(2.17) on multiplying out
the matrices.

In this way we may now work with spaces D2 (M ) of stochastic differen-
tials on a manifold 1M, with dX E D2(M) understood formally as a second-
order tangent vector sitting above its semimartingale X E S(M ). The for-
mal understanding is made precise by integrating dX against second-order
forms (costring fields of length 2) F sitting above X, with (2.23) showing

2
that when F is "exact" (F = f for some smooth f ) then f F ~ dX = J’ d f (X )
behaves as expected.

This approach has been used by Schwartz, Meyer and Emery to inves-
tigate the invariant nature of stochastic differential equations, and most
recently to elucidate notions of transfer from classical to stochastic differ-
ential geometry.

Note that the Bracket operation now picks out (twice the value of)
the second component of dX as given in the vector form of equation
(2.22). Formally Bracket (dX, dX) is a tensorial object sitting above
X. Against it we may integrate conventional first-order forms sitting



above X. (However these forms must take values in T*!M 0 T*IM since
Bracket (dX, dX) is to be understood as a time differential taking values
in 11M @ TIM. For example if g is a Riemannian metric for lM then we

can make sense of J g(X) . Bracket (dX, dX), which is a process of great
importance in stochastic differential geometry. Emery [30, 5.2] refers to it
as the Riemannian quadratic variation, and it measures an "intrinsic time"
for the semimartingale X.)

Note finally that Drift(dX) on its own still does not make invariant

sense: we want it to live above X in D 1 (M ) and yet the formula

shows that it partakes of a second-order nature. The way to deal with this
is to impose additional structure on M in order to allow the elimination
of the second-order part of (2.25). We suppose specified a (symmetric)
connection on lM expressed in a given coordinate system by the array of
Cristoffel symbols [0393ijk]. If 03C9, 03C8 are two smooth coordinate systems then
the Christoffel symbols transform by

and, the connection being symmetric, they are required also to satisfy the
symmetry condition 

.

For future reference note that a nonsymmetric connection has Christoffel

symbols transforming according to equation (2.26) but not satisfying
the symmetry condition (2.27). Ikeda &#x26; Watanabe [36, discussion preceding
Remark 4.2, chap. V] use nonsymmetric connections in a stochastic differ-
ential geometry representation of diffusions with smooth elliptic coefhcients:
see also the comments in Kendall [40]. .
We may now define the "intrinsic drift" of dX by

It may be checked that IDrift is an 1l-linear map

Specification of the intrinsic drift in a way which depends smoothly on the
location of the process X is equivalent to choice of a symmetric connection.



In practice one often specifies Christoffel symbols and hence a connection
by asserting that one of two special cases applies; either that a particular
coordinate system is flat (the r~~ all vanish in that system) or that the
connection is the Levi- Civita connection for a specified Riemannian metric.
If one is considering a strictly elliptic diffusion with smooth coefficients then
it is often natural to use the metric formed by the inverse of the matrix of
the (second-order) diffusion coefficients.

In any case one may now specify Bracket (dX, dX) and IDrift(dX), by
requiring them to satisfy intrinsic equations involving the semimartingale
X itself and perhaps other exogeneous random processes. This amounts
to the specification of an intrinsic stochastic differential equation, directly
generalizing the idea of a classical differential equation for an ordinary
dynamical system. Just as the classical differential equation specifies the
velocity (which is to say, the trend) of a particle given its configuration, so
IDrift delivers the infinitesimal trend of dX and Bracket the infinitesimal
variance of the noise part of dX. Moreover the analogy extends to a
uniqueness and existence theorem with proof generalizing the classical
case: the stochastic differential equation can be solved (at least locally)
when the intrinsic drift and the bracket depend on the configuration in
a Lipschitzian fashion. (In fact the full theory is rather subtle. There
are several different kinds of uniqueness available of various strengths,
and conditions for existence and uniqueness can be considerably relaxed
depending on the precise flavour of uniqueness required. See the stochastic
calculus monographs cited above for a full discussion.)

Of course in practice the specification is often presented in terms of a
particular coordinate system, using Drift rather than IDrift. It should
also be noted that the above describes weak-sense stochastic differential
equations; applications often involve strong-sense stochastic differential

equations in which the noise part of X is required to be directly related
to specific Brownian motions or even more general semimartingales. In
terms of the above this corresponds to also specifying equations for brackets
Bracket (dX, dY) for various semimartingales Y.

We may now translate (SC6) into a more intrinsic terminoloy: the theory
of stochastic differential equations tells us that the statistical behaviour of
a multivariate semimartingale X may be determined by specifying

, 

~ it s initial p oint X (0) ,
~ a formula for the bracket operation Bracket as it applies to dX,



~ a connection for the ambient space of X,

~ and a formula for the intrinsic drift IDrift(dX) of dX.

One is free to choose the connection to clarify the structure, and this
leads to various possibilities for description or specification of the behaviour
of X. Using the extrinsic drift Drift(dX) corresponds to choosing the
flat connection associated to a particular preferred coordinate system. In

many cases it is convenient to use Bracket to determine a Riemannian

structure (if X is a strictly elliptic diffusion) and then to use the Levi-
Civita connection. Thus one perhaps specifies X in a fixed flat coordinate
system and then searches for a new geometry and new coordinate system
leading to enlightening presentation of the behaviour of X This is the basis
for the applications of computer algebra to the stochastic calculus of shape,
mentioned in the following section. See also Antonelli, Chapin &#x26; Voorhees

[5] for an application in a genetic context.

2.4. Computer algebra and stochastic calculus

Another response to the complexity inherent in (2.13) is to implement
stochastic calculus in a computer algebra package, for example the ito col-
lection of procedures (also described as symbolic Ito calculus) programmed
in REDUCE and discussed in Kendall [42], [45]-[47]. It is striking, though
in retrospect inevitable, that the implementation turns out to have strong
resemblances to the approach via second-order geometry given above. The
implementation consists of augmenting the computer algebra package with
a new type of variable and a number of operations. The new type of vari-
able is of course a (scalar) stochastic differential dX, to which is attached a
(scalar) semimartingale X serving as its primitive. The basic procedures are

~ Introduce (X , dX) introducing dX to the system as a basic stochastic
differential,

~ d(Y) returning an expression for the stochastic differential represented
byY,

e Drif t ( dY ) computing the drift of the stochastic differential represented
by dY,

2022 Add!_Drift(dX,f*dt) adding to a substitution list the information

that the stochastic differential represented by dX has drift represented
by f*dt.



The implementation of d(Y) uses Ito’s formula and hence ensures that
stochastic differentials such as dX transform formally as second-order tan-
gent vectors, as they should.

In the current implementation (ito version 3 or itovsn3, as described in
Kendall [45], [47]) there is no bracket operation. Instead the pure second-
order structure is implemented as a sequence of LET rules or rewrite rules
such as

The above implements scalar stochastic differentials. Multivariate

stochastic differentials may be specified coordinatewise in some conve-

nient set of coordinates. One means of investigation (used for example
in Kendall [42], [46]) corresponds to examining the second-order differen-
tial in various coordinate systems endowed with appropriate connections, to
search for specific representations displaying useful and informative struc-
ture. In Kendall [42] the shape diffusion of three Brownian points in Eu-
clidean n-space is thereby represented as Brownian motion on a hemisphere
together with an intrinsic drift depending on the dimension n in a simple
way. In Kendall [46] the general shape diffusion is thereby represented as
a skew product of a drifting Brownian motion on a sphere together with a
rotation-group Brownian motion whose statistics depend on the spherical
diffusion.

The principal work of Kendall [46] involved overcoming the difhculty
of representing symbolic sums in REDUCE. The result is effective but

somewhat untidy. It is an interesting and possibly fruitful question whether
a still closer implementation of the structures of second-order stochastic
differential geometry might lead to a more transparent and efhcient solution.
Implementation questions of this kind become yet more pressing when
one considers the much less well-developed computer algebra of statistical
asymptotics.

3 Geometry of statistical asymptotics

Our second example of higher-order calculus arises from the differential
geometry approach to statistical inference. Differential geometric concepts
and ideas are of interest in connection with various aspects of statistical
inference and in particular with statistical asymptotics. This is mainly



because it is often preferable that statistical procedures for parametric and
semiparametric models should be invariant, in the sense that the conclusions
reached should be independent of the particular parametrization chosen. It
turns out that invariant formulations require generalization of the tensorially
invariant calculus of differential geometry in a manner which is closely
related to the second-order calculus developed for stochastic calculus and
described in the previous section. The resulting "higher-order calculus"
also turns out to be helpful.in simplifying, understanding and managing the
complex expressions which occur in statistical asymptotics.

Furthermore it is desirable to develop corresponding computer algebra
programs and this has been found to require certain nontrivial refinements
of existing packages for symbolic mathematical calculations (Kendall [48]).

The developments in statistical asymptotics which prompted the formu-
lation of higher-order calculus have their root in a paper by McCullagh &#x26;

Cox [52]. These authors wished to obtain a better understanding of the
character of a certain statistical quantity, the Bartlett adjustment, by ex-
pressing it as a sum of invariant terms, the idea being that each of these
invariant terms would have a simple interpretation. As a step toward the
decomposition of the Bartlett adjustment they constructed certain tensors
which can be viewed as higher order "symmetric tensorial derivatives" of a
particular scalar function, namely the log likelihood function.

The McCullagh-Cox construction was framed in a particular setting, that
of "expected likelihood geometry". The questions then arose of whether a
similar construction would be possible in "observed likelihood geometry"
and, more generally, of what was the mathematical essence underlying their
construction. These questions were addressed in Barndorff-Nielsen [7], in
which was presented a general definition of symmetric tensorial derivatives
in a purely differential geometric framework. This definition rests on

several other definitions, in particular that of connection string fields,
which generalize the concept of (amne) connections which was discussed
in section 2.3.

The symmetric tensorial derivatives are similar to higher-order covariant
derivatives and, in fact, the second-order symmetric tensorial derivative of a
scalar function f is nothing more than the covariant derivative of the vector
of ordinary first order derivatives (or Hessian) of f with respect to a torsion-
free connection. However this identification does not hold at higher-order;
in contrast to higher-order covariant derivatives the symmetric tensorial
derivatives are symmetric in the indices.



Extensions of the concepts of connection string fields and of symmetric
tensorial derivatives were proposed in BarndorfF-Nielsen &#x26; Blaesild [10]-[11]
leading to a theory of derivative strings. A further theory of differential
strings has subsequently been developed by Blaesild &#x26; Mora ~19~ . These
and further extensions will be surveyed in section 4. Here we restrict
consideration to fields of connection strings, fields of scalar strings, and
symmetric tensorial derivatives. We will consider all these objects as multi-
arrays defined on and varying smoothly over the differentiable manifold.
Their geometric nature is determined by the transformation law that

specifies how the multi-arrays change under change of coordinates on the
manifold.

In the following we first review the basic statistical concepts providing a
framework for the McCullagh-Cox construction, then we describe the math-
ematical developments in the geometry of statistics which are motivated by
this construction and their formulation in terms of Taylor string theory, and
finally we indicate how these developments may be applied to the theory of
statistical asymptotics and consider briefly the prospects for implementation
within a computer algebra package.

3.1. . Elements of likelihood-based inference

The statistical framework to be considered is that of a parametric
statistical model with model function p(z; w). Here x denotes the data
and w is a d-dimensional parameter whose value determines the probability
measure which is assumed to govern the stochastic behaviour of a?. The

probability measure is determined as follows: is it Radon-

Nikodym derivative with respect to some fixed cr-finite nonnegative reference
measure /~.

In the statistical theory of likelihood the fundamental tool for inference
is the log likelihood function t~w), defined by = l(w; x) = log p(z; w).
In fact it is convenient to view the log likelihood as determined only up to
an arbitrary additive constant which may depend on the given data x but
which does not depend on w . Any function differing from log w ) by an
additive term depending only on the data is said to be the log likelihood
function of the model, and all likelihood-based procedures of inference are
defined so as to be independent of the choice of version of l(w).
Two key concepts which are intimately linked to likelihood are those of

sufficiency and ancillarity. There is not scope here for discussion of these

concepts, but consideration of them leads to a view of the log likelihood



function as depending on the data through a pair of statistics (w, a) such
that:

(L1) D = is the maximum likelihood estimator (that value of w
which maximizes the log likelihood),

(L2) a = a(x) is a distribution constant statistic (the distribution of a
does not depend on the parameter w ),

(L3) (w, a) is a sufficient statistic (there is a version of the log likeli-
hood function which depends on x only through (iv, a), so that
log p(x; w) = l(cv; w, a) + c(x) for some function c(x) of the data
x alone).

We will assume regularity conditions obtain which amongst other matters
ensure that the maximum likelihood estimator D exists and is unique, that
the likelihood function is a smooth function of the parameter, and that S is
the unique solution of the likelihood equation s = 0, where the score statistic
s is given by s = dl = t* (the one-form or vector of derivatives with respect
to compoments of w). A statistic a with the properties (L2) and (L3) above
is said to be ancillary. Generally speaking, ancillary statistics may not be
unique and need not exist, but we shall suppose a statistic a to be chosen
which is at least approximately ancillary, in the sense that (L2) and (L3)
hold approximately. In subsequent arguments the chosen ancillary will be
considered to be held at a fixed value (by conditioning). This will allow us
to use D to give a one-to-one correspondence between the parameter space
and that slice of the data space corresponding to the observed value of a.

The probabilistic basis for inference is the statistical law of D under

conditioning by the value of the ancillary statistic a. We denote the model
function of this conditional statistical law by ~ a). Equivalently, one
may work with the conditional law of the score s. The model function of

this law is related to that of w by the relation

where 1*;* denotes the Jacobian matrix of the transformation from C to s
(assumed one-to-one and smooth as part of our global regularity assump-
tions). . We shall return to consideration of p(s; cv ~ a) after introducing yoke
geometry, the observed and expected likelihood yokes built from the log-
likelihood, and the higher-order calculus notation of Taylor string theory.



3.2. Geometry of statistics: yokes and Taylor string fields

First consider the definition of a general yoke. Let H be a manifold
and let n’ denote a copy of H. In statistical applications n will be the
parameter space and n’ will be the domain of variation of the maximum
likelihood estimator. (Note that this H is the parameter space, in contrast
to the sample space n of the triple (Q, 7, IP) referred to once at the start
of section 2 and underlying the discussion there. The clash of traditional
notation is unfortunate but should cause no confusion.) We consider

functions g = g(w; w~) defined on the product space S~ x 5~~, and using
local coordinates (w 1, ..., , wd ~ we write

(where 8i = = a/a(w.~3, and I, J are finite sequences of indices
I = (il ... im ) , J = ( jl ... jn~), and

This last notation will be used more generally later: the gothic version of
a symbol (letter) for a function on H x n’ indicates the restriction of that
function to the diagonal of H x ~~. The function g is said to be a yoke if it
satisfies the following two conditions for every w G SZ:

(Y1) gi; = 9i; ~w ~ w~ _ 0,
(Y2) the matrix = [~;(~ ;(;)] is non-singular.
Repeated differentiation of the equation gj; = 0 in (Yl) yields the

sequence of relations

and so forth, with the general form being

where we have used the notation for summing over ordered partitions
introduced in section 2.2 ((2.19) and (PS1)-(PS3)).

Note that (3.3) and condition (Y2) imply that the matrix is

symmetric and nonsingular, even though the function g has not been



assumed to be symmetric. This is crucial to the development of a general
theory of differential geometries derived from yokes, which we now describe.

Any yoke induces a collection of geometrical objects on H, including a

pseudo-Riemannian metric given by the symmetric non-singular tensor g2~~
« « 

,

and a family of symmetric connections {r: a E where r is given in
terms of lowered Christoffel symbols by

In particular

We shall be working with the generalization of (3.6) given by

Lifting the index j by means of the inverse tensor to these quantities
are converted to the quantities

Here

1. .

Note for future reference that the are the coefficients of the Taylor
series expansion about cv of

- 1.
while the T‘ play the same role for the Taylor series expansion about
w of



We shall see below that the sequence of arrays { : n = 1, 2, ...~
is an example of a connection string. .

It is of interest to observe that on introducing the normalized yoke

which is again a yoke, and defining h(,,-,; by

we have that h is also a yoke. Indeed h is a dual to g in the sense that

so that the Riemannian metrics are the same while the connection families

correspond under the bijection a ~ 1 - a.

Returning to the statistical framework, let n be the parameter space of
the statistical model p(x; w) and, as above, denote by = l (w; x~ the
function of w which is the corresponding log likelihood function. Under

standard mild regularity conditions, the function given by

is a yoke, the expected likelihood yoke. Furthermore, the function

is also a yoke, the observed likelihood yoke. Both the observed likelihood

yoke and the expected likelihood yoke are normalized. The observed

likelihood geometries and ezpected likelihood geometries are given by the
metric tensors, connections, and higher-order string objects derived from
the general yoke geometries discussed in the foregoing using, respectively,
the observed and expected likelihood yokes. Note the use of the ancillary
statistic in the definition of observed geometry.

Note, incidentally, that formula (3.3) specializes to the identity between
the two well-known forms for the expected information when g is taken to
be the expected likelihood yoke.



It turns out to be the case that observed likelihood geometry is "more

geometrical" than expected likelihood geometry, since the integrations
involved in construction of the latter can obscure geometric structure.

This enhances the intimate relationship between the theories of statistical
inference and differential geometry, because observed likelihood quantities
are also more directly related to the likelihood function (and hence of a
more basic statistical nature) than the corresponding expected likelihood
quantities.

Before proceeding with statistical issues it is now convenient to introduce
the concepts of scalar and connection string fields, motivated by the need
for a convenient notation to use in discussion of such expressions as arise
in equations (3.10)-(3.12). A scalar string field is defined as a (finite or
infinite) sequence of multi-arrays with entries depending on w E Q

where the length tmax = (.K Imax of the string f is a positive integer or
infinity, and where f is required to satisfy the following transformation law:

Here IKI is the length of the sequence K of dummy suffices, and the right-
hand formula uses the eztended summation convention: since the symbol
K is repeated the formula is summed as K runs over all finite sequences
of length IKI = 1, 2, ... (recall from (PS3) in section 2.2 that w / C - 0 if

C ~ ) . We adopt the convention that if tmax = oo then the notation
1, 2, ..., tmax is to be interpreted as representing the sequence 1, 2, ... of
all positive intergers, not the set 1, 2, ..., oo.

This transformation law is obeyed by the sequence of derivatives of a
scalar function /; ; if f is defined on a domain H and has IKI-fold partial
derivatives forming an array then (3.18) is satisfied if we write

fK = Not all scalar string fields are generated as the multi-array
of derivatives of a scalar function (this generalizes the well-known fact that
not all 1-fbrms arise as derivatives of functions). For example if g is a yoke
then the sequence of arrays ~ ~ g~~ ..,~n~, n = 1, 2, ...}, constitutes a scalar
string, but the component arrays are not in general the derivatives of a
single scalar function.



A connection string field is defined as a (finite or infinite) sequence

where the length tmax = I K Imax of the connection string field ~ is a positive
integer or infinity, and where the component matrices of F are required to
satisfy the following transformation law:

Here again the extended summation convention is employed in the right-
hand formula. We shall employ the extended summation convention without
further comment in the remainder of this paper, except where indicated
otherwise. The connection string field is said to be invertible if the matrix
formed by the array at length 1 (which is to say, the first array ] in the

~2 J , ... [I‘ j~l ...l~t J ~ ~ ~ ~ } ) is invertible.
The indices in the sequences C and K in (3.18)-(3.19) above are referred

to as structural indices because they typically require higher-order deriva-
tives in the transformation law, as opposed to tensorial indices such as i in
(3.19) above. The connection string is said to be symmetric if its component
multi-arrays are symmetric in their structural indices.
A (classical) connection (not necessarily symmetric) having Christoffel

symbols may be viewed as an element of a short connection string r
of length 2; define ri to be given by the Kronecker delta tensor 6i and let F
be given by the sequence of two [0393ik1k1]}={[03B4ik1], [0393ik1k2]}

Yokes can be used to produce connection string fields as indicated above;
if g is a yoke then the set of = 1, 2, ...} (as described
in equation (3.10)) forms a connection string field F of infinite length. Note
that such a connection string field is symmetric. It is also invertible because
of property (Y2 ) .

Given a scalar function f and an invertible connection string field F it is
possible to define tensorial derivatives of f relative to r by the operation
of intertwining of strings (note there is no obvious connection with the

concept of intertwining of group representations). The tensorial derivatives
are indeed tensors, and are determined in coordinates as certain linear



combinations of the ordinary higher partial derivatives of f . Specifically,
the tensorial derivative of f with respect to ..., , cv2t, denoted by
f//I = is defined implicitly by the system of equations

where the symbols are defined, analogously to (2.19), by

(When IKI then we follow (PS3) in defining rk = 0.)
Note that the transformation law (3.19) under changes of coordinates

for the arrays contains as a special case the transformation law for
Christoffel symbols (2.26), if the array of Christoffel symbols ~r j~i ~2 ~ ] is

augmented by the Kronecker delta tensor ~b~~ to form a connection string
field of length 2 as above. More generally we define a special connection
string field r to be a connection string field such that I‘~ = . For

simplicity we assume all connection string fields are special in the rest of
this section. Essentially this is no restriction and under this assumption the

F~1 ~2 constitute the Christoffel symbols of a connection V on the domain
n, with the connection being symmetric if the special connection string is
symmetric. 

’

The first few tensorial derivatives of f are then given explicitly by

In the last equation the symbol [3] indicates a sum of three terms

determined by cyclic permutation of the structural indices ki, k2, k3.
The formulae (3.22) show, in particular, that the second order tensorial
derivative of f equals the covariant derivative of with respect to the
connection V. . The tensorial derivatives of f will be symmetric in the indices
provided the arrays ~~K~ are symmetric in the sequences of structural indices
K = ... kt). .



If the connection string is either r or r derived from some yoke then the
tensorial derivatives correspond to conventional derivatives evaluated in the
corresponding coordinate system indicated in the remarks after equations
(3.11)-(3.12). Indeed for any connection string it is possible to determine
representing coordinate systems for which this remark is correct; see the
second paragraph of section 3.3.

Note that we have already met an example of intertwining in section 2.3;
consider the definition of IDrift in equation (2.28) and compare it with the
second of the formulae in (3.22). The connection given by r~~ is used
to convert a non-tensorial quantity Drift(dX) into a tensorial quantity
IDrift(dX) (The sign difference is attributable to the difference between
differentials and functions). In the next subsection we turn to statistical

applications of intertwining. .

3.3. Invariant Taylor series expansions and statistical asymptotics

The concept of symmetric tensorial derivatives may be used together
with that of yokes to define invariant Taylor expansions. Ordinary Taylor
expansions are not invariant; if a function f is approximated by a Taylor
expansion up to and including polynomials of degree n, say, the approxima-
tion will depend on which coordinate system on the domain of definition of
f one employs. To define an invariant Taylor expansion using a yoke g, let

(determining the second of the two coordinate systems described after

equations (3.11)-(3.12)) and let

Then f may be expanded around w E n as

where the are the tensorial derivatives of f with respect to the
connection string obtained by taking a = -1 in (3.10) and the extended
summation convention of the middle formula is written out at length in the



last formula. The quantity gi behaves as a contravariant tensor in w and as
a scalar in c~ ~, so that each of the fixed-v terms in the last formula,

is invariant under changes of coordinates. Moreover for each fixed v the

expression (3.26) is of the same order of magnitude in w’ - w as the

corresponding term in the ordinary Taylor expansion of f in w-coordinates.

The above considerations lead us the consider representation of invertible
symmetric connection string fields using coordinate systems, in a manner
which is helpful for the purposes of intuition. Suppose given data of fixed
w and an invertible symmetric connection string field F. It is possible
to determine a special coordinate system using a local diffeomorphism
03C603C9:03A9 - (where T03C903A9 is the tangent space to 03A9 at w and 03C603C9(03C9) = o)
which represents h at w in the following sense: working in the coordinate
system provided by we find all of the arrays in the multi-array r
will vanish at w except for the first which at w will be the Kronecker

delta or identity matrix. This corresponds to the "coordinate string"
approach of Murray [57]. Blaesild [17] notes an explicit construction of
such ~~, in the case of a (~ 1 )-connection string field derived from a yoke,
which may be deduced from our comments on Taylor series expansions
following equations (3.11)-(3.12) above. In such a representing system ~w
the tensorial derivatives f//I will agree with the ordinary derivatives 
at w . In particular, the invariant Taylor series of a scalar function f at w
using a yoke g will agree with the ordinary Taylor series of f at w computed

- 1

using the r -representing coordinate system ~W . (Incidentally it is clear

from the discussion in McCullagh &#x26; Cox [52], that they had in mind an
intuitive representation of this type when defining the concept of a Mobius
derivative as described below.)
A representing coordinate system is of course determined by w and

r only up to its N-jet at w, where N is the (possibly infinite) length of
the connection string field F. (The N-jet of a function f at w is essentially
the Taylor series of f at w truncated at Nth-order.) The analogy with
normal coordinates is tempting but limited; systems of normal coordinates
are defined as geodesic coordinate systems and do of course represent their
connections (which correspond to connection strings of length 2) but are
determined as functions rather than only as N-jets.



On the other hand, the connection string field r is represented by the
N-jet field (N being the length of the connection string field r) generated
by the family of coordinate systems

~~w : ~w represents F at varies through S~} . . (3.27)
This is essentially the coordinate string approach of Murray ~57~. We return
to this point in section 4.2.

There is a link here with the "preferred point geometry" currently under
investigation by Critchley, Marriott &#x26; Salmon [23], in which H is endowed
with a whole family of Riemannian metrics parametrized by the points
of n itself, so that a preferred point selects a metric for H at least in a
neighbourhood of the preferred point. We may represent at least the local
aspects of a preferred point geometry by the field of orthonormal coordinate
systems given by locally-defined inverses to the family of exponential maps
of the various metrics:

( 1 : - S~ is the exponential map at w

based on the metric preferred by cv, cv varies through Q ~ . .
(3.28)

This induces a unique connection string field r of length n for each n under
the requirement that the field of orthonormal coordinate systems represent
r. Hence we obtain a many-to-one map from preferred point geometries
to connection string fields. The map actually takes values in the subset of
special symmetric connection string fields (see section 4.3).
We now consider two statistical examples employing invariant Taylor

series and hence string theory.
Firstly, consider the sequence of log likelihood derivatives

The symmetric tensorial derivatives of l relative to the connection string
field r (derived by (3.10) with a = 1 from the expected likelihood yoke
given by (3.16)) are precisely the Mobius derivatives" of the log likelihood
function, introduced by McCullagh &#x26; Cox [52]. .

Secondly, consider the p*-formula (Barndorff-Nielsen [6]). This is a gen-
erally accurate approximation to the (conditional) distribution p(s f.A) ~ a)
of the score vector s, which is given by



where )~;~(D;~,a)~ ) is the determinant of the matrix and

)(D) is the observed information matrix j = (evaluated at 03C9 = D),
and c = is a norming constant. Applying the method of invariant
Taylor expansions, using the observed likelihood yoke and the corresponding
connection string field F as determined by (3.12), one finds (Barndorff-
Nielsen [9], Mora [56]) that p*(s;03C9|a) may be expanded around the d-
dimensional normal distribution with mean 0 and covariance matrix j as
follows:

where the symbol ~ indicates that the approximation has asymptotic error
of order Q~n-3~2~ under ordinary repeated sampling (an order of error
meeting the requirements of many statistical applications) and where

Here S1 and 52 are of order n-l/2 respectively, under ordinary re-
peated sampling, and may be viewed as arising from third- and fourth-order
invariance considerations. In (3.31) and (3.32) the factors h are contravari-
ant tensorial Hermite polynomials and the quantities t are tensors given
by formulae (3.33)-(3.35) below. Thus Si and 52 are both parametrization
invariant, the only non-invariant part of the right side of (3.30) being the
multivariate normal density.

We have

The three tensors (3.33)-(3.35) are of a basic statistical importance. They
are special cases of tensors derived, by intertwining, from a general yoke
g (see Blaesild [18]). The first two tensors are obtainable from the "skew-

1
ness" tensor and its covariant derivative with respect to the connection F.



However, as discussed by Mora [56], the tensor does not appear to be

expressible in terms of known curvature tensors (as might have been sup-
posed). It is expressible in terms of the difference at length 3 between the

1
connection string field r and the "canonical" connection string built by us-
ing as a representing system the normal geodesic coordinates corresponding
to the Christoffel connection r. Thus it is a genuinely "string-theoretic"
quantity. A further remark on interpretation of these quantities is made in
section 4.4.

3.4. Computer algebra and statistical asymptotics

A number of workers have used computer algebra in statistical asymp-
totics. In particular Andrews &#x26; Stafford [4] have developed a number of
procedures in the computer algebra package Mathematica, allowing for di-
rect computation of Edgeworth series and Bartlett adjustments though as
yet not addressing the problem of handling the Einstein summation con-
vention. The success of ito in implementing stochastic calculus within a
computer algebra package, and its close links with second-order stochastic
calculus, are an encouragement to try to develop computer algebra ap-
proaches to statistical asymptotics which proceed by implementing yoke
geometry and Taylor string theory, and this is now under development in
Kendall [48]. Statistical asymptotics present a harder challenge to com-
puter algebra than does stochastic calculus, because typically one requires
fourth-order rather than second-order expansions and this leads (especially
in multivariate cases) to expressions composed of very large numbers of
summands. It will therefore be interesting to see what gains might follow
from an approach implementing these notions of geometry and invariance.

At the time of writing it appears that success will come from program-
ming the computer algebra package so as to be able to use the language of
Taylor string theory to provide succinct specifications to the computer al-
gebra package of the calculations to be performed. The package will use the
string-theoretic expressions to produce much larger expressions using ordi-
nary dummy suffices and the ordinary repeated summation convention, and
will then substitute in the actual formula obtained in particular examples
under investigation. The principal diinculty lies in ensuring that calcula-
tions and combinatorial constructions are carried out without repetition, for
otherwise in such large expressions there will be considerable inefficiency.



A further complication arises from the large numbers of dummy suffices
which arise when elaborating on succinct string-theoretic expressions. It

appears that this leads to simplification issues which are linked to difficult
questions in algorithmic graph theory; thus it may be necessary to accept
some inefficiencies in calculation here.

4. Theory of Taylor strings and phyla

The objects arising in stochastic calculus which were discussed in sec-
tion 2 and those arising in asymptotic statistical inference in section 3 are
similar in their behaviour under coordinate changes. We have seen how
examination of this behaviour leads to the theory of Taylor strings, which
(as the adjective suggests) grew out of a requirement for a theory of in-
variant Taylor series. The importance of invariance is that, although the
choice of a specific coordinate system is almost essential for the purposes
of computation, a coordinate-free approach is enormously helpful both to
aid our understanding and to facilitate the grouping of terms to ensure
that computation is efficient. The search for an invariant approach was the
motivation for the work which led to the theory of Taylor strings. In this

section we gather together the strands of string theory from the previous
sections and outline the general theory which encompasses these strands.
We then discuss a natural generalization of strings, the theory of phyla,
and we describe relationships of string and phyla theory to various other
mathematical contexts, including especially the theory of natural bundles,
by means of stating (with discussion but with no proofs) a number of key
theorems.

4.1. Derivative strings and the phylon group

Recall from the previous two sections the following four examples, whose
motivations from stochastic calculus and statistical asymptotics make string
theory seem inevitable.

Ezample 1~.1
A stochastic differential dX, as introduced in formulae (2.6)-(2.7) and

(2.22), has coordinate representative , 2d~ X2 which transform



according to formulae (2.15)-(2.17) and (2.23) by the rule

In order to emphasize the relationship of stochastic differentials with the
other three examples we introduce the notation dxi = dX Z, dxa = 

(1/2)d[ X2 dxab = (1/2)d[Ya , Yb ] and write the stochastic
differential dX as the multi-array of differentials {[ . Then the
above can be written as

Note that the drift Drift(dX) produces a similar quantity when put
together with Bracket (dX, dX): if is the vector of differentials formed

by the drift then { [dyi ] , ]} transforms in a similar manner.

Ezample l~ . Z

As described in section 3.2, a scalar string field f of length T is represented
in local coordinates by arrays f K with 1 ~ T which according to
formula (3.18) transform under coordinate change by

where summation is carried out over the multi-index K according to the
extended summation convention discussed in section 3.2. Note that the

special case of T = 2 corresponds to the transformation law concerning
second-order differentials described by equation (2.24), which we repeat
here:

Example l~.3
A connection string field of length T as defined in section 3.2 is repre-

sented by arrays rk with 1  (K ~  T which according to formula (3.19)
transform by



Example 4.4
~ ~ ~ ~ 

« a 

Given a yoke, consider the quantities = with 1   T

which were define in (3.9). These transform by

Consider the two remarks:

(a) example 4.1 is dual to example 4.2 (with T = 2), ,

(b) a connection string field transforms as the tensor product of a vector
field with a scalar string field.

These suggest the formulation of a general theory encompassing all

these objects, namely the theory of derivative strings (Barndorff-Nielsen
[7], Barndorff-Nielsen &#x26; Blaesild [10]-[11]). Derivative strings are defined in
coordinate terms as follows. Given a point m in a m3nifold M, a derivative

string of tensorial degree (r, s) and length (T, U) at m assigns to each local
coordinates system w round m a multi-array (sequence of real-valued arrays)
HILJK indexed by multi-indices I = (il...ir), J = (jl...js), and multi-
indices K, L with ~ K ~  T, ~ L ~  U. These arrays are required to transform
under coordinate change from w to 03C8 by

where the lengths of the multi-indices I, J are held fixed at ~ I = r, ~ = s,
but otherwise the extended summation convention applies.

Note the following points about formula (4.2). The derivatives are

evaluated at ~~m) or w(m), as appropriate, and the extended Einstein
summation convention (of summing over any multi-index which occurs as
both a subscript and a superscript) is used. Note the differences in the

behaviour of the various multi-indices; because IAI = III and IBI = IJI,
the multi-indices I and J behave in a tensorial manner. Hence elements

ii ... , i,. and ji ..., js of I and J are called tensorial indices . In contrast,
the multi-indices K and L range in length over 1  ~ K ~  and

and so elements k1, ..., kt and li ..., lu of K and L are

called structural indices. We have emphasized this distinction by writing
out the sequences of tensorial indices in full in the inner two formulae of

equations (4.2).



The upper indices I and L behave in a "contravariant" fashion, while
the lower indices J and K behave "covariantly". The set of strings of
tensorial degree (r, s) and length (T, U) at m is denoted by S8T 
Taking the union as m runs through 1M yields the spaces s ~ (lM) of strings
of degree (r, s) and length (T, U) on M . Elements of (lM) and s~o (lM)
are called (r, s)-costrings and (r, s)-contrastrings, respectively. Note finally
that the distinction between tensorial and structural indices is also brought
out by a representation as the tensor product of vector bundles

where 77 (lM) is the bundle of tensors of type (r, s) over
1M; see the comment before equation (4.5).

The examples 4.1-4.4 correspond to elements of 

respectively, except that the sense in which the stochastic
. differential and drift differential of example 4.1 are both members of soo (M )

is formal only and has to be made precise via the theory of stochastic inte-
gration as described in section 2.

The transformation law (4.2) has two notable features:

(ST1) linearity in the HJK,
(ST2) dependence on the coordinate change from w only through

the derivatives and 03C8d/L with T and U.

This allows us to detect the action of a group of Taylor series of

diffeomorphisms which plays a fundamental role in Taylor string theory,
and which we now describe.

Assume without loss of generality that ",,(m) = ~ (m) = o. Then the

..., ~~~~1...kT~ } evaluated at o is essentially the set of
coefficients in the Tth-order Taylor series of the coordinate change function
1/;0",,-1 from some open set in IRd to Rd. Assume for the moment that U _ T
and T is finite. Then the transformations in (4.2) form a representation of

the phylon group of order T o,f IRd, where is the set of multi-

arrays { (a~l ~, ... , , with symmetric in kl ... kt and with
the [ak] forming a non-singular matrix. Under identification of multi-arrays
~ ~akl ~’ ’ ’ ’ ~ in PT(d) with Tth-order IRd-valued Taylor series

the group operation in corresponds to composition of functions.
From the coordinate-free viewpoint, is the group of T-jets at o
of local diffeomorphisms of (Rd, o) with itself, the group operation being



composition. (Recall that two functions are said to have the same T-jet
at a point a* if they have the same Tth-order Taylor series round a;.) Thus

is the group of polynomial functions from Rd to Rd, of degree at most
T, with zero constant term and invertible linear term. It can be written as

where 0 denotes the symmetric tensor product.
To avoid considering separately the various values of T, it is useful to

consider Taylor series of infinite order and so we introduce the infinite phylon
group P(d) or of oo-jets of invertible IRd-va,lued formal power series
on IRd. Thus

In order to describe the way in which P(d) acts in (4.2) we require
some notation corresponding to the convention for summing over ordered

partitions describ ed in section 2.2 in equation (2.19) and (PS1)-(PS3). If E
and F are vector spaces then we set

for 1  T G oo. Note that is contained in Given

B = (Bl, ..., BT) in £T,o(E;F) we define in (®t E) * ~ (~u F) by

where eCs = (e~l ~ ~ ~ ~ when Ci = ( jl , ... jk) and the summation runs
over standard ordered partitions (Cl, ... , Cu~ of (1, ... , t~ into u subsets,
as described in (PS1)-(PS3).
We now define the binary operation

where



This definition is motivated by the composition mapping formula (Faa di
Bruno’s formula), since the restriction ofD from x IRd)
to PT(d) x PT(d) is the group operation on PT(d) corresponding to

composition ofT-jets. There is a left action on by

and this is the action involved in (4.2) when r = s = U = 0.’
An alternative description of action (4.4) was given by Carey &#x26; Murray

[21], relating it to jets J~0 (IRd; IRd) of vector fields on IRd at the origin o of
IRd. This idea is that can be identified with the set of linear

operators

satisfying

using vectorfield oo-jets X1, , ... Xk E and a function f : IR -
IR. Action (4.4) is identified with the action B : D - B f D (for B in
PT(d)), where

(BtD)~X1~...~X~) 

using a T-jet B = for g a local diffeomorphism of (Rd, 0) with itself and
vectorfield oo-jets Xi = j~0 Yi for Yl, ... Yk vector fields on IRd. (Here jo g
denotes the T-jet at 0 of g, et cetera, while denotes the tangent map
of 

Taylor string theory is also related to the theory of vector bundles asso-
ciated with Tth-order frame bundles. Recall (Ehresmann [28], Kobayashi
[50]) that the Tth-order frame bundle on a manifold IM is a principal
PT( d)-bundle having as its fibre over m the set of T-jets of local diffeomor-
phisms of (IRd, o) with (M, m). . Then the bundle of (0, 0)-costrings



of length T is the vector bundle associated to by action (4.4). More
generally, the bundle s ~ (M ~ is a vector bundle associated to 
by the tensor product of action (4.4) with its dual and with tensor powers
of the usual actions of GL(d) on Rd and (IRd) * . .

Another description (Jupp [38]) of ss~ (M ) is

where J ’ (M) denotes the space of zero-truncated semi-holonomic

T-jets from M to IR, obtained from the space of semi-holonomic

T-jets by quotienting out jets of constant functions. Semi-holonomic jets
(Ehresmann [29]) are generalizations of jets whose coordinate expressions
lack the symmetry of higher derivatives which is found in jets; a modern
treatment can be found in Saunders [62]. In many ways, semi-holonomic

jets can be treated just like ordinary (holonomic) jets. The latter are pre-
cisely those semi-holonomic jets with coordinate representations which are

symmetric in their lower indices.

We have seen that Taylor strings are related to jet theory, to Tth-order
frame bundles, and in particular to semi-holonomic jets. At this point some
readers may feel that there is no point in the theory of strings, since it can be
viewed merely as an aspect of the theory of (semi-holonomic) jets. However
the point of string theory is that it is an operational implementation of

jet theory considered at and around a point of the manifold, developed
in order to bridge the gap between invariant geometric intuition and

coordinate based calculation, as exemplified in section 3. These more

abstract geometric contexts are important in providing the setting for Taylor
string theory, but do not detract from its actual and potential importance
as an aid to computation.
An important class of strings consists of the structurally symmetric

strings : those strings represented by arrays HILJK which are symmetric
in the elements of K and also symmetric in the elements of L. In the

description of strings given by Carey &#x26; Murray [21], an element of soT (IIUI )
is structurally symmetric if it corresponds to a linear operator D which
satisfies

where [’, ’] denotes the Lie bracket.



Restricting (4.5) to the set of structurally symmetric
elements of ss~ (M ~ gives (BarndorfF-Nielsen &#x26; Blaesild ~12~ ~:

where denotes the space of zero-truncated T-jets of real-valued
functions on 1M, obtained from the space ofT-jets by quotienting out jets of
constant functions. Note that Sym )) = tIM) 

* 
is the Uth-order

tangent bundle of Ambrose, Palais &#x26; Singer [3].

4.2. Invertible connection string fields and intertwining

Perhaps the most useful concept in string theory is that of an invertible
connection string field, as defined in the next paragraph. The importance
of such fields is that they assign to each point m of M a semi-holonomic
jet from m) to (T,nIM, o) which can be considered as (the jet of) a
"semi-holonomic coordinate chart" round m taking values in the tangent
space TmIM. . (Constrast this with the usual coordinate charts on a manifold
which take values in a fixed vector space not depending on m.)

In order to define invertible connection string fields, note that an impor-
tant special case of (4.5) gives

Thus connection strings of length T at m can be identified with semi-
holonomic T-jets from (lM, m) to (TmIM,o). A connection string field of
length T is a section of The canonical projection from to

= T*IM yields a pro j ection of = T IM ® )
to TIM (g) T*IM = End(T IM ), which in coordinate terms sends the multi-
array H with component arrays to the matrix which is the first

array in the sequence of arrays making up the multi-array. A connection
string field is called invertible if it projects to an invertible element of .

Sec(End(TM)) ; which is to say in coordinate terms, if it projects to an
invertible matrix ~H~~. The "semi-holonomic coordinate charts" given by
an invertible connection string field r are most easily understood in the
important special case where r is structurally symmetric of length T. Then
r(m) is a holonomic jet at each point m of 1M, and so there is a local

diffeomorphism ~,.,z : (M, m) --~ (TmIM,o) such that r(m) = Thus

~m can be considered as a system of local coordinates representing the



connection string field r at m, precisely as described in the discussion of
invariant Taylor series expansions in section 3.3. Thus ~~ is a system
of eztended normal coordinates for r at m in the weak local sense that

~~, (m) = o and the expressions I‘K for ~ in these coordinates satisfy
= 0 for 2. Use of such coordinates simplifies many calculations.

See Blaesild [17] and Mora [56], and also Murray [57]. For a general invertible
connection string field r the role of ~m is played by the semi-holonomic jet
r(m) from (M, m) to (TmIM,o). Note that r has a unique inverse r(m)-1
in ,To (TIM,IM), defined by

where jT0ITmIM denotes the T-jet at o of the identity map of TmIM and (by
slight abuse of notation) D denotes composition of semi-holonomic jets.

One of the main uses of invertible connection string fields is that of

"intertwining", as in the discussion of invariant Taylor series expansions in
section 3.3, with the objective of relating strings to collections of tensor fields

(Barndorff-Nielsen &#x26; Blaeslld [10]-[11] and Blaesild [18]), as described in both
coordinate-free and coordinate-based terms in Theorem 4.1 below. We now

give a general formulation of the notion of intertwining of strings, following
(Barndorff-Nielsen &#x26; Blaesild [10]-[11] and Murray [57]) - we repeat from
section 3.2 that there is no obvious connection with intertwining of group
representations.

The formulation is that once we have fixed on an invertible connection

string field of length max(T, U) then we have a bijection between 
and ~~=1 ~U 1 ?~~+n (M ), where Ts+n (IM ) denotes the vector bundle
(~’’+p T IM ) ® (®a+n T*IM) of tensors of type (r + p , s + n) in which case
the resulting tensors arise from repeated differentiation in a representing
coordinate system as described in the discussion after equation (3.26). In
the language of jets, the intuitive idea behind intertwining can be seen

by considering the case of a structurally symmetric invertible connection

string field r of length T. . At each point in m of 1M, , r(m) = 
for some local diffeomorphism ~~,z, : : (M , m) -~ (Tmlm, o). For any real- .

valued function f on M , j~’~, f in (IM ) is mapped to o ~~1 ) in
= ~~ 1 where this last identification uses the

vector space structure of The effect is to perform the repeated
differentiation in the coordinate system given by ~~ . . As m runs through M , ,
this yields a function from to ~~ 1 T~ (M ) . If r is not symmetric
then jets must be replaced by semi-holonomic jets.



Theorem 4.1 describes in general mathematical terms how each invertible
connection string field r gives a bijection between strings and collections
of tensors. At each point m of IM, composition with the inverse of the
"semi-holonomic coordinate system" r(m) transforms (0,0)-costrings B
at m in 1M into (0, 0)-costrings B D r(m)-1 at 0 in TmlM and the latter
are covariant tensors. The dual construction transforms (0, 0)-contrastings
into contravariant tensors. The general construction, given explicitly in
(4.6), is the tensor product of the above transformations with the identity
transformation of tensors on IM.

THEOREM 4.1 (coordinate-free form). - Let r be an invertible connec-
tion string field of length max(T, U) . Then there is a vector bundle isomor-

phism between s T (M ) and ~~ 1 ~p 1 T +~ (lM ) , determined by

Thus once we have fixed on one invertible connection string field r we
have isomorphisms of all string fields of lesser or equal lengths with various
appropriate collections of tensor fields. This generalizes the well-known
result for classical connections, that given one connection we may obtain all
other connections by adding tensor fields of a particular type.

To express this result in coordinate terms, we use the coordinate
forms of the costrings and contrastrings generated by a connection string.
Let r be a connection string of length T on M . The (r, 0)-costring
{[r~] : = 1, 2, ...~ (with I = ~il ... iT ~~ generated by F has been de-
fined in (3.21). Now assume that F is invertible and let the matrix with
elements ~I‘1 1 ~ k be the inverse of the matrix ~I‘Z ~ . . Then the arrays are

defined for 1 by



where the summation is over all sets Jl , ..., with

the summation being over multi-indices L with = The (0,s)-
contrastring generated by r has coordinate representation (Gj) with

where L = and the summation runs over standard ordered

partitions of J into u subsets (Jl, ... , Ju). .

THEOREM 4.1 (coordinate-based form). - Let ~ be an invertible connec-
tion string field of length max(T, U) and K (  max(T, U~ ~ with
~I = rand max(T, U) } with = s be the (r, 0)-costring and
the (0, s)-contrastring generated by r. . Further, let Hand N denote sets of
arrays HJ K and . Then

for max(T, U) and max(T, U) if and only if

Moreover, provided that Hand N are related by (,~ . ?’~ or (l~ . 8~, we have

In the case when r = s = 0, Theorem 4.1 gives the construction of
tensorial derivatives of a scalar field with respect to an invertible connection

string field, as defined in (3.20) in the case = 61.



4.3. Special connection string fields

An important class of invertible connection string fields consists of
the special connection string fields. These are connection string fields
which map to the identity endomorphism of TIM under the projection of

to = T)M 0 T*IM ; that is to say, they are connection
string fields with I‘k = Special connection string fields of length 2
can be identified with affine connections by mapping the string given in
coordinate form by ~ ~~j~~ , , ~I‘~~~ ~ to the connection with Christoffel symbols

This is the origin of the name "connection string". Note that every
invertible connection string field is equivalent to a pair consisting of a special
connection string field and a non-singular ( 1,1 )-tensor field. In order to state
this more precisely, let Inv ~S~ ~,(IM )) and Spec ~So ~(M )) denote respectively
the spaces of invertible and of special connection strings of length T on IM.

Then there is a bijection

where x = Aut (T IM ) is the pro j ection and,
for each m in M , is regarded as a linear function from Tmlm to
itself.

Special connection string fields are equivalent to various geometric ob-
jects which arise in other contexts. Theorem 4.2 details the equivalence
with certain reductions of semi-holonomic frame bundles. The relationship
to higher-order connections is given in Theorem 4.3. Theorem 4.4 describes
the connection with vector field differentiation strings.

The semi-holonomic Tth-order frame bundle over IM is the semi-
holonomic analogue of the Tth-order frame bundle HT (M ). Its fibre over
m is the set of invertible semi-holonomic T-jets from (Rd,o) to (IM, m). It
is a principal PT(d)-bundle over M where PT(d) is the group of invertible
semi-holonomic T-jets from (IRd, o) to itself. Note that GL(d) acts on the
right on by

which is to say, via the homomorphism



where X is regarded as a linear function from R‘~ to itself. There is

a projection x : - = which takes each semi-

holonomic T-jet to its I-jet.

THEOREM 4.2. - There is a fibre bundle isomorphism

given by

for 0 in HT (IM )9.,z, where is regarded as a linear mapping from (Rd, o)
to (Tmlm , o) . This isomorphism restricts to a fibre bundle isomorphism
from HT (M ) / G L( d) to the space Sym (Spec (s~ j) of structurally sym-
metric elements of . The corresponding bijections between

sections of the bundles identify reductions of (respectively 
to GL(d) with special connection string fields (respectively structurally sym-
metric special connection string fields) of length T on M .

The reductions of to GL(d) are the coordinate string fields on IM
considered by Murray ~57~..
A Tth-order connection on M is a connection on the principal bundle

x : HT (M) - IM, that is to say a smooth assignment p ~ Hp of a subspace
Hp of the tangent space to each point p of which is

(TC1) horizontal in that = 
,

(TC2) equivariant in that Hgp = Rg*Hp for g E PT(d).

Here Rg denotes the right action on HT (M) given by composi-
tion of semi-holonomic jets. Equivalently (Yuen ~68~ ), a Tth-order connec-
tion on IM is a section (1’ of the projection x : - such

that

for ~ a local diffeomorphism from (Rd, o) to (M, m), X in GL(d) and where
c : GL(d) - PT+l (d) is as defined in (4.10). Since such sections correspond ,

bijectively to sections - M, the following result is

immediate from Theorem 4.2.



THEOREM 4.3. - There is a bijection from (T - 1)th-order connections
on M to special connection string fields of length T on M given by ~ ~ r,
where

for ~ a local diffeomorphism from o) to (M , m) . Here is regarded
first as a linear map from IRd = To IRd to TmIM and then as an element of

.

Differentiation strings (Barndorff-Nielsen, Blaesild &#x26; Mora [14]-[15]) can
be considered as ways of using sequences of vector fields to construct linear
differential operators which act on vector fields. A vector field differentiation
string of length T on IM is a sequence ~~, , ... ofR-multilinear mappings

satisfying

where X1, ... , Xn, Y are vector fields on IM, f is a real-valued function
on M, the summation runs over all subsets (ii , ... , of ~i + 1, ... , , n~,
il  ...  the subset {j1, ... , jn-r) is the complement in {1, ..., n} of

... , jl  ...  jn-r, and 
~ ..., XiT = Lx=T ~ ~ .. o Lx.il with

L x f = X f = d/(X) being the usual Lie derivative action of vector fields
on real-valued functions.

THEOREM 4.4.- There is a bijection from special connection string
fields of length T on M to vector field differentiation strings of length T -1
on M , given by



the differential operator xl ,..., xn) being regarded as a section of
and the string field r in being considered via its

projection to Sec (M ) as an element of L (Sec so ~ +1 (IM ) , Sec(TIM)).

4.4. Yokes

We have seen in section 3.2 that one way in which special connection
string fields may arise is from yokes. For g : IM x IM --; IR and m, x in

1

M define M --; IR, M ~ T*mIM and Tb in Sec 

by = = and ( m - ) ~rn ’°°’~ ’Yrn effectively the
connection string construction given in (3.9) with a = 1. We have seen in
section 3.2 that g is a yoke if, for all m in IM , ym (m) = 0 and is

a non-degenerate element of = T*mIM ® T*mIM. If g is a yoke,
let p be the non-degenerate (o, 2 )-tensor field given by p( m) = j,l.,z’~(y~.,z). As
noted after (3.5), p is symmetric. Denote by y(M ) and ?Z(M ) the spaces of
yokes and of pseudo-Riemannian metrics on IM . Then there is a surjective
mapping 

~ 

where Sym denotes the set of structural symmetric ele-

ments of s~ ~ (M ) which project to non-degenerate elements of S~ ~ (IM ) =
T*IM .

The important feature of a yoke is that the string field F assigns to
each point m of 1M an oo-jet of a local diffeomorphism from (M, m) to

, o), that is to say a jet of a coordinate chart round m taking values
in the cotangent space . Using p to identify with

sends 0393 to a structurally symmetric special connection
1 1 1

string field r, as in (3.10) with ~ == 1. Then r x F is a structurally
symmetric special connection string field on M x 1M and by Theorem 4.1 it
gives a vector bundle isomorphism from x to x IM ).
Pulling this back to M by the inclusion of M as the diagonal of 1M x 1M
and restricting to structurally symmetric strings gives a vector bundle
isomorphism from Sym (s000~ (IM x o to s~1(orT*IM) ~ (osT*IM) .

Here x denotes the bundle of structurally symmetric
(0, 0)-derivative strings of lenght oo at the diagonal of M x 1M and Q denotes



the symmetric tensor product. In particular, the zero-truncated oo-jet of
the yoke g at the diagonal of 1M x 1M yields a collection ~ ~ ~ 1} of
(0 y + s)-tensor fields on M. . The importance for statistical asymptotics of
this construction is that the tensors in (3.33), (3.34) and (3.35) are obtained
in this way from the expected or observed likelihood yoke of (3.16) and
(3.17).

Also note that we may use the intertwining operation described by
Theorem 4.1, together with the "canonical" connection string induced by the
normal geodesic coordinates provided by the Christoffel symbols at length
2 of r , further to represent a yoke as the combination of a sequence of
tensors, a connection, and a pseudo-Riemannian metric.

4.5. Convolutive multiplication

Derivative costrings can be multiplied together to give new derivative
strings by the operation of convolutive multiplication. Consider two strings
H1 ~ Sr1s0T1(IM) and H2 ~ Sr20s2T2(IM) at the same point ofM. . The product
~l * H2 is the element of~~~~~(M) given in coordinates by

where juxtaposition of multi-indices means concatenation: QK denotes the
multi-index formed by placing Q before K.

From the coordinate-free viewpoint, convolutive multiplication is ob-
tained from the usual tensor convolution in each fibre ~~~ .

Note that this product is noncommutative and that the costrings generated
by r according to formula (3.21) may be obtained by repeated convolutive
multiplication of r with itself. Note also that as defined in (4.3) is the
component in (~t E) * ® ~~u F) of the u-fold convolutive power of B.

4.6. Differential strings

Differential strings are a generalization of derivative strings. Whereas the
building blocks of derivative strings are semi-holonomic jets of real-valued
functions, differential strings are based on semi-holonomic jets of sections
of tensor powers of the tangent bundle. The coordinate-based definition



(Blaesild &#x26; Mora [19]) of differential strings requires the generalization of
the arrays wK to arrays [~ ~ , w~ EK, where

where C//2 indicates that the sum is over all ordered partitions (Ci~) of
C into 2 subsets, either of which may be empty, such that the order within

each C~ is the same as that within C. (Here = 0 if exactly one of K

and C is empty and = 1 if both K and C are empty.) A differential
string of degree (r, s) type (p, q) and length (T, U) at m assigns to each local
coordinate system 03C9 round m a multi-array of real-valued arrays HILMJKN

indexed by multi-indices I, J, K, L, M, N with |I| = r, |J| = s, T,

U, = p, ~~ = q, and transforming under coordinate change from
~ by the law

holding the lengths of A, B, E and F fixed at ~ = = s, !F! = p
and ~F~ = q. Because ~ = ~7~ = rand ~B~ = s, the multi-indices I

and J behave tensorially. On the other hand, the structural multi-indices K
and L and the type multi-indices M and N behave in a more complicated
way. Letting m run through the manifold )M yields the space ~~(M) of
differential strings of degree (r,~), type (p, qj and length (T, U) on M. A
coordinate-free description (Jupp [31]) generalizing (4.5) is

where .TT denotes the bundle of semi-holonomic T-jets of sections
of ~p TIM .

4.7. Phyla

The transformation laws (4.2) and (4.11) of derivative strings and differ-
ential strings involve higher derivatives and of coordinate changes
and so are coordinate descriptions of representations . Because these



transformation laws are polynomial in and B the representa-
tions are algebraic. By allowing general algebraic representations we obtain
objects called phyla. Thus, in terms of local coordinates, phyla are repre-
sented by arrays which transform under coordinate change from ~

by 
° 

where D[w , q$ ] is a block matrix in which the elements of the blocks are
polynomials in w) ~ and It follows from Theorem 4.5 below that the

arrays can be ordered so that D [ w , q$ is an upper-triangular block
matrix. The function which takes a pair (w, q$) of local coordinate systems
to the matrix D[ w , q$ ] is called a D-matrix, it satisfies:

(Dl) each D[w , q$ ] is a nonsingular upper-triangular block matrix in
which elements ofthe blocks are polynomials in w ) ~ and 

(D2) (the cocycle condition)

Phyla arise also in the context of natural bundles. A natural bundle
over n-manifolds (Palais &#x26; Terng ~58~) assigns to each n-dimensional
smooth manifold 1M a smooth fibre bundle over 1M with total space F(M )
such that if ~ : : M  IN is an embedding then there is a bundle map

F(03C6) : - F(IBI) over the map 03C6 of base spaces, such that F is
continuous in an appropriate sense. Terng [66] showed that natural vector
bundles with d-dimensional fibre are given by representations of P(d). It
follows that finite-dimensional phyla are precisely the elements of algebraic
natural vector bundles (natural vector bundles for which this representation
is algebraic). Consequences of more general results of Epstein &#x26; Thurston

[31] are that for finite-dimensional natural bundles the continuity of F
is automatic and that phyla of dimension d have coordinate forms which
change by a representation of PT~d) with T  2d + 1.

As well as derivative strings, the class of phyla includes differential

strings, the values of the higher-order differential forms of Meyer [55],
sectorforms (While [67, Chap. 3]), quasi-jets (Dekret [24]) from 1M to IR and
the "new tensors" of Foster [32]-[35].. Meyer’s differential forms of order T



are the same as sections of the bundle of non-holonomic (T-1)-
jets of cotangent fields on M. . Whereas the vector bundle of

(holonomic) (T - 1 ) jets of cotangent fields has fibre dimension

the bundle of semi-holonomic (T - l)-jets has fibre dimension
d(dT - 1 ) (d - 1 ) -1 and the bundle of non-holonomic (T - 1 )-
j ets has fibre dimension The values of higher-order differential
forms are not differential strings but they are quasi-jets. The class of phyla
does not include

(i) (for r ~ 2) elements of rth iterated tangent bundles nor ele-

ments of their subbundles which are invariant under the canonical

involutions of T’’IM occurring in the differentiable extensions of Bow-
man [20], because these transform non-linearly;

(ii) relative tensors of non-integral weight (e.g. Synge &#x26; Schild [65,
p. 240]), because their transformation laws involve non-polynomial
functions of det (w ~~ ) . .

Extensors (Craig [22]) are based on jets along a curve in !M of tensor fields
and so do not fit neatly into the context of phyla, because of the choice of
curve.

Before considering representations of note that is a semi-

direct product of and GL(d), where p(1)T(d) is the kernel of the

group epimorphism

which maps a polynomial to its linear term and where the homomorphism
t of (4.10) include GL(d) in as the group of T-jets of invertible linear
functions.

The main property of phyla comes from Theorem 4.5 (BarndorfF-Nielsen
et al. [13] ; Terng [66]). This states that every representation of can

be described by a block upper-triangular matrix representation in which the
diagonal blocks are representations of GL(d).



THEOREM 4.5. - For any algebraic complez representation x : pT(d) -
GL(V ) of PT(d), there is a decomposition V = ~1 ® ~ ~ e Vk of V into

GL(d)-irreducibles such that, for f in ~{1~(d) and X in GL(d)

zvhere xz : GL(d) -~ is a representation, : ~~1~(d) -~ V* ~ V~z isT
a map z,crhiclt is GL(d)-equivariant, and

for i  j .

In the case of the representation Of’PT(d) which underlies example 4.1, a
block upper-triangular matrix representation can be deduced from the form
of equation (2.23). .
An important consequence of the block upper-triangular nature of the

matrix in (4.13) is that phyla can be projected onto other phyla which they
"contain". More precisely, the arrays HB1:::B8 in the coordinate expression
of a phylon can be ordered into arrays representing (Pi, ..., Pk) with
Pi E ~2, so that, for 1  j  k, (Pi, ... , Pj) also represents a phylon.
To illustrate this, consider again examples 4.1-4.4.

Ezample l~ .1. Using the notation introduced at the beginning of
this section, a stochastic differential { projects to its bracket

, as does the drift differential {[dyi], [dxij]} . Furthermore, , for

1 ~ W  U, a (0, 0)-contrastring of length U represented by arrays HI with
1 ~ ~I~  U projects to another (0, 0)-contrastring of length U represented
by K I with

Ezample ~j2.2014 For U  T, a scalar string of length T, represented in
local coordinates by arrays fK with 1  ( K ~  T, projects to a scalar string
of length U, represented by I K with 1  ~ K ~  U. A particular case of this
is the rather obvious fact that the T-jet of a function determines its U-jet



Example l~ .3. . - For U  T, a connection string of length T, represented
by arrays I‘K with 1  IKI  T, projects to a connection string of length
U, represented by rK with 1  ~ U.

Example 4.4. For U  T, a string in represented by arrays

ri;K with 1  ~ T, projects to an element of length U, represented by
with 1 ~ U.

The class of phyla is closed under taking direct sums, duals and tensor

products, as well as under differentiation, which is to say the operations
of taking jets, semi-holonomic jets and non-holonomic jets of phylon fields.
One might naively hope to obtain all phyla by applying these operations
to tensor fields. However the class of phyla is much too large for this,
containing as it does objects such as those transforming by the following
representations of P~d). .

Example 1~.5. Let real numbers. Then the mapping
which takes the PT(d)-element (A1, , ... , AT) to

(where the At/n are defined by (4.3)) is an algebraic representation of

PT(d) on ~t IRd and so defines a class of phyla. Taking r~1 = ... =
= 1 gives the representation dual to that occurring in (4.4) and the

corresponding phyla are the elements of S0T00(IM ).

Detailed examination of an example related to example 4.5 in the case
T = 2 and to (4.13) with k = 2 (Barndorff-Nielsen et al. ~13~, Terng ~66~)
shows that there are uncountably many non-isomorphic indecomposable
algebraic representations of and so the class of all phyla is very large
indeed. Terng [66] gave a general procedure for classifying phyla in terms of
orbits of group actions on Lie algebra cohomology spaces. However, these
are very difficult to compute and so a detailed explicit classification of all

phyla would appear to be out of reach. This seems to be a clear indication
that attention should be focussed on the special cases occurring in stochastic
calculus and asymptotic statistical inference, to see what special features

present in those cases might generalize to suggest a smaller and hence more
amenable subclass of the class of all phyla.



5. Conclusion

In this paper we have described the way in which higher-order calculus
arises in stochastic calculus and in statistical asymptotics, and have used
these instances to motivate a description of the general theory of Taylor
strings and phyla, and the relationship of this theory to mathematical
considerations of jet bundles, higher order frame bundles, and natural vector
bundles. As a consequence of this exposition it can be seen that Taylor
strings can be viewed in three parallel ways:

~ (a) the coordinate-based approach using transformation laws, as given for
example in equation (4.2) for derivative strings, equation (4.11) for
differential strings and equation (4.12) for general phyla;

(b) the abstract approach relating strings etc. to other mathematical

objects such as jet bundles, higher order frame bundles, and natural
vector bundles;

(c) the intuitive approach treating strings as derived from connection
strings which in turn correspond to representing systems of coordi-
nates (as in the discussions of sections 3.3 and 4.2, and related to
Murray’s coordinate strings).

Each of these approaches has its own advantages: the coordinate-based
approach is appropriate for calculations and should prove essential for the
computer algebra implementation now under development; the abstract

approach is helpful for example in the identification of the tensor 
of equation (3.35); while the intuitive approach makes it clear what is the
fundamental content of Taylor string theory, namely the treatment of Taylor
series expansions expressed in terms of a coordinate system whose choice
may depend on the point about which the expansion takes place.

Of the two applications we describe in section 2 and 3, that to stochastic
calculus is essentially after the fact. Its importance lies in the strong link
between the second-order stochastic calculus and Taylor string theory, which
allows us to use the formal aspects of second-order stochastic calculus as a
gentle introduction to higher-order calculus. The application to asymptotic
statistics provided the inspiration for developing Taylor string theory as
a context for the fourth-order invariance considerations which then arose.
Future developments are likely to centre around topics of computation
and approximation in the statistical application: further investigations into



invariant approaches to approximations and development of a computer
algebra implementation paralleling the computer algebra of symbolic Ito
calculus as described in section 2.4. Note however that a recent method

of proof of the fundamental Ito formula (as in equation (2.3)), described in
Kendall [49], can be viewed in a way reminiscent of Taylor string theory: the

length-2 string f 2 derived from a C2 function f is bounded above and below
and below by sequences of quadratic approximations, and hence the general
Ito formula is deduced from the special case for quadratic f . It may be

that similar string-theoretic insights into fundamental results in statistical

asymptotics await our discovery.

Finally it should be noted that in principle Taylor string theory is in no

way confined to statistical applications, being appropriate wherever use is
made of high order Taylor series expansions in contexts where invariance
considerations should apply.
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