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Stochastic chemical kinetics and the quasi-steady-state assumption:
Application to the Gillespie algorithm
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Biochemical dynamics are often determined by series of single molecule events such as gene
expression and reactions involving protein concentrations at nanomolar concentrations. Molecular
fluctuations, consequently, may be of biological significance. For example, heterogeneity in clonal
populations is believed to arise from molecular fluctuations in gene expression. A realistic
description, therefore, requires a probabilistic description of the biochemical dynamics as
deterministic descriptions cannot capture the inherent molecular fluctuations. The Gillespie
algorithm@D. T. Gillespie, J. Phys. Chem.81, 2350~1977!# is a stochastic procedure for simulating
chemical systems at low concentrations. A limitation of stochastic kinetic models is that they require
detailed information about the chemical kinetics often unavailable in biological systems.
Furthermore, the Gillespie algorithm is computationally intensive when there are many molecules
and reaction events. In this article, we explore one approximation technique, well known in
deterministic kinetics, for simplifying the stochastic model: the quasi-steady-state assumption
~QSSA!. We illustrate how the QSSA can be applied to the Gillespie algorithm. Using the QSSA,
we derive stochastic Michaelis–Menten rate expressions for simple enzymatic reactions and
illustrate how the QSSA is applied when modeling and simulating a simple genetic circuit. ©2003
American Institute of Physics.@DOI: 10.1063/1.1545446#
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I. INTRODUCTION

At the level of the cell, the chemical dynamics are oft
determined by the action of only a few molecules and, c
sequently, molecular fluctuations may dominate the dyna
ics. These molecular fluctuations appear to have many
portant consequences in biology.1,2 Gene expression, fo
example, involves a series of single molecule events. F
tuations in gene expression may lead to a divergence of
and, consequently, to nongenetic population heterogenei3,4

Likewise, fluctuations in gene expression and protein c
centrations have also been implicated in phenotypic varia
in clonal populations.5–7 Deterministic models, consequentl
do not always accurately describe the chemical dynamics
such systems, as statistical averages do not account for
lecular fluctuations, and these fluctuations may have a
found effect on the physiology of the cell. To model molec
lar fluctuations, a probabilistic model of the chemic
dynamics is often necessary.

A defining attribute of probabilistic kinetic models is th
they account for each molecule and every reaction event.
complex processes involving many species and reacti
this fine detail poses many modeling and computational b
riers. Consider, for example, a dimerization reaction
steady state. Unlike a deterministic formulation, steady s

a!Electronic mail: c_rao@lbl.gov
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in a stochastic formulation does not imply the system h
converged to a static ratio of monomer and dimer molecu
Rather, only the likelihood of a particular ratio has converg
to a static distribution. If the reactions events are fast, th
simulating even a short time interval of the dimerization
action at steady state is computationally intensive. From
modeling perspective, information regarding the associa
and dissociation rates is rarely available in a biological s
tem. Often, the only information available is a dissociati
constant, something that cannot be directly translated in
stochastic model. As we are often not interested in fast fl
tuations, but rather integrated biochemical reaction netwo
involving many different molecular species and reactions,
seek to reduce both the model and computational comple

In this article, we consider the Gillespie algorithm fo
simulating stochastic chemical kinetics.8,9 While the
Gillespie algorithm is a simple procedure for exactly sim
lating stochastic kinetics, the algorithm is slow. Gibson a
Bruck10 have recently proposed a streamlined version of
Gillespie algorithm. However, the core algorithm is sam
each molecule and reaction event is accounted for. If
wants to reduce the complexity, then one needs to look
approximations to the model. One strategy is to consider
dynamics at asymptotic limits. For example, as the num
of molecules increase, one can approximate the molec
fluctuations as a realization of Brownian motion.11,12 The
discrete model then becomes a continuous model in the f
9 © 2003 American Institute of Physics
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of a stochastic differential equation or Langevin equati
Alternatively, one can consider a time-scale separat
where a subset of species is asymptotically at steady sta
the time scale of interest. This approximation is known as
quasi-steady-state assumption~QSSA!. The QSSA reduces
the model complexity and, consequently, the computatio
complexity by effectively reducing the number of molecu
species and reactions. Hence, it eliminates the fast dyna
that contribute most to the computational cost and are ra
of interest. Model reduction is particularly useful when w
are unable to ascertain certain information from experime
such as association and dissociation rates. The strength o
QSSA is that it uses our physical intuition of the syste
Verifying its validity, therefore, is often straightforward
Time scale separation by adiabatic elimination has pre
ously been applied to the chemical master equation.13–16The
goal of this article is to extend these results to stocha
simulation and the Gillespie algorithm, and to apply t
QSSA to some problems common in cell biology. To the b
of our knowledge, these results are novel.

II. THE QUASI-STEADY-STATE ASSUMPTION

When the intermediate species in a reaction network
transitory and highly reactive, one commonly assumes in
terministic kinetics that thenet rate of formation is approxi-
mately equal to zero. Examples of transitory intermedi
species include enzyme-substrate complexes and surface
cies. We refer to this assumption as the quasi-steady-s
assumption ~QSSA!, though it is also referred to a
Bodenstein–Semenov kinetics or the pseudo-steady-stat
sumption. One can establish the validity of the QSSA us
singular perturbation theory for differential equations.17 The
utility of the QSSA is that it allows us to reduce the dime
sion of the model by eliminating the intermediate spec
from the model. The intermediate species are implicitly
counted for by assuming that they are in quasi-steady s
with the primary species. By quasi-steady state, we m
that on the time scale of interest the instantaneous rate
change of the intermediate species are approximately e
to zero. As we demonstrate, we can also use the QSS
reduce the problem dimension when we consider a stoch
description of the chemical kinetics.

Consider a homogeneous mixture ofn chemical species
that undergom reactions in a closed vessel of fixed volum
and constant temperature. Let then-dimensonal vectorx de-
note the number of molecules of each species. For each
action, let the functionak(x) denote the propensity of thekth
reaction. In other words, the probability that thekth reaction
with occur in the time intervaldt is ak(x)dt1o(dt), where
o(x) satisfies the condition limx→0 o(x)/x50. Let the
n-dimensional vectorvk denote the stoichiometry associat
with the kth reaction. The probabilityP(x;t) of x species at
time t is given by the master equation

dP~x;t !

dt
5 (

k50

m

ak~x2vk!P~x2vk ;t !2ak~x!P~x;t !]

~1!
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subject to the initial conditionP(x0 ;0). The reader is di-
rected to Ref. 9 for a discussion of the assumptions unde
ing stochastic kinetics.

When one applies the QSSA in deterministic kinetic
one eliminates the differential equations describing the in
mediate species by setting them equal to zero. In stocha
kinetics, a single equation describes the probability o
given state rather than a given chemical species. Co
quently we need to separate the primary species from
intermediate species in order to apply the QSSA. We se
rate the species by partitioning the species vectorx into the
set of speciesy and z wherex,(y,z). We let the vectory
denote primary species and the vectorz denote the interme-
diate, or ephemeral, species. Substituting into Eq.~1!, the
chemical master equation for the partitioned species vecto

dP~y,z;t !

dt
5 (

k50

m

@ak~y2vk
y ,z2vk

z!P~y2vk
y ,z2vk

z ;t !

2ak~y,z!P~y,z;t !#, ~2!

wherevk
y andvk

z denote the associated partition ofvk . Using
the definition of conditional probabilities, we can represe
the joint probability as

P~y,z;t !5P~zuy;t !P~y;t !. ~3!

Using the chain rule of differentiation, the master equat
becomes

P~y;t !
dP~zuy;t !

dt
1P~zuy;t !

dP~y;t !

dt

5 (
k50

m

@ak~y,z2vk
z!P~z2vk

zuy2vk
y ;t !

3P~y2vk
j ;t !2ak~y,z!P~zuy;t !P~y;t !#, ~4!

In order to apply the QSSA, we first need to assume t
z conditional ony is Markovian. In other words, for fixedy
the conditional probability distribution of the intermedia
speciesP(zuy;t) approximately satisfies the master equati

dP~zuy;t !

dt
'(

k50

m

@ak~y2vk
y ,z2vk

z!P~z2vk
zuy;t !

2ak~y,z!P~zuy;t !# ~5!

on the time scales of interest. The QSSA in stochastic kin
ics then assumes that thenet rate of change for the condi
tional probability distribution of the intermediate speci
P(zuy;t) is approximately equal to zero:

dP~zuy;t !

dt
'0. ~6!

An immediate consequence of the second assumption~6! is
that the conditional probability functionP(zuy;t) is time in-
variant:P(zuy;t)'P(zuy). If we substitute Eq.~6! into ~5!,
then P(zuy) satisfies the approximate steady-state ma
equation
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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(
k50

m

@ak~y2vk
y ,z2vk

z!P~z2vk
zuy;t !2ak~y,z!P~zuy;t !#

'0. ~7!

It is important to note that we make two assumptions in or
to apply the QSSA to stochastic kinetics.

If we apply the QSSSA, the approximate chemical m
ter equation for the subset of speciesy is

P~zuy!
dP~y;t !

dt
'(

k50

m

@ak~y2vk
y ,z2vk

z!

3P~z2vk
zuy2vk

y!P~y2vk ;t !

2ak~y,z!P~zuy!P~y;t !# ~8!

As (zP(zuy;t)51, we can obtain the following approximat
master equation for the marginal distributionP(y;t):

dP~y;t !

dt
5(

z
P~zuy!

dP~y;t !

dt

'(
z

(
k50

m

@ak~y2vk
y ,z2vk

z!P~z2vk
z uy2vk

y!

3P~y2vk ;t !2ak~y,z!P~zuy!P~y;t !#. ~9!

The significance of the above equation is that we can eli
nate the intermediate speciesz from the chemical maste
equation~8! by summing over the states ofz. This elimina-
tion also implies thaty is separately Markovian—a limiting
assumption of QSSA.16 Simplifying the notation of Eq.~9!,
we obtain the following approximate master equation sol
in terms of primary speciesy:

dP~y;t !

dt
5 (

k50

m

@bk~y2vk
y!P~y2vk

y ;t !2bk~y!P~y;t !#,

~10!

where

bk~y!,(
z

ak~y,z!P~zuy!. ~11!

The functionalbk(•) is the conditional expectation of th
functionalak(•).

When we apply the QSSA, we implicitly assume that w
can expand the conditional probability functionP(zuy;t) in
some parametere such that

P~zuy;t !5P~zuy!1o~e!.

The QSSA is exact whene50 and the errors associated wi
the QSSA are roughly proportional to magnitude ofe. One
obtains the parametere by scaling parameters in the model.18

As we demonstrate with examples in Secs. IV and V,
Markovian assumption can also arise from the same sca
arguments.

III. AN ALGORITHM FOR APPROXIMATE STOCHASTIC
SIMULATION

The chemical master equation provides a complete
scription for the chemical kinetics. Even though the chemi
Downloaded 26 Mar 2003 to 131.215.13.191. Redistribution subject to A
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master equation is linear, we are usually unable to solv
either analytically or numerically as the dimension explod
with the number of molecules and reactions. For example
we consider a reaction

A
B
C,

then the order of the chemical master equation is equal
number of possible molecular combinations. For 200 m
ecules, there are one million different molecular combin
tions. While for most applications it either impractical o
infeasible to solve the chemical master equation, we
readily generate realizations of the stochastic process
scribed by the chemical master equation. These realizat
are usually sufficient to address our questions. If necess
one can obtain the moments of the chemical master equa
using Monte Carlo strategies.

In some cases one can algebraically reduce the chem
master equation as discussed in Secs. IV and V. One can
apply the Gillespie algorithm to the reduced system
scribed by the stoichiometric matrixvy and propensity func-
tions bk(•). When algebraic expressions do not exist f
bk(•), which often is the case, then one needs to emplo
modified Gillespie algorithm. We assume that one posse
expressions for the conditional probability functionP(zuy).
The limitation of this approach is that exact expressions
P(zuy) are computationally unwieldy as illustrated in Se
VI. One may circumvent this problem either by replacing t
conditional expectationbk(•) of the functionak(•) with the
function of the conditional expectationak(E@zuy),y) or by
approximating the conditional probabilityP(zuy) as a
Gaussian. Both of these alternative are discussed in Sec

A. Modified Gillespie algorithm

Data: Partitioned stoichiometric matrix@vy;vz#, the set
of propensity functionsak(•) such thatvk

yÞ0, the stationary
conditional probability densityP(zuy), and the initial num-
ber of primary speciesy(0).

Initialization: Set t50.
Step 1: Generate the conditional random variablez(t)

from the stationary distributionP(z(t)uy(t)).
Step 2: Compute reaction probabilities

pk5ak~y~ t !,z~ t ! for k51,...,m.

Step 3: Generate two uniformly distributed pseud
random variablesr 1 and r 2 on ~0,1!. Set

t52
log ~r 1!

(k50
p pk

and choosej such that

(
k50

j 21

pk,r 2(
k50

p

pk<(
k50

j

pk.

Step 4: Update the number of species

y~ t1t!5y~ t !1v j
y

and lett←t1t. Go to Step 1.

It is important to note that the modified Gillespie algorith
described above does not generate exact realizations o
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



t
ion
a
i

n
ie

on
s

ti

te

if

n
e

s

r
, r

tic

z
s-

um

on
t
t
th

ha
ad

S to

ap-
ion
en-
A is
the

to

the
ical
ate,
f

on

ol-

the

5002 J. Chem. Phys., Vol. 118, No. 11, 15 March 2003 C. V. Rao and A. P. Arkin
master equation, even when the assumptions underlying
QSSA are strictly true as it does not employ the funct
bk(•). However, it provides a simple procedure for separ
ing time scales in stochastic models, and our experience
dicates the approximation is often valid.

As we have mentioned in the Introduction, Gibson a
Bruck10 have provided streamlined version of the Gillesp
algorithm. Their techniques are also applicable when
applies the quasi-steady-state assumption. The intere
reader is directed to their article.

IV. EXAMPLE: ENZYME KINETICS AND THE
MICHAELIS–MENTEN ASSUMPTION

To illustrate the QSSA, consider the simple enzyma
reaction:

E1S

k21

k1

ES ~12a!

ES——→
k2

Product1E ~12b!
where E denotes the enzyme and S denotes the substra
we use a deterministic description~mass action! of the
chemical dynamics, then we obtain the following set of d
ferential equations

d@S#

dt
52k1@S#~@E#02@ES# !1k21@ES#, ~13a!

d@ES#

dt
52~k211k2!@ES#1k1@S#~@E#02@ES# !, ~13b!

where @X# denotes the concentration of species X a
@E#0,@E#1@ES#). If we use a stochastic description of th
chemical dynamics, then the chemical master equation i

dP~s,es;t !

dt
52@k1s~e02es!1~k211k2!es#P~s,es;t !

1k1~s11!~e02es11!P~s11,es21;t !

1k21~es11!P~s21,es11;t !

1k2~es11!P~s,es11;t !, ~14!

subject to the appropriate boundary conditions, heres, es,
ande0 are the number of substrate molecules S, numbe
enzyme complexes ES, and total number of enzymes E
spectively.

Numerous articles have been written on enzyme kine
using a stochastic framework.19–24 These articles aimed to
solve the chemical master equation for the isolated en
matic reaction~12! either by obtaining approximate expre
sions for first two moments~mean and variance! of the
chemical master equation, characterizing the equilibri
probability by assuming the reaction~12b! is reversible, or
by characterizing the initial velocity phase. Our derivati
differs from the above references, because we employ
QSSA and scaling arguments to reduce the dimension of
chemical master equation. We do not attempt to solve
chemical master equation for this isolated equation.

When the concentration of substrate is much larger t
the enzyme concentration, one may use the quasi-ste
Downloaded 26 Mar 2003 to 131.215.13.191. Redistribution subject to A
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state approximation for the enzyme-substrate complex E
derive the rate law for the enzymatic reaction~12!. If we
assume@E#0 /@S#0'0, where@S#0 denotes the initial or av-
erage concentration ofS, thend@ES#/dt'0 and one obtains
the approximation

d@S#

dt
52

Vmax@S#

Km1@S#
,

whereVmax5k2@E#0 , andKm5(k211k2)/k1. The reader is
directed to the literature18,25 for a detailed deviation.

We can equivalently apply the quasi-steady-state
proximation to the chemical master equation. Our discuss
is limited to the case when there are a fixed number of
zyme molecules. One can tacitly assume that the QSS
equivalent to assuming that the propensity function for
reaction

S→Product

is given by

a~s!5
Vmaxs

Km1s
,

where Vmax5k2e0 and Km is given above. The resulting
chemical master equation is then

dP~s;t !

dt
5a~s11!P~s11;t !2a~s!P~s;t !,

subject to appropriate boundary conditions. Our goal is
provide a mechanistic derivation.

In order to derive the quasi-steady-state solution to
stochastic formulation, it is convenient to recast the chem
master equation in terms of the total amount of substr
free and bound. LetsT5s1es denote the total amount o
substrate present. In this example the primary speciey is the
substratesT and the intermediate speciesz is the enzyme
complex es. We can rewrite the chemical master equati
~14! as

dP~es,sT ;t !

dt
52@k1~sT2es!~e02es!1~k211k2!es#

3P~es,sT ;t !1k1~sT2es11!

3~e02es11!P~es21,sT ;t !

1k21~es11!P~es11,sT ;t !1k2~es11!

3P~es11,sT11;t ! ~15!

To obtain a scaling solution, we nondimensionalize the f
lowing variables:

s̄,
sT

s0
, ē,

es

e0
, e,

e0

s0

As the variables are not longer integers, we introduce
incremental variabled,1/e0. We also rescale time ast
5e0

2t. If we make the substitutions in~15!, we obtain the
master equation
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 1. A comparison of the exact solution and th
Michaelis–Menten approximation. Both figures sho
the production of product as a function of time. Th
black lines denote the exact solution and the gray lin
denote the Michaelis–Menten approximation. The so
line denotes the mean and the dashed lines denote
standard deviation away from the mean. The mean a
standard deviation were evaluated from 50 000 reali
tions of the system. The upper plot shows the results
10 enzyme and 100 substrate molecules and the lo
plot shows the results for 1000 enzyme and 100 su
strate molecules. Note that when enzyme is in exc
~lower plot!, the QSSA predicts the substrate is co
sumed within 1 s whereas the exact model predic
nearly 50 s. Both examples used the kinetic paramet
k151, k2151, andk250.1.
at

-
to
e
dP~ ē,s̄;t!

dt
52Fk1~ s̄2eē!~12ē!1

~k211k2!

s0
ēG

3P~ ē,s̄;t!1k1~ s̄2eē1ed!~12ē1d!

3P~ ē2d,s̄;t!1
k21

s0
~ ē1d!P~ ē1d,s̄;t!

1
k2

s0
~ ē1d!P~ ē1d,s̄1ed;t!. ~16!

If we sete50, we obtain the algebraic relation

Fk1s̄~12ē!1
~k211k2!

s0
ēGP~ ē,s̄;t!

5k1s̄~12ē1d!P~ ē2d,s̄;t!

1
~k211k2!

s0
~ ē1d!P~ ē1d,s̄;t!. ~17!
Downloaded 26 Mar 2003 to 131.215.13.191. Redistribution subject to A
Implicit in the approximation above is the assumption th
the probabilityP(ē,s̄;t) is analytic ine. The relation~17! is
approximate ando(e). We suspect that it is possible to de
rive higher-order approximation, though they likely lead
non-Markovian~or age-dependent! master equations.

As sT is fixed, we can interpret the relation~17! as the
steady-state solution to the following master equation~in un-
scaled variables!:

dP~es,sT ;t !

dt

52@k1sT~e02es!1~k211k2!es#

3P~esusT ;t !P~sT ;t !1k1sT~e02es11!

3P~es21usT ;t !P~sT ;t !1~k211k2!~es11!

3P~es11usT ;t !P~sT ;t !.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 2. A comparison of a single realization of the e
act solution and the Michaelis–Menten approximatio
The black lines denote the exact solution and the g
line denotes the Michaelis Menten approximation. T
solid line denotes a single realization and the dash
lines denote one standard deviation away from t
mean. The parameters are the same as in Fig. 1. N
again that when enzyme is in excess~lower plot!, the
QSSA predicts the substrate is consumed within 1 s
th

ng
The scaling arguments therefore justify the assumptions
we can write a separate master equation foresconditional on
sT and apply to QSSA toes. In other words,

dP~esusT ;t !

dt
'0

and

dP~es,sT ;t !

dt
'P~esusT ;t !

dP~sT ;t !

dt
.

If we substitute the algebraic relation~17! into the master
equation~15!, we obtain
Downloaded 26 Mar 2003 to 131.215.13.191. Redistribution subject to A
at dP~es,sT ;t !

dt
52k2~es11!P~es11usT!P~sT ;t !

1k2~es11!P~es11usT11!P~sT11;t !

2k1es~e02es!P~es,sT;t !1k1~es21!

3~e02es11!P~es21,sT ;t !. ~18!

If we take the marginal density, then we obtain the followi
approximation to the chemical master equation

dP~sT ;t !

dt
52k2E@esusT#P~sT ;t !

1k2E@esusT11!P~sT11;t !. ~19!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 3. A comparison of the exact solution and th
Michaelis–Menten approximation for the determinist
case. Both figures show the production of product a
function of time. The black lines denote the exact so
tion and the gray lines denote the Michaelis–Ment
approximation. The upper plot shows the results for
enzyme and 100 substrate molecules. Both examp
used the kinetic parameters:k151, k2151, and k2

50.1. Note again that when enzyme is in excess~lower
plot!, the QSSA predicts the substrate is consum
within 1 s.
e

u

he

xi-
per

l as
in
tly;
tes
me
no

by
his

en
Note that technically summing over the states ofes in ~18!
does not define the expectationE@esusT# in ~19! as we sum
over the product (es11)P(es11usT). However, for this
problem, summing over the states in~18! does yield an
equivalent expression to the expectation. The conditional
pectation is given by the expression

E~esusT!5
e0sT

Km1sT
.

We then obtain an approximate chemical master eq
tion with the Michaelis–Menten form:

dP~sTt !

dt
52

VmaxsT

Km1sT
P~sT ;t !1

Vmax~sT11!

Km1~sT11!

3P~sT11;t !.
Downloaded 26 Mar 2003 to 131.215.13.191. Redistribution subject to A
x-

a-

A. Numerical comparison

To investigate the accuracy and efficiency of t
Michaelis–Menten approximation~and the QSSA!, we com-
pared the exact solution to the Michaelis–Menten appro
mation. The results are shown in Figs. 1 and 2. The up
plot shows the comparison whene0 /s050.1 and the lower
plot shows the comparison whene0 /s0510.0. When sub-
strate is in excess of the enzyme, the solution match wel
predicted by the theory. However, when the enzyme is
excess of the substrate, the solutions diverge significan
the Michaelis–Menten approximation greatly overestima
the rate of production. This error is expected as the enzy
is in excess of substrate. The speed of the reaction is
longer limited by how fast the enzymes work, but rather
the rate of association of the substrate to the enzyme. T
case clearly illustrates the limits of the Michaelis–Ment
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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approximation. For comparison, the associated determin
solution is shown in Fig. 3. Note that the deterministic so
tions also diverge whene0 /s0510.0, thus illustrating the
limits of the Michaelis–Menten approximation and th
QSSA in deterministic models. For the details of the simu
tions, the reader is directed to Figs. 1–3.

One of the goals of the QSSA is to reduce the compl
ity of the system. The best measure of complexity for t
example is the number of reactions required to consume
of the substrate. The efficiency of the Michaelis–Menten
sumption is realized by assuming that the enzyme-subs
complex is in quasi-steady state. As expected,
Michaelis–Menten approximation requires fewer reactions
consume the substrate: the number of reactions equals
number of substrate molecules~100!. The number of the re-
actions for the exact solution was a function of the kine
parameters and number of enzyme molecules. In the
narios we investigated, approximately 2100 reactions w
required to consume the substrate in both cases: a 95%
duction in computation. As the parameterk2 decreased in
magnitude relative tok1 and k21, the number of reactions
increased. And, vice versa, increasingk2 decreased the num
ber of reactions.

V. EXAMPLE: COMPETITIVE INHIBITION

As a further example of the QSSA, we considered
simple enzymatic reaction with competitive inhibition:

E1S

k21

k1

ES, ~20a!
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E1I ——→
k2

Product1E, ~20b!

E1I

k23

k3

EI. ~20c!

If we use a deterministic description~mass action! of the
chemical kinetics, then we obtain the following set of diffe
ential equations:

d@S#

dt
52k1@S#~@E#02@ES#2@EI#!2k21@ES#, ~21a!

d@ES#

dt
5k1@S#~@E#02@ES#2@EI#!2~k211k3!@ES#,

~21b!

d@EI#

dt
52k3@ I#~@E#02@ES#2@EI#!2k23@EI#, ~21c!

If we assume@E#0 /@S#0'0 and @E#0 /@ I#0'0 where @ I#0

denotes the initial or average concentration of I, then
obtain the approximation

d@S#

dt
5

vmax@S#

Km1@S#1Km@ I#/Kb

whereKb5k23 /k
3

.26

If we use a stochastic description, then we obtain
following chemical master equation:
en-
dP~es,ei,sT ,i T ;t !

dt
52@~k1~sT2es!1k3~ i T2ei!!~e02es2ei!1~k211k2!es1k23ei#P~es,ei,sT ,i T ;t !

1k1~sT2es11!~e02es2ei11!P~es21,ei,sT ,i T ;t !1k21~es11!P~es11,ei,sT ,i T ;t !

1k3~ i T2ei11!~e02es2ei11!P~es,ei21,sT ,i T ;t !1k23~ei21!P~es,ei21,sT ,i T ;t !

3k2~es11!P~es11,ei,sT11,i T ;t !, ~22!

subject to the appropriate boundary conditions. In this example, the primary species are the total substratesT and inhibitori T ,
and the intermediate species are the enzyme complexesesandei. Proceeding in the same manner as before, we nondim
sionalize the following variables

s̄5
sT

s0
, ī 5

i T

i 0
, x̄5

es

sT
, ȳ5

ei

i 0
, e,

e0

sT
, h,

e0

i T
,

and consider the transformationd,1/e0 andt5e0
3t. If we make the substitutions in~22!, we obtain the master equation

eh
dP~ x̄,ȳ,s̄, ī ;t

dt
52F S k1

i 0
~ s̄2e x̄!1

k3

s0
~ ī 2h ȳ! D ~12 x̄2 ȳ!

1
~k211k2!

i 0s0
x̄1

k23

s0i 0
ȳGP~ x̄,ȳ,s̄, ī ;t!1

k1

i 0
~ s̄2e x̄1ed!~12 x̄2 ȳ1d!P~ x̄2d,ȳ,s̄, ī ;t!

1
k21

s0i 0
~ x̄1d!P~ x̄1d,ȳ,s̄, ī ;t!1

k3

s0
~ ī 2h ȳ1hd!~12 x̄2 ȳ1d!P~ x̄,ȳ2d,s̄, ī ;t!

1
k23

s0i 0
~ ȳ2d!P~ x̄,ȳ2d,s̄, ī ;t!1

k2

s0i 0
~ x̄1d!P~ x̄1d,ȳ,s̄1ed, ī ;t!. ~23!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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If we sete50 andh50, then we obtain the equality

F S k1

i 0
s̄1

k3

s0
ī D ~12 x̄2 ȳ!1

~k211k2!

i 0s0
x̄1

k23

s0i 0
ȳGP~ x̄,ȳ,s̄, ī ;t!

5
k1

i 0
s̄~12 x̄2 ȳ1d!P~ x̄1d,ȳ,s̄, ī ;t!1

k21

s0i 0
~ x̄1d!P~ x̄1d,ȳ,s̄, ī ;t!

1
k3

s0
ī ~12 x̄2 ȳ1d!P~ x̄,ȳ2d,s̄, ī ;t!1

k23

s0i 0
~ ȳ2d!P~ x̄1d,ȳ2d,s̄, ī ;t!1

k2

s0i 0
~ x̄1d!p~ x̄1d,ȳ,s̄, ī ;t!.
o
on

v

a
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We can interpret the above equality as the steady-state s
tion to the conditional chemical master equation for the c
dition probability densityP(es,eiusT ,i T ;t).

In a similar manner as before, if we substitute the abo
algebraic relation into the master equation~22! and take the
marginal density, then we obtain the following approxim
tion to the chemical master equation:

dP~sT ,i T ;t !

dt
52k2E@es,eiusT ,i T#P~sT ,i T ;t !

1k2E@es,eiusT11,i T#P~sT11,i T ;t !.

As i T is fixed, we can factor out the termP( i T ;t). In appli-
cation, P( i T ;t) is a function of other reactions in the ne
work. If we evaluate the expectations, we obtain the appro
mate chemical master equation in the familiar Michaeli
Menten form:

dP~sTu i T ;t !

dt
52

VmaxsT

km
app1sT

P~sTu i T ;t !

1
Vmax~sT11!

Km
app1~sT11!

P~sT11u i T ;t !,

where

Km
app5Km~11 i T /Kb!.

The goal in the preceding two sections was to dem
strate that Michaelis–Menten-type rate laws may be deri
in a stochastic formulation using scaling arguments and
to
tie
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quasi-steady-state assumption. Likewise, we expect one
derive many common biological rate laws for stochastic
netics such as the Hill equation and the Monod–Wyma
Changeux and Koshalnd–Nemethy–Filmer models of all
tery and cooperativity.26 One may also use similar argumen
to derive stochastic analogs to the Langmuir–Hinselwo
and Hougen–Watson rate laws in heterogeneous catalys27

VI. EXAMPLE: GENE EXPRESSION

To illustrate the quasi-steady-state assumption in c
junction with the Gillespie algorithm, we examined a simp
fied model of thePR promoter in bacteriophasel. The PR

promoter is an integral component of the genetic circuit c
trolling the lysis/lysogeny decision in the Lambda infectio
lifecycle in the Escherichia coli.28 A stochastic model of the
genetic circuit controlling the lysis/lysogeny decision w
proposed by Arkin and co-workers;29 the reader is directed to
their article for the details of the model. We focus solely
the PR promoter in conjunction with the protein Cro to illus
trate the application and validity of the QSSA. A diagra
and brief description of thePR promoter and the protein Cro
are given in Fig. 4. The reactions and their associated par
eters are given in Table I.

The first assumption typically made when modeli
gene expression is to use the QSSA to obtain an expres
for the promoter activity. Shea and Ackers30 proposed the
following deterministic model for activity of thePR pro-
moter:
P~RNAPc2DNA!5
@RNAP# exp2DG5 /RT

112@Cro# exp2DG2,3/RT1@Cro2#
2 exp2DG4 /RT1@RNAP# exp2DG5 /RT ,
re

the

II.
ny
on

he
the

n

FIG. 4. ThePR promoter: The promoterPR controls the expression of the
201 nucleotide~nt! genecro. The protein Cro dimerizes and is subject
proteolytic degradation. The cro dimer binds to one of two operator s
OR1 andOR2 and inhibits transcription by occluding thePR promoter.
where@•# denotes the concentration. Activity is defined he
as the probability that the RNA polymerase~RNAP! is bound
to the promoter. In this model, Shea and Ackers applied
QSSA to the closed RNAP-DNA complex (RNAPc2DNA)
and the Cro dimer/operator complex (Cro22OR and Cro2
2OR1). The parameters for the model are given in Table
The Shea–Ackers promoter model is equivalent in ma
ways to the Langmuir–Hinselwood and Hougen–Wats
rate equations in heterogeneous catalysis.27

In the context of stochastic kinetics, we can view t
Shea–Ackers promotor model as a special case of
Michaelis–Mentenkinetics with competitive inhibition. I
s
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Downloaded 26 M
TABLE I. Parameters for transcription, translation, and housekeeping reactions.

No. Reaction kf kb

1 Cro→~ ! 0.0025 s21

2 Cro↔Cro2 0.05 M21 s21 0.5 s21

3 Cro21OR1↔Cro22OR1 ~Table II!
4 Cro21OR2↔Cro22OR2 ~Table II!
5 RNAP1DNA↔RNAPc2DNA ~Table II!
6 RNAPc2DNA→RNAP2DNA0 0.014 s21

7 RNAP2DNAn→RNAP2DNAn11 30 nt s21

8 Ribosome1RNARBS→Ribosome2RNARBS 0.002 M21 s21

9 Ribosome2RNAn→Ribosom-RNAn11 100 nt s21

10 RNARBS→() 0.2 s21
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this model, there is a single enzyme and two sites for in
bition ~OR1 andOR2), where RNAP is the substrate and t
Cro dimer is the inhibitor. The Shea–Ackers promo
model, therefore, is valid to a first approximation when t
number of RNAP and Crop dimer molecules are in exces
one. From a modeling standpoint, only equilibrium data
available for thePR promotor. As the binding and dissocia
tion rates are difficult to determine, the QSSA is a conveni
simplification. In this example, the QSSA and the associa
scaling arguments validate the approximation even tho
the information necessary for a more detailed model is
available.

One can simplify the model of thePR promotor further
by applying the QSSA and the Cro dimer. In their determ
istic model of thePR promoter, Shea and Ackers applied t
QSSA to the dimer. Consider the dimerization reaction

A1A

kB

kf

A2 .

If we assume there are a total ofN molecules (N5A
12A2), the stationary distribution is given by

P~A25 j uN!}
kf

j kb
~N/22 j !N!

~N22 j !! j !2 j , ~24!

whenN is even, and

P~A25 j uN!}
kf

j kb
~N/22 j 21!N!

~N22 j !! j !2 j , ~25!

when N is odd. Generating random variables from this d
tribution is relatively difficult as one needs to recalculate
probabilities each time the total amount of Cro changes. O
alternative is to use the conditional expectation of Cro2 in the
model of PR promoter activity. Here, one approximates t
mean promoter activity@e.g.,bk(•)] with the activity for the
mean Cro2 concentration. Even then, we still do not posse

TABLE II. Parameter for the Shea–Ackers model of the promoterPR .

No. OR2 OR1 2DG/RT

1 ••• ••• 0
2 ••• Cro 17.5
3 Cro ••• 17.5
4 Cro Cro 35.1
5 RNAP 20.3
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an algebraic expression for the mean Cro2 concentration. We
can instead use the deterministic equilibrium value

Cro2
d5

~4Crotot1KD!2A~4Crotot1KD!22Cro
4tot

16

as an approximation for the mean, where Crotot denotes the
total amount of the protein Cro. As the amount of Cro i
creases, we expect that the conditional expectation conve
to the deterministic equilibrium value almost surely. A se
ond alternative is to approximate the stationary distribut
~24! and~25! with a Gaussian distribution. We do not posse
specific asymptotic results concerning the stationary distri
tions ~24! and ~25!, though one would assume that the d
tribution is approximately Gaussian with mean Cro2

d and a
variance that is inversely proportional to total amount of C
Numerical results indicate that a Gaussian approximates
stationary distributions~24! and ~25! reasonably well when
the variance is 1/4Crotot . A similar result was reported by
Kepler and Elston.31

Figure 5 shows the time course of the mean Cro dim
concentration using the modified Gillespie algorithm. T
exact solution required an average of 152 000 reactions;
approximate solution applying the QSSA to the Cro dim
using the two methods described above required an ave
of 58 600 and 79 700 reactions, respectively: at least a 5
reduction in computation. In both examples, we used
modified Gillespie algorithm for the Shea–Ackers mod
rather than marginalizing the distribution as we did in t
Michaelis–Menten examples. If we increase the rate of C
dimerization ~0.5 M21 s21) and dissociation~5 s21) by a
factor of 10, then the average number of reactions increa
to 397 600 while the number of reactions for the QSS
model does not change. We note that these kinetic rates
unknown and only the equilibrium dissociation constantKD

is known. As evident from Fig. 5, the application of th
QSSA to the Cro dimer does not affect the accuracy of
solution. This result was expected as over half the reacti
involved either Cro dimerization or dissociation.

If we increase the rate of Cro dimerization~0.0005
M21 s21) and dissociation~0.005 s21) by a factor of 100,
then the QSSA is no longer valid as illustrated in Fig.
Because the rate of association and dissociation are not
relative to the dynamics of gene expression, protein syn
sis, and degradation, the Cro dimerization reaction ne
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 5. The time course of Cro dimer concentratio
using the modified Gillespie algorithm for an averag
cell lifecycle. The solid lines show mean concentratio
of the Cro dimer and the dashed lines show one st
dard deviation away from the mean concentration. T
mean and standard deviation were evaluated us
50 000 realizations of the stochastic model. The bla
lines denote the exact solution, while dark and lig
gray lines denote the solution when the QSSA is a
plied to the cro dimer. The dark gray lines show th
solution of the deterministic equilibrium value for th
Cro dimer Cro2

d and the light gray lines show the solu
tion when stationary distribution is taken as Gaussi
with mean Cro2

d and variance 1/4Crotot. All three mod-
els employed the Shea–Ackers model.
n
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reaches its steady-state value. The QSSA, conseque
overestimates the amount of Cro dimer. The example ag
demonstrates the limits of the QSSA.

VII. CONCLUSION

The QSSA is a powerful tool for simplifying the reactio
kinetics, and it has been successfully applied to numer
problems in deterministic kinetics. We have demonstra
how the QSSA may be applied to stochastic kinetics. O
experience to date suggests that the conditions for the Q
in stochastic kinetics are the same as for deterministic ki
ics. We expect exceptions, though it is not clear whet
these will be contrived. We emphasize that the same lim
tions of the QSSA in the deterministic case also hold in
Downloaded 26 Mar 2003 to 131.215.13.191. Redistribution subject to A
tly,
in

us
d
r
A

t-
r
-

e

stochastic framework.32 In the Michaelis–Menten example
we assumed that the reactions occur in isolation and that
amount of enzyme is fixed. In most biological systems, th
assumptions are violated. Most reactions occur in highly
tegrated networks. The amount of enzyme is not fix
rather, the enzyme concentration is controlled by a num
of regulatory and environmental factors. Furthermore,
enzyme is inevitable subject to degradation, due to, for
ample, proteolysis. However, on the time scales of inter
these issues are rarely of concern.

We have illustrated through example how the QSSA c
significantly reduce the computationally complexity. Whi
this speedup makes the QSSA important in its own right,
true strength of the QSSA, we believe, is as a tool for mo
n
e
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FIG. 6. The time course of Cro dimer concentratio
using the modified Gillespie algorithm for an averag
cell lifecycle when the rate Cro dimerization is 0.000
M21 s21 and dissociation is 0.005 s21. The solid lines
show mean concentration of the Cro dimer and t
dashed lines show one standard deviation away fr
the mean concentration. The mean and standard de
tion were evaluated using 50 000 realizations of the s
chastic model. The black lines denote the exact so
tion, while gray lines denote the solution when th
QSSA is applied to the Cro dimer. One standard dev
tion less the mean of the exact solution is not shown
it is less than zero.
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reduction. More often than not, we do not possess the in
mation necessary to generate detailed kinetic models.
example, in enzyme kinetics, only the parametersk2 andKm

are readily available from experiments. These constra
more often that not provide the rational for choosing a p
ticular rate law. In this context, the QSSA provides a meas
of whether these constraints actually limit the range and
lidity of the model. For example, the strength of the She
Ackers model is that it only requires equilibrium data. As w
demonstrate using the QSSA, the use of the equilibrium d
is often a valid modeling approximation.
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