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Recently the application of the quasi-steady-state approximation �QSSA� to the stochastic
simulation algorithm �SSA� was suggested for the purpose of speeding up stochastic simulations of
chemical systems that involve both relatively fast and slow chemical reactions �Rao and Arkin, J.
Chem. Phys. 118, 4999 �2003�� and further work has led to the nested and slow-scale SSA.
Improved numerical efficiency is obtained by respecting the vastly different time scales
characterizing the system and then by advancing only the slow reactions exactly, based on a suitable
approximation to the fast reactions. We considerably extend these works by applying the QSSA to
numerical methods for the direct solution of the chemical master equation �CME� and, in particular,
to the finite state projection algorithm �Munsky and Khammash, J. Chem. Phys. 124, 044104
�2006��, in conjunction with Krylov methods. In addition, we point out some important connections
to the literature on the �deterministic� total QSSA �tQSSA� and place the stochastic analogue of the
QSSA within the more general framework of aggregation of Markov processes. We demonstrate the
new methods on four examples: Michaelis–Menten enzyme kinetics, double phosphorylation, the
Goldbeter–Koshland switch, and the mitogen activated protein kinase cascade. Overall, we report
dramatic improvements by applying the tQSSA to the CME solver. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2971036�

I. INTRODUCTION

Chemical kinetics are often modeled by ordinary differ-
ential equations �ODEs� but under some circumstances—for
example, when some species are present in small
numbers1,2—a discrete and stochastic framework is more
appropriate.3 Such a framework is provided by the chemical
master equation �CME�,3,4 which has been successfully used
in systems biology to model gene regulatory networks as a
collection of biochemical reactions. Intrinsic noise is known
to be especially important in biological systems where small
numbers of key regulatory molecules are often involved.1,2

Models of the bacteriophage � life cycle have been a flagship
for the success of this approach.5

A very popular method for studying and simulating in-
trinsic noise is the stochastic simulation algorithm �SSA�.4,6

However, the SSA can become too slow in the presence of
large molecular populations and/or large rate constants, thus

motivating the �Poisson� �-leap approximation,7 accelerated
leap methods,8–10 and more generally, multiscale methods for
simulating biochemical kinetics.11,12 In the presence of both
fast and slow reactions, the quasi-steady-state approximation
�QSSA� has been one such multiscale method that has re-
cently received much attention for the purpose of speeding
up simulations of chemical reactions.13–20 Here, we investi-
gate its application to the direct solution of the CME, which
describes the evolution of the probability mass function as-
sociated with the SSA. Significantly, we are able to adapt a
CME solver, based on Krylov methods,21–23 by incorporating
a type of QSSA and thus take advantage of the multiscale
nature of the systems being studied.

This paper is organized as follows. First, we discuss the
mathematical framework of the CME and then give an analy-
sis of how the QSSA is applied, distinguishing among differ-
ent forms of the QSSA. Results of testing these new methods
are reported and the strengths and limitations of the work are
discussed.

A. Background to models of biochemical kinetics

The framework of the CME �Refs. 3 and 4� is now de-
scribed. A biochemical system consists of N different kinds
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of chemical species �S1 , . . . ,SN�, interacting via M chemical
reactions �R1 , . . . ,RM�. It is assumed that the mixture has
constant volume, is homogeneous, and that it is at thermal
equilibrium. The system is modeled as a temporally homo-
geneous, continuous-time, discrete-state, Markov process.
While macromolecular crowding effects leading to anoma-
lous diffusion can be significant when describing processes
on the membrane of a cell or within a cell,24,25 this frame-
work has proved to be successful in a number of biological
settings.5 The state of the system, x��x1 , . . . ,xN�, is a vector
of non-negative integers where xi is the number of molecules
of species Si. Transitions between states occur when a reac-
tion occurs. Associated with each reaction Rj is a stoichio-
metric vector � j, of the same dimension as the state vector,
that defines the way the state changes when a reaction oc-
curs; if the system is in state x and reaction j occurs, then the
system transitions to state x+� j. Associated with each state
is a set of M propensities, �1�x� , . . . ,�M�x� that determine
the relative chance of each reaction occurring. The propen-
sities are defined by the requirement that, given x�t�=x,
� j�x�dt is the probability of reaction j occurring in the next
infinitesimal time interval �t , t+dt�. They involve a “specific
probability rate constant” c, which is measured in terms of
probability per unit time and depends on microphysical prop-
erties of the molecules, temperature, and volume.4 For nu-
merical testing we may assume that the appropriate scalings
have been taken care of and report the values of c and t that
were used.

B. The SSA and leap methods

The SSA4,6 simulates chemical systems one reaction at a
time. At each step, it samples the waiting time until the next
reaction occurs from an exponential distribution, and
samples from a uniform distribution to determine the reac-
tion number, based on the relative sizes of the propensity
functions. However, as noted, it can become too slow in
situations where some fast reactions are associated with very
large propensity functions. The �Poisson� �-leap
approximation7 speeds up the simulation by leaping forward
through a much larger interval in time, with the number of
times a reaction fires being drawn from the Poisson distribu-
tion. Following this idea, the midpoint �-leap method,7 im-
plicit �-leap method,26 Poisson–Runge-Kutta method,11 and
binomial leap10 method have been introduced.

C. The chemical master equation

Given an initial condition x�t0�=x0, the probability of
being in state x at time t, P�x ; t�, satisfies the following dis-
crete PDE:

�P�x;t�
�t

= �
j=1

M

� j�x − � j�P�x − � j;t� − P�x,t��
j=1

M

� j�x� .

�1�

This CME may be written in an equivalent matrix-vector
form so that the evolution of the probability density p�t�
�which is a vector of probabilities P�x ; t�, indexed by the
states x� is described by a system of linear, constant coeffi-

cient, ordinary differential equations, ṗ�t�=Ap�t�, where the
matrix A= �aij� is populated by the propensities and repre-
sents the infinitesimal generator of the Markov process, with
ajj =−�i�jaij. Given an initial distribution p�0�, the solution
at time t is

p�t� = exp�tA�p�0� . �2�

Recently, Munsky and Khammash27 made significant
progress on the solution of the CME with the finite state
projection �FSP� algorithm.

II. THE FSP ALGORITHM

In the FSP algorithm the matrix in Eq. �2� is replaced by
Ak, where

A = 	Ak �

� �

 , �3�

i.e., Ak is a k�k submatrix of the true operator A. The states
indexed by �1, . . . ,k� then form the finite state projection.
The FSP algorithm replaces Eq. �2� with the approximation

p�tf� � exp�tfAk�pk�0� , �4�

which, by Theorem 2.1 of Ref. 27, is non-negative. The sub-
script k denotes the truncation just described and we note
that a similar truncation is applied to the initial distribution.
Consider the column sum �k=1T exp�tfAk�pk�0�, where 1
= �1, . . . ,1�T with appropriate length. Normally, the exact so-
lution �2� would be

Algorithm 1: FSP�A ,p�0� , tf ,��
�1ª0;
for kª1,2 , . . . until �k�1−� do

�kª1T exp�tfAk�pk�0�;
endfor
return exp�tfAk�pk�0�.

A proper probability vector with unit column sum, however,
due to the truncation, the sum �k may be less than one,
because in the approximate system, probability is no longer
conserved. However, as k increases, �k increases too, so that
the approximation is gradually improved.27 Additionally, it is
shown in Theorem 2.2 of Ref. 27 that if �k�1−� for some
prespecified tolerance �, then we have

	exp�tfAk�pk�0�
0


 � p�tf� � 	exp�tfAk�pk�0�
0


 + �1 .

Algorithm 1 summarizes the FSP. It begins with the matrix
representing the CME, A, the initial distribution, p�0�, the
time at which the solution to the CME is desired, tf, and a
tolerance, �, specifying how accurate the solution must be. It
then gradually increases k in Eq. �4� until the desired level of
accuracy is attained. For simplicity, we described the algo-
rithm as if it merely increases k but it can be generalized so
that the projection is expanded around the initial state in a
way that respects the reachability27 of the model.

A. The Krylov FSP algorithm

The FSP method was recently improved to a Krylov-
based approach,21–23 by adapting Sidje’s Expokit codes.28,29

095105-2 MacNamara et al. J. Chem. Phys. 129, 095105 �2008�
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The Krylov FSP converts the problem of exponentiating a
large sparse matrix to that of exponentiating a small, dense
matrix in the Krylov subspace. The dimension m of the Kry-
lov subspace is typically small and m=30 was used in this
implementation. The Krylov approximation to exp��A�v is

	Vm+1 exp��H̄m+1�e1, where 	��v�2, e1 is the first unit basis

vector, and Vm+1 and H̄m+1 are the orthonormal basis and
upper Hessenberg matrix, respectively, resulting from the
well-known Arnoldi process. The exponential in the smaller
subspace is computed via the diagonal Padé approximation
with degree p=6, together with scaling and squaring.

As well as being a matrix-free approach, the Krylov FSP
allows the concurrent expansion of the projection and evalu-
ation of the exponential, via the embedded scheme �with
vectors padded with zeros to be of consistent sizes as appro-
priate�,

p�tf� � exp��KAK� . . . exp��0A0�p�0�, tf = �
k=0

K

�k, �5�

where the ��k� are step sizes and K denotes the total number
of steps. Thus, Eq. �5� is evaluated from right to left, har-
nessing the built-in-step-by-step integration procedure of
Expokit.

B. The effectiveness of the CME approach

Trajectorial approaches have been preferred to probabil-
ity density function �PDF� approaches because a single simu-
lation is relatively cheap. This can be quite a reasonable
approach in many applications but for some examples many
simulations may be required to accurately approximate the
PDF and collect useful statistics, and such an approach does
not easily detect when the system settles down to equilib-
rium. Also, sampling only provides a confidence interval,
whereas a PDF approach is accompanied by a certificate of

accuracy. Thus, we argue that the two approaches should be
viewed as complementary to one another. It is well known
that PDF approaches can be computationally demanding but
in some cases a CME-based approach can be powerful, as
the following two examples demonstrate.

First, Fig. 1 compares the trajectorial and PDF ap-
proaches by applying them to the same model of double
phosphorylation, which we will return to in example �e� of
Sec. IV B. As shown in the figure, the CME approach is
more computationally efficient than running many Monte
Carlo simulations, for the purposes of computing moments
of the distribution. Second, Fig. 1 of Ref. 20 used 50 000
simulations with the SSA to estimate the mean number of
molecules of the product species for Michaelis–Menten en-
zyme kinetics, an example that we will return to in Sec. III F.
Applying the Krylov FSP to this same example shows the
same trend as in Fig. 1, providing another example for which
the CME approach is more computationally efficient, similar
to the results of previous studies.23

C. The FSP approximation as an example of operator
splitting

Despite �eA−eAk� being large the FSP approximation
performs well for the CME because ��eA−eAk�p�0�� is small.
Operator splitting and the special structure of the matrices
arising in biochemical applications explain why the approxi-
mation works so well. For k=1,2 , . . ., the sequence of FSP
approximations is defined: A=Ak+ �A−Ak��Ak+Rk. The
matrices that arise in the CME are typically very sparse and
the nonzero elements lie in a relatively narrow band around
the diagonal. This extra structure is most clearly seen when
the state space is ordered by reachability, as in Fig. 2, which
shows the CME matrix associated with a model of double
phosphorylation, described in Sec. IV B.

FIG. 1. Application of the CME solver �the Krylov FSP
of Sec. II A� and the SSA to the double phosphorylation
model in example �e�, Table I, Sec. IV B. Estimates of
the mean obtained by repeating the SSA, �V, or by
using the CME solver once, �W, are compared in a
log-log plot. The vertical line marks the number of
simulations that can be performed with the SSA in the
same time that it takes to run the CME solver once.
Results of a similar comparison for the variances are
also plotted.

095105-3 Stochastic chemical kinetics J. Chem. Phys. 129, 095105 �2008�
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Thus,

Ak =

� �

0

0 �

0 0
�, Rk = 
0 �

0 � �
�

is a more accurate representation of this structure than Eq.
�3�, which allows for the general case that the matrix is dense
or even full, for example. Under the same ordering the initial
distribution is just a unit vector: p�0�= �1,0 ,0 , . . . ,0�T. From
this sparsity pattern, we see that, for sufficiently large k,
RkAk

i p�0� is zero, and as we increase k it remains zero for
larger i. Using the 10�10 principal submatrix in the top left
hand corner of the full matrix in Fig. 2 as an example,
R10A10

i p�0�=0, for i=0,1 ,2 but R10A10
3 p�0��0. If we in-

crease the projection size k, R20A20
i p�0� is zero for i

=0,1 , . . . ,4, but nonzero for higher powers. For sufficiently
large k, RkAk

i p�0� is zero for i=1, . . . , j and the following
series for the error can be derived:

�eA − eAk�p�0� = �
n=1



1

n!
��Ak + Rk�np�0� − Ak

np�0��

= �
n=j+2



1

n!
	 �

i=0

n−�j+2�

AiRkAk
n−i−1p�0�
 .

In particular, the first j+1 terms are zero, and, as we increase
the size of the projection, more and more of the leading
terms become zero. This explains how the extra structure in
the matrices representing the CME make them very suitable
to the FSP approximation.

Similar arguments may be used to understand the ap-
proximation from the perspective of the Baker–Campbell–
Hausdorff �BCH� formula.30 Suppose k is sufficiently large
such that Rkp�0�=0 so eRkp�0�=p�0�. By application of the
BCH formula with A=Ak+Rk,

eAkp�0� = eAkeRkp�0� = eA+�1/2��Ak,Rk�+. . .p�0� .

The FSP approximation appears on the left and on the right
we see an expression involving the original matrix A and

terms involving the commutator �Ak ,Rk�ªAkRk−RkAk and
higher order commutators. The approximation is exact if the
split operators commute but otherwise the magnitude of the
error is governed by the magnitude of the commutators. Em-
pirically, ��Ak ,Rk�� is often quite large but if we also apply
truncation to the commutator we find that �Ak ,Rk�k=0. In
fact, for sufficiently large k, �Ak ,Rk�p�0�=0 and, similar to
the above result, more and more of the higher order terms in
the BCH formula are seen to become zero as the projection
size increases.

As an example of operator splitting, the FSP approxima-
tion is unusual because it discards the effect of one compo-
nent, namely, Rk. In the next section we consider a more
conventional example of operator splitting.

III. APPLICATION OF THE QSSA TO THE CME

Motivated by the successful application of the QSSA to
the SSA,13–15,18–20 we now apply the QSSA in the context of
the CME. Previous works12,31 have considered related ideas
but the methods presented here are based on Krylov methods
combined with aggregation.

A. Operator splitting in the CME

We begin with the same partition of the reactions into
fast and slow subsets and the same induced decomposition of
the state space into “virtual fast processes,” that is used by
the slow-scale SSA �ssSSA� �Ref. 13� and the nested SSA
�nSSA�,14,15 and proceed to place these approximations in a
matrix framework. As in Sec. III of Ref. 13 the fast reactions
induce a “fast partition” of the state space, with two states
being in the same subset of this partition if and only if one
can be reached from the other via a sequence of fast reac-
tions. Each subset gives rise to a “virtual fast process,” de-
fined in Sec. IV of Ref. 13, which consists of the subsystem
obtained when the slow reactions are turned off.

Let Rf � �R1 , . . . ,RM� denote the subset of fast reactions
and let Rs denote the rest. The CME �Eq. �1�� can then be
rewritten by splitting the right hand side into two parts. The
fast reactions give rise to the following “fast CME,”

�Pf�x;t�
�t

= �
j�Rf

� j�x − � j�Pf�x − � j;t�

− Pf�x;t� �
j�Rf

� j�x� . �6�

An analogous “slow CME” arises for Rs and summing the
two recovers Eq. �1�. The same splitting may be expressed
conveniently in matrix notation as

A = A f + �A − A f� � A f + As.

Here A f corresponds to the fast CME so that, in matrix no-
tation, Eq. �6� is ṗ f�t�=A fp f�t�. Similarly, As corresponds to
the slow CME, which in matrix notation is ṗs�t�=Asps�t�.
Both A f and As are infinitesimal generators of Markov pro-
cesses by themselves, a property deliberately preserved in
order for them to be amenable to further analysis.13

For many important biological examples, the matrix A f

is block diagonal, with blocks corresponding to subsets of

FIG. 2. The CME matrix A for double phosphorylation with initial state �10,
10, 0, 0, 0, 0�. 5290 entries are nonzero. The sparse structure is typical of
matrices arising in the CME and is important for understanding why the FSP
approximation works so well �see Sec. II C�.

095105-4 MacNamara et al. J. Chem. Phys. 129, 095105 �2008�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.181.251.131 On: Thu, 27 Mar 2014 04:26:28



the fast partition and each block being much smaller than the
original matrix. Thus, each block governs a virtual fast pro-
cess with its own stationary distribution. It is these distribu-
tions that are used by the nSSA and ssSSA to approximate
the modified propensities of the slow reactions, the so-called
“slow-scale propensity” functions. Thus, in general, A f has
multiple zero eigenvalues, corresponding to distinct eigen-
vectors, and similar remarks apply to As.

B. A splitting scheme based on the QSSA

We expect the combined cost of independently exponen-
tiating As and A f to be less than that of treating the full
system because of the block diagonal structures of As and
A f. Thus, we consider taking a small time step h with a
splitting scheme,

p�t + h� = ehAp�t� � e�1/2�hAfehAse�1/2�hAfp�t� .

This is the distribution that must be approximated and then
sampled from in order to take a small step in a simulation
algorithm such as the nSSA or ssSSA. The approximation
being used is the symmetric Strang splitting,32 which is of
order 2.

When using the QSSA, the time step h is required to be
sufficiently large such that the fast reactions almost reach
equilibrium, so that e�1/2�hAf is approximated by its stationary
solution, A f


� limt→
etAf. Introducing this approximation to
the Strang splitting gives the approximation

p�t + h� � A f

ehAsA f


p�t� . �7�

Note that the action of A f
 is the analog of �14� in step 3 of
the slow-scale algorithm13 and that the two constraints on the
size of the time step h are analogous to those made by the
slow-scale approximation lemma13 that requires h be small
enough that only a single slow reaction occurs over the in-
terval but still large compared to the relaxation time of the
fast reactions. Thus, the approximation is a good analog of
the ssSSA. Also, note that A f


is a projection matrix so
A f


2 =A f

, which could be used for computational savings

when approximating p�Nh� by taking N steps with Eq. �7�.
We now introduce the approximation A f


ehAsA f

�ehÂs into

Eq. �7� giving our penultimate approximation to Eq. �2�,

etÂsp�0� . �8�

In analogy with the Krylov approximation, where the projec-
tion of the exponential is approximated by the exponential of

the projection,33 we consider choosing A f

AsA f


for Âs.
However, this may not be Markovian so we adopt the ansatz

that Âs�A f

AsA f


+��A f

− I�, which is Markovian for suit-

ably large �,34 for example ��maxi�aii�. In summary, we
have approximated one Markov process, governed by the
CME represented by A, with another Markov process, gov-

erned by the CME represented by Âs.

C. The QSSA as a form of aggregation

Briefly, we introduce the aggregation and disaggregation
operators, E and F.34,35 Given the state space, of size nA and
some partition of this into nB subsets, we define E�RnB�nA

such that Ei,j =1, if state j is in subset i and Ei,j =0 otherwise.
We are then free to choose any F�RnA�nB with non-negative
entries, unit column sum, and such that Fi,j

T �0 if and only if
Ei,j�0. Usually, we think of nB�nA. The pair of operators
always have the properties that EF=I, FE is a projection
matrix, and EAF also represents a Markov process whenever
A does. The technique of aggregation was introduced so that
the former could be used as an approximation to the latter,
with the dual computational advantages of reducing the di-
mension �a matrix of dimension nB as opposed to nA� while
still preserving the Markov property.

We choose E to combine states according to the partition
of the state space into virtual fast processes and we choose F
so that its columns record the equilibrium solutions of these
fast processes. With this choice,

A f

= FE . �9�

Thus,

EÂs = E�A f

AsA f


+ ��A f ,

− I�� = �EF��EAsF�E + 0 = BE ,

where we have introduced B�EAsF. �In fact, EA f =0 so
B=EAF, which is the conventional approximation used
when the technique of aggregation is applied.� Equivalently,

EetÂs = etBE . �10�

Importantly, this explicitly gives a more efficient way to
compute Eq. �8�. We recover disaggregated solutions as
FetBEp�0�, which is our final approximation to Eq. �2�. This
is mathematically equivalent to approximating Eq. �8� by

A f

etÂsp�0� but computationally preferable. The Markov

model governed by B may be thought of as being obtained
from A by combining states in each virtual fast process into
one big super state. The propensities that populate B corre-
spond to moving between these super states. Each propensity
is the same as the slow-scale propensity function used by the
ssSSA, which is the weighted average of the regular propen-
sities over the states in the virtual fast process, treated as
though they were in their equilibrium distribution. Thus, we
have achieved our goal of placing the application of the
QSSA to the CME, along with the approximations of the
nSSA and ssSSA, within the framework of aggregation.

D. Computation of quasistationary distributions

We outline four strategies for obtaining the stationary
solutions of A f, which we need to define the action of F. The
first approach is described in Appendix A of Ref. 13, where a
recursive formulation for the stationary solution may be de-
rived by making the ansatz that the model satisfies the spe-
cial criterion of detailed balance.3 We identify a formula in
this way for the Michaelis–Menten model. Secondly, a
Monte Carlo strategy would be to repeatedly simulate each
virtual fast process and estimate the stationary solution. A
variation of this would be to use Eq. �13� of Ref. 14, as in the
nSSA, to directly estimate the propensities that populate the
matrix B. We suggest identification of the blocks, A f i

, of the
fast operator, via the reachability structure of the model, and
then to use off-the-shelf methods for solving the matrix
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equation A f i
xi=0. Two good choices would be LU factoriza-

tion �for relatively small, dense blocks� or the power method
�for larger, sparse blocks� and the implementation for this
paper used a combination of these. In order to overcome the
singular nature of the blocks one can use the trick of adding
a rank one matrix36 by applying the LU solver to �A f i
+�ejej

T�x̃i=ej and normalize the result to obtain xi. By con-
sideration of the Gerschgorin disks, the choice of �
�2 max�ajj� ensures that the use of the power method with
the shifted operator �Afi

+�I� converges to the correct eigen-
value. A good choice for the initial vector would be
�1, . . . ,1�T because it is guaranteed to have a nonzero projec-
tion onto the stationary solution and is orthogonal to all other
eigenvectors.

E. The QSSA-based CME solver

The QSSA-based CME solver that evaluates Eq. �10� is
outlined in Algorithm 2. It begins with the matrix represent-
ing the CME, A, the initial distribution, p�0�, the time at
which the solution to the CME is desired, tf, the set of fast
reactions, Rf, and a tolerance, �, that will be used later in a
call to the FSP algorithm. The preprocessing stage uses the
fast reactions Rf to compute A f from A, and also to compute
E, which represents the partition of the state space into vir-
tual fast processes. Next, A f is used to compute F via any of
the techniques in Sec. III D. Next, B is formed, by comput-
ing B=EAF. Next, the FSP �Algorithm 1� is used to com-
pute etfBEp�0�. We employ a modification of the FSP that
uses Krylov techniques, described in Sec. II A. Finally, there
is a post processing step, which is equivalent to multiplica-
tion of the resulting distribution by F. If the approximation
were exact we would have Fq�tf�=p�tf�.

Algorithm 2: QSSA CME solver �A ,p�0� , tf ,� ,Rf�
�E ,F ,A f�=Preprocess�A ,Rf�;
B=EAF;
�q�tf��=FSP �B ,Ep�0� , tf ,��;
return Fq�tf�.

Note that the remarks made in Refs. 13 and 30 carry over to
the QSSA-based CME solver. First, in many cases it is only
the aggregated distributions that are of interest so computa-
tional savings may be made by skipping the postprocessing
step. Second, the computation of the stationary solutions is
trivially parallelized and can be automated as it can be for
related methods such as the ssSSA. Often, it is only an ap-
proximation to the first few moments that is required, allow-
ing savings in computations with F. Also, by treating each
virtual fast process separately B can be computed using only
parts of E and F at any one time so that we never need store
these matrices in full. Third, we compare the aggregated dis-
tributions as a measure of the accuracy of the approximation.
For example, in the case of the Michaelis–Menten enzyme
kinetics, the accuracy is assessed in terms of the distribution
of products, and more generally the accuracy is assessed as
�EetfAp�0�−etfBEp�0��. Fourth, experimental data are often
so difficult to obtain that there is only enough information to
parameterize an aggregated model such as the QSSA.

F. The tQSSA-based CME solver

Having discussed the interpretation of the QSSA in the
stochastic setting, and, in particular, its application to the
CME, we now establish the connection to the total QSSA in
the deterministic setting. The original papers detailing the
tQSSA in the ODE setting37–41 introduce it via the example
of Michaelis–Menten kinetics, while Rao and Arkin use the
same example to introduce their QSSA in the stochastic
setting.20 The connection to the deterministic literature on the
tQSSA shows that Algorithm 2 is really a natural generaliza-
tion of the tQSSA to the stochastic setting so from now on
we refer to Algorithm 2 as the tQSSA CME solver.

The Michaelis–Menten model involves an enzyme, E,
that gradually catalyzes the conversion of all available sub-
strate S, into a product P, via an intermediate complex C.
There are four chemical species �S ,E ,C , P�, and three
chemical reactions, which are described in Table I. The sys-
tem is subjected to the following pair of conservation laws:
EI=E+C and SI=S+C+ P. Reactions 1 and 2 are “fast.” Fig-
ure 3�a� shows the full state space of the Michaelis–Menten
scheme and Fig. 3�b� shows the partition into virtual fast
processes. In relation to Algorithm 2, E encodes the partition
into the rectangles of the figure, F encodes the stationary
distribution of the process in each rectangle, and the slow-
scale propensities that populate B correspond to transitions
from one rectangle to the next rectangle higher up.

Taking into account the conservation laws, the determin-
istic, reaction rate equation model for the Michaelis–Menten
system consists of two ODEs: one each for the substrate and
the complex. It is usual to make the approximation dC /dt
=0 and then reduce the system to just one ODE, which is
known as the standard QSSA �sQSSA�. The tQSSA makes
the same approximation after first introducing the change of
variable known as the total substrate, ST�S+C, which
greatly extends the parameter regime over which the ap-
proximation is valid.41 This motivates us to consider another
partition of the state space, in the stochastic setting, obtained
by combining states with the same value of ST. In fact, as the
figure shows, such a partition is the same as the partition into
virtual fast processes. Thus, Algorithm 2 may be regarded as
a generalization of the tQSSA to the stochastic setting and if
the closely related approximations of the nSSA �Ref. 14� and
ssSSA �Ref. 13� were applied to the Michaelis–Menten
scheme, they would also be classified as examples of the
tQSSA. For example, the total substrate is the same as the
invariant variable14,15 used in the analysis of the nSSA,
which reflects the conservation laws of the virtual fast
processes.

TABLE I. Michaelis–Menten scheme, as in Ref. 20. Rate constants: c
= �1.0,1.0,0.1�. Initial state: �100, EI, 0, 0�. Example �i�: EI=10, tf =30.
Example �ii�: EI=1000, tf =20.

Reaction Propensity

1 S+E→C c1�S�E
2 S+E←C c2�C
3 C→P+E c3�C
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The Appendix provides more details, including a for-
mula for B and the relationship to the sQSSA.

IV. RESULTS

We compare the accuracy and efficiency of �A� the Kry-
lov FSP for the full CME and �B� the tQSSA-based CME A
solver. By default, the Krylov FSP is called with �Expokit,
FSP� tolerances of �10−8 ,10−5�, but bear in mind that these
bounds are pessimistic and the actual results may be better.
The postprocessing step is not included in the runtimes re-
ported here. Unless otherwise stated, all numerical experi-
ments used FORTRAN with the Intel “ifort” compiler, and
were conducted on an SGI Altix with 64 Itanium 2 CPUs and
120 GBytes of memory running the LINUX operating system.
However, only a single processor was used. Since the true
solution is not available, we assess the accuracy of the
tQSSA by comparison with the Krylov FSP, with strict
tolerances.

We compare the approximations of the mean obtained by
the two methods. The mean refers to the average number of
molecules of a chemical species at tf. The mean of a distri-
bution involving more than one species refers to the vector
of means for each species: �E�S1� , . . . ,E�SN��.

A. Michaelis–Menten enzyme kinetics

The results of applying the tQSSA-based CME solver to
the two examples in Table II, are recorded in Table III, which
shows that it is an extremely good approximation. The accu-
racy is measured by comparing the conditional distributions
for the products. Example �ii� shows considerable savings in
runtime, while example �i� is really too small to see this. The
tQSSA is more accurate for example �ii� where the enzymes
are in excess, which is to be expected since the increased
population of enzymes increases the propensity of the fast
reactions making the assumptions underlying the tQSSA
even more appropriate. In particular, we do not encounter the
trouble that Rao and Arkin report for this example, which is
an advantage of the tQSSA approach.

The norms of the operators involved in the examples in
Table II are given in Table III. The norm of the reduced
operator B is at least two orders of magnitude less than that
of the full model A and this is where some of the computa-
tional savings are being made. Also, ��As ,A f��2 / �A�2 is
small, which is consistent with analysis via the BCH for-
mula. Further experiments show that ��As ,A f�p�t��2 becomes
much smaller for larger t. This suggests using the full Krylov
FSP for a brief initial transient, and then switching to the
tQSSA for the rest of the computation, would increase the
accuracy of the tQSSA without much extra cost. Numerical
experiments combining the algorithms confirm this for ex-
ample �ii�: using the full Krylov FSP for an initial transient
of t=1.0 and then switching to the tQSSA for the rest of the
integration only increases the runtime to about 10 s but gives
significantly greater accuracy of 10−6 in the 1-norm.

B. Double phosphorylation

This is an example of a fully competitive reaction
scheme, with substrates competing for a common enzyme,
and arises in the double phosphorylation of MAPK by
MAPKK.38,42 It can be thought of as one Michaelis–Menten

FIG. 3. �a� Each circle represents a state �S ,E ,C , P�, in the Michaelis–
Menten model. The initial state, �SI ,EI ,0 ,0�, is the bottom left circle. The
top circle is �0,EI ,0 ,SI�, an absorbing state reached when all substrates have
been converted to products, so P= Pmax=SI. Transitions within the same row
are the fast, reversible formation �to the right� and dissociation �to the left�
of the complex. Upward transitions between rows represent formation of
product. �b� The rectangles partition the state space into virtual fast pro-
cesses. States within the same rectangle have the same value of the total
substrate, ST�S+C.

TABLE II. Comparison of Krylov FSP and tQSSA for the Michaelis–
Menten examples in Table I. The speed-up is defined as the runtime of the
Krylov FSP divided by the runtime of the Krylov FSP divided by the run-
time of the tQSSA.

Example Speed-up � · �1 � · �2 � · �


�i� 1 7E−3 2E−3 4E−4
�ii� 216 3E−4 9E−5 3E−5

TABLE III. Norms of operators in Michaelis–Menten model. C��As ,A f�.

Ex �A�2 �A f�2 �As�2 �C�2 �Ap�0��2 �Cp�0��2 �B�2

�i� 1.7E3 1.7E3 1.7 1.7E2 1.4E2 1.4E2 1.97
�ii� 1.9E5 1.9E5 19.1 1.8E4 1.4E5 1.4E4 19.1
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scheme feeding into another and so there is a natural choice
for the tQSSA in which two new “total substrate” variables
are introduced: STi

�Si+Ci for i=1,2. There are six chemical
species �S1 ,E ,C1 ,S2 ,C2 , P�, and six chemical reactions, de-
scribed in Table IV, which gives parameters for six examples
considered here. It is subject to two conservation laws: S1I
=S1+C1+S2+C2+ P and EI=E+C1+C2 and has an absorb-
ing state that is always eventually reached. The pair of re-
versible reactions 1 and 2, and the pair 4 and 5, are deemed
to be fast and the remainder slow.

Following Pedersen et al.,38 together with the two con-
servation laws, the deterministic model is described by the
following four coupled ODEs:

dS1

dt
= c2C1 − c1S1E ,

dC1

dt
= c1S1E − �c2 + c3�C1,

dS2

dt
= c3C1 + c5C2 − c4S2E ,

dC2

dt
= c4S2E − �c5 + c6�C2. �11�

The sQSSA then makes the approximation dCi /dt�0, for i
=1,2, while the tQSSA makes the same approximation after
first introducing the change of variables mentioned above.
Either approach reduces the system to just two DEs, al-
though they are parameterized by more complicated propen-
sity functions. In particular, the tQSSA gives rise to a cubic
polynomial that must be solved at each step of a numerical
integration scheme. Figure 4�a� shows the tQSSA is very
accurate in the deterministic setting for example �c�. Using
MATLAB’s built-in ODE solvers for example �b� shows that
the stiff solver ode15s is slightly faster than ode45 and that
using Cardan’s formula, for the solution of a cubic, is twice
as fast as fzero.

Figure 4�b�compares a stochastic trajectory with the de-
terministic model. The dynamics are roughly consistent, al-
though the stochastic trajectory is absorbed at t�13, while at
that time the deterministic model �Eq. �11�� is just reaching
equilibrium. ODE models for chemical kinetics are in terms

of concentrations �in units of moles per liter� and the rate
constants are closely related to, but not quite the same as, the
ci used by the SSA.4 For numerical testing, we use the same
values of ci for both models but for other applications appro-
priate scalings would need to be taken into account.

Table V compares the tQSSA with the full Krylov FSP.
For each example, we choose a value of tf that occurs at an
“interesting” stage of the dynamics of the process, roughly
just before the peak in the population of the second complex,
C2, and still far from equilibrium. The results are significant
but it is anticipated that choosing larger values of tf would
favor the tQSSA even more. Examples �a�, �b�, and �c� show
the effect of reducing the number of enzymes. For examples
�a� and �b�, the Krylov FSP eventually uses a matrix of size
4 517 885, which is about 98% of the full model �of size
4 598 126�. For both examples, almost all of the computa-
tional time of the tQSSA is spent preprocessing, with less
than one second being needed to solve the reduced system.
Some savings in preprocessing can be made by applying
Algorithm 2 to a truncated version of the operator. For the
double phosphorylation example, we use the same truncation
size as the Krylov FSP uses but other ways to choose the
truncation size will be considered in future work.

The enzymes are well in excess for example �a�, for
which the speed-up is more than an order of magnitude while
maintaining reasonable accuracy. Visualizations of the solu-
tion are provided in Fig. 5, which shows that the tQSSA can
be very effective. The enzymes and substrates are balanced
in example �b�, for which the tQSSA shows a speed-up of
about a factor of 4. This is less than the last example, as is

TABLE IV. Description of the double phosphorylation enzyme kinetics
scheme. The initial state is �100, EI, 0, 0, 0, 0�. Examples �a�, �b�, and �c�
use EI=1000,100,10, respectively, and tf =2,2.5,20, respectively. Ex-
amples �a�, �b�, and �c� use c= �0.2,1.0,0.6,0.2,1.0,0.5� �Ref. 40�. Ex-
amples �d�, �e�, and �f� match �a�, �b�, and �c�, respectively, except that they
have different rate constants: c= �1.0,1.0,0.1,1.0,1.0,0.1�.

Reaction Propensity

1 S1+E→C1 c1�S1�E
2 S1+E←C1 c2�c1

3 C1→S2+E c3�C1

4 S2+E→C2 c4�S2�E
5 S2+E←C2 c5�C2

6 C2→P+E c6�C2

FIG. 4. �a� Results of using Eq. �11� and the tQSSA for the deterministic
model of double phosphorylation for example �c� in Table IV are superim-
posed for comparison. �b� Results of using the stochastic and deterministic
models of double phosphorylation for example �b� in Table IV are superim-
posed for comparison.
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the accuracy. A comparison of the solutions appears very
similar to that of Fig. 5, although the tQSSA has “shifted”
the distribution slightly to the right, which is consistent with
our intuition that the tQSSA overestimates how quickly the
reactions progress towards equilibrium. The enzymes have
been reduced so much in example �c� that the substrates are
now in excess and the system is truly competitive. Compared
to the previous examples, we expect that the much larger

value of tf would be favorable towards the tQSSA, while the
reduced number of enzymes would be unfavorable. Overall,
the accuracy is intermediate between the first and second
examples, while the speed-up is about an order of magnitude.
The CME solutions obtained from the two methods show a
similar comparison as in example �b�.

Examples �d�, �e�, and �f� show the effects of changing
the rate constants to be in line with a coupled pair of
Michaelis–Menten schemes taken from Ref. 20. This change
makes the problem even more suitable to the tQSSA as the
difference between the propensities for fast and slow reac-
tions is more pronounced. Thus, examples �d�, �e�, and �f�
show better accuracy than examples �a�, �b�, and �c�, respec-
tively, and a glance at E�P� shows the systems have con-
verged much more quickly towards equilibrium. Compared
to �a� and �b� the projection size is significantly reduced in
�d� and �e�, respectively, but this is not reflected in the run-
times because the new rate constants force Expokit to use
smaller step sizes. This stiffness is overcome through aggre-
gation and the tQSSA for these examples is about twice as
fast as the full Krylov FSP.

C. Goldbeter–Koshland switch

The Goldbeter–Koshland switch43 consists of a pair of
Michaelis–Menten enzyme kinetic models, catalyzed by dif-
ferent enzymes, in which the product of the one forms the
substrate of the other, and vice versa. There are six chemical
species �S ,E1 ,C1 , P ,E2 ,C2�, and six chemical reactions,
which are described in Table VI. It is subject to three con-
servation laws: SI=S+C1+ P+C2, E1I

=E1+C1, and E2I
=E2

+C2. Reactions 1, 2, 4, and 5 are fast. The full model uses a
projection of size �170 000 but the tQSSA drastically re-
duces this to approximately 100. This gives a speed-up of a
factor of 5, while maintaining accuracy of 10−3, for the dis-
tribution of ST1

. About 90% of the runtime of the tQSSA is
spent preprocessing. Again, the means compare well: E�ST1

�

TABLE V. Comparison of Krylov FSP �Ȧ� and tQSSA �B� for the double phosphorylation model, with ex-
amples as in Table IV. The accuracy of the tQSSA is assessed in terms of the conditional distribution for the
products P, the mean of which is recorded in the last column. For each method, n is the size of the projection
used.

Example Runtime �s� � · �1 � · �2 � · �
 n E�P�

�a� A 7.446 4,517,885 29.4
B 356 3E−2 8E−3 3E−3 5,151 29.7

�b� A 1,414 4,517,885 28.2
B 353 0.6 0.1 4E−2 5,151 31.8

�c� A 60 270,272 31.4
B 5 0.3 5E−2 1E−2 5,007 33.3

�d� A 7,567 1,782,721 1.745
B 144 2E−3 1E−3 6E−4 5,151 1.749

�e� A 1,227 1,869,423 2.1
B 151 9E−2 4E−2 2E−2 5,007 2.2

�f� A 5 32,967 1.6
B 1.2 6E−2 3E−2 2E−2 5,007 1.7

FIG. 5. The CME solution for example �a� in Table IV. �a� The �true� CME
solution computed with the full Krylov FSP. �b� Result of using the tQSSA.
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and E�ST2
� are 51.10 and 48.91, respectively, under A, while

they are 51.09 and 48.91, respectively, under B.

D. The mitogen activated protein kinase cascade

Recently, the deterministic tQSSA was applied to
coupled enzymatic networks similar to those in this paper,
including the Goldbeter–Koshland switch.44 The authors ex-
pressed the desire to generalize the deterministic tQSSA to
the stochastic framework of the CME. We provide such a
generalization. As an example we apply the tQSSA to the full
MAPK cascade,42 a large coupled enzymatic network impli-
cated in a variety of signaling processes governing transi-
tions in a cell’s phenotype. Figure 6 is a schematic represen-
tation of the reactions in the MAPK cascade, and a complete
description of the reactions can be found in Ref. 42.

The MAPK cascade has a modular structure and is com-
posed of ten coupled Michaelis–Menten schemes, consisting
of 22 species and 30 reactions in all. We use rate constants
for the Michaelis–Menten building blocks that match the
Michaelis–Menten model already studied in Table I. Thus,
there are ten slow reactions with rate constant of 0.1 and the
rest are fast reactions with rate constant of 1.0. For the initial
state, we use 100 molecules each for E1, E2, KKP�ase,
KP�ase, KKK, KK, and K �these are the seven key species
that form the nonzero elements of the natural initial condi-
tion used by Huang and Ferrel42� and all other species are set
to zero.

The structure of the MAPK cascade gives rise to the
following eight total substrates:

ST1
� KKK + KKK . E1,

ST2
� KKK* + KKK* . E2 + KKK* . KK

+ KKK* . KK − P ,

ST3
� KK + KKK* . KK ,

ST4
� KK − P + KK − P . KKP�ase + KKK* . KK − P ,

ST5
� KK − PP + KK − PP . KKP�ase + KK − PP . K

+ KK − PP . K − P ,

ST6
� K + KK − PP . K ,

ST7
� K − P + K − P . KP�ase + KK − PP . K − P ,

ST8
� K − PP + K − PP . KP�ase . �12�

Due to the structure of the cascade, the slow-scale propensity
functions depend only on the mean of the quasistationary
distributions of the virtual fast processes and we exploit this
for computational efficiency. In many cases, a good approxi-
mation to the mean is afforded by the solution to the corre-
sponding deterministic reaction rate equations �RRE�, so we
use this approach, which is also used in, for example, the
slow-scale SSA.7 Note that the deterministic tQSSA corre-
sponding to Eq. �12� is used for the RRE approximation and
not the usual sQSSA. This is important for accuracy as well
as numerical efficiency and stability.

We compute the CME solution at tf =10 in this way,
using a matrix of about 12�106 in size, in 70 min. This
computation is only possible with the help of the tQSSA
because, otherwise, the matrix representing the enormous
state space of the full model would be too large. The solution
is obtained in terms of the total substrates and from this we
would normally recover distributions for the other species by
using the quasistationary distributions of the virtual fast pro-
cesses. However, these quasistationary distributions are not
available because we only computed approximations to their
means, so instead we use these mean values to recover the
distribution for the other species.

Figure 6 shows the results for the complex denoted by
KKK .E1 that is formed by MAPKKK and the enzyme that
activates it, denoted by E1. The formation of this complex is
the critical event that triggers the rest of the signaling cas-
cade. Ciliberto et al.44 suggest that “the role played by en-
zyme substrate complexes in protein interaction networks
could be more important than currently appreciated” based
on their observations of the complexes being present in
higher than expected concentrations. Our results suggest this
finding is also applicable to the MAPK cascade. For ex-
ample, Fig. 6 shows that the complex species KKK .E1

makes up a relatively large proportion of the available total
substrate ST1

, which can be at most 100 for this example.

TABLE VI. The Goldbeter–Koshland switch �Ref. 43�. We set the initial
state to �100, 100, 0, 0, 100, 0�, c= �1.0,1.0,0.1,1.0,1.0,0.1�, and tf =20.

Reaction Propensity

1 S+E1→C1 c1�S�E1

2 S+E1←C1 c2�C1

3 C1→P+E1 c3�C1

4 P+E2→C2 c4� P�E2

5 P+E2←C2 c5�C2

6 C2→S+E2 c6�C2

FIG. 6. Schematic of the MAPK cascade, adapted from Ref. 42. It involves
a MAPK kinase kinase �MAPKKK�, a MAPK kinase �MAPKK�, and a
MAPK. We follow standard notation �Ref. 42� and abbreviate MAPKKK to
KKK, MAPKK to KK, and MAPK to K. KKK* denotes activated MAPK.
K-P and K-PP denote singly and doubly phosphorylated MAPK, respec-
tively. P’ase denotes phosphotase.
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For smaller molecular numbers we are able to assess the
accuracy of the tQSSA for the MAPK cascade by compari-
son with the full solution, and the accuracy is quite reason-
able, with an error of about 0.01 in the 1-norm. Also for
smaller molecular numbers, we can asses the accuracy of the
RRE approximation to the means, and these compare ex-
tremely favorably to the true means of the quasi-stationary
distributions. This gives confidence in the results for the
larger example in Fig. 7 and shows that clever and innova-
tive CME-based implementations can be computationally ef-
fective on even quite large chemical kinetic problems.

V. DISCUSSION

One of the virtues of PDF approaches, such as the Kry-
lov FSP, is that they provide one way to assess the accuracy
of Monte Carlo approaches such as the nSSA. In some cases
the tQSSA-based CME solver can be more efficient for the
purpose of estimating moments of the distribution. For ex-
ample, a comparison of the nSSA and the tQSSA CME
solver when applied to the double phosphorylation example
�e� of Sec. IV B shows a similar trend to that of Fig. 1. On
the other hand, systems with very many chemical species,
large population numbers, and large propensities provide ex-
amples that are better suited to trajectorial methods such as
the nSSA. This reflects the inherently high-dimensional na-
ture of the CME, which provides a challenge for all numeri-
cal methods. Recently, considerable progress has been made
and moderate-sized problems are becoming feasible via vari-
ous techniques.12,21,23,34 The tQSSA reduces the dimension of
the problem and thus provides yet another way to cope with
the curse of dimensionality.

The connection to the theory of aggregation provides a
unifying framework for the various versions of the QSSA
that have been proposed. In the QSSA, E represents the par-
tition of the state space induced by the partition of the reac-
tions into fast and slow, and then F is always defined to
satisfy Eq. �9�. For example, the approximate CME associ-
ated with the tQSSA CME solver, the nSSA, and the ssSSA,
corresponds to this choice. By allowing other choices for E
and F, as well as using different choices in combination, this
connection provides a framework for developing approxima-
tions of higher quality or with desirable properties. For ex-
ample, the choice corresponding to Eq. �9� does not neces-

sarily preserve the stationary solution in the natural way but
this can be achieved by varying the choice of F.45

Lastly, we discuss how to decide when it is appropriate
to apply the tQSSA. The slow-scale approximation lemma17

provides the basis for when the approximation is appropriate.
Briefly, the key requirement is that the relaxation time of the
virtual fast process must be much smaller than the average
time to the next slow reaction.13 Checking this requirement
may involve some analysis but for many systems of interest
we already have some intuition that some reactions will be
much faster than others. Empirically, the approximation has
been demonstrated to perform well for coupled enzymatic
networks and signaling cascades.

The tQSSA was described as if the set of fast reactions
was fixed. However, examples for which this set must take
into account the coupling of reactions and must be changed
adaptively and are known.46 Generalizing the algorithm to
allow for the set of fast reactions to change over time, as the
system changes state, would allow the approximation to be
applied to a wider class of systems. The following is one way
to do this.

We examine each “virtual fast process,” and check that
the slow-scale approximation lemma is satisfied. We com-
pute the ratio of the sum of the propensities of the fast reac-
tions to the sum of the propensities of the slow reactions, and
then compare this ratio to a threshold. If the ratio is less than
the threshold, we do not use the tQSSA for that region of the
state space and instead we simply revert to using the original
equations. For those regions of the state space that do pass
the test we continue to use the tQSSA.

This approach is analogous to the way that methods such
as the ssSSA address the same issue, by regarding the initial
partition of reactions as tentative only, checking it dynami-
cally, and then changing it if need be.13 It corresponds to
making a slightly different choice of the aggregation matrix
E; we simply do not aggregate in those areas of the state
space that do not pass the test. This is an example of
the benefit of making the connection to the theory of
aggregation.

To demonstrate this generalization, we use an example
that augments the Michaelis–Menten scheme in Table I, with
a fourth reaction,

C + P → 2P + E .

The augmented system may be regarded as an autocatalytic
version of the Michaelis-Menten scheme since the formation
of the product species, P, now catalyzes the formation of
more of itself. The propensity of this extra reaction is c4

�C� P, with c4=0.1. We set the initial state to be
�S ,E ,C , P�= �100,10,0 ,0�. To begin with, reaction four will
be slow, but as the system evolves and the number of mol-
ecules of product P grows, the fourth reaction will become
very fast. Thus, we have constructed this example specifi-
cally so that it has the property that during the dynamical
trajectory a reaction may change class. We compute the
mean of the number of molecules of the product P at tf

=10, by the generalized algorithm, for various values of the
threshold �Table VII�, The true solution according to the full
CME is also recorded. Using a threshold of zero corresponds

FIG. 7. CME solution at tf =10 for the MAPK cascade.
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to the original version of our algorithm for which the set of
fast reactions is fixed and it can be seen that this approach is
not very accurate. This is just what we expect for an example
such as this that was designed specifically to illustrate this
point. However, as the threshold is increased, the accuracy
improves considerably because the tQSSA is only applied to
those regions of the state space for which the approximation
is suitable. More sophisticated strategies will be developed in
future work but even this simple example illustrates that our
algorithm can be generalized to accommodate adaptive par-
titioning of the reactions.

VI. CONCLUSIONS

The total QSSA has been generalized to the stochastic
setting by making some important connections to the litera-
ture on aggregation, resulting in a CME solver that is more
computationally efficient. The new methods have been suc-
cessfully demonstrated on Michaelis–Menten enzyme kinet-
ics, double phosphorylation, the Goldbeter–Koshland switch,
and the MAPK cascade. Overall, the application of the
tQSSA CME solver was extremely successful since it dra-
matically reduces the size of the problem and speeds up the
computation very considerably, while maintaining acceptable
accuracy.

APPENDIX: THE tQSSA FOR MICHAELIS–MENTEN
ENZYME KINETICS

We give a formula for the quasiequilibrium distributions
of the virtual fast processes. For each rectangle correspond-

ing to ST=0,1 , . . . ,SI, let P̂�S �ST� denote the probability of
the state with S substrates, according to the quasiequilibrium
distribution.

Let Smin�max�0,ST−EI� and P̂�Smin �ST��1. Then

P̂�·�ST� �not yet normalized� is defined recursively, for S

=Smin, . . . ,ST−1, by P̂�S+1 �ST�=K�ST−S� / �EI− �ST− �S
+1����S+1�P̂�S �ST�, where K�c2 /c1. The slow-scale pro-
pensities for the reduced model are ��ST→ST−1�
=c3E�C �ST�=c3AST

�S=Smin

ST−1 �ST−S�P̂�S �ST�, for ST=1, . . . ,SI.

Here, AST
���S=Smin

ST P̂�S �ST��−1 is a normalization constant.
Enumerating the states in increasing order of the number

of products, the matrix B is bidiagonal, of size SI+1, with
bii�−bi+1,i and bi+1,i���SI− i+1→SI− i�. The last column
is zero, corresponding to the absorbing state. Thus, the
tQSSA reduces this example to a one-dimensional, pure
death process. The sQSSA makes the same approximation
without introducing the change of variables, which in the
stochastic setting corresponds to aggregating states with the
same number of free substrates. The states within a block of

such a partition are connected by the relatively slow reac-
tions, so this approximation corresponds to the counterintui-
tive assumption that the slow reactions almost reach equilib-
rium before the fast reactions take effect. Thus, by itself, this
stochastic version of the sQSSA is not a sensible approxima-
tion. However, the two approximations may be used in com-
bination to achieve more accurate results than either of them
used alone, in analogy with operator splitting.47

We now compare the tQSSA with Rao and Arkin’s inter-
pretation of the QSSA as applied to the CME associated with
Michaelis–Menten enzyme kinetics. Although the total sub-
strate variable ST=S+C is explicitly introduced in Ref. 20, p.
5002, there is no connection to the tQSSA. In fact, Eq. �17�
in Ref. 20 is obtained by performing an asymptotic expan-
sion of the probability P in terms of the perturbing term �
ªe0 /s0. This mechanism, with the same parameter, was sug-
gested by Heineken et al.,48 in a deterministic framework, in
order to show that the sQSSA can be considered as the zero-
order approximation of the system. The asymptotic expan-
sion proposed by Rao and Arkin is valid only if e0 /s0�1.
Thus, their approximation cannot be classified as an example
of the tQSSA. As a confirmation of this fact, in Fig. 1 of Ref.
20, it is reported that the approximation performs well in the
case where substrates are in excess of enzymes but performs
poorly when the situation is reversed. This is in contrast to
the deterministic setting where the tQSSA was introduced
precisely because it performed better for the case where en-
zymes were in excess. As a partial justification of the poor
performance of their approximation in the stochastic setting,
when enzymes are in excess, Fig. 3 of Ref. 20 shows that, in
the deterministic setting, the QSSA also performs poorly.
This highlights the need to distinguish between the various
forms of the QSSA and make connections to the determinis-
tic literature because, for example, the tQSSA would perform
well in both regimes.
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