
The Annals of Probability
2001, Vol. 29, No. 2, 766–801

STOCHASTIC CALCULUS WITH RESPECT TO
GAUSSIAN PROCESSES
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In this paper we develop a stochastic calculus with respect to a
Gaussian process of the form Bt =

∫ t
0K�t� s�dWs, where W is a Wiener

process and K�t� s� is a square integrable kernel, using the techniques of
the stochastic calculus of variations. We deduce change-of-variable formu-
las for the indefinite integrals and we study the approximation by Riemann
sums. The particular case of the fractional Brownian motion is discussed.

1. Introduction. The stochastic integral with respect to the Brownian
motion coincides with the adjoint of the derivative operator on the Wiener
space. This property, established by Gaveau and Trauber in [10], has shed
new light on the classical Itô calculus, leading to significant advances in this
theory. For instance, the Clark–Ocone formula provides an explicit expression
for Itô’s integral representation theorem in terms of the derivative operator.
On the other hand, the adjoint of the derivative operator can be used as an
anticipating stochastic integral.
We recall that the stochastic calculus of variations or Malliavin calculus

is valid for an arbitrary Gaussian process (see [14] and [17]). Suppose, in
particular, that B = �Bt� t ∈ �0�T�� is a centered continuous Gaussian process
of the form

Bt =
∫ t

0
K�t� s�dWs�(1)

where W = �Wt� t ∈ �0�T�� is a Brownian motion and K�t� s� is a square
integrable kernel. The purpose of this paper is to use the stochastic calculus
of variations in order to develop a stochastic calculus with respect to B, as in
the case of the Brownian motion. The divergence operator δB with respect to B
will be used as a stochastic integral and, under some regularity assumptions,
this integral turns out to be the limit of Riemann sums defined in terms of
the Wick product.
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We will consider two different types of kernels:

(i) Singular case: K�·� s� has bounded variation on any interval �u�T�,
u > s, but

∫ T
s 
K
�dt� s� may be infinite.

(ii) Regular case: The kernel satisfies
∫ T
0 
K
��s�T�� s�2 ds <∞.

In both cases we establish an Itô formula for the process B itself and for
stochastic integral processes of the form Xt =

∫ t
0 us δBs, where the process u

is adapted. In the case Xt = Bt we obtain

F
(
Bt

) = F�0� +
∫ t

0
F′(Bs

)
δBs + 1

2

∫ t
0 F

′′(Bs

)
dRs�(2)

where Rs = E�B2s�. In the singular case this formula requires the additional
condition ∫ T

0

(∫ T

s

∥∥Bt −Bs

∥∥
L2���
K
�dt� s�

)2
ds <∞(3)

for F′�Bs� to belong to the domain of the divergence operator δB.
We note that the stochastic integral

∫ T
0 us δBs has zero mean. On the other

hand, in the regular case and assuming K�s+� s� = 0, we introduce another
type of integral, which we call the Stratonovich integral and denote by

∫ T
0 us×

dBs, that can be approximated by ordinary Riemann sums. This Stratonovich
integral can be decomposed as the sum of the divergence

∫ T
0 us δBs plus a

trace term. We also deduce change-of-variable formulas for the Stratonovich
integral, which are analogous to those of ordinary calculus. Actually this inte-
gral is also of forward type because we assume K�s+� s� = 0, which implies
that Bt has no Brownian component and it is smoother than the Brownian
motion.
An important example of processes of this form is the fractional Brownian

motion of the Hurst parameter H ∈ �0�1�, which has the covariance function:
E
(
BH
t B

H
s

) = 1
2

(
s2H + t2H − 
t− s
2H)�

The process BH can be represented as

Bt =
∫ t

0
KH�t� s�dWs�

where the kernel KH is singular if H < 1
2 and regular if H > 1

2 . Notice that
condition (3) holds only in the case H > 1

4 .
The application of the stochastic calculus of variations to construct a

stochastic calculus with respect to the fractional Brownian motion has been
previously developed in [6] and [7]. In these papers Itô’s formulas are estab-
lished in the case H > 1

2 for two types of integrals, one of them being equal
to the divergence operator, and for the corresponding Stratonovich versions.
Carmona and Coutin [3] have extended this approach to a general class of
Gaussian processes. They consider a Stratonovich-type stochastic integral∫ T
0 us dBs, which can be decomposed into the sum of a divergence δB�u� term
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plus a trace term involving the stochastic gradient of u. They prove the approx-
imation of this integral by Riemann sums and they establish the Itô formula
(2) for Bt in the regular case. In the case of the fractional Brownian motion
with parameter H < 1

2 the class of integrable processes (in the Stratonovich
sense) has been characterized in [2] using classical fractional calculus.
Duncan, Hu and Pasik-Duncan [8] have introduced the stochastic integral∫ T

0 us δB
H
s as the limit of Riemann sums defined by means of the Wick product,

and proved the Itô formula in the case H > 1
2 . Some applications of this

formula are discussed.
An approach based on the pathwise Riemann–Stieltjes integration has been

used by Lin [13] and Dai and Heyde [5] for the fractional Brownian motion
withH > 1

2 . The integrator must have finite p-variation with 1/p+H > 1. An
extension of the Riemann–Stieltjes integral has been defined by Zähle [22] by
means of integration by parts formulas and fractional derivatives. This path-
wise integral coincides with the Stratonovich integral but the assumptions for
its existence are different from those obtained using the stochastic calculus of
variations.
The paper is organized as follows. Section 2 contains some preliminaries on

the stochastic calculus of variations with respect to a Gaussian process of the
form (1). The divergences associated with the processes B and W are related
by the formula δB�u� = δW�K∗u�, where K∗ is the adjoint of the operator K.
Section 3 contains the proof of formula (2) in the singular case, the regular
case being treated in Section 4. In Section 5 we show the Itô formula for an
indefinite integral in the singular case and Section 6 is devoted to handle
the regular case. In Section 7 we study the approximation of stochastic inte-
grals (of divergence and Stratonovich type) by Riemann sums and in Section 8
we discuss the particular case of the fractional Brownian motion and related
processes.
Throughout the paper C� C′� � � � will denote constants that may be different

from one formula to another one.

2. Preliminaries on the stochastic calculus of variations. Let B =
�Bt� t ∈ �0�T�� be a zero mean continuous Gaussian process with covariance
function E�BtBs� = R�t� s� such that B0 = 0. We suppose that B is defined
in a complete probability space ���� �P� and � is generated by B. Let H1
be the first Wiener chaos, that is, the closed subspace of L2��� generated by
B. The reproducing kernel Hilbert space (RKHS) � is defined as the closure
of the linear span of the indicator functions �1�0� t�� t ∈ �0�T�� with respect to
the scalar product �1�0� t��1�0� s��� = R�t� s�. The mapping 1�0� t� �→ Bt provides
an isometry between � and H1. We denote by B�ϕ� the image in H1 of an
element ϕ ∈ � .
We briefly recall some basic elements of the stochastic calculus of varia-

tions with respect to B. For a more complete presentation, see [17] and [18].
Let � be the set of smooth and cylindrical random variables of the form

F = f
(
B�ϕ1�� � � � �B�ϕn�

)
�(4)
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where n ≥ 1, f ∈ C∞
b ��n� (f and all its derivatives are bounded) and ϕ1� � � � �

ϕn ∈ � . Given a random variable F of the form (4), we define its derivative
as the � -valued random variable given by

DBF =
n∑

j=1

∂f

∂xj

(
B�ϕ1�� � � � �B�ϕn�

)
ϕj�

The derivative operator DB is a closable unbounded operator from Lp��� into
Lp���� � for any p ≥ 1. In a similar way, the iterated derivative operator
DB�k maps Lp��� into Lp���� ⊗k�. For any positive integer k and any real
p ≥ 1, we denote by �k�p

B the closure of � with respect to the norm defined by

�F�pB�k�p = �F�pLp��� +
k∑

j=1
�DB�jF�pLp���� ⊗j��

Henceforth the norm of Lp��� will be denoted by �·�p. We denote by δB the
adjoint of the derivative operator DB. The domain of δB (denoted by Dom δB)
in L2 is the set of elements u ∈ L2���� � such that there exists a constant c
verifying ∣∣∣E〈DBF�u

〉
�

∣∣∣ ≤ c�F�2
for all F ∈ � . If u ∈ Dom δB, δB�u� is the element in L2��� defined by the
duality relationship

E
(
δB�u�F) = E�DBF�u�� � F ∈ �1�2B �

If V is a separable Hilbert space, we can define in a similar way the spaces
�
k�p
B �V� of V-valued random variables. We recall that the space �1�2B �� � of

� -valued random variables is included in the domain of δB, and for any ele-
ment u in �1�2B �� � we have

E
(
δB�u�2) ≤ E�u�2� +E

∥∥DBu
∥∥2
� ⊗�

�

Furthermore, Meyer inequalities imply that for all p > 1 we have

�δB�u��p ≤ cp�u��1� pB �� ��(5)

If u is a simple � -valued random variable of the form

u =
n∑

j=1
Fjϕj�

where Fj ∈ �1�2B and ϕj ∈ � , then u belongs to the domain of δB and

δB�u� =
n∑

j=1

(
FjB�ϕj� −

〈
DBFj�ϕj

〉
�

)
�

In the particular case where B is the Wiener process, that is, R�t� s� = t∧s,
the space � is L2��0�T�� and the divergence operator δB is an extension of
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the Itô integral in the sense that the set L2a��0�T� × �� of square integrable
and adapted processes is included in Dom δB and the operator δB restricted
to L2a��0�T� × �� coincides with the Itô stochastic integral (see [19]). This
extension coincides with the stochastic integral introduced by Skorohod in [21]
and it is also called the Skorohod integral.
In the general case, the divergence operator δB can also be interpreted as

a generalized stochastic integral. In fact, notice that, for all ϕ ∈ � , B�ϕ� =
δB�ϕ�, and, in particular,

δB

(
n∑
i=1

ai1�ti� ti+1�

)
=

n∑
i=1

ai
(
B�ti+1� −B�ti�

)
�

Our purpose is to study the properties of the divergence operator as a stochas-
tic integral. To do this, we need a representation of the elements of the RKHS
� as functions on �0�T�.
Suppose that the covariance R�t� s� of the continuous Gaussian process B

can be expressed as

R�t� s� =
∫ t∧s

0
K�t� r�K�s� r�dr�(6)

where K�t� s�, 0 < s < t < T, is a kernel satisfying

�K� = sup
t∈�0�T�

∫ t

0
K�t� s�2 ds <∞�(7)

Enlarging, if necessary, our probability space, we can find a Wiener process
W = �Wt� t ∈ �0�T�� such that

Bt =
∫ t

0
K�t� s� δWs�

where we denote by δWs the Itô differential. Notice that the RKHS � is
isometric to the closure in L2��0�T�� of the linear span of the functions �K�t� ·�
1�0� t�� t ∈ �0�T��. Indeed,

R�t� s� = 〈
1�0� t��1�0� s�

〉
�

= 〈
K�t� ·�1�0� t��K�s� ·�1�0� s�

〉
L2��0�T���

On the other hand, the kernel K defines an operator in L2��0�T�� given by

�Kh��t� =
∫ t

0
K�t� s�h�s�ds�

and the function Kh is continuous and vanishes at 0 because


�Kh��t� − �Kh��s�
 ≤ ∥∥Bt −Bs

∥∥
2�h�L2��0�T���

We denote by � the set of step functions on �0�T�. Consider the linear
operator K∗ from � to L2��0�T�� defined by

�K∗ϕ��s� = ϕ�s�K�T� s� +
∫ T

s

[
ϕ�t� − ϕ�s�]K�dt� s��
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If

ϕ =
n∑
i=1

ai1�si� si+1��(8)

where ai ∈ �, and 0 = s1 < s2 < · · · < sn+1 = T, then

�K∗ϕ��s� =
n∑
i=1

ai1�si� si+1��s�K�T� s�

+
n−1∑
i=1
1�si� si+1��s�

n∑
j=i+1

�aj − ai�
(
K�sj+1� s� −K�sj� s�

)
�

Notice that this operator can also be written as

�K∗ϕ��s� =
n−1∑
i=1
1�si� si+1��s�

[
aiK�si+1� s� +

∫ T

si+1
ϕ�t�K�dt� s�

]
�(9)

However, this expression is not convenient because when we extend the oper-
ator K∗ to continuous functions the first summand of (9) becomes ϕ�s�K�s� s�
and K�s� s� may not be well defined.
The operator K∗ is the adjoint of K in the following sense:

Lemma 1. For any function ϕ ∈ � and h ∈ L2��0�T��, we have

∫ T

0
�K∗ϕ��t�h�t�dt =

∫ T

0
ϕ�t��Kh��dt��

Proof. Suppose that ϕ is a function of the form (8). We have, using the
definition of Kh,

∫ T

0
ϕ�t��Kh��dt� =

n∑
i=1

ai
[�Kh��si+1� − �Kh��si�

]
= an�Kh��T� −

n−1∑
i=1

�ai+1 − ai��Kh��si+1�

=
∫ T

0
anK�T� s�h�s�ds

−
∫ T

0

(
n−1∑
i=1

�ai+1 − ai�1�0� si+1��s�K�si+1� s�
)
h�s�ds�
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Hence,∫ T

0
ϕ�t��Kh��dt� =

∫ T

0

[ n∑
i=1

ai1�si�si+1��s�K�T�s�

+
n−1∑
i=1

�ai+1−ai�1�0�si+1��s�×
(
K�T�s�−K�si+1�s�

)]
×h�s�ds

=
∫ T

0
ϕ�s�K�T�s�h�s�ds

+
∫ T

0

(n−1∑
i=1
1�si�si+1��s�

n∑
j=i+1

�aj−ai�
(
K�sj+1�s�−K�sj�s�

))
×h�s�ds

=
∫ T

0
�K∗ϕ��s�h�s�ds�

which completes the proof. ✷

Replacing h�s�ds by δWs, the proof of the preceding lemma also shows that
for any ϕ ∈ � the element B�ϕ� of the first chaos can be written as

B�ϕ� =
∫ T

0
�K∗ϕ��t� δWt�

Hence, the RKHS � can be represented as the closure of � with respect to
the norm �ϕ�� = �K∗ϕ�L2��0�T��. The operator K∗ is an isometry between �

and a closed subspace of L2��0�T��, that is,
� = �K∗�−1(L2(�0�T�))�(10)

Henceforth we will denote by D�δ��k�p the operators and spaces associated
with the Wiener process W. The equality (10) implies

�1�2B �� � = �K∗�−1��1�2��(11)

where �1�2 = �1�2�L2��0�T���. On the other hand, we have the following iden-
tity for any smooth random variable F and any � -valued square integrable
random variable u:

E
〈
u�DBF

〉
�

= E�K∗u�DF�L2��0�T���
In fact, if F = f�Bt�, then

E
〈
u�DBF

〉
�

= E
〈
u�f′(Bt

)
1�0� t�

〉
�

= E
〈
K∗u�f′(Bt

)
K∗1�0� t�

〉
L2��0�T��

= E
〈
K∗u�f′(Bt

)
K�t� ·�

〉
L2��0�T��

= E
〈
K∗u�DF

〉
L2��0�T���
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As a consequence, we obtain

Dom δB = �K∗�−1�Dom δ��(12)

and δB�u� = δ�K∗u� for any � -valued random variable u in Dom δB. We will
make use of the notation δ�v� = ∫ T

0 vsδWs for any v ∈ Dom δ. Hence, if u ∈
Dom δB, then

δB�u� =
∫ T

0
�K∗u�s δWs�

From (11) and (12) we deduce that �K∗�−1��1�2� is included in the domain
of δB.

3. Gaussian processes with a singular kernel: Stochastic integral
and Itô’s formula. Suppose now that K�t� s� satisfies the following
condition:

(K1) K�·� s� has bounded variation on any interval �u�T�, u > s.

Consider the following seminorm on � :

�ϕ�2K =
∫ T

0
ϕ�s�2K�T� s�2 ds+

∫ T

0

(∫ T

s

ϕ�t� − ϕ�s�
 
K
�dt� s�

)2
ds�

The completion of � with respect to this seminorm will be denoted by �K.
The space �K is the class of functions ϕ on �0�T� such that �ϕ�2K <∞ and it
is included in L2��0�T��K�T� s�2 ds�. Moreover, �K is continuously embedded
in � because �ϕ�� ≤ √

2�ϕ�K.
Let u = �ut� t ∈ �0�T�� be a stochastic process in �1�2��K�. That is, u

verifies the following conditions:

E�u�2K = E
∫ T

0
u2sK�T�s�2ds+E

∫ T

0

(∫ T

s

ut−us

K
�dt�s�

)2
ds<∞(13)

and

E
∫ T

0

∥∥Dru
∥∥2
K
dr = E

∫ T

0

∫ T

0

(
Drus

)2
K�T� s�2 dsdr

+E
∫ T

0

∫ T

0

(∫ T

s

∣∣Drut −Drus
∣∣ 
K
�dt� s�

)2
dsdr

<∞�

(14)

These conditions imply that K∗u belongs to �1�2 and, as a consequence, u
belongs to the domain of δB and δB�u� = ∫ T

0 �K∗u�s δWs. For a process u in
�1�2��K� we will make use of the notation δB�u� =

∫ T
0 usδBs, and, therefore,

we can write ∫ T

0
us δBs =

∫ T

0
�K∗u�s δWs�
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Notice that if u satisfies conditions (13) and (14), then u1�0� t� also satisfies
these conditions for any t ∈ �0�T�. Moreover for s ≤ t we have

K∗�u1�0� t��s = usK�T� s� +
∫
�s� t�

�ur − us�K�dr� s� −
∫
�t�T�

usK�dr� s�

= usK�t� s� +
∫
�s� t�

�ur − us�K�dr� s��

and for s > t we clearly have K∗�u1�0� t��s = 0. We will denote K∗�u1�0� t��s by
(K∗

tu�s, where K∗
t is the adjoint of the operator K in the interval �0� t�.

So, for a process u in �1�2��K� we can introduce the indefinite integral
Xt =

∫ t
0 us δBs, which will be given by∫ t

0
us δBs =

∫ t

0
usK�t� s� δWs +

∫ t

0

(∫ t

s
�ur − us�K�dr� s�

)
δWs

=
∫ t

0
�K∗

tu�s δWs�

(15)

In order to show an Itô formula for the Gaussian process Bt we will intro-
duce the following additional conditions:

(K2)
∫ T
0 �
∫ T
s �Bt −Bs�2
K
�dt� s��2 ds <∞�

(K3) The functions R�s� s� and ∫ st∧s K�s� r�dr have bounded variation in s ∈
�0�T� for any t ∈ �0�T�.

Let F be a twice continuously differentiable function satisfying the growth
condition

max
{
F�x�
� 
F′�x�
� 
F′′�x�
} ≤ c exp

(
λ
x
2)�(16)

where c and λ are positive constants such that λ < 1
4�sup0≤t≤T Rt�−1. This

condition implies

E

(
sup
0≤t≤T

∣∣F(Bt

)∣∣p) ≤ cpEepλ supt 
Bt
2 <∞�

for all p < 1
2λ�sup0≤t≤T Rt�−1, and the same property holds for F′ and F′′. As

a consequence of condition (K2), for any function F of this type, the process
F′�Bt� belongs to the space L2��� �K�. Indeed, if 2 < p < 1

2λ�sup0≤t≤T Rt�−1,
applying Hölder’s inequality we obtain

E
∥∥F′(Bt

)∥∥2
K
=
∫ T

0
EF′(Bs

)2
K�T� s�2 ds

+E
∫ T

0

(∫ T

s

∣∣F′(Bt

)−F′(Bs

)∣∣ 
K
�dt� s�
)2

ds

≤ E

(
sup
0≤t≤T

∣∣F′(Bt

)∣∣2)R�T�T� + c

(
E

(
sup
0≤t≤T

∣∣F′′(Bt

)∣∣p)) 1
p

×
∫ T

0

(∫ T

s

∥∥Bt −Bs

∥∥
2 
K
�dt� s�

)2
ds

<∞�
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Theorem 1. Let F be a function of class C2��� satisfying (16). Suppose
that B = �Bt� t ∈ �0�T�� is a zero mean continuous Gaussian process whose
covariance function R�t� s� is of the form (6), with a kernel K�t� s� satis-
fying conditions (K1), (K2) and (K3). Then for each t ∈ �0�T� the process
F′�Bs�1�0� t��s� belongs to Dom δB and the following formula holds:

F
(
Bt

) = F�0� +
∫ t

0
F′(Bs

)
δBs + 1

2

∫ t
0 F

′′(Bs

)
dRs�

where Rs = R�s� s�.

Proof. By the preceding remark F′�Bt� belongs to L2����K�. Then it
suffices to show that

E
(
GF�Bt�

)−E
(
GF�0�)− 1

2

∫ t
0 E

(
GF′′�Bs�

)
dRs

= E
∫ t

0
DsGK

∗
t

[
F′�Bs�

]
ds

(17)

for any random variable G in a total subset of L2���. In fact, the random
variable F�Bt�−F�0�− 1

2

∫ t
0 F

′′�Bs�dRs being square integrable, (17) implies
that the process F′�Bs�1�0� t��s� belongs to the domain of δB. Suppose that G
is a random variable of the form G = In�h⊗n�, where In denotes the multiple
stochastic integral of order n with respect to W and h is a step function in
�0�T�. The set of all these random variables forms a total subset of L2���.
From hypothesis (K3) we deduce that KDG is of bounded variation. Thus
we can apply Lemma 1 to the right-hand side of (17) and this equality is
equivalent to

E
(
GF�Bt�

)−E
(
GF�0�)− 1

2

∫ t
0 E

(
GF′′�Bs�

)
dRs

= E
∫ t

0
F′�Bs��KDG��ds��

(18)

In order to show (18) we will replace F by

Fk�x� = k
∫ 1
−1
F�x− y�ε�ky�dy�

where ε is a nonnegative smooth function supported by �−1�1� such that∫ 1
−1 ε�y�dy = 1. The functions Fk are infinitely differentiable and their deriva-
tives satisfy the growth condition (16) with some constants ck and λ. Suppose
first that G is a constant, that is, n = 0. Then the right-hand side of equality
(18) vanishes. On the other hand, we can write

E
(
GF�Bt�

) = G
∫
�
Fk�y�p�Rt�y�dy�

where p�σ�y� = �2πσ�−1/2 exp�−y2/2σ�. We know that
∂p

∂σ
= 1
2
∂2p

∂y2
�(19)
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As a consequence, integrating by parts, we obtain

E
(
GFk�Bt�

)−GF�0� = 1
2
G
∫ t

0
dRs

(∫
�
Fk�y�

∂2p

∂y2
�Rs�y�dy

)
= 1
2
G
∫ t

0
dRs

(∫
�
F′′
k�y�p�Rs�y�dy

)
= 1
2
G
∫ t

0
dRs E

(
F′′
k�Bs�

)
�

which completes the proof of (18), when G is constant.
Suppose now that n ≥ 1. In that case E�G� = 0 and we can write

E
(
GFk�Bt�

) = E
(
F

�n�
k �Bt�

)�Kh�nt �
E
(
GF′′

k�Bs�
) = E

(
F

�n+2�
k �Bs�

)�Kh�ns
and

E
∫ t

0
F′
k�Bs��KDG��ds� = n

∫ t

0
�Kh��ds�E(F′

k�Bs�In−1�h⊗�n−1��)
= n

∫ t

0
�Kh��ds�E(F�n�

k �Bs�
)�Kh�n−1s

=
∫ t

0
E
(
F

�n�
k �Bs�

)
d�Kh�ns �

Hence, it remains to show that

E
(
F

�n�
k �Bt�

)�Kh�nt = 1
2

∫ t
0 E

(
F

�n+2�
k �Bs�

)�Kh�ns dRs

+
∫ t

0
E
(
F

�n�
k �Bs�

)
d�Kh�ns �

(20)

For any y �= 0 we can write, using again (19),

�Kh�nt p�Rt�y� =
1
2

∫ t

0
�Kh�ns

∂2p

∂y2
�Rs�y�dRs +

∫ t

0
p�Rs�y�d�Kh�ns �

As a consequence, applying Fubini’s theorem and integration by parts, we
obtain

E
(
F

�n�
k �Bt�

)
�Kh�nt =

∫
�
F

�n�
k �y��Kh�nt p�Rt�y�dy

= 1
2

∫ t
0 dRs

(∫
�F

�n+2�
k �y��Kh�ns p�Rs�y�dy

)
+
∫ t

0
d�Kh�ns

(∫
�
F

�n�
k �y�p�Rs�y�dy

)
�

which completes the proof of (20) for the function Fk. Finally, it suffices to let
k tend to ∞. ✷
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4. Gaussian processes with a regular kernel: Stochastic integrals
and Itô’s formula. In this section we will impose the following condition on
the kernel K�t� s�, which is stronger than (K1):
(K4) For all s ∈ �0�T�, K�·� s� has bounded variation on the interval �s�T�,

and ∫ T

0

K
(�s�T�� s)2 ds <∞�

Notice that condition (K4) implies that K�s+� s� =K�T� s� −K��s�T�� s� is
square integrable in �0�T�. Moreover, conditions (K2) and (K3) hold. In fact,
for any partition 0 < s1 < · · · < sn+1 = T we obtain

n∑
i=1


Rsi+1 −Rsi

 =

n∑
i=1

∣∣∣∣ ∫ si+1

0
K�si+1� r�2 dr−

∫ si

0
K�si� r�2 dr

∣∣∣∣
=

n∑
i=1

∫ si+1

si

K�si+1� r�2 dr

+
n∑
i=1

∣∣∣∣ ∫ si

0

[
K�si+1� r�2 −K�si� r�2

]
dr

∣∣∣∣
= A1 +A2�

The functions 
K�s� r�1�0� s��r�
 are bounded by the square integrable function
k�r� = 
K�T�r�
 + 
K
��r�T�� r�. Hence, for the term A1 we have
A1 ≤

∫ T
0 k�r�2 dr. On the other hand, for the term A2 we can write

A2 ≤
n∑
i=1

∫ si

0

K
(�si� si+1�� r)
K�si+1� r� +K�si� r�
dr

≤ 2
∫ T

0
k�r�
K
(�r�T�� r)dr <∞�

By the same arguments the second part of hypothesis (K3) also holds.
In this case the operator K∗ can be expressed as

�K∗ϕ��s� = ϕ�s�K�s+� s� +
∫ T

s
ϕ�t�K�dt� s��

where ϕ ∈ � . We define the seminorm

�ϕ�2Kr =
∫ T

0
ϕ�s�2K�s+� s�2 ds+

∫ T

0

(∫ T

s

ϕ�t�
 
K
�dt� s�

)2
ds�

The completion of � with respect to this seminorm will be denoted by �Kr,
which is continuously embedded in � because �ϕ�� ≤ √

2�ϕ�Kr. The space
�1�2��Kr�is included in the domain of δB and for any u in this space we have
δB�u� = ∫ T

0 �K∗u�s δWs. The adjoint K∗
t of K in �0� t� will be given by

�K∗
tu�s = usK�s+� s� +

∫
�s� t�

urK�dr� s��
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and for a process u in �1�2��Kr� the indefinite integral of u is∫ t

0
us δBs =

∫ t

0
�K∗

tu�s δWs

=
∫ t

0
usK�s+� s� δWs +

∫ t

0

(∫ t

s
urK�dr� s�

)
δWs�

(21)

Condition (16) implies that the process F′�Bt� belongs to the space �1�2��Kr�.
The following theorem can be proved by the same method as Theorem 1.

Theorem 2. Let F be a function of class C2��� satisfying condition �16�.
Suppose that B = �Bt� t ∈ �0�T�� is a zero mean continuous Gaussian process
whose covariance function R�t� s� is of the form �6�, with a kernel K�t� s�
satisfying condition (K4). Then the process F′�Bt� belongs to �1�2��Kr� and
for each t ∈ �0�T� the following formula holds:

F�Bt� = F�0� +
∫ t

0
F′�Bs� δBs + 1

2

∫ t
0 F

′′�Bs�dRs�(22)

Suppose that u is a process in the space �1�2��Kr� and suppose that
K�s+� s� = 0. Then s �→ ∫ t

s urK�dr� s� is Stratonovich integrable with respect
to W (see [18]), and we can write∫ t

0

(∫ t

s
urK�dr�s�

)
dWs =

∫ t

0

(∫ t

s
urK�dr�s�

)
δWs+

∫ t

0

(∫ t

s
DsurK�dr�s�

)
ds�

where dWs denotes the Stratonovich differential. We define the Stratonovich
integral of u with respect to B by∫ t

0
usdBs =

∫ t

0

(∫ t

s
urK�dr� s�

)
dWs�

and, as a consequence,∫ t

0
us dBs =

∫ t

0
us δBs +

∫ t

0

(∫ t

s
DsurK�dr� s�

)
ds�

In particular, for us = F′�Bs� we obtain∫ t

0
F′�Bs�dBs =

∫ t

0
F′�Bs� δBs +

∫ t

0

(∫ t

s
F′′�Br�K�r� s�K�dr� s�

)
ds

=
∫ t

0
F′�Bs� δBs + 1

2

∫ t
0 F

′′�Br�d
(∫ r
0 K�r� s�2 ds

)
�

(23)

As a consequence, substituting (23) into (22), we obtain the following version
of the Itô formula for the Stratonovich integral:

F�Bt� = F�0� +
∫ t

0
F′�Bs�dBs�
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5. Indefinite integrals and general Itô’s formula in the singular case.
Suppose that B = �Bt� t ∈ �0�T�� is a zero mean Gaussian process whose
covariance function R�t� s� is of the form (6), with a kernel K�t� s� satisfying
the following conditions, for some α > 0:

(i) K�t� s� is differentiable in the variable t in �0 < s < t < T�, and bothK
and ∂K/∂t are continuous in �0 < s < t < T�;
(ii) 
�∂K/∂t��t� s�
 ≤ c�t− s�−α−1;
(iii)

∫ t
s K�t� u�2 du ≤ c�t− s�1−2α.

Condition (i) implies (K1). Conditions (ii) and (iii) imply that B has Hölder
continuous paths of order 12 − α− ε for all ε > 0. In fact, we have, for t > s,

E
Bt −Bs
2 =
∫ t

s
K�t� r�2 dr+

∫ s

0

K�t� r� −K�s� r�
2 dr

≤ c�t− s�1−2α + c2

α2

∫ s

0

�s− r�−α − �t− r�−α
2 dr

≤ c�t− s�1−2α + c2

α2

∫ s

0

[
1−

(
t− s

r
+ 1

)−α]2
r−2α dr�

(24)

By means of the change of variable �t − s�/r = v the last integral can be
estimated by

�t− s�1−2α
∫ ∞

0

[
1− �v+ 1�−α]2v2α−2 dv�

and we obtain

E
Bt −Bs
2 ≤ C�t− s�1−2α�(25)

On the other hand, condition (K2) holds if α < 1
4 . Under the previous condi-

tions we can derive the following Hölder continuity property for the indefinite
integral.

Proposition 1. Suppose that the process u = �ut� t ∈ �0�T�� is λ-Hölder
continuous in the norm of the space �1� p for some p ≥ 2, and λ > α. Then u
belongs to the space �1� p��K� and we have E
Xt −Xs
p ≤ C
t − s
�p/2��1−2α�,
where Xt =

∫ t
0 usδBs.

Proof. Let s ≤ t. The fact that u belongs to the space �1� p��K� is easy
to verify. On the other hand, from (15) we can write

Xt −Xs =
∫ t

s
urK�t� r� δWr +

∫ s

0
ur
(
K�t� r� −K�s� r�) δWr

+
∫ t

s

(∫ t

σ
�ur − uσ�

∂K

∂r
�r� σ�dr

)
δWσ

+
∫ s

0

(∫ t

s
�ur − uσ�

∂K

∂r
�r� σ�dr

)
δWσ
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=
∫ t

s
urK�t� r� δWr +

∫ t

s

(∫ t

σ
�ur − uσ�

∂K

∂r
�r� σ�dr

)
δWσ

+
∫ s

0

(∫ t

s
ur
∂K

∂r
�r� σ�dr

)
δWσ�

Applying (5), E
Xt −Xs
p can be estimated by the following three terms:
E
Xt −Xs
p ≤ cp�I1 + I2 + I3��

where

I1 =
(∫ t

s
�ur�21� pK�t� r�2 dr

)p/2
�

I2 =
(∫ t

s

(∫ t

σ
� ur − uσ�1� p

∣∣∣∣∂K∂r �r� σ�
∣∣∣∣dr)2 dσ)p/2

and

I3 =
(∫ s

0

(∫ t

s
�ur�1� p

∣∣∣∣∂K∂r �r� σ�
∣∣∣∣dr)2 dσ)p/2�

Using condition (iii), we obtain

I1 ≤ sup
r

�ur�p1� pcp/2�t− s��p/2��1−2α��

In order to handle the term I2 we make use of the Hölder continuity of u and
condition (ii). In this way we obtain

I2 ≤ C

(∫ t

s

(∫ t

σ
�r− σ�λ−α−1 dr

)2
dσ

)p/2
= C′�t− s��p/2��1+2�λ−α���

Finally, the term I3 can be estimated as

I3 ≤ cp sup
r

�ur�p1� p
(∫ s

0

(∫ t

s
�r− σ�−α−1 dr

)2
dσ

)p/2
�

and by the same arguments as in the proof of (25) we obtain

I3 ≤ C sup
r

�ur�p1� p�t− s��p/2��1−2α��

which completes the proof of the proposition. ✷

Let u = �ut� t ∈ �0�T�� be a stochastic process satisfying the hypotheses of
Proposition 1. Define

R�u�s =
∫ s

0
�K∗

su�2r dr�(26)

Notice that R�u� is a continuous nonnegative function that vanishes at the
origin.
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Fix ε > 0, and for t ≤ T+ ε we introduce the operator

�Kεh�t =
∫ t

0
K�t+ ε� r�h�r�dr

and its adjoint

�K∗� ε
t ϕ�s = ϕsK�t+ ε� s� +

∫ t

s
�ϕr − ϕs�

∂K

∂r
�r+ ε� s�dr

= ϕsK�s+ ε� s� +
∫ t

s
ϕr
∂K

∂r
�r+ ε� s�dr�

(27)

Notice that if ϕ � �0�T� → V takes values in a separable Hilbert space V, for
any t ≤ T+ ε we have

∫ t

0
��K∗� ε

t ϕ�s − �K∗
tϕ�s�2V ds

≤ 2
∫ t

0
�ϕs�2V

[
K�t+ ε� s� −K�t� s�]2 ds

+2
∫ t

0

∥∥∥∥ ∫ t

s
�ϕr − ϕs�

(
∂K

∂r
�r+ ε� s� − ∂K

∂r
�r� s�

)
dr

∥∥∥∥2
V

ds�

(28)

which converges to 0 as ε→ 0, uniformly in t ∈ �0�T−ε� provided ϕ is Hölder
continuous of order λ > α.

Theorem 3. Let F be a function of class C2b���. Suppose that B = �Bt� t ∈
�0�T�� is a zero mean continuous Gaussian process whose covariance function
R�t� s� is of the form �6� with a kernel K�t� s� satisfying conditions (i), (ii) and
(iii) for some α < 1

4 . Let u = �ut� t ∈ �0�T�� be an adapted process in the space
�2�2 satisfying the following conditions:

(C1) The processes u andDru are λ-Hölder continuous in the norm of the space
�1�4 for some λ > α, and the function

γr = sup
0≤s≤T

�Drus�1�4 + sup
0≤s<t≤T

�Drut −Drus�1�4

t− s
λ

satisfies
∫ T
0 γ

p
r dr <∞ for some p > 2/�1− 4α�.

(C2)

sup
ε>0

E
∫ T

0

∣∣∣∣ ∂∂s ∫ s

0
�K∗� ε

s u�2r dr
∣∣∣∣2 ds <∞�
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Set Xt =
∫ t
0 us δBs. Then for each t ∈ �0�T� the process F′�Xs�us1�0� t��s�

belongs to Dom δB and the following formula holds:

F�Xt� = F�0� +
∫ t

0
F′�Xs�us δBs

+
∫ t

0
F′′�Xs�us

(∫ s

0

∂K

∂s
�s� r�

(∫ s

0
Dr�K∗

su�θ dWθ

)
dr

)
ds

+ 1
2

∫ t

0
F′′�Xs�

∂

∂s

(∫ s

0
�K∗

su�2r dr
)
ds�

(29)

Notice that condition (C2) implies that the function R�u� has a distribu-
tional derivative in L2��0�T� ×��. On the other hand, we shall provide suffi-
cient conditions for (C2) to hold.

Proof. For t ≤ T− ε we define the process

Xε
t =

∫ t

0
�K∗� ε

t u�s δWs�

that is,

Xε
t =

∫ t

0
usK�t+ ε� s� δWs +

∫ t

0

(∫ t

s
�ur − us�

∂K

∂r
�r+ ε� s�dr

)
δWs

=
∫ t

0
usK�s+ ε� s� δWs +

∫ t

0

(∫ s

0
us
∂K

∂s
�s+ ε� r� δWr

)
ds�

As a consequence, Xε
t is a continuous semimartingale, and the classical Itô

formula yields

F�Xε
t � = F�0� +

∫ t

0
F′�Xε

s�usK�s+ ε� s� δWs

+
∫ t

0
F′�Xε

s�
(∫ s

0
us
∂K

∂s
�s+ ε� r� δWr

)
ds

+ 1
2

∫ t

0
F′′�Xε

s�u2sK�s+ ε� s�2 ds�

Using the properties of the Skorohod integral with respect to W, we get

F�Xε
t � = F�0� +

∫ t

0
F′�Xε

s�usK�s+ ε� s� δWs

+
∫ t

0

(∫ s

0
F′�Xε

s�us
∂K

∂s
�s+ ε� r� δWr

)
ds

+
∫ t

0

(∫ s

0
Dr

[
F′�Xε

s�
]
us
∂K

∂s
�s+ ε� r�dr

)
ds

+ 1
2

∫ t

0
F′′�Xε

s�u2sK�s+ ε� s�2 ds�

(30)
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We have

Dr

[
F′�Xε

s�
] = F′′�Xε

s�
[(
K∗� ε

s u
)
r
+
∫ s

0
Dr

(
K∗� ε

s u
)
σ
δWσ

]
�(31)

Substituting (31) into (30), we obtain

F�Xε
t � = F�0� +

∫ t

0
F′�Xε

s�usK�s+ ε� s� δWs

+
∫ t

0

(∫ s

0
F′�Xε

s�us
∂K

∂s
�s+ ε� r� δWr

)
ds

+
∫ t

0
F′′�Xε

s�us
(∫ s

0

(
K∗� ε

s u
)
r

∂K

∂s
�s+ ε� r�dr

)
ds

+
∫ t

0
F′′�Xε

s�us
(∫ s

0

(∫ s

0
Dr

(
K∗� ε

s u
)
σ
δWσ

)
∂K

∂s
�s+ ε� r�dr

)
ds

+ 1
2

∫ t

0
F′′�Xε

s�u2sK�s+ ε� s�2 ds�

which can be written as

F�Xε
t � = A1� ε +A2� ε +A3� ε�

where

A1� ε = F�0� +
∫ t

0
K

∗� ε
t

[
F′(Xε

s�us
]
δWs�

A2� ε =
∫ t

0
F′′�Xε

s�us
(∫ s

0

∂K

∂s
�s+ ε� r�

(∫ s

0
Dr

(
K∗� ε

s u
)
σ
δWσ

)
dr

)
ds

and

A3� ε =
∫ t

0
F′′(Xε

s

)
us

(∫ s

0

(
K∗� ε

s u
)
r

∂K

∂s
�s+ ε� r�dr

)
ds

+ 1
2

∫ t

0
F′′(Xε

s

)
u2sK�s+ ε� s�2 ds�

Notice that

A3� ε =
1
2

∫ t

0
F′′(Xε

s

) ∂
∂s

∫ s

0

(
K∗� ε

s u
)2
r
dr�

In fact, from (27) we obtain

∂

∂s

∫ s

0

(
K∗� ε

s u
)2
r
= (

K∗� ε
s u

)2
s
+ 2

∫ s

0

(
K∗� ε

s u
)
r

∂
(
K∗� ε

s u
)
r

∂s
dr

= u2sK�s+ ε� s�2 + 2us
∫ s

0

(
K∗� ε

s u
)
r

∂K

∂s
�s+ ε� r�dr�

Now the proof will be decomposed into several steps.
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Step 1. Let us show that

α21� ε = E
∫ t

0

K∗� ε

t

(
F′(Xε

)
u
)
s
−K∗

t

(
F′�X�u)

s

2 ds

converges to 0 as ε→ 0. We can write

α21� ε ≤ E
∫ t

0

K∗� ε

t

((
F′(Xε

)−F′�X�)u)
s

2 ds

+E
∫ t

0

K∗� ε

t

(
F′�X�u)

s
−K∗

t

(
F′�X�u)

s

2 ds

= α211� ε + α212� ε�

For the first term we have

α211� ε ≤ 2
∫ t

0
K�t+ ε� s�2E(
F′(Xε

s

)−F′(Xs

)
2
us
2)ds
+2

∫ t

0

(∫ t

s

(
F′(Xε

r

)−F′(Xr

))
ur

− (F′(Xε
s

)−F′(Xs

))
u2s�r− s�−α−1 dr

)2
ds

= 2α2111� ε + 2α2112� ε�

The first summand in the preceding expression converges to 0 as ε → 0
because

α2111� ε ≤ �K��F′′�2∞ sup
s≤t

(∥∥Xε
s −Xs

∥∥2
4�us�24

)
�

and, by Meyer’s inequality [see (5)],∥∥Xε
s −Xs

∥∥
4 ≤ c4

∫ s

0

∥∥(K∗� ε
s u

)
r
− (K∗

su
)
r

∥∥
1�4 dr�

which converges to 0 as ε → 0, uniformly in s ∈ �0� t�, due to (28) and the
Hölder continuity of order λ > α of the process us in the norm � · �1�4. In order
to treat the term α2112� ε we write∥∥(F′(Xε

r

)−F′(Xr

))
ur −

(
F′(Xε

s

)−F′(Xs

))
us
∥∥
2

≤ ∥∥(F′(Xε
r

)−F′(Xr

))(
ur − us

)∥∥
2

+ ∥∥(F′(Xε
r

)−F′(Xr

)−F′(Xε
s

)+F′(Xs

))
us
∥∥
2

≤ ∥∥F′′∥∥
∞
∥∥Xε

r −Xr

∥∥
4�ur − us�4

+ ∥∥(F′(Xε
r

)−F′(Xr

)−F′(Xε
s

)+F′(Xs

))∥∥
4�us�4�



GAUSSIAN STOCHASTIC CALCULUS 785

Hence, we obtain

α2112� ε ≤
∥∥F′′∥∥2

∞ sup
r≤t

∥∥Xε
r −Xr

∥∥2
4

∫ t

0

(∫ t

s
�ur − us�4�r− s�−α−1 dr

)2
ds

+ sup
s≤t

�us�24
∫ t

0

(∫ t

s

∥∥(F′(Xε
r

)−F′(Xr

)−F′(Xε
s

)+F′(Xs

))∥∥
4

×�r− s�−α−1 dr
)2

ds�

By dominated convergence, it suffices to show that

sup
ε

∥∥(F′(Xε
r

)−F′(Xr

)−F′(Xε
s

)+F′(Xs

))∥∥
4 �r− s�−α−1

is bounded by an integrable function of the variable r, which is a consequence
of Proposition 1. In fact, the proof of this proposition shows that

sup
ε

∥∥Xε
r −Xε

s

∥∥
4 ≤ C�r− s�1/2−α�

Step 2. We claim that the term

α2� ε =
∥∥∥∥A2� ε − ∫ t

0
F′′(Xs

)
us

(∫ s

0

∂K

∂s
�s� r�

(∫ s

0
Dr

(
K∗

su
)
σ
δWσ

)
dr

)
ds

∥∥∥∥
2

converges to 0 as ε→ 0. We can write

α2�ε ≤
∥∥∥∥∫ t

0

[
F′′(Xε

s

)−F′′(Xs

)]
us

(∫ s

0

∂K

∂s
�s+ε�r�

(∫ s

0
Dr

(
K∗�ε

s u
)
σ
δWσ

)
dr

)
ds

∥∥∥∥
2

+
∥∥∥∥∫ t

0
F′′(Xs

)
us

(∫ s

0

∂K

∂s
�s+ε�r�

(∫ s

0
Dr

([
K∗�ε

s −K∗
s

]
u
)
σ
δWσ

)
dr

)
ds

∥∥∥∥
2

+
∥∥∥∥∫ t

0
F′′(Xs

)
us

(∫ s

0

[
∂K

∂s
�s+ε�r�− ∂K

∂s
�s�r�

]
×
(∫ s

0
Dr

(
K∗

su
)
σ
δWσ

)
dr

)
ds

∥∥∥∥
2

= α21�ε+α22�ε+α23�ε�
We have

α21� ε ≤
∫ t

0

∥∥(F′′(Xε
s

)−F′′(Xs

))
us
∥∥
4

×
(∫ s

0

∣∣∣∣∂K∂s �s+ ε� r�
∣∣∣∣ ∥∥∥ ∫ s

0
Dr

(
K∗� ε

s u
)
σ
δWσ

∥∥∥
4
dr

)
ds

≤
{∫ t

0

∥∥(F′′(Xε
s

)−F′′(Xs

))
us
∥∥2
4 ds

×
∫ t

0

(∫ s

0
�s− r�−α−1

(∫ s

0

∥∥Dr

(
K∗� ε

s u
)
σ

∥∥2
1�4 dσ

)1/2
dr

)2
ds

}1/2
�
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We know that
∫ t
0 ��F′′�Xε

s� − F′′�Xs��us�24 ds converges to 0 as ε → 0. Then
it only remains to show that the last factor in the preceding expression is
bounded uniformly in ε. We have∫ s

0

∥∥∥Dr

(
K∗�ε

s uσ
)∥∥∥2
1�4
dσ=

∫ r

0

∥∥∥Dr

(
K∗�ε

s u
)
σ

∥∥∥2
1�4
dσ+

∫ s

r

∥∥∥Dr

(
K∗�ε

s u
)
σ

∥∥∥2
1�4
dσ�

Taking into account that the process u is adapted, we obtain, for r > σ ,

Dr

(
K∗�ε

s u
)
σ
=
∫ s

r
Druθ

∂K

∂θ
�θ+ ε� σ�dθ�

Hence,∫ s

0
�s− r�−α−1

(∫ r

0

∥∥Dr

(
K∗� ε

s u
)
σ

∥∥2
1�4 dσ

)1/2
dr

≤ c
∫ s

0
�s− r�−α−1

(∫ r

0

(∫ s

r
�Druθ�1�4�θ− σ�−α−1 dθ

)2
dσ

)1/2
dr

≤ c
∫ s

0
�s− r�−α−1k1�r�

(∫ r

0

[�r− σ�−α − �s− σ�−α]2 dσ)1/2 dr
≤ c

∫ s

0
�s− r�−2α−1/2k1�r�dr

<∞�

where k1�r� = supθ �Druθ�1�4 due to condition (C1). On the other hand,∫ s

0
�s− r�−α−1

(∫ s

r

∥∥Dr

(
K∗� ε

s u
)
σ

∥∥2
1�4 dσ

)1/2
dr

≤
∫ s

0
�s− r�−α−1

(∫ s

r
�Druσ�21�4K�s+ ε� σ�2 dσ

)1/2
dr

+
∫ s

0
�s− r�−α−1

(∫ s

r

(∫ s

σ
�Druθ −Druσ�1�4�θ− σ�−σ−1 dθ

)2
dσ

)1/2
dr

≤
∫ s

0
�s− r�−2α−1/2k1�r�dr+ c

∫ s

0
�s− r�λ−2α−1/2k2�r�dr�

where k2�r� = sup0≤s<t≤T �Drus−Drut�1�4

t−r
λ and again this is finite due to (C1). Let

us now consider the second term:

α22� ε ≤
∥∥F′′∥∥

∞ sup
s≤t

�us�4

×
∫ t

0

(∫ s

0

∣∣∣∣∂K∂s �s+ ε� r�
∣∣∣∣
∥∥∥∥ ∫ s

0
Dr

([
K∗� ε

s −K∗
s

]
u
)
σ
δWσ

∥∥∥∥
4
dr

)
ds

≤ c
∫ t

0

(∫ s

0
�s− r�−α−1

(∫ s

0

∥∥Dr

([
K∗� ε

s −K∗
s

]
u
)
σ

∥∥
1�4 dσ

)
dr

)
ds�
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We have

Dr

([
K∗�ε

s −K∗
s

]
u
)
σ

= 1�r>σ�
∫ s

r
Druθ

[
∂K

∂θ
�θ+ ε� σ� − ∂K

∂θ
�θ� σ�

]
dθ

+1�r≤σ�Druσ
[
K�s+ ε� σ� −K�s� σ�]

+1�r≤σ�
∫ s

σ
�Druθ −Druσ�

[
∂K

∂θ
�θ+ ε� σ� − ∂K

∂θ
�θ� σ�

]
dθ�

and α22� ε converges to 0 by dominated convergence, using the same estimates
as in the first term. The term α23� ε can be treated in a similar way.

Step 3. We claim that A3� ε converges to 0 in L1��� as ε→ 0 to the square
integrable random variable

1
2

∫ t

0
F′′�Xs�

∂

∂s

∫ s

0
�K∗

su�2r dr�

Set

α3� ε = E

∣∣∣∣A3� ε − 12 ∫ t

0
F′′�Xs�

∂

∂s

∫ s

0

(
K∗

su
)2
r
dr

∣∣∣∣�
We have

α3� ε ≤
1
2
E

∣∣∣∣ ∫ t

0

[
F′′(Xε

s

)−F′′(Xs

)]( ∂

∂s

∫ s

0

(
K∗� ε

s u
)2
r
dr

)
ds

∣∣∣∣
+ 1
2
E

∣∣∣∣ ∫ t

0
F′′�Xs�

(
∂

∂s

∫ s

0

(
K∗�ε

s u
)2
r
dr− ∂

∂s

∫ s

0

(
K∗

su
)2
r
dr

)
ds

∣∣∣∣
= α31� ε + α32� ε�

The first summand can be estimated as follows, for any η > 0,

2α31� ε ≤ η
∫ t

0
E
∣∣∣ ∂
∂s

∫ s

0

(
K∗� ε

s u
)2
r
dr
∣∣∣ds+ ∫ t

0
P
{∣∣F′′(Xε

s

)−F′′(Xs

)∣∣ > η
}1/2

×
[
E
∣∣∣ ∂
∂s

∫ s

0

(
K∗� ε

s u
)2
r
dr
∣∣∣2]1/2 ds�

and letting first ε → 0 and then η → 0, we get the desired convergence for
this term, due to condition (C2). Finally, let Cs be a smooth step process such
that

E
∫ t

0

∣∣F′′(Xs

)−Cs

∣∣2 ds < ε�

Then it suffices to show that

E

∣∣∣∣ ∫ t

0
Cs

(
∂

∂s

∫ s

0

(
K∗�ε

s ur
)2
dr− ∂

∂s

∫ s

0

(
K∗

sur
)2
dr

)
ds

∣∣∣∣ tends to zero as ε→ 0�
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which follows from the fact that
∫ s
0 �K∗� ε

s u�2r dr converges to
∫ s
0 �K∗

su�2r dr in
the norm of L2��0�T� ×�� as ε→ 0.

Step 4. The family of stochastic processes{
K

∗� ε
t

(
F′�Xε�u)

s
� s ∈ �0� t�

}
converges in L2��0�T� × �� to K∗

t �F′�X�u�s as ε → 0, by Step 1. Moreover,
Steps 2 and 3 imply that the square integrable random variable

R = F�Xt� −F�0� −
∫ t

0
F′′�Xs�us

(∫ s

0

∂K

∂s
�s� r�

(∫ s

0
Dr

(
K∗

su
)
θ
δWθ

)
dr

)
ds

−1
2

∫ t

0
F′′�Xs�

∂

∂s

(∫ s

0

(
K∗

su
)2
r
dr

)
ds

satisfies

lim
ε↓0

E

(
G
∫ t

0
K

∗� ε
t

(
F′�Xε�u)

s
δWs

)
= E�GR�

for any smooth random variable G. Hence, by Lemma 1 of [1], we conclude
that K∗

t �F′�X�u�s is Skorohod integrable and R = ∫ t
0K

∗
t �F′�X�u�s δWs. ✷

The next proposition gives us sufficient conditions under which hypothesis
(C2) holds.

Proposition 2. Assume that the kernel K�t� s� satisfies conditions (i), (ii)
and (iii) for some α < 1

4 and that u is an adapted process in �2�2 which satisfies
condition (C1). Suppose, moreover, that

(iv) ∣∣∣∣ ∂∂s
(∫ s

0
K2�s+ ε� r�dr

)∣∣∣∣ < s−2α�

(v)

∂K2

∂s
�s+ ε� r� < �s− r�−2α−1�

and that the process u is ρ-Hölder continuous in the norm of the space L4���
for some ρ > 2α. Then condition (C2) holds.

Proof. We can write∫ s

0

(
K∗�ε

s u
)2
r
dr =

∫ s

0
u2rK

2�s+ ε� r�dr

+2
∫ s

0
urK�s+ ε� r�

(∫ s

r
�uθ − ur�

∂K

∂θ
�θ+ ε� r�dθ

)
dr

+
∫ s

0

(∫ s

r
�uθ − ur�

∂K

∂θ
�θ+ ε� r�dθ

)2
dr�
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Differentiating with respect to the variable s yields

∂

∂s

∫ s

0

(
K∗�ε

s u
)2
r
dr = u2sK

2�s+ε�s�+
∫ s

0
u2r
∂K2

∂s
�s+ε�r�dr

+2
∫ s

0
urK�s+ε�r��us−ur�

∂K

∂s
�s+ε�r�dr

+2
∫ s

0

(∫ s

r
ur�uθ−ur�

∂K

∂s
�s+ε�r�∂K

∂θ
�θ+ε�r�dθ

)
dr

+2
∫ s

0

(∫ s

r
�uθ−ur�

∂K

∂θ
�θ+ε�r�dθ

)
�us−ur�

∂K

∂s
�s+ε�r�dr

= u2sK
2�s+ε�s�+us

∫ s

0
ur
∂K2

∂s
�s+ε�r�dr

+2us
∫ s

0

(∫ s

r
�uθ−ur�

∂K

∂θ
�θ+ε�r�dθ

)
∂K

∂s
�s+ε�r�dr�

Now we add and subtract the term u2s
∫ s
0 �∂K2/∂s��s+ ε� r�, obtaining

∂

∂s

∫ s

0

(
K∗�ε

s u
)2
r
dr = u2sK

2�s+ ε� s� + u2s

∫ s

0

∂K2

∂s
�s+ ε� r�dr

+us

∫ s

0
�us − ur�

∂K2

∂s
�s+ ε� r�dr

+2us
∫ s

0

(∫ s

r
�uθ − ur�

∂K

∂θ
�θ+ ε� r�dθ

)
∂K

∂s
�s+ ε� r�dr

= u2s
∂

∂s

∫ s

0
K2�s+ ε� r�dr+ us

∫ s

0
�us − ur�

∂K2

∂s
�s+ ε� r�dr

+2us
∫ s

0

(∫ s

r
�uθ − ur�

∂K

∂θ
�θ+ ε� r�dθ

)
∂K

∂s
�s+ ε� r�dr�

Integrating the square of the preceding expression in s and taking the expec-
tation, the result follows easily from conditions (iv) and (v). ✷

6. Indefinite integrals and general Itô’s formula in the regular case.
In the regular case treated in Section 3, the process Bt admits the following
decomposition:

Bt =
∫ t

0
K�s+� s� δWs +

∫ t

0
K
(�s� t�� s) δWs�

where the first summand is a Gaussian martingale, and the second process
is expressed in terms of the kernel K1�t� s� = K��s� t�� s�, which vanishes as
t ↓ s. We are mainly interested in the stochastic calculus with respect to a
process

∫ t
0K��s� t�� s� δWs, which includes the case of the fractional Brownian

motion of the Hurst parameter H > 1
2 . For this reason in this section we will

assume that K�s+� s� = 0.
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Suppose that B = �Bt� t ∈ �0�T�� is a zero mean Gaussian process whose
covariance function R�t� s� is of the form (6), with a kernel K�t� s� satisfying
condition (i) and

(ii′) ∣∣∣∣∂K∂t �t� s�
∣∣∣∣ ≤ c�t− s�α−1s−α�

(iii′) ∫ t

s
K�t� u�2 du ≤ c�t− s�1+2α for some 0 < α ≤ 1

2 �

Conditions (i) and (ii′) imply (K4). Conditions (ii′) and (iii′) imply that B
has Hölder continuous paths of order 12 +α− ε for all ε > 0. In fact, using the
Hölder inequality, we have

E
∣∣Bt −Bs

∣∣2 = ∫ t

s
K�t� r�2 dr+

∫ s

0

K�t� r� −K�s� r�
2 dr

≤ C�t− s�1+2α�
Under the preceding conditions we can derive the following Hölder conti-

nuity property for the indefinite integral.

Proposition 3. Suppose that the process u = �ut� t ∈ �0�T�� is bounded
in the norm of the space �1� p for some p ≥ 2. Then u belongs to the space
�1� p��Kr� and we have E
Xt−Xs
p ≤ C
t−s
�p/2��1+2α�, whereXt =

∫ t
0 us δBs.

Proof. The fact that u belongs to the space �1� p��Kr� is easy to verify.
On the other hand, we can write, for s ≤ t,

Xt −Xs =
∫ s

0

(∫ t

s
uσK�dσ� r�

)
δWr +

∫ t

s

(∫ t

r
uσK�dσ� r�

)
δWr�

and we can estimate E
Xt −Xs
p by C supr �ur�p1� p�t− s��p/2��1+2α�, as in the
proof of Proposition 1. ✷

Let u = �ut� t ∈ �0�T�� be a stochastic process satisfying the hypotheses of
Proposition 3. In this case we have(

K∗
tu
)
s
=
∫ t

s
ur
∂K

∂r
�r� s�dr�

and the function R�u�s defined in (26) has now the following expression:

R�u�s =
∫ s

0

(∫ s

r
uθ
∂K

∂θ
�θ� r�dθ

)2
dr�
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Theorem 4. Let F be a function of class C2b���. Suppose that B = �Bt� t ∈
�0�T�� is a zero mean continuous Gaussian process whose covariance function
R�t� s� is of the form �6�, with a kernel K�t� s� satisfying conditions (i), (ii′)
and (iii′). Let u = �ut� t ∈ �0�T�� be an adapted process bounded in the norm
of the space �2�4. Set Xt = ∫ t

0 us δBs. Then the process F′�Xt� belongs to
�1�2��Kr� and for each t ∈ �0�T� the following formula holds:

F�Xt� = F�0� +
∫ t

0
F′�Xs�us δBs

+
∫ t

0
F′′�Xs�us

(∫ s

0

∂K

∂s
�s� r�

(∫ s

0
Dr

(
K∗

su
)
θ
δWθ

)
dr

)
ds

+ 1
2

∫ t

0
F′′�Xs�

∂

∂s

(∫ s

0

(
K∗

su
)2
r
dr

)
ds�

(32)

Proof. Define the process

Xε
t =

∫ t

0

(∫ t

s
ur
∂K

∂r
�r+ ε� s�dr

)
δWs =

∫ t

0

(∫ s

0
us
∂K

∂s
�s+ ε� r� δWr

)
ds

for any t ≤ T − ε. The process Xε
t has bounded variation paths and we can

write

F�Xε
t � = F�0� +

∫ t

0
F′�Xε

s�
(∫ s

0
us
∂K

∂s
�s+ ε� r� δWr

)
ds�

Using the properties of the Skorohod integral with respect to W yields

F�Xε
t � = F�0� +

∫ t

0

(∫ s

0
F′�Xε

s�us
∂K

∂s
�s+ ε� r� δWr

)
ds

+
∫ t

0

(∫ s

0
Dr

[
F′(Xε

s

)]
us
∂K

∂s
�s+ ε� r�dr

)
ds�

(33)

We have

Dr

[
F′(Xε

s

)] = F′′�Xε
s�
[
Kε

r� s�u� +
∫ s

0
Dr

[
Kε

σ� s�u�
]
δWσ

]
�(34)

where

Kε
s� r�u� =

∫ s

r
uθ
∂K

∂θ
�θ+ ε� r�dθ�

Thus, substituting (34) into (33), we obtain

F�Xε
t � = F�0� +

∫ t

0

(∫ t

r
F′�Xε

s�us
∂K

∂s
�s+ ε� s�ds

)
δWr

+
∫ t

0
F′′�Xε

s�us
∂K

∂s
�s+ ε� r�

(∫ s

0

(∫ s

0
Dr

[
Kε

σ� s�u�
]
δWσ

)
dr

)
ds

+
∫ t

0
F′′�Xε

s�us
(∫ s

0
Kε

s� r�u�
∂K

∂s
�s+ ε� r�dr

)
ds

= F�0� +A1� ε +A2� ε +A3� ε�
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Notice that

A3� ε =
1
2

∫ t

0
F′′�Xε

s�
∂

∂s

∫ s

0

(
Kε

s� r�u�
)2
dr�

As in the proof of Theorem 3, it suffices to show that the following terms
converge to 0 as ε→ 0:

α21� ε = E
∫ t

0

∣∣K∗� ε
t

(
F′�Xε�u)

s
−K∗

t

(
F′�X�u)

s

∣∣2 ds�
α2� ε =

∥∥∥∥A2� ε − ∫ t

0
F′′�Xs�us

(∫ s

0

∂K

∂s
�s� r�

(∫ s

0
Dr

[
Kε

σ� s�u�
]
δWσ

)
dr

)
ds

∥∥∥∥
2

and

α3� ε = E

∣∣∣∣A3� ε − 12 ∫ t

0
F′′�Xs�

∂

∂s

∫ s

0

(
K∗

su
)2
r
dr

∣∣∣∣�
We can write

α21� ε ≤ E
∫ t

0

∣∣∣K∗� ε
t

((
F′�Xε� −F′�X�)u)

s

∣∣∣2 ds
+E

∫ t

0

∣∣∣K∗� ε
t

(
F′�X�u)

s
−K∗

t

(
F′�X�u)

s

∣∣∣2 ds
= α211� ε + α212� ε�

For the first term we have

α211� ε ≤ C
∫ t

0

∫ t

s

∥∥∥F′(Xε
r

)−F′�Xr�
∥∥∥2
4
�ur�24�r− s�α−1s−α drds

≤ C′∥∥F′′∥∥2
∞ sup

r≤t
�ur�24

∫ t

0

∥∥Xε
r −Xr

∥∥2
4 dr�

We have

∥∥Xε
s −Xs

∥∥2
4 ≤ C

∫ s

0

∥∥Kε
s� r�u� −

(
K∗

su
)
r

∥∥2
1�4 dr

= C
∫ s

0

∥∥∥∥ ∫ s

r
uθ

(
∂K

∂θ
�θ+ ε� r� − ∂K

∂θ
�θ� r�

)
dθ

∥∥∥∥2
1�4

dr�

which converges to 0 as ε→ 0, by dominated convergence, because the process
us is bounded in the norm �·�1�4. Hence, the term α11� ε converges to 0 as ε→ 0.
The term α12� ε can be treated in a similar way.
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For the term α2� ε we can write

α2�ε ≤
∥∥∥∥∫ t

0

[
F′′�Xε

s�−F′′�Xs�
]
us

(∫ s

0

∂K

∂s
�s+ε�r�

(∫ s

0
Dr

[
Kε

s�σ�u�
]
δWσ

)
dr

)
ds

∥∥∥∥
2

+
∥∥∥∥∫ t

0
F′′�Xs�us

(∫ s

0

∂K

∂s
�s+ε�r�

(∫ s

0
Dr

[
Kε

s�σ�u�−�K∗
su�σ

]
δWσ

)
dr

)
ds

∥∥∥∥
2

+
∥∥∥∥∫ t

0
F′′�Xs�us

(∫ s

0

[∂K
∂s

�s+ε�r�− ∂K

∂s
�s�r�

](∫ s

0
Dr�K∗

su�σ δWσ

)
dr

)
ds

∥∥∥∥
2

= α21�ε+α22�ε+α23�ε�
We have

α421� ε ≤ C

(∫ t

0
E
∣∣∣(F′′(Xε

s

)−F′′(Xs

))
us

∣∣∣4 ds)

×
∫ t

0

(∫ s

0
�s− r�α−1E

∣∣∣∣ ∫ s

0
Dr

[
Kε

s�σ�u�
]
δWσ

∣∣∣∣4 dr)ds�
(35)

Taking into account that the process u is adapted, we obtain

Dr

[
Kε

s�σ�u�
] = ∫ s

r∨σ
Druθ

∂K

∂θ
�θ+ ε� σ�dθ�

and, hence,

E

∣∣∣∣ ∫ s

0
Dr

[
Kε

s�σ�u�
]
δWσ

∣∣∣∣4 ≤ C
∫ s

0

∫ s

r∨σ

∥∥Druθ
∥∥4
1�4�θ− σ�α−1σ−α dθdσ�(36)

As a consequence, substituting (36) into (35) yields

α21� ε ≤ C sup
s≤t

�us�2�4
(
E
∫ t

0

∣∣∣(F′′(Xε
s

)−F′′(Xs

))
us

∣∣∣4 ds)1/4�
which converges to 0 as ε → 0. The second and third terms are treated
similarly.
The term α3� ε can be estimated as follows:

α3� ε ≤
1
2
E

∣∣∣∣∫ t

0

[
F′′(Xε

s

)−F′′(Xs

)]( ∂

∂s

∫ s

0
Kε

s� r�u�2 dr
)
ds

∣∣∣∣
+ 1
2
E

∣∣∣∣∫ t

0
F′′(Xs

)( ∂

∂s

∫ s

0
Kε

s� r�u�2 dr−
∂

∂s

∫ s

0

(
K∗

su
)2
r
dr

)
ds

∣∣∣∣
= α31� ε + α32� ε�

We have

2α31� ε ≤
(
E
∫ t

0

[
F′′(Xε

s

)−F′′(Xs

)]2
ds

)1/2(
E
∫ T

0

∣∣∣∣ ∂∂s ∫ s

0
Kε

s� r�u�2 dr
∣∣∣∣2 ds)1/2�
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which converges to 0 as ε → 0, because the second factor can be bounded by
a constant:

E
∫ T

0

∣∣∣∣ ∂∂s ∫ s

0
Kε

s� r�u�2 dr
∣∣∣∣2 ds ≤ C sup

s≤T
E
us
4�

Finally, by dominated convergence, the term α32� ε also converges to 0 as
ε→ 0. ✷

Let us now write the Itô formula in terms of the Stratonovich integral.
Define

Yt =
∫ t

0
us dBs =

∫ t

0
us δBs +

∫ t

0

∫ r

0
Dsur

∂K

∂r
�r� s�dsdr�

A straightforward extension of the Itô formula to the process Yt yields

F�Yt� = F�0� +
∫ t

0
F′(Ys

)
us δBs +

∫ t

0
F′(Yr

)(∫ r

0
Dsur

∂K

∂r
�r� s�ds

)
dr

+
∫ t

0

∫ r

0
F′′(Yr

)
ur

(∫ r

0

∫ σ

0
DsDθuσ

∂K

∂r
�σ� θ�dθdσ

)
∂K

∂r
�r� s�dsdr

+
∫ t

0
F′′(Ys

)
us

(∫ s

0

∂K

∂s
�s� r�

(∫ s

0
Dr

(
K∗

su
)
θ
δWθ

)
dr

)
ds

+ 1
2

∫ t

0
F′′(Ys

) ∂
∂s

(∫ s

0

(
K∗

su
)2
r
dr

)
�

(37)

From the relationship between the Skorohod integral and the Stratonovich
integral we deduce that∫ t

0
F′(Ys

)
us δBs

=
∫ t

0
F′(Ys

)
us dBs −

∫ t

0

∫ r

0
F′(Yr

)
Dsur

∂K

∂r
�r� s�dsdr

−
∫ t

0
F′′(Yr

)
ur

(∫ r

0

(
K∗

ru
)
s

∂K

∂r
�r� s�ds

)
dr

−
∫ t

0

∫ r

0
F′′(Yr

)
ur

(∫ r

0
Ds

(
K∗

ru
)
θ
δWθ

)
∂K

∂r
�r� s�dsdr

−
∫ t

0

∫ r

0
F′′(Yr

)
ur ×

(∫ r

0

∫ σ

0
DsDθuσ

∂K

∂r
�σ� θ�dθdσ

)
∂K

∂r
�r� s�dsdr�

(38)

Sustituting (38) into (37) yields

F
(
Yt

) = F�0� +
∫ t

0
F′(Ys

)
us dBs�
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7. Approximation by Riemann sums. In this section we study the
approximation of the stochastic integral

∫ T
0 utδBt by Riemann sums. Let us

recall the notion of the Wick product.

Definition 1. Consider two square integrable random variables of the
form F = ∑∞

n=0 I
B
n �fn� and G = ∑∞

n=0 I
B
n �gn�, where IBn denotes the multi-

ple stochastic integral of order n with respect to the Gaussian process B. The
Wick product is the random variable defined by

F  G =
∞∑

n�m=0
IBn+m�fn⊗̃gm��

provided the sum converges in L2���, where fn⊗̃gm denotes the symmetriza-
tion of the tensor product of fn and gm.

Given an element ϕ ∈ � and a random variable F ∈ L2���, the Wick
product F  B�ϕ� exists if and only if ϕF belongs to the domain of δB and in
this case F  B�ϕ� = δB�Fϕ�. This fact is an immediate consequence of the
characterization of the domain of δB in terms of the Wiener chaos expansion.
Suppose π = �0 = s0 < s1 · · · < sn+1 = T� is a partition of �0�T� and define

the mesh of π as 
π
 = maxi=0� ���� n 
si+1 − si
. Then we have the following
approximation result for singular kernels:

Proposition 4. Suppose that the kernel K�t� s� satisfies conditions (i), (ii)
and (iii). Let u be a process that is λ-Hölder continuous in the norm of �1�2

with λ > α. Then we have

lim

π
↓0

n∑
i=0

usi  
(
Bsi+1 −Bsi

) = ∫ T

0
ut δBt�

where the convergence is in L2���.

Proof. Set uπs =∑n
i=0 usi1�si� si+1��s�. We know that∫ T

0
uπt δBt =

n∑
i=0

usi  
(
Bsi+1 −Bsi

)
�(39)

Then the result follows from the convergence of uπ to u in the norm
of �1�2��K�. ✷

In the regular case, that is, when the kernel satisfies (K4), Proposition 4
holds assuming only the continuity of u in the norm of �1�2.
Let us now consider the convergence of the ordinary Riemann sums to

the Stratonovich integral, and in this case we will restrict ourselves to the
regular case assumingK�s+� s� = 0. Actually, the Stratonovich integral is less
interesting in the singular case because the trace condition is very restrictive
(see [2]).
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Proposition 5. Suppose that the kernelK�t� s� satisfies condition (K4) and
K�s+� s� = 0. If u is an adapted process continuous in the norm of �1�2,
verifying

lim
n→∞

∫ T

0
sup

s� s′∈�r� r+1/n�∩�0�T�
E
∣∣Drus −Drus′

∣∣2 dr = 0�(40)

then we have

lim

π
↓0

n∑
i=0

usi
(
Bsi+1 −Bsi

) = ∫ T

0
ut dBt�

where the convergence is in L2���.

Proof. We know that∫ T

0
ut dBt =

∫ T

0
ut δBt +

∫ T

0

(∫ T

r
DrusK�ds� r�

)
dr�

On the other hand,∫ T

0
uπt δBt =

n∑
i=0

usi  
(
Bsi+1 −Bsi

)
=

n∑
i=0

usi
(
Bsi+1 −Bsi

)+ n∑
i=0

〈
DBusi�1�si� si+1�

〉
�
�

The second summand of the preceding expression can be written as

Aπ =
n∑
i=0

〈
DBusi�1�si� si+1�

〉
�

=
n∑
i=0

〈
Dusi�K

∗1�si� si+1�
〉
L2��0�T��

=
n∑
i=0

∫ T

0
Drusi

(
K�si+1� r� −K�si� r�

)
dr

=
n∑
i=0

∫ T

0
DrusiK

(�si� si+1�� r)dr�
As a consequence, we can write

E

∣∣∣∣Aπ −
∫ T

0

(∫ T

r
DrusK�ds� r�

)
dr

∣∣∣∣2
≤ TE

∫ T

0

( n∑
i=0

∫ si+1

si

∣∣Drus −Drusi
∣∣ 
K
�ds� r�

)2
dr

≤ T
∫ T

0

K
(�r�T�� r)( n∑

i=0

∫ si+1

si

E
Drus −Drusi 
2
K
�ds� r�
)
dr

≤ T
∫ T

0

K
(�r�T�� r)2 dr(∫ T

0
sup

s� s′∈�r� r+
π
�∩�0�T�
E
∣∣Drus −Drus′

∣∣2 dr)�
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which converges to 0 as 
π
 → 0, due to condition (40). This completes the
proof of the proposition. ✷

If the kernelK�t� s� satisfies conditions (i) and (ii′), then (40) can be replaced
by the hypothesis

sup
s≤T

∫ s

0
E
∣∣Drus

∣∣2q dr <∞

for some q > 1/α�

Remark 1. The divergence operator is local in the space �1�2�� �. As a
consequence, using a standard localization argument, we can generalize the
preceding Itô formulas to the case of functions F that are twice (or three
times) continuously differentiable, but without any growth restriction on the
derivatives or the function itself.

8. Itô formulas for fractional Brownian motion. In this section we
will discuss the particular case of the fractional Brownian motion. We first
briefly recall some elements of the deterministic fractional calculus that are
useful to characterize the RKHS space of the fractional Brownian motion with
parameter H = 1

2 − α ∈ �0� 12� and related processes. We refer to [20] for a
complete survey of this subject. The right-sided fractional Riemann–Liouville
integral of order α ∈ �0�1� of an integrable function f on �0�T� is given at
almost all s by

IαT−f�s� = �−1�−α
;�α�

∫ T

s
�r− s�α−1f�r�dr�

We will denote by IαT−�L2� the class of functions f in L2��0�T�� which may be
represented as an IαT− -integral of some function φ ∈ L2��0�T��. If f ∈ IαT−�L2�,
the function φ such that f = IαT−φ is unique in L2 and it agrees with the right-
sided Riemann–Liouville derivative of f of order α given by

Dα
T−f�s� = �−1�α

;�1− α�
(

f�s�
�T− s�α − α

∫ T

s

f�r� − f�s�
�r− s�α+1 dr

)
�

Note that IαT−�L2� is a Hilbert space with the scalar product
�f�g�α�2 = �f�g�2 + �Dα

T−f�Dα
T−g�2�

A function f ∈ L2��0�T�� belongs to IαT−�L2� if and only if∫ T

0


f�s�
2
�T− s�2α ds <∞�

and the integral ∫ T

s+ε
f�r� − f�s�
�r− s�α+1 dr

converges in L2��0�T�� as ε→ 0, as a function of s.
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Consider now the case of the fractional Brownian motion. We recall that
the fractional Brownian motion (fBm) of Hurst parameter H ∈ �0�1� (see, for
instance, [15]) is as a centered Gaussian process BH = �BH

t �0 ≤ t ≤ T� with
covariance

RH�t� s� = 1
2

(
s2H + t2H − 
t− s
2H)�(41)

It is proved in [16] that this process can be expressed as BH
t = ∫ t

0 s
H−1/2 dYs,

where Ys is the Gaussian process defined by

Yt = cH

∫ t

0
�t− s�H−1/2s1/2−H dWs�

cH is a normalizing constant given by

cH =
(

2H;
( 3
2 −H

)
;
(
H+ 1

2

)
;�2− 2H�

)1/2
and W is a Wiener process. As a consequence, using the results obtained in
Section 2, we can deduce the following integral representation for the frac-
tional Brownian motion:

BH
t =

∫ t

0
KH�t� s�dWs�

where KH�t� s� is the kernel
KH�t� s� = cH�t− s�H−1/2

+ cH

(
1
2
−H

) ∫ t

s
�u− s�H−3/2

(
1−

(
s

u

)1/2−H)
du�

(42)

From (42) we obtain (see also [3])

∂KH

∂t
�t� s� = cH

(
H− 1

2

)(
s

t

)1/2−H
�t− s�H−3/2�(43)

Notice that if H > 1
2 then the kernel KH�t� s� is regular and if H < 1

2 this
kernel is singular.

Regular case H > 1
2 . If H > 1

2 the kernel KH has the simpler expression

KH�t� s� = cH

(
H− 1

2

)
s1/2−H

∫ t
s �u− s�H−3/2uH−1/2 du�(44)

From (43) it follows that the operator K∗
H is given by(

K∗
Hh

)
s
= cH

(
H− 1

2

)
;
(
H− 1

2

)
�−1�1/2−α s

−αIαT−�hα�s�

where hα denotes the function hα�x� = xαh�x� and α =H− 1
2 .
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On the other hand, the kernel KH�t� s� satisfies condition (K4), and
Theorem 2 provides the following version of the Itô formula:

Theorem 5. Let BH be a fractional Brownian motion with Hurst parame-
ter H > 1

2 . Let F be a function of class C2��� such that

max
{
F�x�
� 
F′�x�
� 
F′′�x�
} ≤ ceλx

2

for any λ < 1
4T

−2H. Then the process F′�Bt� belongs to �1�2�� � and for each
t ∈ �0�T� the following formula holds:

F
(
BH
t

) = F�0� +
∫ t

0
F′(BH

s

)
δBH

s + 1
H

∫ t

0
F′′(BH

s

)
s2H−1 ds�(45)

Moreover, the following version of the Itô formula for the Stratonovich inte-
gral holds:

F
(
BH
t

) = F�0� +
∫ t

0
F′(BH

s

)
dBH

s �

On the other hand, the kernelKH�t� s� satisfies conditions (i), (ii′) and (iii′)
with α =H− 1

2 . By Proposition 3, if a process u = �ut� t ∈ �0�T�� is bounded
in the norm of the space �1� p for some p ≥ 2, then u belongs to the space
�1� p�� � and the indefinite integral Xt =

∫ t
0 us δB

H
s satisfies E
Xt −Xs
p ≤

C
t− s
�p/2��H+1/2�. Furthermore, if u is bounded in �2�4, then the Itô formula
(32) holds for F�Xt�, provided F belongs to C2b���.

Singular case H < 1
2 . In this case the kernel can be written as

KH�t� s� = cH�t− s�H−1/2 + sH−1/2F1

(
t

s

)
�(46)

where

F1�z� = cH

(
1
2
−H

) ∫ z−1

0
θH−3/2(1− �θ+ 1�H−1/2)dθ�

Proposition 6. The RKHS space � is the space IαT−�L2� and the operator
K∗ is given by (

K∗h
)
s
= cHs

αDα
T−�h−α�s�

where h−α denotes the function h−α�x� = x−αh�x�.

Proof. We have, using (46),(
K∗h

)
s
= cH

[
�T−s�−αhs−α

∫ T

s
�hr−hs��r−s�−α−1dr

]
+s−α−1

∫ T

s
hrF

′
1

(
r

s

)
dr

= cH�T−s�−αhs−cHα
∫ T

s
�hr−hs��r−s�−α−1dr

+αcH
∫ T

s
hr�r−s�−α−1

(
1−

(
r

s

)−α)
dr�
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Notice that ∫ T

0

(∫ T

s
hr�r− s�−α−1

(
1−

(
r

s

)−α)
dr

)2
ds

≤ C
∫ T

0

∫ T

s
h2r�r− s�−α−1

(
1−

(
r

s

)−α)
drds

≤ C′
∫ T

0
h2r dr�

Hence, K∗h is square integrable if and only if h belongs to IαT−�L2�. Finally,
a simple computation yields(

K∗h
)
s
= cH�T− s�−αhs − cHs

αα
∫ T

s
�r−αhr − s−αhs��r− s�−α−1 dr

= cHs
αDα

T−�r−αh�s� ✷

We claim that this kernel satisfies conditions (i), (ii) and (iii) of Section 5
with α = 1

2 −H. Condition (i) is clear from the expression (46). Property (43)
implies (ii) with the constant c = cH� 12 −H�. Finally, (iii) is true because for
any s < t we have∫ t

s
KH�t� r�2 dr ≤ E
BH

t −BH
s 
2 = 
t− s
1−2α�

As a consequence, the processBH satifies condition (K2) ifH > 1
4 . On the other

hand, KH also satisfies condition (K3). Indeed, RH�s� s� = s1−2α is increasing
and from (46) it follows that

∫ s
t KH�s + ε� r�dr has bounded variation, uni-

formly in ε. Thus, by Theorem 1, if H > 1
4 and F satisfies the assumptions

of Theorem 5, the process F′�Bt� belongs to the domain of δB, and the Itô
formula (45) holds.
Fix p ≥ 2. By Proposition 1, if u is a Hölder continuous process in the

norm �·�1� p of order larger than 1
2 −H, then the indefinite stochastic integral

Xt =
∫ t
0 us δB

H
s is Hölder continuous of orderH in the norm �·�p. This means

that the indefinite stochastic integrals possess the same order of continuity as
the fBm.
Note that conditions (iv) and (v) of Proposition 2 are satisfied. By

Proposition 2, the Itô formula (29) holds for the indefinite stochastic inte-
gral Xt =

∫ t
0 us δB

H
s if H > 1

4 , u is an adapted process in �2�2 which satisfies
condition (C1) for α = 1

2 −H and u i s Hölder continuous in the norm �·�p of
order larger than 1− 2H.
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